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Abstract—Blind watermarking targets the challenging recovery
of the watermark when the host is not available during the
detection stage.This paper proposes Discrete Shearlet Transform
as a new embedding domain for blind image watermarking.
Our novel DST blind watermark detection system uses a non-
additive scheme based on the statistical decision theory. It first
computes the probability density function (PDF) of the DST
coefficients modelled as a Laplacian distribution. The resulting
likelihood ratio is compared with a decision threshold calculated
using Neyman-Pearson criterion to minimise the missed detec-
tion subject to a fixed false alarm probability. Our method is
evaluated in terms of imperceptibility, robustness and payload
against different attacks (Gaussian noise, Blurring, Cropping,
Compression and Rotation) using 30 standard grayscale images
covering different characteristics (smooth, more complex with
a lot of edges and high detail textured regions). The proposed
method shows greater windowing flexibility with more sensitive
to directional and anisotropic features when compared against
Discrete Wavelet and Contourlets.

Index Terms—Digital image watermarking, Frequency domain,
Discrete Shearlet Transform (DST), Discrete Wavelet Transform
(DWT), Contourlet Transform (CT) , Laplacian distribution.

I. INTRODUCTION

IN the current globally-connected society, where access and
distribution of digital multimedia files is ubiquitous and

pervasive, virtual opportunities to pirate copyrighted files are
in a permanent rise. As a consequence, finding protection
methods to block or detect any unauthorized access and keep
data transmission safe and secure has become one of the
most important challenge during the past decades. Digital
watermarking is one method that has been developed in
order to protect ownership of data, digital content protection
and transaction tracking so that illegal use, modification and
distribution of the content can be detected. In this regard,
the purpose of digital watermarking is to embed or hide
some invisible additional information, called watermark, into
another signal such as image, audio or video, known as a
host or cover where the visual quality of the embedded host
signal should not be significantly degraded. To be effective,
watermark detection and extraction should be possible after
applying a variety of manipulations and attacks while meeting
some criteria in terms of imperceptibility, robustness, security
and payload, which are often interdependent.

In general terms, the imperceptibility of a watermark refers
to the perceptual similarity between the original and water-
marked version of the host data. This is important so as to

keep the degradation of host quality to a minimum, so no
obvious difference in the fidelity between the original and
watermarked hosts can be noticed [1]. Robustness is a measure
of the watermarking methods resistance against different types
of attacks, for instance, compression, additive noise, etc.,
are the types of attacks accrue in digital signal processing
[1]. Payload refers to the total amount of information that
can be hidden within the digital media [2]. The purpose of
increasing watermarking payload is to find how transmit more
information while satisfying both watermarking robustness
and imperceptibility requirements [3]. In particular, the most
challenging issue is how to address the trade-off between
robustness and imperceptibility, since enhancing robustness
implies necessarily increasing the watermark strength and
therefore produces a loss of transparency [4].Finding such
an optimized solution still remains a challenge within the
watermarking community.

This paper describes a new framework for robust water-
marking of image content due to the fact that digital images
constitute a major component of digital multimedia files. A
watermarking system can be divided into two main processes:
embedding and extracting. Current watermarking techniques
are broadly classified according to the embedding domain:
spatial and transform domains. Although spatial domain based
methods are easy to implement, such techniques suffer from
some disadvantages, including failure to achieve better robust-
ness against various attacks. For instance, in [5], since the wa-
termark information is embedded in the least significant bits,
the effects of simple manipulations like lossy compression,
adding noise and filtering are severe and impair the detection
of the watermark.

In contrast, imperceptibility and robustness requirements
to a variety of attacks can be achieved more efficiently in
watermarking systems, based on various transform domains,
since watermarking information is spread out over the entire
host image [4]. In this regard, watermarking algorithms based
on different transform domains such as the DFT (Discrete
Fourier Transform) [6], DCT (Discrete Cosine transform)[7],
DWT(Discrete Wavelet Transform)[8], Contourlet Transform
[9] and others have been proposed [10]. ORuanaidh et al [11]
initially proposed in the use of DFT phase for watermarking.
In their proposed method, the watermark is embedded in the
most significant frequency components of an image where
only the DFT phase is used for embedding. Extraction is
carried out using a statistical model. Zou et al.[12], developed
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a watermarking method based on combining DFT and Hough
transform which results in a more robust system that can
endure severe attacks such as printing-scanning, scaling and
rotating. However, as its main drawback, DFT based schemes
suffer against cropping attacks and the watermark cannot sur-
vive if aspect ratio changes, since these changes significantly
affect the frequency content of the image.

DCT was first applied for watermarking by Koch and Zhao
[4]. During the embedding process, some of the host image
regions are selected randomly to embed the watermark. These
regions are transformed using DCT and then some medium
frequency coefficients are modified. In their seminal paper,
Cox et al. [13] proposed a spread spectrum based embedding
algorithm selecting the most perceptually significant features
which is represented by DCT coefficients of the given image.
In this algorithm, a Gaussian watermark sequence is embedded
into the 1000 highest magnitude DCT coefficients while low
frequency regions around the upper-left corner are not used
to preserve invisibility. On the other hand, a combination of
DCT and single value decomposition (SVD) was proposed
for watermarking [14] in order to increase the imperceptibility
while obtaining the highest possible robustness. In this method
SVD is applied so that the singular values of the watermark are
embedded into the DCT coefficients of the original image. The
authors argue that better imperceptibility can be achieved by
embedding only the singular values of the watermark into the
original image. Moreover, better robustness can be obtained
by embedding the highest singular values having the highest
energy of the watermark into the DC components of the
original image. However, the main drawbacks of DCT-based
watermarking techniques relate to shortcomings in robustness
against high compression levels and have performed poorly
for de-synchronization based attacks such as geometric distor-
tions.

DWT transform based schemes were proposed in order to
overcome some of the drawbacks of DCT- and DFT-based
systems by using multi-resolution techniques. A few water-
marking schemes were also proposed based on combining
DCT and DWT in order to provide better performance against
some attacks [15]. Other works have been carried out to further
develop the DWT-based watermarking methods. In [16] SVD
was applied to the watermark and original image coefficients
in all the frequency bands of DWT. During the embedding
stage, the original image was first decomposed into 4 sub-
bands using DWT, and then the SVD was applied on each
band by modifying their singular values.

In [17] the coefficients of the original image are quantized in
the wavelet domain and the binary watermark is embedded into
the wavelet-blocks that can be obtained by grouping four co-
efficients at different sub-bands at corresponding coordinates.
The method has shown promising results against various types
of attack, including the geometric and non-geometric attacks.
In spite of the success of DWT and its different variants, such
as the dual tree complex wavelets transform (DTCWT) [18],
and the non-redundant complex wavelets transform (NRCWT)
[19], multi-resolution transforms based on DWT suffer of
limited directionality in their filtering structure [19].

Images to be watermarked usually contain sharp transitions

between objects in the scene such as lines, edges and corners
or textural regions. These structures are formed in multiple
and fine grain directions and orientations. The coefficients
in DWT based transforms cannot accurately represent these
structures because of their limited directionality. Although
DTCWT-based methods exhibit relevant advantages in com-
parison with the previous transform domains in this regard
by having improved directionality with more orientations and
approximate Shift Invariance, it is difficult to design it with
perfect reconstruction properties and good filter characteristics
to solve line-like edges discontinuities across curves (curve
singularities) and geometrical smoothness issues [18].

To overcome this limitation, a variety of transforms such as
Ridgelets, Curvelets [20] and Contourlet (CT) [21] have been
deployed to provide a better framework for capturing the direc-
tionality and the geometry of the scene using multiresolution
decomposition. Curvelets and ridgelets, same as DWT, their
construction is not associated with a multiresolution analysis.
This and other issues make the discrete implementation of
curvelets very challenging as claimed in [22], therefore two
different implementations of it have been suggested [20] and
[23]. In an attempt to provide a better discrete implementation,
The Contourlet transform was developed as an improvement
over wavelet and Curvelet and ridgelets [21].

Zaboli and Moin [24] proposed a CT based watermarking
using human visual system characteristics. In their method,
the host image is first decomposed using CT into four levels.
In order to add the watermark, a binary logo is scrambled
through a well-known PN sequence in order to enhance the
system security and provides a random distribution of original
image. A more recent research is carried out based on a
combination of SVD and CT [25], where the eigenvalues of
a QR watermark matrix are embedded into the eigenvalues of
the original images coefficients in the Contourlet domain. This
method has shown an improved robustness against various
types of attacks such as scaling, compression and filtering.
Moreover, the proposed method has better imperceptibility
when compared with other Contourlet based watermarking
techniques. Although Contourlet aims to better capture the
directionality of the image features, this is still insufficient
and causing visual artifacts into the host image, which is not
a desirable property in applications such as watermarking [23].

Watermarking techniques also can be classified based on the
usage of the original image during extraction process. If during
the extracting procedure the original image is required this is
called non-blind watermarking [13], whereas a technique is
called blind if it works under the assumption that the original
image will not be available at extraction. In this paper, the
main focus is on blind digital image watermarking. In a blind
schema the watermark extraction can be obtained by applying
statistical methods. Cheng and Huang [26] pointed out that
the watermark detection problem can be viewed as a statistical
hypothesis testing problem. Therefore, this type of detection
requires a suitable modelling for the probability distribution
function (pdf) of the host image. Barni et al.[27], applied
Weibull pdf in order to model the magnitude of a set of
full-frame discrete Fourier transform coefficients. The DWT
coefficients modelled using Generalizes Gaussian (GG) [28]
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or Laplacian pdf [29].
In this paper we propose a new transform domain using

Discrete Shearlet Transform (DST) to the problem of image
blind watermarking.The DST shows promising results in im-
age processing applications such as edge detection [22] and
image denoising [30], in compare with other transforms such
as the DWT and CT, both visually and with respect to PSNR.
This leads us to conclude that its directional properties have
potential in watermarking. As previously explained, complex
structures present in images, such as curves, edges and textural
regions are not easy to capture. The Shearlet transform has the
ability to capture image features more precisely. For example,
edges can be more accurately captured due to the efficient
multi-resolution filter which produces more specific directional
localization for a higher number of directional components.
This means that some features that might remain undetected
in one resolution can be spotted in another resolution. This
can potentially increase the data embedding capacity for wa-
termarking while preserving the imperceptibility requirements
and providing higher robustness. This can be achieved by
embedding more information in the edges of the image as
the human visual system is less sensitive to changes near the
edges. The DST transform offers a plethora of advantages
for watermarking problems, namely; (i) it captures directional
features more precisely, (ii) it has no restrictions on the number
of directions and no constraints on the size of the supports
in its filter structure in comparison with previous transforms
[31]. This leads to produce better watermark adaptation to the
host image under consideration. By taking into account these
advantages, we explore the usage of DST for image water-
marking in order to achieve high levels of imperceptibility
and robustness while still increasing payload.

In our earlier works, we already proposed DST as the
transform domain for a non-blind watermarking framework
based on spread spectrum [32] and a further refinement of it
using perceptual models based on the human visual system
[33]. While these earlier works showed the potential of DST
for watermarking, they were both limited for their non-blind
nature, requiring the original image during extraction. To
overcome this limitation, this paper proposed a new framework
on blind watermarking using DST.

The novel contributions of this work can be summarized as
follows:

• Novel use of DST for blind watermarking applications.
This transform has not been used in watermarking ap-
plications before, according to the best knowledge of the
authors. The only exceptions are its use in our conference
papers [32] for a basic non-blind watermarking frame-
work as part of our preliminary work and conference
papers [33] for a basic non-blind perceptual watermarking
model.

• A fully new framework on blind watermarking using
DST. This method is derived based on the statistical deci-
sion theory, Bayes decision theory, the Neyman-Pearson
criterion, and the distribution of the DST coefficients in
the case of grey scale images.

• The pdf of the DST coefficients is estimated as a Lapla-

cian distribution. This approach is evaluated against all
different attacks using a variety of images (30 images)
having different image content and characteristics.

The rest of the paper is organized as follows: Section II
provides a brief description of the Discrete Shearlet Transform.
The proposed watermarking system is described in Section III.
Section IV covers the implementation details of the proposed
method, where results and comparative evaluations against
different attacks are given. Finally, Section V concludes the
paper.

II. BACKGROUND: THE DISCRETE SHEARLET
TRANSFORM

Shearlet transform is an affine function containing a single
mother Shearlet function that is parameterized by scaling,
shear and translation parameters with the shear parameter
capturing the direction of the singularities [31]. An important
advantage of this transform over other transforms is due to the
fact that there are no restrictions on the number of directions
for the shearing. There are also no constraints on the size of
the supports for the shearing, unlike, for instance, directional
filter banks [22] where using a small window size would
result in a performance loss. Therefore, the Shearlet transform
is designed to deal with directional and anisotropic features,
typically present in images, and has the ability to effectively
capture the geometric information of edges.

The Shearlet transform is implemented by applying a Lapla-
cian pyramid scheme and directional filtering [22]. Shearlets
are formed by dilating, shearing and translating the mother
function ψ ∈ L2

(
R2
)
[34]. Discrete Shearlet transform is

obtained by sampling continuous Shearlet transform on a
discrete subset of the Shearlet group S, which are associated to
an orthonormal basis for L2

(
R2
)

[31]. The Discrete Shearlet
transform (DST) for a mother function ψ is defined as below:

SH
{
ψj,k,l = 23/2jψ

(
BkA2j − L

)
: j, k ∈ Z,L ∈ Z2

}
(1)

where j,k,l are the scale, orientation and location indexes and

A =

(
4 0
0 2

)
,B =

(
1 1
0 1

)
are the dilation matrix and the shear matrix respectively. For
a given image f(Nrows × Ncolums), the Discrete Shearlet
transform can be expressed as [34]:

< f,ψdj,l,m >

= 23/2j
∫
R2

f̂
(
ξ
) {
V
(
2−2jξ

)
wdj,l

(
ξ
)
e2πiξA

−j
d B−ld m

}
(2)

where

V
(
ξ1, ξ2

)
= ψ̂1

(
ξ1
)
X
D0

(
ξ1, ξ2

)
+ ψ̂1

(
ξ2
)
X
D1

(
ξ1, ξ2

)
(3)

and X denotes the indicator function of the set D,D0 and D1

are the horizontal and vertical trapezoids, respectively, d ∈{
0, 1
}

, ξ =
(
ξ1, ξ2

)
∈ <2 ,j ≥ 0, l =

(
− 2j ..., 2j−1

)
is

the junction of the horizontal trapezoids, wdj,l
(
ξ
)

is a window
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function localized on a pair of trapezoids and V is the pseudo-
polar coordinates.

D0 =
{(
ξ1, ξ2

)
∈ <2 : |ξ1| ≥

1

8
, |ξ2
ξ1
| ≤ 1

}
D1 =

{(
ξ1, ξ2

)
∈ <2 : |ξ2| ≥

1

8
, |ξ1
ξ2
| ≤ 1

}
.

(4)

Thus the Shearlet coefficients can be obtained as

X =

∫ ∫
2−3/2jgj

(
u, v
)(
w
(
2jv − l

)
exp
(
2πi
(n1 + n2

4j
ξ1+

n2
2j
ξ2
))
dξ1dξ2.

(5)
where gj

(
u, v
)(
w
(
2jv − l

)
= f̂

(
ξ
) {
V
(
2−2jξ

)
wdj,l

(
ξ
)
, is the

discrete samples on a pseudo-polar grid. W is a window
function localized on a pair of trapezoids, gj

(
n1, n2

)
are the

values of the DFT on a pseudo-polar grid, n1 and n2 are
nite sequence of values for a given image Nrows × Ncolums
[31] and u,v are the pseudo-polar coordinates

(
u, v
)
∈ <2 as

follows: (
u, v
)
=
(
ξ1,

ξ2
ξ1

)
if
(
ξ1, ξ2

)
∈ D0(

u, v
)
=
(
ξ2,

ξ1
ξ2

)
if
(
ξ1, ξ2

)
∈ D1.

(6)

In other words, a DST applies filtering to a given image using
the Laplacian pyramid algorithm [35], which is implemented
in the spatial domain. This is accomplished in the multiscale
partition by decomposing an image into a low-pass and a
high-pass filtered image and then downsampling the result
by 4. In order to extract the frequency components of the
input image, directional localization for different directional
components is obtained by translating a window function W.
Depending on the chosen shearing filter size, the first level
decomposition generates 4 or 8 sub-bands. An illustration
of the frequency-domain implemented Shearlet support for 4
scales is shown in Figure 1. Figure 2 shows the structure of
the orientations corresponding to each DST sub-bands and the
corresponding coefficients for an example image. It is worth
noticing that different sub-images have the same size, however;
for illustrative purposes in Figure 2(b) they are shown with the
different sizes.

Fig. 1. Frequency support of the basis functions corresponding to the Shearlet
fourth level decomposition with 16 directions orientations

III. DST-BASED BLIND WATERMARKING

In relation to its application for image watermarking, the
DST ability to better represent directional features as claimed
in [36], may allow watermark embedding to adapt to the
diagonal features in the host image more efficiently. In this
section, a new DST-based watermarking framework for blind
watermarking is developed in order to explore the possible
improvements on DST performance against signal processing,
geometric and compression based attacks. In addition, this
proposed new blind watermark detection scheme for DST
coefficients is optimal for non-additive schemes relying on the
statistical decision theory.

A. Digital Image Statistical Watermark Detection Based On
Discrete Shearlet Transform Domain

Non blind watermarking systems, such as the one proposed
in [32], are limited in their application field, since they
require access to the host image during the detection process.
However, this is not always the case for some applications such
as image authentication [4]. As alternative blind watermarking,
targets the recovery of the watermark when the host (in this
case an image) is not available during the detection stage.
This makes blind watermarking systems more complicated,
but more practical since the original image is not required
in the receiver side. In order to reconstruct the watermark,
blind schemas assume that original and watermarked coef-
ficients are strongly correlated [37]. Under this assumption,
the watermark detection problem can be viewed as a sta-
tistical hypothesis testing problem [37]. Thus, the statistical
behaviour of the noisy transformed coefficients can be used
to derive a decision rule which decides whether a candidate
watermark is actually embedded in the data (hypothesis H1)
or not (hypothesis H0). In this section a new blind watermark
detection scheme for DST coefficients is proposed as optimal
for non-additive schemes relying on the statistical decision
theory. The proposed method is derived according to the Bayes
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(a)

(b)

(c)

Fig. 2. (a) Original grayscale image Lena. (b) An illustration of the DST
transforms coefficients (the coefficients are multiplied by 30 to enhance the
contrast for the sake of visualization), (c) The angles covered in DST-sub-
bands.

decision theory, the Neyman-Pearson criterion which is used
to minimize the missing detection probability subject to a fixed
false alarm probability (PFA) [38], and the probability density
function (pdf) distribution of the DST coefficients.

B. DST coefficient probability distribution function

In order to apply the decision theory and derive the op-
timum behaviour of the ML (Maximum-likelihood) detector,
a suitable distribution model for the probability distribution
function (PDF) of the DST coefficients is required as a first
step. We have estimated the PDF of DST coefficients for thirty
images (see experimental section for more details on the data)
for all five resolutions and 49 sub-bands.

Fig. 3. PDF of DST transformed coefficients for Lena image. Graphs represent
the coefficient pdfs corresponding to all 8 sub-bands at the second resolution.

It can be noticed, as shown in Figure 3, that the statistical
model of the Shearlet approximates a Laplacian distribution,
therefore this model was chosen can be better modelled as a
Normal Inverse Gaussian (NIG). The Laplacian distribution is
defined as follows:

f(χ) =
λ

2
exp(−λ|χ|) (7)

The Laplacian is symmetrical about zero, and it can be
readily matched to the sample DST distribution by finding
the appropriate parameter for λ. It is also worth to notice
that the statistical model of the Shearlet coefficients can be
modelled as a Normal Inverse Gaussian (NIG) [39]. However,
in our case, this distribution is not best choice due to have high
computational cost caused by complexity of the mathematical
structure of this distribution (it contains four variables that
need to be estimated simultaneously) which leads to difficulty
in order to apply the central limit theorem [40]. This is
required in our blind watermarking framework, in order to
calculate PFA. Therefore, and as the most suited distribution
model, the Laplacian distribution, was chosen. An example
is shown in Figure 4 where the DST coefficients distribution
averaged for both all thirty images and all the fourth level sub-
bands are illustrated and compared with a Laplacian, Gaussian
distribution and NIG approximations.

In order to validate the previous findings, the similar-
ity between the real DST coefficient distribution and the
hypothetical distribution models using NIG, Laplacian and
Gaussian, are estimated using Relative Entropy (Kullback-
Leibler divergence). The Relative Entropy, D, measured how
well our hypothetical distribution Q fills the observation of
the real distribution P between the DST coefficients and the
estimated one Q, and is obtained as below, where achieving
smaller value for D implies greater similarity between two
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distributions, being D ≥ 0.

DKL(P ‖ Q) ∝
∑
x

p(χ)log2
( p(x)
Q(x)

)
. (8)

The D value obtained 12, 17 and 25 for NIG, Laplacian
and Gaussian distribution, respectively. These results confirm
that NIG is the nearest distribution to the real one while the
Laplacian distribution remains a good approximation to the
NIG model.

C. Hypothesis Testing Problem and Formulation

Given an image I , the aim is to verify whether the
image I contains the watermark W ∗(chosen from the
sequence of possible watermark W ) or not. By applying
statistical detection theory the following hypotheses are under
consideration [40]:

Hypothesis H0:

• Case 1: The DST coefficients, Y , do not contain any
watermark.

• Case 2 : The DST coefficients, Y , contain a watermark
other than W ∗. For notation purpose, we will denote
that the DST coefficients Y; contain a watermark w0,
where w0 is another random watermark selected from a
set W of watermarks different from W ∗.

Hypothesis H1:

• The DST coefficients, Y, contain the watermark W ∗.

The embedding rule adopted in this paper is multiplicative
(non-additive) embedding due to its adaptation with frequency
domain and the fact that it fulfils invisibility constraints thus
increasing system security [41]:

yi = xi(1 + αw∗i ) (9)

where x = (x1, ..., xN ) is a sequence of the original DST
coefficients of image I , w∗ = (w∗1 , ..., w

∗
N ) is the watermark

sequence that is uniformly distributed in [-1, 1], a is a gain fac-
tor controlling the watermark strength, and (y1, ..., yN ) is the
sequence of watermarked DST coefficients of the watermarked
image, I

′
. By relying on the decision theory, the observation

variables are the vector Y of possibly marked coefficients. The
likelihood ratio of these coefficients to be watermarked l(Y )
is obtained as:

l(Y ) =
fy(Y |w∗)
fy(Y |w0)

≶ T (10)

where fy(y|w) is pdf of the vector Y conditioned to w and T
is the decision threshold. Note that, for Hypothesis H0, Case
1 and Case 2 can be treated together under the assumption
that w0 is allowed to include the null sequence.

As we deal with image watermarking in this paper, therefore
following assumptions are read for sake of mathematical

calculation.

Lemma 1: The components of Y are independent of each
other and Y satisfies fy(Y |w0) > 0 by considering Hypothe-
ses H0 and H1 and equation (15), it can be shown that:

H0 = case1 : yi = xi (11)

H0 = case2 : yi = xi(1 + αw0i)⇒ xi =
yi

1 + αw0i
(12)

To further calculate the likelihood ratio, the pdf of DST
coefficients is required. By assuming the previously justified
Laplacian distribution as the pdf of the DST coefficient:

f(xi) =

√
2

2σi
exp(

−
√
2

σi
|xi − µi|) (13)

which is equivalent to the following expression when using√
2
σi

= λ

f(xi) =
λ

2
exp(−λ|xi − µi|) (14)

where µi and σ2
i are the mean and variance of the sub-band

to which the coefficients belong.
Lemma 2: Barni and Bartolini [40] formulated that, under

the assumption of an imperceptible watermark, i.e. when the
embedding strength is set to be much smaller than one (α�
1), then:

P (y|w) ≈ P (y|0) (15)

In this case the integral is very small and centered at yi,
therefore the component can be linearly approximated using
Taylors theorem. By applying the previous change of notation
and a new Lemma 2, l(y) is defined as follows:

l(y) =

∏N
i=1(

λ
2 e
−λ| yi

1+αw∗
i
−µixi |)∏N

i=1(
λ
2 e
−λ|yi−µixi |)

(16)

T2 = (
1

2
)NT

The detector decide H1 if Lnl(y) > LnT2
The detector decide H0 if Lnl(y) < LnT2

The likelihood ratio is obtained as follows :

N∑
i=1

(|yi − µixi | − |1 + αiw
∗
i |−1|yi − µixi − µixiαiw∗i |)

≶
1

λ
ln(T2)

where λ =
√
2
σi

N∑
i=1

(|yi − µxi | − |1 + αiw
∗
i |−1|yi − µixi − µixiαiw∗i |)

≶
σi√
2
ln(T2)

T3 =
σi√
2
ln(T2)

(17)
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Fig. 4. Distribution of DST transformed coefficients for all thirty images in all fourth level sub-bands coefficients fitted with NIG, Laplacian and Gaussian
distributions curve.

By simplifying, gi = (|yi−µixi |−|1+αiw∗i |−1|yi−µixi−
µixiαiw

∗
i |) the decision rule is obtained as follows:

Z(y) =

N∑
i=1

gi > T3 (18)

D. Decision Threshold

By analysing the decision rule obtained from the previous
section, it can be seen that the detector operates by comparing
the likelihood ratio against a detection threshold:

T =
p0(l | H0)

p1(l | H1)
(19)

where p0 and p1 are the prior probability of hypotheses
H0 and H1, respectively. In a desirable system, the threshold
should be set to minimize the overall error probability Pe.This
can be achieved by setting the missed detection probability
Pm (failure to detect the presence of the watermark in an
image that contains one) and the false alarm probability PFA
(detection of watermark in an image when it does not actually
contain one) to be equal. However, in the case of an attack,
the threshold selected to minimize the error probability Pe

will not be suitable since the missed detection probability
Pm becomes higher than the false alarm probability PFA.
In order to address this issue, the Neyman-Pearson criterion
can be used to obtain the threshold T in such a way that the
missed detection probability is minimized, subject to a fixed
false alarm probability [38].

D = (H1|R = H0)

PFA = P (D)

= P (Z(y) > T |w0) = P (Z(y) > T )

=

∫ ∞
T

fzxZ(x)dzx

(20)

where

Z(x) = Z(y)|y=x
= P (Z(y) > T |w0) = P (Z(y) > T )

=

√
2

σi
(|xi − µixi | − |1 + αiw

∗
i |−1|xi − µixi − µixiαiw∗i |)

(21)

By applying the central limit theorem, the PDF of Z(x)
can be assumed to be a normal distribution [38] with mean
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and variance as follows:

The mean can be derived as:

µz(x) = Ez(x)

= E(

√
2

σi
(|xi − µixi | − |1 + αiw

∗
i |−1|xi − µixi − µixiαiw∗i |))

= E|xi − µixi |+ E(−|1 + αiw
∗
i |−1|xi − µixi − µixiαiw∗i |)

=

N∑
i=1

[
1− |1 + αiw

∗
i |−1(λ | µiαiw∗i | +

1

λ
exp(−λ(µiαiw∗i ))

]
(22)

Similarly for calculating variance:

σ2
z(x) = E(Z2(x)) (23)

σ2
z(x) =

N∑
i=1

[
1 + |1 + αiw

∗
i |−2 ∗ (2− exp(−2λ|)µiαiw∗i |))−

2|1 + αiw
∗
i |−1exp(−λ(µiαiw∗i )− 2λ|µiαiw∗i |)exp(−λ(µiαiw∗i )

∗(|1 + αiw
∗
i |−1 + |1 + αiw

∗
i |−2))

]
(24)

Then, false alarm probability can be calculated:

PFA =

∫ ∞
T

fzxZ(x)dzx

=

∫ ∞
T

1√
2πσ2

z(x)

exp(
− | Zx − µzx |

2σ2
z(x)

)dZ(x)

= Q(
T − µz
σz

)

(25)

where Q is the Q-function or tail probability of the standard
normal distribution of Z(x):

PFA = Q(
T − µz
σz

)⇒ Q−1(PFA) =
T − µz
σz

(26)

Finally, the threshold will be obtained as below:

T = σzQ
−1(PFA) + µz. (27)

The embedding and detecting framework proposed for our
blind watermarking system, is depicted in Figure 5. Dur-
ing the embedding process[Upper block ], first the original
imageNxN , is decomposed to 5 levels using Discrete Shearlet
Transform (DST), then the watermark consists of a sequence
of random real numbers uniformly distributed in the range
[-1,1] of length N is generated and embedded into the
original image I . Once the watermark is embedded into the
Discrete Shearlet coefficients, the image is recomposed to
create the watermarked image I

′
. The watermarked image is

then passed through the attack channel [lower block] where
some distortions are applied in order to remove the watermark.
This produces the attacked image I

′′
that is then passed to

Fig. 5. Proposed Watermarking System. Upper block describes the water-
marking process while the lower block depicts the detection process.

the detecting stage. It is important to remember that in this
blind schema, the original image is not available during the
detection stage. Instead, a statistical model is used during the
decision stage and calculated directly from the watermarked
and possibly attacked images.

IV. PERFORMANCE EVALUATION

To verify the effectiveness of the proposed algorithm, a
series of experiments were conducted.

A. Dataset

In our experiments, thirty 512 × 512 sized well-known
grayscale images were used as host images. A set of standard
test images which are used frequently in the literature were
selected from a wide range of image processing databases[42]
to represent different image features (Figure 6). Some of these
images are smooth with a lack of detailed features, others
are more complex with a lot of edges and some textured
regions. The rest contains high detail textured regions. This
set is selected from the following references [10],[19].

B. Blind Watermarking

In this section, the performance of the blind statistical
detector described in Section III.B is tested on the thirty
standard greyscale 512× 512 images (Figure 6). The original
image is not available during the detection stage. Instead, a sta-
tistical model is used during the decision stage and calculated
directly from watermarked and possibly corrupted images.
Each image is transformed using DST and the watermark
consists of a sequence of random real numbers uniformly
distributed in the range [-1, 1]. The watermark is embedded in
the most significant coefficient through all DST levels at the
5th level of resolution and sub-bands of the host image.The
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Fig. 6. Set of images used for embedding watermark

watermark detection is performed in the transform domain
using maximum-likelihood detection, whereby the decision
threshold is calculated using the Neyman-Pearson criterion.In
order to investigate the performance of our proposed method,
the results from all the different method are compared under
the same conditions. DWT coefficients were selected from the
3rd level of resolution as suggested by[43]. CT coefficients
were selected from the sub-band on the 3rd levels of res-
olution as suggested in [3] to optimise imperceptibility and
robustness. Three performance metrics were taken into account
during this analysis: The imperceptibility of the watermark
by using the Peak Signal-to-Noise Ratio (PSNR), the Root-
mean squared error (RMSE), and Structural similarity (SSIM)
as fidelity measurements,the probability of false alarm and
the probability of missed detection and the robustness of the
watermark against a number of commonly used attacks. In
particular SSIM measures the quality of the image using an
initial distortion-free image as reference. SSIM is designed to
improve traditional methods such as PSNR and MSE which
have been proved to be inconsistent with the human eye
perception [44]. The resulting SSIM index is a decimal value
between -1 and 1, where 1 is only reachable in the case of
two identical sets of data.

By comparing the results using SSIM (Figure 7) and
RMSE (Figure 8) as metrics, it is concluded that the proposed
algorithm based on DST has a better imperceptibility as
reflected in having smaller RMSE (which indicates that the
watermarked image is close to the original one on a pixel-by-

Fig. 7. SSIM distortions between original and watermarked for all images

Fig. 8. Average RMSE distortions for all images

pixel basis) and higher similarity SSIM, where, more closer to
1 indicates the watermarked image is more similar to original
one. Among the reasons for this improved imperceptibility, we
can cite: the smaller sizes of the shearing filters represented
by (eq.2) in comparison with the directional filters used by
DWT and CT [22], having the greater windowing flexibility as
represented by (eq.3,4) as claimed in [22] that can be utilized
and makes possible Incorporating sub-sampling and providing
additional directional information. On the other word, by
choosing smaller size of filters we can represent edges more
precisely and by having greater windowing flexibility we can
develop a variety of alternative implementations. This is more
noticeable by considering each transform reaction based on
image characteristic. For example, DST is more adapted with
images having a lot of edges and textured regions (Barbara).
For images having smooth areas with a lack of detailed
features (Bunny), DST adaptation is still better than CT and
DWT. DST also adapted perfectly for images contain mostly
high detail textured regions such as Baboon.

1) Robustness: To investigate the effects of attacks on the
blind watermarking algorithm, different tests were carried out
to evaluate its performance. The results are compared against
an equivalent DWT and CT blind watermarking schemas, as
it was shown that the DWT and CT coefficient distributions
can be also expressed using Laplacian model [43]. In order
to ensure a fair comparison, given that every method has a
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different imperceptibility/robustness balance, all the methods
were tuned to provide an approximately 43db PSNR value
before the attack [43]. In this regard, the alpha value is set
to 0.25 for DWT, 0.2 for CT and 0.2 for DST. During blind
detection, the parameters of the proposed model are directly
estimated from the DST, CT and DWT coefficients of the
watermarked image to fulfil the assumption that watermarked
image is close to the original one if strength parameter,α,
is much less than 1 (α << 1). It is to be noted that,
in practice, our chosen strength parameter values 0.2 and
0.25 will be acceptable [43] under this approximation while
providing acceptable levels of robustness. The embedding was
performed in all the coefficients obtained from the 4rd level
of decomposition for DST and 3rd level for DWT and CT in
order to provide the better resolution and therefore the biggest
payload that each method allows.

Table I shows the performance of the false alarm rate (FA),
which represents the watermarks that were detected when that
watermark was not actually embedded and missed detection
(MD), embedded watermarks that were not detected. The
results were obtained based on the number of the images where
each of these errors occurred. These results were computed by
detecting the watermark w chosen from a set of 100 randomly
generated watermarks in each image (based on 3000 trials) for
the same distribution model with the PFA = 10−3. PFA is
normally between 10−3 to 10−12 based on different attacks
and applications[43].

TABLE I
FA AND MD FOR THE SAME VALUE OF PFA USING LAPLACIAN MODEL
FOR DST , CT AND DWT TRANSFORM BASED ON 30 IMAGES AND 3000

TRIALS

Laplacian Model PFA = 10−3 DWT CT DST
FA 23 17 13
MD 7 5 1

The effect of five attacks, including Additive White Gaus-
sian Noise (AWGN), Compression, Blurring, Cropping and
Rotation are tested on the all 30 watermarked images. For
each attack, the detector responses were related to the actual
embedded watermark. Table II-VI contains the number of
successful detection for most commonly used attacks on each
individual watermarked image as well as the global average
and average of False Alarm rate and Missed detection. It is
worth noting these results were obtained based on 3000 trials.

In the first attack, Gaussian noise is added to the water-
marked image with zero mean and standard deviations 0.01,
0.05 and 0.09. It can be possible to add bigger values than
0.09, this will make the image out of focus which would
make the quality of the image so distorted that the image
would not valuable for the attacker. From these experimental
results represented in Table II, it is found that DST provides
comparable robustness to its counterpart in terms of AWGN
attack, consistently better than CT and DWT.

In the second attack, Gaussian low pass filter is applied to
the watermarked image to analyse the effect of blurring using
standard deviation varied from 0.3, 0.5 and 0.8 and 3×3 spatial

TABLE II
NUMBER OF SUCCESSFUL DETECTIONS (TRUE POSITIVES)
AND AVERAGE OF FA AND MD FOR ALL 30 IMAGES AFTER

APPLYING GAUSSIAN NOISE WITH STANDARD DEVIATIONS
0.01, 0.05 AND 0.09 FOR DWT,CT AND DST FOR 3000 TRIALS

DWT CT DST
Image 0.01 0.05 0.09 0.01 0.05 0.09 0.01 0.05 0.09
Baboon 99 95 90 99 97 94 100 99 97
Barbara 98 95 92 99 97 93 99 97 95
Boat 99 97 94 99 98 97 100 99 97
Bunny 97 94 86 98 94 86 100 97 90
Cameraman 100 98 95 100 98 98 100 98 98
Clock 97 95 91 98 96 91 98 96 92
Elaine 100 99 99 100 100 98 100 99 99
F16 100 97 95 100 98 97 100 97 98
Fingerprint 100 100 98 100 100 99 100 100 99
Flintstone 99 98 96 100 98 96 100 98 98
Flower 99 97 93 99 97 96 100 99 99
Frisco 93 89 82 97 94 91 100 98 94
Girl 100 99 96 99 98 97 100 98 98
House 98 97 95 100 98 97 100 99 98
Jelly Beans 98 95 93 99 98 95 99 97 94
Lake 100 98 95 100 99 98 100 99 99
Lena 96 93 91 100 98 96 100 99 99
Living room 100 98 95 100 98 97 100 99 98
Moon surface 100 99 96 100 99 98 100 100 99
Peppers 99 97 95 100 99 98 99 98 98
Pirate 94 89 85 98 95 93 95 92 89
Scientist 96 93 91 100 99 96 99 98 97
Splash 99 96 94 99 97 93 99 96 94
Straw 93 89 84 98 95 84 97 94 89
Tree 100 98 95 100 99 99 100 100 100
Truck 93 91 88 97 96 89 97 94 91
Walk bridge 97 94 91 100 98 94 100 100 97
Woman-blonde 99 96 91 99 98 95 100 100 99
Woman dark hair 100 98 96 99 99 96 100 99 99
zebra 99 97 94 99 98 95 100 99 98
Average 98.06 95.73 92.53 99.2 97.6 94.86 99.4 97.93 96.56
Average FA 20.03 23.03 25.26 17.56 18.66 21.16 15.0 17.02 18.96
Average MD 7.83 14.23 21.53 6.0 9.4 15.53 5.6 8.1 12.4

filter. From these experimental results represented in Table
III, it is found that DST also performs better against blurring
attacks in when compared against DWT and CT counterpart.

TABLE III
NUMBER OF SUCCESSFUL DETECTIONS (TRUE POSITIVES)
AND AVERAGE OF FA AND MD FOR ALL 30 IMAGES AFTER

APPLYING BLURRING ATTACK WITH STANDARD DEVIATIONS
0.3, 0.5 AND 0.8 FOR DWT, CT AND DST FOR 3000 TRIALS

DWT CT DST
Image 0.3 0.5 0.8 0.3 0.5 0.8 0.3 0.5 0.8
Baboon 99 95 89 100 98 95 99 99 95
Barbara 98 94 87 98 95 91 99 97 94
Boat 100 97 94 100 98 95 100 99 97
Bunny 97 94 89 98 95 91 98 96 94
Cameraman 100 98 95 100 100 97 100 100 98
Clock 100 97 97 99 97 95 99 99 97
Elaine 99 96 94 99 98 95 99 98 98
F16 99 96 93 100 99 97 99 98 96
Fingerprint 98 95 89 100 99 96 99 98 97
Flintstone 100 96 91 100 96 93 100 98 96
Flower 100 94 90 99 96 91 99 97 95
Frisco 98 95 88 98 95 88 97 95 89
Girl 99 96 92 100 97 92 100 99 94
House 100 98 97 100 99 96 100 100 98
Jelly Beans 98 96 92 99 98 93 98 97 94
Lake 98 96 90 100 99 95 100 99 95
Lena 100 96 96 99 96 93 99 97 94
Living room 97 94 86 99 97 92 99 97 94
Moon surface 99 96 91 98 95 89 98 96 91
Peppers 98 96 90 98 96 89 98 95 91
Pirate 99 97 94 99 97 93 98 96 92
Scientist 100 96 92 100 98 92 99 97 92
Splash 97 95 89 98 95 88 98 96 92
Straw 99 96 90 97 94 87 98 95 90
Tree 99 95 89 100 97 94 100 98 95
Truck 98 97 92 98 98 96 99 99 94
Walk bridge 99 98 92 100 97 94 100 99 95
Woman-blonde 99 96 91 99 96 92 100 99 93
Woman dark hair 97 94 88 97 95 91 98 98 94
zebra 99 96 91 98 96 93 99 98 96
Average 98.76 95.83 91.26 99.00 96.86 92.76 99.00 97.63 94.33
Average FA 20.33 23.10 25.03 17.66 18.9 23.46 15.76 17.86 21.43
Average MD 11.1 15.66 19.00 5.46 8.93 16.66 5.36 7.43 13.83
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In the third attack, the watermarked images are cropped by
cutting off 25% ,50% and 75% of some random part of the
images. To extract the watermark, the missing part(s) of the
image should be replaced with those parts of the original non
watermarked image. The results are shown in Table IV. From
these experimental results it is found that DST provides good
robustness against cropping attack in comparison with DWT
and CT.

TABLE IV
NUMBER OF SUCCESSFUL DETECTIONS (TRUE POSITIVES)
AND AVERAGE OF FA AND MD FOR ALL 30 IMAGES AFTER

APPLYING CROPPING ATTACK BY CUTTING OFF 25%,50% AND
75% FOR DWT, CT AND DST FOR 3000 TRIALS

DWT CT DST
Image 25% 50% 75% 25% 50% 75% 25% 50% 75%
Baboon 97 94 66 97 93 82 98 95 86
Barbara 99 98 82 98 95 89 99 98 91
Boat 98 94 77 100 100 92 99 97 91
Bunny 98 96 75 99 96 81 100 97 83
Cameraman 98 95 69 99 97 84 100 100 88
Clock 95 92 70 97 93 81 100 99 78
Elaine 97 93 68 98 93 86 100 100 94
F16 100 94 70 100 96 89 100 96 91
Fingerprint 100 91 83 99 99 96 100 100 95
Flintstone 100 97 65 100 99 79 100 100 81
Flower 100 96 80 99 97 86 100 98 88
Frisco 100 95 85 100 98 91 100 100 95
Girl 96 93 81 96 96 89 100 100 92
House 97 95 78 100 99 81 100 100 78
Jelly Beans 98 94 92 98 92 92 97 96 93
Lake 99 97 72 100 99 93 100 100 93
Lena 100 97 86 100 100 88 100 100 90
Living room 100 92 84 100 99 93 100 100 96
Moon surface 96 92 76 98 97 92 100 99 89
Peppers 100 97 71 99 97 82 100 98 82
Pirate 95 93 87 100 100 93 100 100 91
Scientist 97 94 89 99 96 89 100 100 89
Splash 100 96 86 99 97 86 100 98 91
Straw 99 97 84 100 96 88 99 97 84
Tree 100 96 73 100 99 71 100 100 73
Truck 100 97 76 100 98 79 100 100 78
Walk bridge 100 95 79 99 99 84 100 100 87
Woman-blonde 98 93 85 97 92 86 98 95 89
Woman dark hair 100 97 98 100 99 97 100 100 98
zebra 99 97 65 98 95 91 99 98 93
Average 98.53 94.9 78.4 98.93 96.76 86.96 99.66 98.8 88.6
Average FA 23.03 24.9 41.06 15.83 18.63 30.13 14.63 16.00 28.6
Average MD 7.5 12.76 35.46 5.73 9.1 24.36 5.16 6.4 22.86

In the fourth attack, the watermarked image is compressed
to provide an output quality of 50%, 70% and 90% of the
original images. No smoothing is applied. According to Table
V, it can be concluded that DST performs very well against
JPEG compression in comparison with DWT, but in terms
of the severe compression attack CT provides slightly better
results than DST.

Finally, the watermarked image is slightly rotated and
cropped to discard areas of the image that contain less useful
information, such as black areas resulting from the rotation by
applying 1, 2, 5 and 7 degrees rotation in a counter clockwise
direction. According to Table VI, it can be concluded that
DST provides very good robustness against rotation attacks in
comparison with DWT and CT. More precisely, this is due
to DST improved property to capture more directions and
having shift-invariant structure that allows Shearlet to capture
the image more efficiently.

Based on the results obtained as described above, it can be
concluded that the proposed DST blind watermarking method
provides better results, in terms of robustness, compared to
DWT and CT watermarking based techniques using the same
statistical model (Laplacian). This is due to the fact that DST
has a greater windowing flexibility that can be utilized to

TABLE V
NUMBER OF SUCCESSFUL DETECTIONS (TRUE POSITIVES)
AND AVERAGE OF FA AND MD FOR ALL 30 IMAGES AFTER
APPLYING JPEG ATTACK USING QUALITY OF 50%, 70% AND

90% FOR DWT, CT AND DST FOR 3000 TRIALS

DWT CT DST
Image 50% 70% 90% 50% 70% 90% 50% 70% 90%
Baboon 87 98 100 91 100 100 88 100 100
Barbara 89 94 98 89 95 99 90 95 99
Boat 81 96 99 83 96 99 83 98 100
Bunny 86 94 99 89 95 99 88 96 99
Cameraman 89 96 100 92 97 99 91 98 100
Clock 78 96 100 84 96 99 81 98 100
Elaine 88 96 98 92 98 100 91 97 100
F16 90 98 98 90 97 99 91 96 99
Fingerprint 78 97 98 89 99 99 88 100 100
Flintstone 89 96 98 94 98 100 92 97 100
Flower 89 92 95 91 98 99 93 100 100
Frisco 77 97 100 87 96 99 86 100 100
Girl 76 93 98 84 99 100 86 100 100
House 87 99 100 91 100 100 87 100 100
Jelly Beans 89 97 99 89 98 100 88 96 98
Lake 84 96 98 83 95 98 84 100 100
Lena 84 97 99 86 97 99 87 98 100
Living room 88 97 99 88 95 99 87 100 100
Moon surface 77 93 96 88 96 98 91 97 98
Peppers 89 97 100 89 98 98 90 98 99
Pirate 83 93 97 85 97 99 83 96 98
Scientist 81 94 97 83 91 98 84 92 97
Splash 85 96 98 86 98 98 87 100 100
Straw 78 92 95 85 93 97 84 94 98
Tree 89 95 99 91 98 99 89 100 100
Truck 86 96 98 89 95 98 88 97 99
Walk bridge 84 98 100 85 96 97 85 99 100
Woman-blonde 87 97 99 88 98 99 89 93 96
Woman dark hair 86 97 100 90 98 99 89 99 100
zebra 88 95 98 91 98 98 88 100 100
Average 84.73 95.73 98.43 88.06 96.83 98.83 87.6 97.8 99.33
Average FA 33.8 25.3 23.63 28.93 19.8 17.03 29.6 17.33 15.13
Average MD 29.2 11.1 7.5 83.8 8.96 5.43 24.46 7.8 3.43

TABLE VI
NUMBER OF SUCCESSFUL DETECTIONS (TRUE POSITIVES)
AND AVERAGE OF FA AND MD FOR ALL 30 IMAGES AFTER
APPLYING ROTATION ATTACK 1, 2, 5 AND 7 DEGREES FOR

DWT,CT AND DST FOR 3000 TRIALS

DWT CT DST
Image 1 2 5 7 1 2 5 7 1 2 5 7
Baboon 98 96 87 77 100 99 91 84 100 100 94 86
Barbara 95 93 88 70 98 96 91 86 99 98 93 91
Boat 100 98 94 77 100 98 94 82 100 99 97 86
Bunny 98 98 89 83 99 97 89 83 99 98 91 83
Cameraman 99 99 94 88 99 99 94 88 100 99 97 89
Clock 98 97 93 78 98 97 95 83 99 97 95 86
Elaine 98 98 92 85 100 98 97 92 100 100 100 96
F16 98 98 94 89 99 99 96 95 100 99 98 97
Fingerprint 98 97 92 89 100 98 95 90 100 100 98 95
Flintstone 96 94 86 81 100 99 94 89 100 100 96 92
Flower 97 95 88 85 97 95 88 84 99 98 94 89
Frisco 93 93 84 82 97 96 92 84 100 100 95 89
Girl 98 98 93 88 100 100 96 90 100 100 96 93
House 100 100 94 87 100 99 93 85 100 100 97 97
Jelly Beans 99 98 94 85 97 95 89 83 98 98 94 87
Lake 99 98 92 87 96 95 90 86 97 97 93 93
Lena 98 95 91 83 98 94 90 85 98 95 91 85
Living room 96 95 91 89 99 98 96 88 99 98 98 89
Moon surface 98 97 91 82 99 99 96 92 100 99 96 93
Peppers 99 99 94 84 100 100 95 87 100 99 95 89
Pirate 95 92 85 79 97 96 88 82 98 95 89 83
Scientist 97 95 90 75 100 99 95 81 100 100 97 79
Splash 98 98 94 84 99 98 94 89 100 99 96 91
Straw 92 89 78 72 98 97 81 76 100 98 82 78
Tree 100 100 95 87 98 98 95 89 99 99 97 89
Truck 98 95 88 86 98 97 90 85 99 97 91 86
Walk bridge 97 95 85 79 100 99 95 89 99 99 97 94
Woman-blonde 98 97 88 78 98 97 92 80 99 98 94 82
Woman dark hair 99 98 92 89 100 99 96 91 100 99 98 89
zebra 97 94 88 82 98 97 92 87 100 99 94 89
Average 97.53 96.3 90.13 82.66 98.73 97.6 92.63 86.16 99.4 98.56 94.76 88.83
Average FA 23.76 24.2 26.26 36.83 17.1 18.83 23.63 31.43 15.06 16.33 21.13 28.16
Average MD 7.56 10.00 21.43 32.36 5.86 7.53 17.06 26.46 3.2 6.06 12.83 22.26

capture the image characteristics like curve and edges. This
is more noticeable by considering each transform reaction
based on image characteristic. For example, DST is more
adapted with images having a lot of edges and textured regions
(Barbara). For images having smooth areas with a lack of
detailed features (Bunny), DST adaptation is still better than
DWT and CT. DST also adapted perfectly for images contain
mostly high detail textured regions such as Baboon.
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V. CONCLUSION

In this paper we have proposed a novel blind watermark-
ing framework based on the discrete Shearlet transform for
blind image watermarking. This idea is justied through its
structure and potential to provide higher payload and better
imperceptibility. A blind system framework was implemented
to test the suitability of DST for watermarking based on
decision theory. This system presents theoretical novelties
in the lter structure and the probabilistic model in order to
allow DST to be integrated. As a main advantage this blind
watermarking method does not require the transmission of
the original clean image. To achieve this, the distribution of
the Discrete Shearlet Transforms coefficients for different sub-
bands and resolutions are investigated. Thus, the PDF obtained
from DST coefficients is modeled using a Laplacian channel.
This model has proved to be effective and simpler, allowing the
corresponding mathematical description of the full framework.
Finally, a maximum likelihood detection scheme based on
Laplacian modelling of the DST coefficients is implemented
under a hypothesis condition using detection rules based on the
Neyman-Pearson criterion in order to improve the robustness
as well as adapting the watermark strength to the host image
by considering the visual sensitivity. The proposed method is
less sensitive to fine parameter tuning in comparison with non-
blind methods [33], i.e. parameters can remain unchanged even
under different attacks and the original image is not required
during the detection stage. From the experimental results it is
found that the DST based embedding provides a good imper-
ceptibility and an improved payload as predicted. In terms of
robustness, the results demonstrate superior robustness against
common image processing manipulations compared to DWT
and CT. This is more obvious in compression, noise and
rotation attacks.
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