17 research outputs found

    Novel design strategies and architectures for continuous-time Sigma-Delta modulators

    Get PDF

    A rigorous approach to the robust design of continuous-time ΣΔ modulators

    Get PDF
    In this paper we present a framework for robust design of continuous-time Sigma Delta modulators. The approach allows to find a modulator which maintains its performance ( stability, guaranteed peak SNR, ...) over all the foreseen parasitic effects, provided it exists. For this purpose, we have introduced the S-figure as a criterion for the robustness of a continuous-time Sigma Delta modulator. This figure, inspired by the worst-case-distance methodology, indicates how close a design is to violating one of its performance requirements. Optimal robustness is obtained by optimizing this S-figure. The approach is illustrated through various design examples and is able to find modulators that are robust to excess loop delay, clock jitter and coefficient variations. As an application of the approach, we have quantified the effect of coefficient trimming. Even with poor trim resolution, good performance can be achieved provided beneficial initial system parameters are chosen. Another example illustrates the fact that also the out-of-band peaking behavior of the signal transfer function can be controlled with our design framework

    Implementation of a sigma delta modulator for a class D audio power amplifier

    Get PDF
    Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadore

    A Novel Two-Channel Continuous-Time Time-Interleaved 3rd-order Sigma- Delta Modulator with Integrator-Sharing Topology

    Get PDF
    this paper presents a 3rd-order two-path Continuous-Time Time-Interleaved (CTTI) delta-sigma modulator which is implemented in standard 90nm CMOS technology. The architecture uses a novel method to resolve the delayless feedback path issue arising from the sharing of integrators between paths. By exploiting the concept of the time-interleaving techniques and through the use time domain equations, a conventional single path 3rd-order Discrete-Time (DT) ΔΣ modulator is converted into a corresponding two-path Discrete-Time Time-Interleaved (DTTI) counterpart. The equivalent Continuous-Time Time-Interleaved version derived from the DTTI ΔΣ modulator by determining the DT loop filters and converting them to the equivalent Continuous-Time (CT) loop filters through the use of the Impulse Invariant Transformation. Sharing the integrators between two paths of the reported modulator makes it robust to path mismatch effects compared to the typical Time-Interleaved (TI) modulators which have individual integrators in all paths. The modulator achieves a dynamic range of 12 bits with an OverSampling Ratio (OSR) of 16 over a bandwidth of 10MHz and dissipates only 28mW of power from a 1.8-V supply. The clock frequency of the modulator is 320MHz but integrators, quantizers and DACs operate at 160MHz

    Broadband Continuous-time MASH Sigma-Delta ADCs

    Get PDF

    High-Speed Delta-Sigma Data Converters for Next-Generation Wireless Communication

    Get PDF
    In recent years, Continuous-time Delta-Sigma(CT-ΔΣ) analog-to-digital converters (ADCs) have been extensively investigated for their use in wireless receivers to achieve conversion bandwidths greater than 15 MHz and higher resolution of 10 to 14 bits. This dissertation investigates the current state-of-the-art high-speed single-bit and multi-bit Continuous-time Delta-Sigma modulator (CT-ΔΣM) designs and their limitations due to circuit non-idealities in achieving the performance required for next-generation wireless standards. Also, we presented complete architectural and circuit details of a high-speed single-bit and multi-bit CT-ΔΣM operating at a sampling rate of 1.25 GSps and 640 MSps respectively (the highest reported sampling rate in a 0.13 μm CMOS technology node) with measurement results. Further, we propose novel hybrid ΔΣ architecture with two-step quantizer to alleviate the bandwidth and resolution bottlenecks associated with the contemporary CT-ΔΣM topologies. To facilitate the design with the proposed architecture, a robust systematic design method is introduced to determine the loop-filter coefficients by taking into account the non-ideal integrator response, such as the finite opamp gain and the presence of multiple parasitic poles and zeros. Further, comprehensive system-level simulation is presented to analyze the effect of two-step quantizer non-idealities such as the offset and gain error in the sub-ADCs, and the current mismatch between the MSB and LSB elements in the feedback DAC. The proposed novel architecture is demonstrated by designing a high-speed wideband 4th order CT-ΔΣ modulator prototype, employing a two-step quantizer with 5-bits resolution. The proposed modulator takes advantage of the combination of a high-resolution two-step quantization technique and an excess-loop delay (ELD) compensation of more than one clock cycle to achieve lower-power consumption (28 mW), higher dynamic range (\u3e69 dB) with a wide conversion bandwidth (20 MHz), even at a lower sampling rate of 400 MHz. The proposed modulator achieves a Figure of Merit (FoM) of 340 fJ/level

    Low Power High Dynamic Range A/D Conversion Channel

    Get PDF

    Low Power Analog to Digital Converters in Advanced CMOS Technology Nodes

    Get PDF
    The dissertation presents system and circuit solutions to improve the power efficiency and address high-speed design issues of ADCs in advanced CMOS technologies. For image sensor applications, a high-performance digitizer prototype based on column-parallel single-slope ADC (SS-ADC) topology for readout of a back-illuminated 3D-stacked CMOS image sensor is presented. To address the high power consumption issue in high-speed digital counters, a passing window (PW) based hybrid counter topology is proposed. To address the high column FPN under bright illumination conditions, a double auto-zeroing (AZ) scheme is proposed. The proposed techniques are experimentally verified in a prototype chip designed and fabricated in the TSMC 40 nm low-power CMOS process. The PW technique saves 52.8% of power consumption in the hybrid digital counters. Dark/bright column fixed pattern noise (FPN) of 0.0024%/0.028% is achieved employing the proposed double AZ technique for digital correlated double sampling (CDS). A single-column digitizer consumes total power of 66.8μW and occupies an area of 5.4 µm x 610 µm. For mobile/wireless receiver applications, this dissertation presents a low-power wide-bandwidth multistage noise-shaping (MASH) continuous-time delta-sigma modulator (CT-ΔΣM) employing finite impulse response (FIR) digital-to-analog converters (DACs) and encoder-embedded loop-unrolling (EELU) quantizers. The proposed MASH 1-1-1 topology is a cascade of three single-loop first-order CT-ΔΣM stages, each of which consists of an active-RC integrator, a current-steering DAC, and an EELU quantizer. An FIR filter in the main 1.5-bit DAC improves the modulator’s jitter sensitivity performance. FIR’s effect on the noise transfer function (NTF) of the modulator is compensated in the digital domain thanks to the MASH topology. Instead of employing a conventional analog direct feedback path, a 1.5-bit EELU quantizer based on multiplexing comparator outputs is proposed; this approach is suitable for highspeed operation together with power and area benefits. Fabricated in a 40-nm low-power CMOS technology, the modulator’s prototype achieves a 67.3 dB of signal-to-noise and distortion ratio (SNDR), 68 dB of signal-to-noise ratio (SNR), and 68.2 dB of dynamic range (DR) within 50.5 MHz of bandwidth (BW), while consuming 19 mW of total power (P). The proposed modulator features 161.5 dB of figure-of-merit (FOM), defined as FOM = SNDR + 10 log10 (BW/P)
    corecore