Study on high Performance and Effective Watermarking Scheme using Hybrid Transform (DCT-DWT)

Bhawana Mathur

Lecurer, Sri Balaji Technical Campus, Jaipur, India E-mail:bhawanamathur19@gmail.com

Abstract: Nowadays healthcare infrastructure depends on Hospital Information Systems (HIS), Radiology Information Systems (RIS), Picture archiving and Communication Systems (PACS) as these provide new ways to store, access and distribute medical data . It eliminates the security risk. Conversely, these developments have introduced new risks for unsuitable deployment of medical information flowing in open networks, provided the effortlessness with which digital content can be manipulated. It is renowned that the integrity and confidentiality of medical data is a serious topic for ethical and legal reasons.

Medical images need to be kept intact in any condition and prior to any operation as well need to be checked for integrity and verification. Watermarking is a budding technology that is capable of assisting this aim. In recent times, frequency domain watermarking algorithms have gained immense importance due to their widespread use. Subsequently, the watermark embedding and extraction are performed in frequency domain using the presented scheme. The proposed watermarking scheme, the watermark extraction compared with the original image for calculating SSIM. The effectiveness of the proposed watermarking scheme is demonstrated with the aid of experimental results.

Keywords: Digital Watermarking, Hybrid transform, discrete cosine transform (DCT), Discrete wavelet transform (DWT), Daubechies 4 wavelet transform, Medical images, Structural Similarity Index Measure (SSIM).

1. Introduction

Owing to the rapid advancement of the Internet and multimedia systems in distributed environments, the transfer of multimedia documents across the Internet by the digital data owners has become simple. Thus, there is a raise in concern over copyright protection of digital contents [2], [3]. Protection of digital images has gained remarkable significance with the omnipresence of internet. The introduction of image processing tools has amplified the susceptibility for illegal copying, alteration, and dispersion of digital images. Against this background, the data hiding technologies for digital data like digital watermarking have attracted enormous attention recently [4]. Digital watermarking utilized in order to High Performance and Effective Watermarking Scheme for Medical Images 284 avert unauthorized duplication or exploitation of digital images [5] [6]. Digital image watermarking is vital to all sorts of media, to prevent them from being asserted by other non related people, or from being edited or altered. Digital watermarking is a methodology that proffers a means to safeguard digital images from illegal copying and manipulation.

A digital watermark is defined as an indiscernible signal included with digital data, called cover work, which can possibly be identified at a later stage for buyer/seller identification, ownership proof, and the like [16]. Image watermarking, video watermarking and audio watermarking are enlisted as categories of Digital watermarking in accordance to the range of application.Contemporary digital watermarking schemes primarily focus on image and video copyright protection [15]. On the whole, a digital watermark is defined as a code that is embedded inside an image. It plays the role of a digital signature, providing the image with a sense of ownership or authenticity [5]. It is possible for the embedded data (watermark) to be either visible or invisible. In visible watermarking of images, a secondary image (the watermark) is embedded in a primary image in such a manner that watermark is deliberately noticeable to a human observer while in the case of invisible watermarking the embedded data is not observable, but it is possible to extract it with the aid of a computer program [24].Watermarking techniques can be divided into two sub-domains: Robust Watermarking the one which encompasses the additional requirement of robustness against possible attacks, and fragile watermarking the one that is exceedingly susceptible to design changes. Robust Watermarking techniques come with the feature of being infeasible to be removed or make them futile devoid of destruction to the intellectual property (IP) at the same instant [19] [20]. When the IP is modified or altered, the fragile watermark is destroyed at

Volume: 1 Issue: 3

once. Fragile watermarks can be employed to authenticate the integrity of the medical image.

In any situation, medical images ought to be kept unharmed and they should be checked prior to any operation for [23]:

- Integrity: this verifies that unauthorized people have not modified the image;
- Authentication: this verifies whether the image certainly belongs to the right patient.

In accordance with the processing domain of the host image that the Watermark is embedded

in, the image watermarking techniques offered until now can be classified into two categories. Spatial domain [7] [8] is one and the frequency domain [11] [9] [10] is the other. The frequency domain approaches are highly beneficial for Image Watermarking. An arbitrary sequence is added to the transformed image coefficients by the DCT (Discrete Cosine Transform), the DWT (Discrete Wavelet Transform), the DFT (Discrete Fourier transform) and the DHT (Discrete Hadamard Transform) are utilized in most of the Watermarking techniques [13]. A number of sought-after properties including efficient multi-resolution representation, scalability, and embedded coding with progressive transmission, which are advantageous to the image compression applications, are offered by wavelet transform [12]. However, owing to the lack of directionality, wavelet transform is not optimal in representing textures and fine details in images [14]. The suggestion of applying hybrid transform is on basis of the fact that combined transforms are capable of compensating for the drawbacks of each other, thus consequent in efficient 285 A. Umaamaheshvari and K. Thanushkodi image processing. Hybrid transform schemes are extensively employed by the researchers in the areas of Image Compression [21], Denoising [22], Image Coding [23] and other related ones so as to enhance the performance of these systems. Lately, a certain number of works that employ hybrid transforms in image watermarking have appeared.

In this paper, we have presented a novel and effective watermarking scheme for checking the integrity and authenticating medical images using hybrid transform [1]. Our proposed scheme makes use of the Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT) to form a hybrid transform. The Daubechies 4 wavelet transform is chosen for DWT in our watermarking scheme. The watermark embedding and extraction are performed in a frequency domain with the help of hybrid transform. It is essential that the size of the original image be dyadic $(2n \times 2n)$ and the watermark image be a binary image. Initially, the DCT is applied into the original image and the resultant matrix is converted into hybrid transformed matrix with the aid of Daubechies 4 wavelet transform.

A new scheme is proposed for embedding and extraction processes to be performed in the transformed image. Since the proposed scheme, the extraction of watermark requires the watermarked image and the size of watermark image. The effectiveness of the proposed scheme is verified with the help of experimental results.

2. Previous Research

A number of earlier works available in the literature on digital image watermarking scheme that

Employs hybrid transform techniques for image processing, watermarking, image compression, image coding, denoising of digital images. Here, some of the recent motivating researches are briefly described as below.

A non-subsampled contourlet and wavelet hybrid transform (NSCWHT) was built and its

applications were studies by Yingkun *et al.* [26]. The construction of filtering banks was carried out on basis of the non-subsampled contourlet transform (NSCT) and wavelet transform (WT). The consequence was that point singularity and line singularity in image could possibly be represented simultaneously. They merged NSCT with WT to design filters that lead to a NSCWHT with enhanced singularity representation on comparison with the single one of them. They offered a design framework on basis of the hybrid approach that permits a quick implementation based on NSCT and WT correspondingly. Besides, they designed an image watermarking algorithm based on the developed NSCWHT; they assessed the performance of the NSCWHT in the image watermarking algorithm.

A family of non-redundant directional image transforms built with the aid of hybrid wavelets

and directional filter banks (HWD) was presented by Eslami R. *et al.* [14]. They built and assessed a HWD family algorithm for blind multiplicative watermarking. They approximated the watermarked coefficients through a generalized Gaussian distribution probability model and employed a locally optimal detector. Subsequently, they evaluated the performance of the HWD family against that of wavelet-based image watermarking.

An image watermarking scheme that integrates two types of transformation technologies to

Proffer improved compromises amid the visual quality and the robustness in order to resist various signal processing or degradation was proposed by Der-Chyuan Lou *et al.* [27]. The algorithm employs the wavelet multiresolutional structure to choose the location for the watermark. Embedding the watermark inside the image by instituting minimal distortion into transformed coefficients offers the robustness for the watermark detection devoid of any degradation to the quality of the image. Moreover, the proposed method is capable of detecting the watermark without demanding for the High Performance and Effective Watermarking Scheme for Medical Images 286 original image. Experimental evaluation illustrated that the scheme was further robust than former schemes in terms of certain perceptual quality.

P.John Paul *et al.* [21] studied the similarities among fast Fourier transform (FFT), fast cosine

transform (FCT) and fast Hartley transform (FHT). A converged, very large scale integration (VLSI) architecture for the aforesaid hybrid transforms for video compression were designed, simulated and synthesized. The implementation of FCT, FFT, and FST from fast Hartley transform was built and hybrid transforms architecture was provided. In addition, the calculation of delays and area overheads was carried out as well. The layouts for all these transforms were drawn with the aid of magma tools with 0.13 mum technologies. Additionally, the compression ratio for image with each transform and Hybrid transform was implemented as well.

The filtering necessitates the optimal choice of the size of the moving window for each

Particular image for the highest noise suppression capability. A combination of wavelet expansion (sub band decomposition) and moving window filtering in DCT domain was recommended as an alternative so as to overcome the aforesaid disadvantage and experimentally verified on numerous synthetic and real life images by Ben-Zion Shaick *et al.* [22]

A coding methodology on basis of mixed contourlet and wavelet transform was presented by

Vivien Chappelier *et al.* [23]. The redundancy of the transform was restricted with the aid of the

contourlet at fine scales and by shifting to a separable wavelet transform at coarse scales. The

transform was further optimized with the assistance of an iterative projection process in the transform domain so as to minimize the quantization error in the image domain. A gain of up to 0.5dB and to 1 dB was perceived for images with directional features over contourlet and wavelet based coding respectively.

Jin Li *et al.* [28] projected a hybrid wavelet-fractal coder (WFC) for image compression. They

demonstrated that the application of contractive mapping for inter-scale wavelet prediction in the

wavelet domain provides bit rate savings at certain regions. The prediction residue was later quantized and encoded with conventional wavelet coders. WFC permitted the flexibility to select either direct coding of wavelet coefficients or fractal prediction followed by residual coding to attain a better ratedistortion (R-D) performance. The R-D efficiency of fractal prediction was assessed with the aid of a derived criterion of low intricacy. The advanced performance of WFC was established by extensive experimental evaluation.

3. Watermarking in Frequency Domain

It is possible to categorize the contemporary digital image watermarking techniques into two chief classes: spatialdomain and frequency-domain watermarking techniques [29]. With the comparison of spatial domain techniques [30], frequency-domain watermarking techniques proved to be more efficient with regard to achieve the imperceptibility and robustness requirements of digital watermarking algorithms [31]. Discrete Wavelet Transform (DWT), the Discrete Cosine Transform (DCT) and Discrete Fourier Transform (DFT) are some of the generally utilized frequency-domain transforms. Nevertheless, DWT [32] has been employed in digital image watermarking often owing to its excellent spatial localization and multi-resolution characteristics that are identical to the theoretical models of the human visual system [33]. Further performance enhancements in DWTbased digital image watermarking algorithms could be achieved with the combination of DWT with DCT [34].

3.1. Discrete Cosine Transform

The Discrete Cosine Transform is a renowned coding technique employed in image and video

compression algorithms. It is capable of carrying out decorrelation of the input signal in a dataindependent manner [17]. The DCT is a methodology for the transformation of a signal into elementary 287 A. Umaamaheshvari and K. Thanushkodi frequency components. The sequences of n real numbers $x1, \ldots, xn$ are converted into the sequence of n complex numbers $f1, \ldots, fn$ by the DCT [36] in accordance with the following formula:

$$fl = \sum x_k \cos[\prod /n j(k+1/2)] \\ k=0$$

3.2. Discrete Wavelet Transform

Wavelets can be described as functions defined over a finite interval and having an average value of zero. The basic idea of the wavelet transform is to represent any arbitrary function as a

superposition of a set of such wavelets or basis functions [17]. The large number of known wavelet families and functions provides a space in a variety of applications. Biorthogonal,Coiflet, Haar, Symmlet, Daubechies wavelets [35].

Daubechies-4 wavelet transform: Daubechies [18]

created a set of most elegant ortho-normal

wavelet basis function. These wavelets are efficiently supported in the time-domain and possess

superior frequency domain decay. This denotes the motivation behind our choice of Daubechies

wavelet transform. Daubechies-4 wavelet, the one that consists of only 4 coefficients, is considered to be the simplest member of the Daubechies family. The coefficients are

$$h0 = \frac{1+\sqrt{3}}{4\sqrt{2}}, \quad h1 = \frac{3+\sqrt{3}}{4\sqrt{2}}, \quad h2 = \frac{3-\sqrt{3}}{4\sqrt{2}}, \quad h3 = \frac{1-\sqrt{3}}{4\sqrt{2}},$$

The Daubechies D4 wavelet transform has four wavelet and scaling function coefficients. Scaling function,

 $a[i] = h0s[2i] \ h1s[2i] \ h2s[2i] \ 2 \ h3s[2i] \ 3$

Wavelet function,

c[i] = g0s[2i] g1s[2i] g2s[2i] g3s[2i] 3]

3.3. Hybrid Transform

A number of watermarking algorithms that utilize either the DCT or the DWT exist in frequency

domain. Major benefits of the hybrid DWT-DCT transform algorithm include the following:

- Combined transforms recompense for the disadvantages of each other.
- Produce an effective image watermarking.
- Enhanced Peak Signal to Noise Ratio (PSNR).
- Structural Similarity Index Measure(SSIM)

4. Effective Watermarking Scheme using Hybrid

Transform (DCT-DWT)

In the medical field, the qualities of the biomedical images are crucial, treated strictly and the image shall not be altered in any way. Digital watermarking in medical images is very important to prevent modification of medical images by any parties. Because of the importance of the security issues in the management of medical information, we have presented a novel and effective watermarking scheme for checking the integrity and authenticating medical images using hybrid transform. Our proposed scheme makes use of the Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT) to form a hybrid transform. For DWT, the Daubechies 4 wavelet transform is chosen in our watermarking scheme. The novel watermark embedding and extraction are performed in a frequency domain with the help of hybrid transform. The following subsections portray the steps involved in the watermark embedding and extraction processes.

4.1. Watermark Embedding

The embedding of watermark image into the original image is detailed in this subsection. It is essential that the size of the original medical image be dyadic (2n x 2n) and the watermark image be a binary image. Our watermark embedding process is performed in a frequency domain with the help of hybrid transform. Initially, the DCT is applied into the original image and the resultant transformed image is converted into the hybrid transformed image with the aid of Daubechies 4 wavelet transform. Subsequently, the extraction process proceeds as, the LSB (Least Significant Bit) value of every two bytes of the hybrid transformed image is computed and followed by the XOR operation is performed for those LSB values. The resultant XOR value is compared with each pixel value of the binary watermark image to obtain a modified embedded transformed image. Then, the watermark embedded transformed matrix is mapped back to its original position. Subsequently, inverse Daubechies 4 wavelet transform and inverse DCT are applied respectively to obtain the watermarked image. Fig 1 depicts the block diagram of the watermark embedding process.

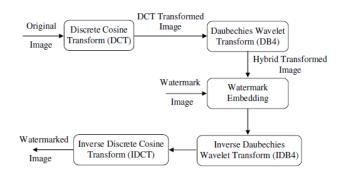


Figure 1: Block diagram of Watermark Embedding

Watermark Embedding Steps

Input: Original Image (\overline{I}), Binary Watermark Image (W)

Output: Watermarked Image (*I W*)

Let *I* be an original grayscale medical image of size *nxn* be represented as:

$$I = \{ x_{ij} \mid 0 \le i < n, 0 \le j < n ; x_{ij} \notin \{0, 1, \dots, N \}$$

Apply the DCT into the original image I and generate a resultant transformed matrix IT.

$$\leq j \leq n \qquad Ti = \begin{cases} x_{ij} & 0 \leq i < n, \end{cases} 0$$

$$P1n \qquad P1n \qquad P1n \qquad P21 \qquad P22 \qquad \dots \qquad P$$

$$\vdots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots \\ Pn1 \qquad Pn2 \qquad \dots \qquad P$$

Pnm

Subsequently, the resultant matrix is altered by means of the daubechies 4 wavelet transform in order to get the hybrid transformed image.

$$\leq n \qquad \qquad HT = \left\{ x_{ij}^n \mid 0 \leq i < n, \quad 0 \leq j \right\}$$

Then, the LSB value of every two bytes of the hybrid transformed matrix IHT is taken out and

stored it in an intermediate vector VI. In order to find the LSB value of every two bytes, the pixel

values must be in whole number so that the whole number and the mantissa part are separated out.

$$HT_I = [P_1 \ P_2 \ P_3 \ \dots \ P_N]$$

Iv = LSB[Pi, P+i1];
$$1 \le i \le N$$

Then, the XOR operation is performed for the resulted LSB values of every two bytes in the VI.

$$C = XOR [Iv_{(i,i+1)}]$$

Then, the watermark embedded transformed matrix is mapped back to its original position.

Subsequently, inverse Daubechies 4 wavelet transform and inverse DCT are applied respectively to obtain the watermarked image IW.

4.2. Watermark Extraction

This section explains the process utilized in our proposed scheme for the extraction of binary

watermark image from the watermarked image. As our watermarking scheme is blind, it requires the watermarked image and size of watermark image for extraction. To begin with, the DCT is applied into the watermarked image as a result of the DCT transformed image. Then, the Daubechies 4 wavelet transform is applied into the transformed matrix to attain the hybrid transformed image. Subsequently, the XOR operation is performed for LSB (Least Significant Bit) values of every two bytes present in the hybrid transformed image. Eventually, the binary watermark image is extracted with the help of hybrid transformed image by utilizing the size of the watermark image.Fig 2 shows the block diagram of the watermark extraction process.

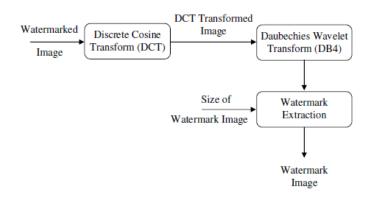


Figure 2: Block diagram of Watermark extraction

Watermark Extraction Steps

Input: Watermarked Image (I W), Size of watermark image (|W|)

Output: Watermark Image (W)

Initially, the DCT is applied into the watermarked image WI which produces the resulted transformed matrix TW_I .

$$TW_{I} = \left\{ \begin{array}{ccc} y_{ij} & 0 \leq i < n \\ \end{array}, 0 \leq j < \right\}$$

5. Experimental Results

п

The experimental results of the proposed effective watermarking scheme for checking the integrity and authenticating medical images using hybrid transform (DCT-DWT). The proposed watermarking scheme is programmed in Matlab (Matlab7.4) and tested with different sizes of medical images. The proposed watermarking scheme discussed in this paper effectively embedded the watermark image into the original image and extracted it back from the watermarked image. The watermarked images possess superior Peak Signal to Noise Ratio (PSNR), Structural similarity Index Measure(SSIM) and visual quality.

6. Summary and Concluding Remarks

In this paper, an effective watermarking scheme is

presented for the integrity and authenticity

verification of medical images. The proposed frequency domain watermarking scheme made use of hybrid transform, in which Discrete Cosine Transform is combined with Daubechies 4 wavelet transform. The watermark embedding and extraction are done in the frequency domain using the presented watermarking scheme.

References

[1] A.Umaamaheshvari and Dr.K.Thanushkodi," An Effective Watermarking Scheme for

Medical Images Using HybridTransform (DCT- DWT) vol.5 no(1-4). 2011 in IJCSES

[2]A. Piva, F. Bartolini, and M. Barni, "Managing copyright in open networks," IEEE

Transactions on Internet Computing, Vol. 6, No. 3, pp. 18–26, May–Jun. 2002.

- [3] C. Lu, H. Yuan, and M. Liao, "Multipurpose watermarking for image authentication and
- protection," IEEE Transactions on Image Processing, Vol. 10, No.10, pp. 1579–1592, Oct. 2001.
- [4] Tosihiro Akiyama, Fumiaki Motoyoshi, Osamu Uchida and Shohachiro Nakanishi, "Hybrid

Digital Watermarking For Color Images Based On Wavelet Transform", 2006.

[5] Memon, N. and Wong, P., "Protecting Digital Media

Content" In: Communications of ACM,

Vol. 41, No. 7, pp. 35-43, July 1998.

[6] G. Voyatzis and I. Pitas, "The use of watermarks in the protection of digital multimedia

products," IEEE Proceedings, Vol. 87, No. 7, pp 1197-1207, July 1999.

[7] Mohsen Ashourian, "A new mixed spatial domain watermarking of three dimensional

Triangle mesh", Proceedings of the 4th international conference on Computer graphics and

Interactive techniques in Australasia and Southeast Asia, pp: 251 - 255, 2006.

[8] Ahmad, S., Zhe-Ming Lu, "Intelligent Watermark Recovery Using Spatial Domain

Extension", in Proceedings of the International Conference on Intelligent Information Hiding

And Multimedia Signal Processing, IIHMSP '08, pp: 735-739, 2008.

[9] Xinghao Jiang, Tanfeng Sun and Jianhua Li, "A Novel Original Streaming Video Wavelet

Domain Watermarking Algorithm in Copyright Protection ", Lecture Notes in Computer

Science, Springer Berlin, Vol : 5353, pp: 891-893, 2008.

[10] Srdjan Stankovic, Irena Orovic, and Nikola Zaric, "Robust Speech Watermarking Procedure

In the Time-Frequency Domain", Journal on Advances in Signal Processing, pages: 9, 2008.

[11] G.S.El-Taweel, H.M. Onsi, M.Samy, M.G. Darwish, "Secure and Non-Blind Watermarking

Scheme for Color Images Based on DWT", GVIP Special Issue on Watermarking, 2007.

[12] Coatrieux, G., Maitre, H., Sankur, B., Rolland, Y., Collorec, R., "Relevance of watermarking

In medical imaging", in Proceedings of the IEEE EMBS International Conference on

Information Technology Applications in Biomedicine 2000, pp. 250–255, 2000.

[13] Trichili, H., Boublel, M., Derbel, N., Kamoun, L., "A new medical image watermarking

scheme for a better tele-diagnosis", in Proceedings of the IEEE International Conference on

Systems, Man and Cybernetics, Vol.1, pp. 556-559, 2002.

[14] Eslami, R.; Radha, H., "Image Watermarking using Hybrid Wavelets and Directional Filter

Banks", in Proceedings of the 40th Annual Conference on Information Sciences and Systems,

pp: 464 - 467, 2006.

[15] Xiang-Yang Wang and Hong Zhao, "A Novel Synchronization Invariant Audio

Watermarking Scheme Based on DWT and DCT", IEEE Transactions On Signal Processing,

Vol. 54, No. 12, December 2006.

[16] I. J. Cox, M. L. Miller, and J. A. Bloom, Digital Watermarking, Morgan Kaufmann, San

Francisco, Calif, USA, 2001.293 A. Umaamaheshvari and K. Thanushkodi

[17] M. Ezhilarasan, P. Thambidurai, "A Hybrid Transformation Technique for Advanced Video

Coding", UbiCC Journal, Vol: 3, No: 3, 2008.

[18] I. Daubechies, "The Wavelet Transform, Timefrequency Localization and Signal

Analysis", IEEE Trans. on Information Theory, vol. 36, No: 5, pp. 961-1005, 1990.

[19] Amr T. Abdel-Hamid, and Sofiene Tahar, "Fragile IP Watermarking Techniques",

Volume: 1 Issue: 3

170 – 176

NASA/ESA Conference on Adaptive Hardware and Systems, 2008.

[20] Shaowei Weng, Yao Zhao and Jeng-Shyang Pan, "A Novel Reversible Data Hiding

Scheme;", International Journal of Innovative Computing, Information and Control, Vol. 4,

No. 2, pp.351-358, 2008.

[21] P.John Paul, P.N.Girija, "A Novel VLSI Architecture

for Image Compression", Eighth IEEE International Symposium on Multimedia, pp: 794-795, 2006.

[22] Ben-Zion Shaick, Leonid Ridel, Leonid Yaroslavsky,

"A Hybrid Transform Method for

Image Denoising", EUSIPCO, 2000.

[23] Vivien Chappelier, Christine Guillemot and Slavica Marinkovic, "Image Coding With

Iterated Contourlet and Wavelet Transforms", in Proceedings of the International

Conference on Image Processing, Vol: 5, pp: 3157-3160, 2004.

[24] Yeung, M. & Minzter, F. "An Invisible Watermarking technique for image verification". In

proceedings of the IEEE International Conference on Image Processing, pp: 680-683, 1997.

[25] Samia Boucherkha and Mohamed Benmohamed, "A Lossless Watermarking Based

Authentication System for Medical Images", in Proceedings of the World Academy of

Science, Engineering and Technology, Vol: 1, ISSN 1307-6884, 2005.

[26] Yingkun, Hou Chunxia, Zhao Mingxia, Liu Deyun, Yang, "The Nonsubsampled Contourlet-

Wavelet Hybrid Transform: Design and Application to Image Watermarking", in

Proceedings of the International Conference on Computer Science and Software Engineering,

Vol: 3, pp: 627-630, 2008.

[27] Der-Chyuan Lou , Chia-Hung Sung, "Robust image watermarking based on hybrid

transformation", in Proceedings of the IEEE 37th Annual International Carnahan Conference

on Security Technology, pp : 394- 399, 2003.

[28] Jin Li, C.-C. Jay Kuo, "Hybrid Wavelet-Fractal Image Compression Based on a Rate-

Distortion Criterion", in Proceedings of the SPIE, Vol.

3024, 1997.

[29] Potdar, V., S. Han and E. Chang, A Survey of Digital Image Watermarking Techniques, in

Proceedings of the IEEE International Conference on Industrial Informatics, pp: 709-716,

Perth, Australia, 2005.

[30] Chan, C. and L. Cheng, Hiding Data in Images by Simple LSB Substitution, Pattern

Recognition, Vol: 37, No: 3, pp: 469-474, 2004.

[31] Wang, R., C. Lin and J. Lin, "Copyright protection of digital images by means of frequency

domain watermarking," in Proceedings of the *SPIE* Mathematics of data / Image Coding,

Compression, and Encryption vol. 3456, pp.2535, San Diego, California, 1998.

[32] Vetterli, M. and J. Kovacevic, "Wavelets and Subband Coding", Prentice Hall, USA, 1995.

[33] Wolfgang, R., C. Podilchuk, E. Delp, "Perceptual Watermarks for Digital Images and

Video,"Proc. of the IEEE, Vol. 87, No. 7, pp: 1108-1126, 1999.

[34] Rao, K. and P. Yip. "Discrete Cosine Transform: algorithms, advantages, applications".

Academic Press, USA, 1990.

[35] Daubechies, I., "Ten Lectures on Wavelets", SIAM, Philadelphia, 1992.

[36] Christopher Bennett, "DFT, DCT, and DWT", University of Miami, 2005

Author's Biography

I have presented several research papers in Nationaland international Conferences . I have completed M.Sc (Env Sc) ,Master in Computer Application ,M.Tech (IT) .My research area Arificial Intelligence, Network Security,Database. I have few years of teaching experiences and currently working in Sri Balaji Technical Campus ,Jaipur asLetucrer.