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Samenvatting

Wegens de technologische schaling in geavanceerde sub-micron processen,
gebeurt steeds meer signaalverwerking in het digitale domein. Dit vereist
analoog-naar-digitaal (A/D) omzetters die niet alleen zeer nauwkeurig moeten
zijn, maar ook aan hoge snelheid moeten kunnen opereren. Door economis-
che factoren, moeten deze omzetters bovendien gëıntegreerd worden op
dezelfde chip als de digitale verwerkingseenheid. Σ∆-modulatie is een con-
versiemethode om zeer nauwkeurige analoog-naar-digitaal omzetters (ADCs)
te implementeren. De methode combineert het effect van overbemonster-
ing met dat van ruiskneding, door het gebruik van een resonant lusfilter.
Afhankelijk van de implementatie van het lusfilter, ontstaat ofwel een Σ∆-
modulator in discrete-tijd (DT) of continue-tijd (CT).

Σ∆-modulatoren in discrete-tijd zijn ondertussen vrij matuur geworden,
door hun implementatie met geschakelde condensator circuits. De laatste
tijd, is er in de wetenschappelijke wereld een verhoogde interesse ontstaan
voor Σ∆-modulatoren in continue-tijd. Een belangrijke reden hiervoor is
net de technologieschaling. CT Σ∆-modulatoren zijn beter verenigbaar
met kleinere technologieën, omdat hoog performante schakelaars niet langer
noodzakelijk zijn voor hun implementatie. Bovendien treedt het effect van
frequentie vouwing niet op, door het continue-tijdskarakter van de lus. Dit
zorgt ervoor dat de signaalbandbreedte voor CT Σ∆-modulatoren kan wor-
den uitgebreid tot in het brede MHz bereik.

Een belangrijk voordeel van de CT Σ∆-modulator, is het impliciete anti-
frequentieverwarrings filter. Door de werking in continue-tijd, bevat de sig-
naal transfer functie inherent onderdrukking op hoge frequenties. Alhoewel,
in de meeste gevallen bevat deze functie ook een piek in de transitie van de
signaalband naar hoge frequenties, die de modulator kan oversturen. Zeker
voor ADCs gebruikt in communicatie standaarden is dit ongewenst gedrag.
De transitieband piek is gecorreleerd aan de topologie van het lusfilter. Een
lusfilter in terugkoppelingstopologie (Engels: feedback, FB) heeft algemeen
gezien de laagste transitieband piek, een lusfilter in voorwaartse topologie
(Engels: feedforward, FF) de hoogste.
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Samenvatting

Tot nu toe, is er in de literatuur geen duidelijke ontwerpstrategie voor Σ∆-
modulatoren in continue-tijd naar voor geschoven. Ondanks het feit dat er
een wiskundige equivalentie kan gedefinieerd worden tussen de ruis trans-
fer functies (Engels: noise transfer function, NTF) van zowel CT als DT
modulatoren, toch kunnen de ontwerpstrategieën voor DT modulatoren niet
zonder meer aangewend worden. De lus van een Σ∆-modulator in continue-
tijd is meer onderhevig aan parasitaire effecten, die enkel van tweede orde
zijn voor DT modulatoren. Een belangrijk effect is dat van bijkomende
lusvertraging (Engels: excess loop delay, ELD) in het terugkoppelpad, wat
ervoor zorgt dat de orde van de NTF zal stijgen. Op die manier ontstaat een
beperking op het ontwerp, want het aantal ontwerpparameters is niet langer
toereikend om elke mogelijke NTF te implementeren. Ook is er het effect
van een parasitaire pool in de transfer functie van de integrator. In een RC-
actieve implementatie van de integrator wordt deze parasitaire pool gevormd
door de lusbandbreedte van de lokale terugkoppeling rond de operationele
versterker. Bovendien zijn sommige van de parameters van het continue-
tijd systeem model onderhevig aan variaties. Bijvoorbeeld zullen proces
variaties hoofdzakelijk de nauwkeurigheid van de integrator coëfficiënten
van het lusfilter bëınvloeden.

In dit werk worden 2 nieuwe ontwerpstrategieën voor CT Σ∆-modulatoren
gëıntroduceerd. Beide richten ze zich op multibit kwantisatie, voor Σ∆-
modulatoren in continue-tijd met een lage overbemonsteringsfactor (En-
gels: oversampling ratio, OSR). In beide strategieën wordt een nominaal
continue-tijd systeem gedefinieerd, dat meteen al sommige van de para-
sitaire effecten, eigen aan CT Σ∆-modulatie, bevat. In de eerste strategie,
wordt het Nyquist criterium aangewend om robuuste stabiliteit te kwan-
tificeren. Deze robuustheid wordt slechts geoptimaliseerd voor de nominale
modulator, zonder parameter variaties. De ontwerpstrategie resulteert in
robuuste modulatoren, in het bijzonder voor modulatoren met beperkte
controle.

In de meeste gevallen kunnen de parameter variaties vrij goed op voor-
hand afgelijnd worden. In een tweede ontwerpstrategie, introduceren we
een nieuw robuustheidsgetal, het S-getal, dat de variaties op sommige pa-
rameters mee in rekening brengt. Hierdoor zal de resulterende modulator
een gegarandeerde performantie halen, ook wanneer de parameter variaties
in het spel komen. Daarnaast laat het S-getal ook toe de performantie
criteria uit te breiden. Niet alleen stabiliteit is nu een mogelijk ontwerpcri-
terium, maar er worden ook voorbeelden gegeven die de jitter-gevoeligheid
optimaliseren alsook de transitieband piek van de signaal transfer functie.

Voor Σ∆-modulatoren met een zeer hoge verwerkingssnelheid, ontstaat er
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Samenvatting

een probleem bij het gebruik van multibit kwantisatie. Zowel de multi-
bit terugkoppel digitaal-naar-analoog omzetter (DAC), als de kwantisatie-
eenheid worden zeer uitdagend qua circuit implementatie. Tijdsencodering
werpt zich op als een veelbelovende techniek om de grootste problemen van
multibit kwantisatie te vermijden, terwijl toch multibit performantie be-
houden blijft. Hierbij wordt de multibit amplitude kwantisatie vervangen
door een kwantisatie in de tijd. Hierdoor wordt deze techniek beschouwd
als uitermate geschikt in de hedendaagse sub-micron technologieën die uit-
blinken in hun verbeterde tijdsresolutie. Een overzicht van tijdsencoderende
technieken uit de literatuur wordt gegeveven: het gebruik van een VCO-
gebaseerde kwantisatie-eenheid en het gebruik van een pulsbreedte modu-
latie (Engels: pulsewidth modulation, PWM) terugkoppel DAC.

Verder wordt er aandacht geschonken aan synchrone zelf-oscillerende CT
Σ∆-modulatoren. Bij deze modulatoren wordt tijdsencodering gecombi-
neerd in zowel de kwantisatie-eenheid als de terugkoppel DAC. Deze oploss-
ing vereist slechts een 1-bit kwantisatie-eenheid of comparator evenals een
1-bit terugkoppel DAC, wat een belangrijke reductie vormt in de circuit
complexiteit. Een opzettelijke zelf-oscillatie, op een gehele fractie van de
klokfrequentie, wordt in de Σ∆ lus gëınstalleerd. De ingangsspanning mod-
uleert de uitgangsoscillatie in pulsbreedte. Hierdoor hoeven de componenten
in het lusfilter enkel signalen op de gereduceerde zelf-oscillatie frequentie
verwerken. Een extra voordeel van een zelf-oscillerende Σ∆-modulator is
zijn verbeterde jitter gevoeligheid. In tegenstelling tot bij een conventionele
CT Σ∆-modulator, is het jittervermogen in de signaalband niet afhankelijk
van de agressiviteit van het lusfilter. Daarentegen is er een vaste bijdrage
doordat het uitgangssignaal in elke oscillatieperiode 2 keer omschakelt.

Een tweede orde prototype van een zelf-oscillerende CT Σ∆-modulator werd
ontworpen. In dit ontwerp is een extra toevoeging de eindige impulsrespons
(Engels: finite impulse response, FIR) terugkoppel DAC. Deze zorgt ervoor
dat de jitter gevoeligheid verder verlaagd wordt en relaxeert ook de vereisten
op de slewrate van de eerste operationele versterker in de lus. De prototype
modulator toont een dynamisch bereik van 66 dB voor een 5 MHz band-
breedte. Door de lage circuitcomplexiteit, is de oppervlakte van de kern
van de modulator slechts 0.025 mm2.
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Summary

Due to technology scaling in deep sub-micron technologies, more and more
signal processing is performed in the digital domain. This requires high-
accuracy analog-to-digital (A/D) and digital-to-analog (D/A) converters
with a higher conversion speed. Because of economic benefits, these con-
verters should be integrated on the same chip as the digital processing core.
Σ∆ modulation is a conversion scheme to implement high-accuracy analog-
to-digital converters (ADCs). It combines the effects of oversampling and
noise shaping by means of a resonant loop filter. Depending on the imple-
mentation of the loop filter, either a discrete-time (DT) or a continuous-time
(CT) Σ∆ modulator results.

Discrete-time Σ∆ modulators have become very mature because of the im-
plementation with switched capacitor circuits. In the last decade, a renewed
interest for continuous-time Σ∆ modulators has appeared in the research
field. An important driver for this is technology scaling. CT Σ∆ modulators
are more compatible with smaller technology nodes, as high performance
switches are no longer required. In addition, the lack of frequency folding
due to the continuous-time nature of the loop, provides the possibility of
extending the signal bandwidth into the wide MHz range.

An important advantage of a CT Σ∆ modulator is the implicit anti-aliasing
filter. Due to the continuous-time operation, the signal transfer function
(STF) inherently contains suppression for higher frequencies, before the
sampling operation occurs in the quantizer. However, peaking can still oc-
cur in the transition from the signal band to higher frequencies. This could
overload the modulator. Certainly for ADCs used in communication stan-
dards, this is undesired behaviour. The out-of-band peaking is correlated
to the loop filter topology. A feedback topology generally has the lowest
out-of-band peaking, the feedforward topology has the strongest.

So far, no clear design strategy for CT Σ∆ modulators has been reported in
literature. Although a mathematical equivalence can be defined between the
noise transfer functions (NTFs) of both CT and DT modulators, the well-
known design strategies for DT modulators cannot be applied as such. The
loop of the CT Σ∆ modulator is more sensitive to several parasitic effects,
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Summary

which are only of second order for DT modulators. An important effect
is that of excess loop delay (ELD) in the feedback path of the modulator,
which will increase the order of the modulator’s NTF. This leads to a con-
strained design, where the number of design parameters no longer suffices to
implement any NTF possible. Also, parasitic poles in the integrator transfer
functions occur in reality. In an RC-active implementation for the integra-
tors, a parasitic pole appears due to the gain-bandwidth product (GBW)
of the opamp feedback loop. On top of that, some of the continuous-time
system-model parameters are usually prone to variations. For example, pro-
cess variations will mainly influence the accuracy of the loopfilter integrator
coefficients.

In this dissertation, two new design strategies for CT Σ∆ modulators are
proposed. Both of them focus on multibit quantization, for CT Σ∆ modula-
tors with a low oversampling ratio (OSR). In both of the design strategies, a
nominal continuous-time system is defined, which already includes some of
the parasitic effects specific to CT Σ∆ modulation. In a first design strategy
we use the Nyquist criterion to install a stability robustness figure-of-merit.
The robustness is only optimized for the nominal modulator, without any
parameter variations. The design strategy provides robust modulator solu-
tions, particularly for constrained designs.

In most cases, the parameter variations can be well defined a-priori. In
a second design strategy, we introduce a new figure of merit, the S-figure
which does take into account the a-priori knowledge of the variation spread.
As a result, a guaranteed performance of the modulator is obtained, even
when subjected to variations. Next to this, the S-figure is also interesting,
because it allows to define more general performance requirements. Design
examples are given to control not only stability robustness but also the
modulator’s jitter performance or the STF out-of-band peaking.

For very high-speed Σ∆ modulators, multibit quantization tends to become
cumbersome in deep sub-micron technologies. Both the multibit feedback
DAC and the quantizer become hard to realize. Time-encoding is employed
as a promising technique to avoid the main issues from multibit quanti-
zation, while preserving multibit performance. Essentially, the multibit
quantization is replaced by a quantization in time. As such, this solution is
considered to be very well suited for today’s ultra deep sub-micron technol-
ogy, which should be able to provide ample time resolution. An overview of
techniques already presented in literature is given, like VCO-based quanti-
zation or the use of a pulsewidth modulation (PWM) feedback DAC.

Further attention is given to synchronous self-oscillating CT Σ∆ modula-
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tors. Here, time-encoding is combined in both the quantizer and the feed-
back DAC. This solution only requires a single-bit quantizer (comparator)
and a single-bit feedback DAC, which is an important reduction in design
complexity. A deliberate self-oscillation is installed in the Σ∆ loop, at a
rational fraction of the clock frequency. The input will modulate the out-
put oscillation in a PWM fashion. As a result, the loopfilter building blocks
only have to process signals at the lower self-oscillation frequency. An ex-
tra benefit of a self-oscillating Σ∆ modulator is its jitter performance. In
contrast to a conventional CT Σ∆ modulator, the in-band jitter does not
rely on the loopfilter’s aggressiveness, but instead it is fixed as the output
signal merely toggles twice per self-oscillation period.

A second order self-oscillating CT Σ∆ modulator prototype was designed.
An additional key element in this design, is the use of a feedback finite-
impulse-response digital-to-analog converter (FIRDAC) which further re-
duces the jitter sensitivity and relaxes the slewing requirements of the first
operational amplifier in the loop. The prototype modulator achieves a dy-
namic range (DR) of 66 dB for a 5 MHz bandwidth. Due to the low com-
plexity of the circuit, the modulator core area is only 0.025 mm2.
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Chapter 1

Research Scope and Goal

1.1 Research Scope

The continuous scaling of complementary metal-oxide-semiconductor (CMOS)
deep sub-micron technologies has led to massive integration of high-complexity
electronic systems. The scaling is mainly digital driven, as it allows to inte-
grate more digital functionality on the chip for each new technology node,
while it reduces the power consumption per gate at the same time. The area
efficiency and flexibility of digital electronics is exploited to implement large
parts of the signal processing in the digital domain. The fact that digital
signal processing is inherently “noise-free”, is a huge benefit. Furthermore,
in contrast to analog design, digital design is highly automated. The signals
which have to be processed are in most cases still analog of nature. This
requires high-accuracy analog-to-digital (A/D) and digital-to-analog (D/A)
converters, which interface with the digital core. Due to economic benefits,
these converters should be integrated as much as possible on the same chip
as the digital core.

In contrast to digital gates, high-accuracy analog circuits usually do not ben-
efit from technology scaling. A first problem lies in the fact that the supply
voltage decreases for more advanced technology nodes. For 90 nm, the core
supply voltage has already become as low as 1.2 V. This limits the signal
range for analog input signals and thus requires to push thermal noise-levels
down for the same desired accuracy-level. Furthermore, it prevents the ap-
plication of cascoding, which has been extensively used to implement high-
gain amplifier stages. Finally, the conduction of metal-oxide-semiconductor
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(MOS) switches decreases. The threshold voltage of the MOS devices does
not scale proportional to the supply voltage. Low-ohmic MOS switches are
required to implement switched capacitor (SC) circuits. A second prob-
lem which arises, is the intrinsic gain deterioration of the MOS transistor,
mainly due to the reduction of the output impedance.

Σ∆ modulation is a data-conversion technique to implement high-accuracy
analog-to-digital converters (ADCs). In contrast to other ADC topologies,
the accuracy does not heavily rely on component matching. Σ∆ modulators
trade off time resolution for amplitude accuracy by using oversampling and
noise shaping. Discrete-time (DT) Σ∆ modulators have become very ma-
ture because of the implementation with SC circuits. They have dominated
the Σ∆ modulator designs for many years. Recently, continuous-time (CT)
Σ∆ modulators have attracted more attention because of their possibility
of extending the ADC bandwidth into the wide MHz range. In contrast to
their discrete-time counterparts, the loopfilter is now a continuous-time fil-
ter, which allows higher bandwidth processing. Also CT Σ∆ modulators are
more compatible with the technological scaling trend, due to the absence of
high performance switches. The higher bandwidth possibilities, combined
with multibit quantization, have even led to the use of CT Σ∆ modulators
for communication transceivers with MHz bandwidth and 10-12 bit resolu-
tion. In addition, the fact that Σ∆ modulation can be easily combined with
bandpass A/D conversion has increased its popularity in analog front-ends
for communication chips.

1.2 Goal and Outline

In this work we investigate the use of a continuous-time Σ∆ modulator as
an analog-to-digital converter. We specifically focus on the modulator itself,
being the analog core of the converter. The design of the digital decimation
filter, to downsample the output data stream, is outside the scope of this
work. The goal of the research is twofold. First of all, new design strategies
for CT Σ∆ modulators have been developed. So far, no clear design strategy
has been introduced in literature. Most of the designs published, do not
give much insight in the design parameter selection. Some are still strongly
mapped on the design strategies for DT Σ∆ modulators. Chapters 3 to 5
cover the research on robust design criteria which lead to these new design
strategies. Secondly, new architectures for CT Σ∆ modulators using time-
encoding are investigated in chapters 6 and 7. These architectures show
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1.2 Goal and Outline

promising results in the light of co-integration of high-accuracy ADCs in
advanced digital technologies.

Chapter 2 contains a basic introduction to the use of a Σ∆ modulator as
the core of an ADC. A large part of this chapter focuses on continuous-time
Σ∆ modulation.

Chapter 3 reveals some of the design considerations which are specific to the
design of CT Σ∆ modulators. This chapter will set the boundary conditions
which will be used in the next two chapters to define new robustness criteria
for CT modulators.

In chapter 4 and 5, novel design strategies for CT Σ∆ modulators are devel-
oped. In chapter 4, robustness based on the Nyquist criterion is proposed.
In chapter 5, the S-figure is introduced, as a new robustness criterion based
on the worst-case distance concept.

Chapter 6 introduces time-encoding as an emerging architectural direction
for CT Σ∆ modulators in the context of continued scaling of deep sub-
micron technologies.

Chapter 7 describes the design and measurement of a prototype self-oscillating
Σ∆ modulator. While achieving state-of-the-art performance, this design
specifically excels in low circuit complexity, small area and improved ro-
bustness to clock jitter.

Finally, chapter 8 concludes this dissertation and proposes directions for
improvements and further research.

3





Chapter 2

Σ∆ Modulation

2.1 Introduction

This chapter explains the basics of Σ∆ modulation. The chapter starts off
with the fundamentals of A/D conversion: sampling and quantization. Then
the operation of the Σ∆ modulator as the core of an ADC is illustrated.
In this part we mainly focus on the discrete-time Σ∆ modulator. In the
last section the continuous-time Σ∆ modulator is covered. A mathematical
framework for dealing with mixed DT/CT systems is introduced to allow
a unified framework for both DT and CT Σ∆ modulators. Readers which
are familiar with the subject can safely skip this chapter.

2.2 Analog-to-Digital Conversion

The Σ∆ modulator will be used as the core of an analog-to-digital converter
in this work. In such an ADC two basic signal processing operations are
performed on the analog input: sampling and quantization. The outcome
is a waveform which can be digitally represented and processed by a digital
processor (computer, micro-controller, . . . ).
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Chapter 2 Σ∆ Modulation

2.2.1 Sampling

The sampling operation transforms the analog input signal x(t) into a
discrete-time signal:

xd[n] = x(t)|t=nTs , (2.1)

where Ts = 1
fs

is the uniform sampling period. To collect all of the signal
information on the digital level, the sample frequency fs must satisfy the
Nyquist-Shannon theorem [1]. This implies that fs should be at least twice
as high as the bandwidth of x(t), to prevent the occurrence of aliasing.

2.2.2 Quantization

Of course xd[n] still has continuously varying amplitude levels at each sam-
ple moment. To provide a digitally representable form, quantization of these
values is performed. The accuracy of this quantization operation determines
the accuracy of the ADC. Fig. 2.1 shows the input-output characteristic for
a 3-bit quantizer. In that case 8 quantization levels are present to represent
the input.

xd[n]

x̂d[n]

VFS−VFS

∆

VFS

−VFS

Figure 2.1: Input-output characteristic for a 3-bit quantizer.

The output of the quantizer x̂d[n] can be expressed as the non-quantized
input augmented with an error signal q[n]:
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2.2 Analog-to-Digital Conversion

x̂d[n] = xd[n] + q[n]. (2.2)

If the input signal amplitude stays below the quantizer fullscale amplitude
VFS , then the error signal is bounded by:

− ∆

2
≤ q[n] ≤ ∆

2
, (2.3)

where ∆ is the quantization step:

∆ =
2VFS
2B

, (2.4)

and B the number of quantizer bits.

The fact that quantization is a non-linear operation, makes it hard to an-
alyze. However, if the input randomly varies between two samples with a
value larger than or comparable to the quantization step ∆, the error sig-
nal q[n] becomes practically uncorrelated from the input. q[n] then contains
uniformly distributed samples in the interval given by equation (2.3). Under
these conditions, which were first reported in [2], the quantizer operation
can be approximated by an additive white-noise source model, as displayed
in fig. 2.2.

Σxd[n] x̂d[n] ≡ xd[n] x̂d[n]

q[n]{σ2=∆2

12 }

Figure 2.2: Additive white-noise source approximation for the quantizer op-
eration.

The power of q[n] can be calculated as the variance of its uniform distribu-
tion [3]:

Pq =
1

∆

∫ ∆
2

−∆
2

q2dq =
∆2

12
. (2.5)

In the spectral domain, this power is uniformly spread over the whole
Nyquist band.
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Chapter 2 Σ∆ Modulation

The accuracy of the ADC can be expressed as the signal-to-quantization-
noise ratio (SQNR) for a sine-wave input of fullscale amplitude:

SQNR[fullscale,dB] = 10 log10

(
V 2
FS

2

12

∆2

)
(2.6)

= 1.76 + 6.02B. (2.7)

An interesting benchmark, the effective number of bits (ENOB), is derived
from previous equation. It is used to determine the accuracy of real-life
ADCs which, beside being limited by quantization noise, are also subjec-
tive to thermal noise and harmonic distortion. Therefore the SQNR from
equation (2.7) is replaced here by the signal-to-noise and distortion ratio
(SNDR):

ENOB =
SNDR[fullscale,dB] − 1.76

6.02
. (2.8)

2.3 Σ∆ Modulation

Σ∆ modulation combines the effect of oversampling and noise-shaping to
implement high-resolution A/D converters. Fig. 2.3 shows the basic conver-
sion scheme. It consists of an anti-aliasing filter (AAF), a sampler at rate fs,
the actual modulator (which includes the analog-to-digital interface) and a
digital decimation filter.

AAF (s)
fs

Σ∆

analog digital

Vin(s)
B

decimation
digital

filter[fs]

ENOB

[
fs

OSR

]

Figure 2.3: Basic A/D conversion scheme with a Σ∆ modulator.
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2.3 Σ∆ Modulation

2.3.1 Oversampling

Oversampling implies that the input signal after the AAF is sampled at
a much higher rate than required by the Nyquist-Shannon theorem. The
oversampling ratio (OSR) is defined as the ratio between the edge of the
signal band fb and the Nyquist frequency:

OSR =
fs
2fb

. (2.9)

This significantly relaxes the requirements for the AAF in fig. 2.3. The cutoff
frequency does not have to be very accurate and the roll-off can be less steep
than for a traditional AAF for a Nyquist-rate converter. The spectrum of
an oversampled system is schematically shown in fig. 2.4 (a). Although the
signal bandwidth is much smaller, the white quantization noise floor is still
spread out over the whole Nyquist band.

f

output spectrum

si
gn

al

fb
fs
2

white quantization

output spectrum

fb

shaped

noise
quantization

noise f
fs
2

(a) (b)

si
gn

al

Figure 2.4: Output spectrum of (a) an oversampled system (white quantiza-
tion noise floor) and (b) a Σ∆ modulator (shaped quantization
noise).

Since we are only interested in a fraction of the Nyquist band, the digital
decimation filter from fig. 2.3 will filter off the undesired high-frequency
white noise content. The B-bit signal at sample rate fs is transformed into
a higher accuracy signal (ENOB > B) at lower sample rate fs

OSR = 2fb. The
SQNR for an oversampling converter increases by 3 dB (0.5 bit) with every
doubling of the OSR:
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SQNR[fullscale,OSR,dB] = 10 log

(
V 2
FS

2

12

∆2
OSR

)
(2.10)

= 1.76 + 6.02B + 10 log(OSR). (2.11)

2.3.2 Noise-shaping

Noise-shaping is used to further increase the accuracy of the converter. The
general block diagram of a Σ∆ modulator is shown in fig. 2.5. It consists of
a loopfilter H(z), a low-resolution quantizer (B bit) and a feedback digital-
to-analog converter (DAC). As explained previously, the quantization error

Q(z) can be modeled by an additive white-noise source with power ∆2

12 .
This approximation is generally accepted for the case of multibit quantiz-
ers, which are examined in this dissertation. The loopfilter is formed by a
cascade of integrator stages. The DAC closes the feedback loop. For the
moment we will approximate the feedback DAC by an ideal unity operation
(with conversion from the digital to the analog domain).

Vin(z) H(z)Σ

DAC

Vout(z)

Q(z){σ2=∆2

12 }

Σ

−

Vquant(z)

Figure 2.5: General block diagram of a Σ∆ modulator with indication of
the linearized quantizer model.

Two important system transfer functions are defined. The noise transfer
function (NTF) defines the transfer of the quantization noise input to the
output, while the signal transfer function (STF) defines the transfer from
the input signal to the output:

10



2.3 Σ∆ Modulation

Vout(z) = STF(z)Vin(z) + NTF(z)Q(z) (2.12)

=
H(z)

1 +H(z)
Vin(z) +

1

1 +H(z)
Q(z). (2.13)

Since we are dealing with an oversampled system the input is very low-
frequent compared to fs. As the loopfilter has a very high gain for low
frequencies (cascade of integrators), we assume the STF equals 1 within the
signal band. The output can be approximated by:

Vout(z) ≈ Vin(z) +
1

1 +H(z)
Q(z). (2.14)

Hence the output of the modulator is a digital signal (since Vout is the output
of a quantizer), that represents the input signal with addition of a second
term, the shaped noise spectrum. The situation is depicted schematically
in fig. 2.4 (b). As a result of the high loopfilter gain for low frequencies, the
white noise quantization spectrum Q(z) is heavily suppressed within the
signal band. The suppression decreases in function of frequency, due the
roll-off of the loopfilter. For frequencies around the Nyquist frequency, the
noise power can even be increased. Keep in mind that a digital decimation
filter will be applied to the output data stream, and eventually only the
noise power within the signal band is of importance. Compared to the plain
oversampling situation from fig. 2.4 (a), the in-band accuracy is heavily
increased due to the noise-shaping.

2.3.3 Σ∆ Modulator Performance

The reference NTF for an N -th order Σ∆ modulator is given by a N -th
order differentiation:

NTFreference(z) = (1− z−1)N =
(z − 1)N

zN
. (2.15)

The shape of this NTF is illustrated in fig. 2.6 for orders 1 up to 4. The
transfer function has an out-of-band gain of 2N at fs

2 .

All the NTF zeros are located at DC (z = 1) and all the poles at the origin
(z = 0). The in-band quantization noise (IBQN) can be calculated as:
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0 0.1 0.2 0.3 0.4 0.5
0
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f
fs

N = 1

N = 2

N = 3

N = 4

Re(z)

Im(z)

pole-zero

Figure 2.6: Reference NTF for different modulator orders with indication of
the pole-zero positions in the complex Z-plane.

IBQN =

∫ fb

0

|NTF(ej2πfs)|2 ∆2

12

2

fs
df (2.16)

=

∫ fb

0

[
2 sin(πfTs)

]2N ∆2

12

2

fs
df . (2.17)

As we consider an oversampled system, only the low-frequent part of the
noise spectrum accounts to the system resolution, and thus:

sin(πfTs) ≈ πfTs. (2.18)

This leads to an IBQN of:

IBQN =
π2N

2N + 1

1

OSR2N+1

∆2

12
. (2.19)
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2.3 Σ∆ Modulation

Compared to the Nyquist rate converter with an in-band quantization noise

of ∆2

12 , the fullscale SQNR becomes:

SQNR[fullscale,Σ∆,dB] = 1.76 + 6.02B − 10 log

(
π2N

2N + 1

)

+(2N + 1)10 log(OSR). (2.20)

This means that for an N -th order Σ∆ modulator the accuracy increases by
(N+0.5) bit with every doubling of the OSR. In fig. 2.7 the SQNR increase,
compared to a Nyquist rate converter, is plotted in function of the oversam-
pling ratio for different modulator orders. The modulator with order zero
is a plain oversampling converter, with an increase of 3 dB when the OSR
doubles as stated by equation (2.11). For a fixed OSR, the largest accuracy
increase can be seen in the transition from a plain oversampling converter
to a first order modulator. For higher orders, the increase progressively
becomes smaller.

4 8 16 32 64 128
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∆
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B
)

OSR

N = 0

N = 1

N
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2

N
=

3

N
=

4

Figure 2.7: SQNR increase compared to a Nyquist-rate converter in function
of the OSR for the reference Σ∆ modulator.
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2.3.4 Modulator Stability

Due to the high out-of-band gain, the reference modulator from equa-
tion (2.15) can become unstable if N ≥ 3. This occurs due to overloading
of the quantizer, even if the modulator’s input signal amplitude stays well
below the fullscale quantizer level VFS . The input to the quantizer can be
written as (see fig. 2.5):

Vquant(z) = STF(z)Vin(z) + [NTF(z)− 1]Q(z). (2.21)

The maximum stable amplitude (MSA) is defined as the largest input ampli-
tude, which the modulator can still process without overloading. Based on
equation (2.21), we propose following heuristic for calculating the MSA [4]:

MSA ≈ VFS −
3

2

√∫ fs
2

0

|NTF(ej2πfs)− 1|2 ∆2

12

2

fs
df . (2.22)

Again, we made the approximation that the STF is close to unity within
the signal band. The second term is proportional to the power of the con-
tribution from the quantization noise.

Equation (2.22) is particularly valid for multibit modulators, where the
quantization error is heavily decorrelated from the quantizer input signal. In
early papers on Σ∆ modulation, other stability criteria are also proposed [5,
6]. They were mainly deployed for single bit modulators, for which the
additive white noise approximation is less justified. Furthermore, these
criteria were found to be too conservative or, even worse, in some cases could
lead to unexpected instability [5]. However, all stability criteria are based on
a mathematical norm (1-norm, 2-norm or∞-norm) of either the NTF or its
impulse response. They share the fact that modulators with a larger out-of-
band gain are more prone to instability, just like in equation (2.22). In the
previous section we described that the out-of-band gain for the reference
N -th order differentiation NTF increases with the modulator order. For
example, the reference third order modulator has an out-of-band gain of 8.
As a consequence of equation (2.22), the modulator only remains stable up
to less than half the fullscale level, when using a 3-bit quantizer. The fourth
order reference modulator is even unstable for any input amplitude with a
3-bit quantizer.

Increasing the number of quantizer bits (smaller ∆), is one way to increase
modulator stability. A more effective strategy however, is to place the NTF
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2.3 Σ∆ Modulation

poles in a different position than having them all placed at the origin. A
popular NTF pole constellation was proposed in [5]. The NTF which arises,
is a maximally flat NTF, with maximum out-of-band gain at fs

2 , denoted
by the design parameter H∞. Due to the resemblance with the pole con-
stellation of a Butterworth filter, this type of NTF is also identified as a
Butterworth NTF. In fig. 2.8 a third order Butterworth NTF is shown with
H∞ equal to 4 for an OSR of 16. The figure also displays the pole-zero
constellation in the complex plane. H∞ is the only design parameter to
fully determine the NTF. The value for H∞ can be used as a tradeoff: a
lower value gives rise to poles which are closer to the zeros at DC, which
results in a smaller out-of-band gain at the cost of a lower in-band noise
suppression.

|N
T
F
|(
d
B
)

f
fs

0.001 0.01 0.1 0.5
-80

-60

-40

0

20

Re(z)

Im(z)

pole-zero

O
S
R
=

16

-20

Figure 2.8: Third order NTF with poles in Butterworth position and H∞ =
4. Bode plot of the NTF with indication of the signal band edge
(dashed) and pole-zero positions in the complex Z-plane.

A different NTF design strategy is proposed in [6]. This methodology is
called CLANS and is based on an optimization algorithm of the pole con-
stellation, to achieve the maximum peak SQNR performance. In both cases,
due to the altered pole constellation, the general NTF looks like:
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NTF(z) =
(z − 1)N

PN (z)
, (2.23)

with PN (z) an N -th order polynomial in z whose coefficients can define any
pole constellation. The coefficient in zN is thereby always equal to 1 for
reasons of causality [3]. Both design strategies were incorporated in a free
Matlab toolbox [7].

Formerly, we defined the accuracy based on the fullscale quantizer level.
However, the modulator will never be able to process these high input am-
plitudes. As such, the peak SQNR (or SNDR) is a more justified accuracy
measurement:

SQNR[peak,dB] = 10 log

(
MSA2

2IBQN

)
. (2.24)

Based on this definition, the example of fig. 2.8 with a 3-bit quantizer
achieves a peak SQNR of 73.7 dB for a maximum stable amplitude of 2/3
of the fullscale quantizer level.

2.3.5 NTF Zero Spreading

To further increase the accuracy, the NTF zeros, which were previously
located at DC, can be spread out over the signal band. In [5] optimal
locations, relative to the signal band edge, for these zero positions are given
for several modulator orders. This way an extra increase in noise suppression
can be achieved. As the effect is localized in the signal band, the global
modulator stability is not affected. In fig. 2.9 the previous example with
H∞ = 4 is extended with zero spreading. The zeros are still on the unit
circle. Since the order is odd, one of the zeros remains at DC, while the
other two form a complex conjugate pair within the signal band. Actually,
the NTF zeros originate from the poles of the loopfilter H(z). In this case,
the loopfilter is no longer a pure cascade of integrators, but instead it is
a filter with low-frequency resonance peaks within the signal band. Since
the NTFs in fig. 2.8 and 2.9 are plotted on a logarithmic scale, especially
their values at fb determine the in-band noise. Clearly the optimization of
the zeros results in a lower NTF value at fb. This is also quantitatively
confirmed: the peak SQNR has increased to 81.7 dB for the same MSA.
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Figure 2.9: Third order NTF with poles in Butterworth position, optimized
zeros and H∞ = 4. Bode plot of the NTF with indication of the
signal band edge and pole-zero positions in the complex Z-plane.

2.4 Σ∆ Modulation in Continuous Time

So far, we have described Σ∆ modulators with loopfilters in discrete time.
In fig. 2.3 the input was sampled before entering the actual modulator.
Due to the ease of implementation with switched capacitor circuits, these
converters have dominated publications on Σ∆ modulators during the 90’s
and the beginning of the years 2000 [8–17].

In continuous-time Σ∆ modulation, the sampler is shifted inside the Σ∆
loop. Fig. 2.10 shows the block diagram for a CT Σ∆ modulator. Vin(s)
is now a continuous-time analog input and the loopfilter H(s) is formed by
a cascade of continuous-time integrators. The sampling operation is per-
formed within the clocked quantizer. Again, the white-noise approximation
can be made for the quantization. Due to the continuous-time integration,
the shape of the feedback DAC pulse, indicated by its transfer function
HDAC(s), is important and will influence the Σ∆ loop behaviour.
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Vin(s) H(s)Σ

HDAC(s)

Vout(z)

Q(z){σ2=∆2

12 }

Σ

−

Vquant(z)
fs

fs

Figure 2.10: Block diagram of a CT Σ∆ modulator.

2.4.1 Sampling in Mixed DT/CT Systems

The difficulty in analyzing a CT Σ∆ modulator lies in the fact that the
loop processes both discrete-time and continuous-time signals. For this
reason, it would be interesting to have a unified mathematical framework,
which we can apply to both CT and DT signals. More specifically, a link
between the spectrum of a continuous-time signal and its sampled discrete-
time counterpart, must be identified. For this purpose the ∗-operator is
introduced [18]. It defines the sampled signal from equation (2.1) as an
artificial CT signal:

x∗(t) =

∞∑

n=0

xd[n]δ(t− nTs), (2.25)

where δ(t) is the continuous-time Dirac impulse. We identify the Laplace
transform (L) of this signal as:

X∗(s) =

∞∑

n=0

xd[n]L{δ(t− nTs)} (2.26)

=

∞∑

n=0

xd[n]e−snTs (2.27)

= Xd(e
sTs). (2.28)
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The Laplace transform of x∗(t) thus equals the Z-transform of the sampled
signal Xd(z), evaluated at z = esTs .

A second relation can be derived by expressing x∗(t) as a multiplication of
x(t) and the time-domain Dirac comb function:

x∗(t) = x(t)δT (t) (2.29)

= x(t)

∞∑

n=−∞
δ(t− nTs). (2.30)

The convolution in the Laplace domain results in the well-known fact that
the spectrum of the sampled signal is a periodic expansion of the continuous-
time spectrum, with a period equal to the sampling frequency.

X∗(s) =
1

Ts

∞∑

n=−∞
X(s+ jn2πfs). (2.31)

The spectral domain ∗-operator has two more interesting properties, which
we will use further on:

[αX(s) + βY (s)]∗ = αX∗(s) + βY ∗(s) (2.32)

[X(s)Y ∗(s)]∗ = X∗(s)Y ∗(s). (2.33)

The first property states that the ∗-operator is a linear operator. The
second property states that the sampled spectrum of a Laplace domain
multiplication equals the product of the two sampled spectra, provided that
one of the signals was already a sampled signal. This property can easily be
proven but can also be intuitively understood, since one of the two spectra
is already periodic.

2.4.2 Discrete-Time Modulator Equivalence

To further investigate the continuous-time modulator, the system diagram
is rearranged as in fig. 2.11. The loopfilter H(s) and sampler are shifted
into the feedback path of the loop and towards the analog input. Similar
to the DT modulator, we can identify the NTF and STF as the system’s
response to the quantization noise and input respectively, by applying linear
superposition.
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Vin(s) H(s) Σ

HDAC(s)

Vout(z)

Q(z)

Σ
−

Vquant(z)

H(s)

fs

Heq(z)

fs

Figure 2.11: Rearranged CT Σ∆ modulator system diagram to identify the
equivalent DT loopfilter.

Noise Transfer Function [Vin(s) = 0]

Based on the theory of sampled signals from the previous section and the
introduction of the ∗-operator, the input to the quantizer can be written
as:

Vquant(e
sTs) = −[H(s)HDAC(s)Vout(e

sTs)]∗, (2.34)

when no input signal is applied. As the quantizer input and the output
signal are discrete-time signals, we use equation (2.28) to link them to the
CT Laplace domain variable s. From now on we will no longer explicitly
indicate DT signals and their Z-transform with a subscript annotation. It
will be clear from the context whether the referred signal is a CT or a DT
signal. Note the importance of the DAC pulse transfer function. As it
implements the real transition between discrete-time and continuous-time,
its waveform is important for the analysis of the modulator. A widely
used feedback pulse is the non-return-to-zero (NRZ) pulse (sometimes also
indicated as the zero-order-hold (ZOH) pulse), where the digital value is
merely held during the whole clock period:

HDAC,NRZ(s) =
1− e−sTs

s
. (2.35)

The output signal in (2.34) is already a sampled signal, hence equation (2.33)
can be applied. This results in a direct connection between the Z-transform
of Vout and Vquant:
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Vquant(z) = − [H(s)HDAC(s)]∗︸ ︷︷ ︸
Heq(z)

Vout(z). (2.36)

The cascade of the DAC pulse, the analog loopfilter and the sampler can thus
be seen as an equivalent discrete-time loopfilter Heq(z). This is indicated
by the dashed rectangle in fig. 2.11.

A practical method to calculate the equivalent loopfilter Heq(z) is the
impulse-invariant-transformation (IIT):

Heq(z) = IIT{H(s)HDAC(s)} (2.37)

= Z[L−1{H(s)HDAC(s)}|t=nTs ]. (2.38)

Mathematically, it is obtained by taking the inverse Laplace transformation
(L−1) of H(s)HDAC(s), sampling the result and finally performing the Z-
transformation. It is a direct consequence of equation (2.28). On the other
hand, using equation (2.31), the spectrum of Heq(z) also equals:

Heq(e
sTs) =

1

Ts

∞∑

n=−∞
H(s+ jn2πfs)HDAC(s+ jn2πfs). (2.39)

This relation can be used to determine the DT loopfilter numerically. As
the continuous-time loopfilter is a lowpass filter, the infinite sum can be
approximated by only taking into account a limited number of terms. The
continuous-time loopfilter can be simulated as the result of a Spice AC sim-
ulation. A third method to calculate the equivalent discrete-time loopfilter
is by using the residue theorem [18,19]:

Heq(e
sTs) =

∑

i

residues

[
H(φ)HDAC(φ)

esTs

esTs − eφTs
]

at φ = si. (2.40)

This theorem, which is a result of complex contour integration, is particu-
larly interesting, as it allows a closed expression between the non-sampled
spectrum H(s)HDAC(s) and the equivalent sampled spectrum Heq(e

sTs).
The residues are evaluated at the poles si of the loopfilter H(s). This is
under the assumption that the DAC pulse has no poles, which is usually
the case. It is the most practical method and can be implemented by a

21



Chapter 2 Σ∆ Modulation

partial fraction decomposition of the loopfilter [20] (e.g. the c2d function in
Matlab).

Using all the above, a similar definition for the noise-transfer-function (NTF)
as for the case of a DT Σ∆ modulator can be adopted:

NTF (z) =
1

1 +Heq(z)
. (2.41)

This well-known relation allows us to use a unified framework for both DT
and CT Σ∆ modulators with respect to their noise shaping.

A straightforward design strategy for CT Σ∆ modulators, is to start off
from the desired DT NTF, for example the NTF shown in fig. 2.9. This
NTF has an equivalent DT loopfilter:

Heq(z) =
2.3446(z2 − 1.142z + 0.4027)

(z − 1)(z2 − 1.977z + 1)
. (2.42)

Note that due to the NTF zero-spreading, the loopfilter poles are spread out
over the signal band. For calculating the inverse IIT, we will use the NRZ
feedback DAC pulse. Along the frequency axis the NRZ-pulse is evaluated
as:

HDAC,NRZ(f) = e−j2πf
Ts
2 · sin(πfTs)

πfTs
(2.43)

= e−j2πf
Ts
2 · sinc(πfTs). (2.44)

Hence, it is a linear phase filter (with delay Ts
2 ) with notches at multiples

of fs due to the sinc interpolation. The resulting CT loopfilter equals:

H(s) =
1.5482[(sTs)

2 + 0.9063(sTs) + 0.396]

sTs[(sTs)2 + 0.02313]
. (2.45)

The poles on the unit circle are translated to CT poles on the imaginary
axis. Note that the resulting loopfilter coefficients scale with the sample
frequency. In the rest of this work, we will normalize the sample frequency
to 1 for notational simplicity. In fig. 2.12, the frequency response of both the
equivalent DT loopfilter and the cascade of the CT loopfilter with the NRZ
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2.4 Σ∆ Modulation in Continuous Time

DAC pulse are displayed. The spectrum is not limited to fs
2 to see the high-

frequency roll-off of the continuous-time filter. Of course the DT spectrum
is periodic with period fs. Within the signal band (indicated by the dashed
lines for an OSR of 16) the three resonance peaks of both filters coincide.
Due to the sinc notches at multiples of fs, practically no high-frequency
information aliases back into the signal band in the transformation from
continuous-time filter to discrete-time filter.
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Figure 2.12: Spectrum of the equivalent DT loopfilter (gray) and the cascade
of the analog loopfilter and the DAC pulse (black) for the third
order NTF with poles in Butterworth position, optimized zeros
and H∞ = 4.

Signal-Transfer-Function [Q(z) = 0]

The input signal is first filtered by H(s) and then sampled before entering
the noise-transfer-function loop (see fig. 2.11). If we use equation (2.33) in
the reverse direction, the system response to the CT input can be written
as:
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Vout(z) =
[
H(s)Vin(s)

]∗
NTF (z) (2.46)

=
[
H(s)NTF (es)︸ ︷︷ ︸

STF(s)

Vin(s)
]∗

. (2.47)

The response to the input is denoted by the signal-transfer-function (STF).
This function is still defined in the CT domain. Its sampled (aliased) version
is the eventual contribution in the modulator’s DT output signal. For the
example of equation (2.42), the STF is displayed in fig. 2.13.
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Figure 2.13: Signal transfer function for the CT Σ∆ modulator with third
order NTF with poles in Butterworth position, optimized zeros
and H∞ = 4.

In the signal band, the CT loopfilter and the DT NTF will compensate for
each other, leading to an amplitude response close to one. For high frequen-
cies, the input signal is lowpass filtered by the first-order roll-off of H(s)
before being sampled. This is known as the implicit anti-alias filter of the
CT Σ∆ modulator and was first reported in [21]. At multiples of fs, notches
appear, due to the periodic spectral behaviour of the NTF. In contrast to

24



2.4 Σ∆ Modulation in Continuous Time

DT modulators, an explicit anti-alias filter in front of the modulator seems
no longer necessary. However, fig. 2.13 also reveals that peaking outside the
signal band can appear. In this transition zone, interferer signals can be
amplified, which could cause overloading of the modulator. In most practi-
cal cases also a CT modulator will be preceded by an extra filter, indicated
as the “overload prevention” filter. For low oversampling ratios, the peaking
appears close to the signal band, which heavily increases the requirements
for this filter.

2.4.3 Loopfilter Considerations

Feedback/Feedforward Topology

Similar to regular filter topologies, the loopfilter of a CT Σ∆ modulator
can also be implemented in a feedback (FB) or feedforward (FF) topology.
Both topologies can be used to implement any NTF.

In the FB topology (fig. 2.14), there is a feedback path to every integrator
input. As a consequence, multiple feedback DACs have to be installed.
The feedback paths generate the NTF poles necessary to stabilize the loop,
according to equation (2.23). The philosophy is similar to stabilizing a
regular continuous-time filter. At the crossover frequency (the 0 dB point
in the Bode plot), the loopfilter should reduce to a first order system to
attain sufficient phase margin. For the FB topology, the loopfilter can be
written as:

H(s) =
cN
s

+
cN−1cN
s2

+ . . .+

∏N
i=1 ci
sN

. (2.48)

In practice the stability requirement almost automatically leads to coeffi-
cients where ci+1 > ci. As the integrators have a large gain for frequencies
within the signal band, nullator hypotheses can be applied to every summa-
tion node. The integrator output signal practically equals the input signal
in this frequency range. Therefore the output signal of each integrator con-
tains a strong contribution of the input. This means that the signal swing
on the integrator outputs is quite large, which puts requirements on the
linearity of the integrators on the circuit level [22].

For the FF topology, the reciprocal situation applies. The loopfilter now
equals:
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Figure 2.14: CT Σ∆ modulator with loopfilter in (a) feedback topology and
(b) feedforward topology.

H(s) =
c1
s

+
c1c2
s2

+ . . .+

∏N
i=1 ci
sN

. (2.49)

To stabilize the loopfilter, here generally the coefficients ci+1 < ci. In
the FF topology, the outputs of all integrators are added in front of the
quantizer input. This means an extra summation circuit is necessary. In
this topology, nullator hypotheses can only be applied to the first integrator.
Consequently, the loopfilter only has to process quantization noise, and the
integrator outputs do not contain a large input signal contribution. Hence,
the linearity requirements can be relaxed compared to the FB topology.
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2.4 Σ∆ Modulation in Continuous Time

Suppression of Error Signals

In both topologies, errors due to non-linearity and noise become gradually
less important when propagating through the loopfilter. For example, an er-
ror contribution after the first integrator is differentiated towards the input.
Therefore, the first integrator always has the highest power consumption,
because its input referred noise almost fully determines the global system
accuracy.

In the FF topology, the first integrator happens to coincide with the first-
order path of the loopfilter (with the largest coefficient). This means that
errors at the first stage output are more suppressed than in the correspond-
ing FB topology (where the first integrator has the smallest coefficient). In
the FB topology this leads to larger power consumption in the following
stages. In general, it is assumed that the FF topology is easier to stabilize.
Due to the larger power consumption in the first-order path, its loopfilter
is less sensitive to high-frequency parasitics. An exploration of publications
on CT Σ∆ modulation also indicates the popularity of the FF loopfilter
topology [21,23–27].

1
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Figure 2.15: Illustration of integrator output scaling in (a) the feedback
topology and (b) the feedforward topology.

In fig. 2.14 all coefficients were assigned to the integrators. In reality, these
coefficients will be split up between an integrator coefficient and a feedback-
/feedforward coefficient. This gives an extra degree of freedom to keep the
integrator output signal swing within the desired range. The situation is
depicted in fig. 2.15, where the FB/FF coefficients now also have weights
ai. For example in the FB topology, coefficients c1 and a2 can be lowered
with the same factor α to reduce the first integrator output swing. To end
up with the same NTF, the next integrator coefficient c2 has to be increased
with the same factor α. In the situation of a FF topology, a similar analysis
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can be made except for the fact that the feedforward coefficient increases
when lowering the first stage signal swing.

NTF Zero Spreading

The loopfilters displayed in fig. 2.14 do not include NTF zero spreading
within the signal band. All the poles of the loopfilter are still located at
DC (s = 0). To implement a low-frequency resonance in the loopfilter, a
local negative feedback path around two integrators must be installed (see
fig. 2.16). The transfer function of this resonator section is given by:

Vout(s)

Vin(s)
=

c1c2
s2 + c1c2g

, (2.50)

which is in the same form as for the zero-spreaded CT loopfilter of equa-
tion (2.45). The local feedback coefficient g is a small coefficient which shifts
the resonance from DC to a very low frequency within the signal band.

Vin(s)
c1
sΣ c2

s
Vout(s)

g

−

Figure 2.16: Implementation of NTF zero spreading by a local feedback path
around 2 integrators.

Circuit Implementation

The two basic circuit implementations used for the continuous-time inte-
grator are shown in fig. 2.17. The circuits are displayed differentially, as
it is common practice to implement high accuracy ADCs in a differential
way, increasing immunity to common-mode disturbances. In the active-RC
implementation, the integrator is formed by a feedback loop around an op-
erational amplifier. The feedback configuration with high loop gain results
in good output linearity. The feedback DAC is usually implemented by a
current-steering DAC towards the virtual ground node of the opamp. If
loaded by the input resistors of the following stage, the opamp is imple-
mented as a two-stage amplifier.
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2.4 Σ∆ Modulation in Continuous Time

The other implementation option is the gmC integrator. In this configura-
tion the input voltage is converted into a current, through the transconduc-
tance of a transistor. In most practical implementations, the gm is actually
formed by the reciprocal of a resistor as in fig. 2.17 (b), due to a better con-
trollability. The resulting output voltage appears due to integration of this
current over the capacitor. Due to the simplicity of this open-loop circuit,
power consumption is lower than the active-RC implementation. However,
this has to be traded off to a decreased linearity. For completeness, we state
that other topologies than the one displayed in fig. 2.17 (b) exist, which can
have a better linearity. However, usually the increased linearity also has to
be paid for by increased power consumption.
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Vout−
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Figure 2.17: Circuit implementation of a continuous-time integrator with
current-steering feedback DAC: (a) active-RC implementation
and (b) gmC implementation.

As the linearity is of utmost importance in the first stage, it will almost
always be implemented as an active-RC integrator. The following stages
can use a gmC integrator to reduce power consumption.

2.4.4 Advantages Compared to DT Modulators

Lower Power Consumption

In a DT modulator, the integrator stages are built up with SC circuits, which
require step-response settling at the output of each clock cycle. The gain-
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bandwidth products (GBWs) of the operational amplifiers therefore have
to be in the range of 3fs or more to achieve accurate settling [16, 28]. In a
CT Σ∆ modulator, no settling behaviour occurs as the filter operates in the
continuous-time domain. GBWs of fs, or lower, can suffice for the opamps in
the integrators [21,29]. In addition, the feedback factor around the amplifier
is practically equal to 1 for frequencies in the range of the GBW. In a
SC circuit, the feedback factor is usually smaller than 1, depending on the
implemented integrator coefficient. In general, the lower GBW specification
leads to a smaller power consumption. Vice versa, higher accuracies can be
achieved with CT Σ∆ modulation for the same power budget.

Sampling Inside the Loop

The location of the sampler in front of the quantizer (actually in most
circuits the sampling operation is incorporated within the quantizer), relaxes
its requirements. Errors due to the sampler are shaped in the same way as
the quantization noise within the signal band. In a DT Σ∆ modulator,
the input sampler has to achieve the full system accuracy. Furthermore,
sampling inside the loop also gives rise to the implicit anti-aliasing filter of
a CT Σ∆ modulator.

Input Impedance

For both the active-RC or the gmC implementation, a constant load condi-
tion towards the ADC driver is present. In a DT modulator, the switched
capacitor input stage generates peaked current pulses, drawn from the driver
at the ADC sampling moments. This generally requires drivers with high
slew-rate and excellent harmonic distortion specifications, which makes the
design of this driver more complex.

No Switches

In a CT Σ∆ modulator, no real switches are present. As already stated,
the sampling switch is usually combined with the quantizer in a latch-type
structure, which does not require low-ohmic switches. It makes the CT
modulator more compatible with deep sub-micron technologies than its DT
counterpart. Since no aliasing appears inside the loopfilter, also the lim-
ited switching behaviour of the DAC feedback signals has less chance of
corrupting the modulator output.
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2.4 Σ∆ Modulation in Continuous Time

kT
C Noise

For DT Σ∆ modulators, the inherent switched behaviour of the circuit
introduces back-folding of noise at higher alias band which end up in the
baseband spectrum. This results in the input referred noise power of a
DT modulator, being proportional to kT

C
1

OSR [12, 13, 30], where k is the
Boltzmann constant, T the absolute temperature in Kelvin and C is the
input capacitor of the first integrator stage.

CT Σ∆ modulators do not suffer from the noise back-folding mechanism.
The only sampling operation occurs at the input of the quantizer, where
the implicit anti-alias filter has already suppressed the main noise contrib-
utors. The input referred noise power ends up being merely proportional to
4kTRfb [31]. In both cases, reducing the input noise complies with lowering
the impedance (higher C for DT modulators, lower R for CT modulators),
and hence, increasing the power consumption. The pure baseband opera-
tion of the CT modulator is generally perceived as an advantage compared
to the DT modulator.

2.4.5 Disadvantages Compared to DT Modulators

Of course, CT Σ∆ modulation also shows disadvantages compared to DT
Σ∆ modulation. This is the content of the next chapter.
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Chapter 3

Design Considerations for
Continuous-Time Σ∆ Modulators

3.1 Introduction

In this chapter, we will present an overview of the design challenges in CT
Σ∆ modulators. More specifically, several parasitic effects are described,
which can degrade the performance. Some of them were already present in
DT modulators while others are specifically linked to continuous-time Σ∆
modulation. An overview of the most important effects is given, without
claiming completeness.

In the design of CT Σ∆ modulators, a strong focus lies on extending the
conversion bandwidth into the wide MHz range. Therefore, from this chap-
ter on, we will consider modulators with a low OSR, combined with multibit
quantization. Without loss of generality, we will use the third-order CT Σ∆
modulator architecture shown in fig. 3.1 to illustrate the main effects. The
loopfilter is in a feedforward topology with zero spreading in the signal band.
The loopfilter transfer function equals:

H(s) =
a1c1s

2 + a2c1c2s+ (a1g + a3)c1c2c3
s(s2 + c2c3g)

. (3.1)

The NRZ pulse from equation (2.35) will be used for the feedback DAC,
unless stated otherwise. It is important to notice that this architecture is
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purely instructive and that the effects described here are equally present in
a FB topology.

Vin(s) Vout(z)
c1
sΣ

−
c2
sΣ c3

s
a3

−
g

a2

a1

Σ

HDAC(s)

fs

Figure 3.1: Third-order CT Σ∆ modulator architecture with the loopfilter
in a feedforward topology.

3.2 Loopfilter Variations

3.2.1 Process Variations

From the previous chapter we know that the loopfilter integrators are imple-
mented by opamp-RC circuits or, alternatively, by using gmC integrators.
Either way, the integration coefficients ci are determined by a combina-
tion of a capacitor and a resistor (or the reciprocal of a transconductance).
Since these two physical parameters originate from devices of a different
type, large process variations are expected on the integrator coefficients:

ci,actual = ci,nominal(1 + δIC). (3.2)

Here δIC is a statistical parameter originating from a zero mean Gaussian
distribution. Although the variations can be large between devices orig-
inating from different wafers (possibly processed at different times), the
assumption is made that good correlation exists between devices on the
same die. This explains why the variation parameter δIC has no index i
and integrator coefficients within the same modulator will all shift in the
same direction. Usually, process variations are handled as process corners in
the process design kits (PDKs) of commercial foundries. These corners can
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3.2 Loopfilter Variations

for example be defined as the 6σ values of a Gaussian distribution. As such,
the statistical nature of these variations is treated as worst-case boundaries.
The RC-variations can easily range up to ± 20 % or more in current deep
sub-micron CMOS technologies.
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Figure 3.2: Third order NTF with poles in Butterworth position, optimized
zeros and H∞ = 4. Effect on the NTF for ± 20 % integrator
coefficient variations in the architecture of fig 3.1. (a1 = 1, a2 =
1, a3 = 1, c1 = 1.5482, c2 = 0.9063, c3 = 0.4114, g = 0.0620)

Fig. 3.2 shows the effect of 100 uniformly distributed integrator coefficient
variations within ± 20 % on the NTF for a typical 3rd-order modulator de-
sign with loopfilter from equation (2.45). The nominal NTF is shown in
black, while the gray band indicates the influence of the variations. The
feedforward coefficients are taken 1 to implement the required loopfilter
here. In reality the designer will apply the appropriate output scaling at
each integrator stage, as described in the previous chapter. However, even
with non-unity feedforward coefficients, it can be seen from equation (3.1)
that integrator coefficient variations will have the same impact on the loop-
filter. Although all modulators remain well below their stability boundary,
the noise suppression within the signal band shows a large variation due to
process variations. Using equation (2.22) to determine the maximum sta-
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ble amplitude, the peak SQNR values vary between 75 dB and 82 dB for a
3-bit quantizer modulator with an OSR of 16. To ensure the effective ADC
performance, this leads to quite conservative designs.
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Figure 3.3: Minimum achievable SQNRpeak for the third order NTF in func-

tion of the integrator coefficient variations.

To avoid large performance degradation, coefficient tuning is a well estab-
lished solution to tackle this problem [24, 26, 32–34]. Fig. 3.3 shows the
influence of the relative integrator coefficient variations on the minimum
achievable SQNRpeak for the previous example. A tune accuracy of 5-10 %
usually suffices to limit the performance degradation to 2-3 dB in CT Σ∆
modulators [32, 34]. To tune the coefficients, an extra bit-selectable ca-
pacitor bank is present at each integrator. In most cases a 4-5 bit tuning
range is sufficient. By only changing the capacitor value, the modulator’s
thermal noise performance and linearity are not affected. Two main tun-
ing strategies can be found in literature. In one case a replica integrator
circuit is present, which is used as RC-oscillator (or gmC oscillator in the
case of gmC integrators). The oscillation period is proportional to the RC
time constant and is determined by a digital counter [26, 32, 33]. Based on
this measurement, the capacitors can be tuned for the required RC value.
In another case the capacitor tuning bits are determined by analyzing the
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digital output of the modulator. In [34], the statistical variance of the first-
order difference of the modulator output is used as a tuning criterion. From
the design phase, the expected value for this criterion is known and can be
approximated by changing the capacitor tuning values.

The dependency on the absolute RC time constants distincts the CT Σ∆
modulator from the DT modulator (see equation (3.2)). In a DT modula-
tor, the loopfilter is in the Z-domain and its coefficients are only depending
on capacitor ratios. As such, process variations are highly suppressed due
to the good correlation between the capacitor values within the same mod-
ulator. As a consequence the DT modulator’s frequency response scales
with the applied clock frequency. Hence the modulator can be used in a
broad frequency range operation (as long as the integrator stages still have
a sufficient bandwidth overhead compared to fs). The CT Σ∆ modulator
is clearly only designed for 1 clock frequency.

3.2.2 Mismatch

Mismatch is a second source of variations which can influence the integrator
coefficients. It represents the deviations between the coefficients within the
same modulator, which was not taken into account by the process variations.
However, since good correlation exists between devices on the same die,
the mismatch influence is very small [31]. Furthermore, mismatch can be
controlled by the designer [35–38]. In practice, the mismatch error on the
integrator coefficients can easily be limited to 1 % or less [37]. As such,
mismatch is not considered as a design consideration for CT Σ∆ modulators,
as it will always be overruled by process variations.

Next to the integrator coefficients, the modulator architecture from fig. 3.1
also contains the feedforward coefficients ai and the local feedback coefficient
g. These coefficients are determined by a ratio of resistor or capacitor values
in a typical implementation and hence they are only subjective to mismatch.
In the same philosophy, their variation will also be overruled by the process
variations of the integrator coefficients.

Only one component in a multibit Σ∆ modulator (both DT and CT) is
highly susceptible to mismatch: the DAC. Since the DAC is in the global
feedback path, its non-idealities will not be suppressed by the modulator
loop gain. Therefore, in the signal band, the DAC should achieve the full
ADC accuracy. Since the global ADC accuracy will be in the range of
11-16 bit, the matching between the DAC unit cells should be equally accu-
rate. Matching above the 10-bit level is hard to achieve by only increasing
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physical device area. Therefore, calibration of the DAC unit cells has been
proven as a good practice in high resolution DAC design and can also be
applied for Σ∆ modulators [26, 39, 40]. Next to this, dynamic correction
of the DAC error can also relief the issue. In this case, the oversampling
behaviour of the system is exploited. By selecting the DAC unit element
cells with a certain algorithm, the DAC error can be shaped out of the
low-frequency band-of-interest. These algorithms are identified as dynamic
element matching (DEM) techniques, because they dynamically allocate
the selection signals to the DAC unit cells [41, 42]. A popular algorithm is
data-weighted averaging (DWA) [43, 44], where a rotating pointer tries to
select all unit cells an equal number of times as fast as possible. This way,
on average the matching error will disappear. In the spectral domain, the
error is first-order noise shaped and its contribution within the signal band
is suppressed this way.

In high-bandwidth Σ∆ modulators, due to higher clock frequencies, dy-
namic DAC errors start to have an impact on the accuracy. These are the
errors linked to the non-ideal settling behaviour of the DAC pulse, which
can be caused by charge injection, clock feedthrough or small time delay er-
rors in the DAC. In [45], a clear analysis of the problem has been made. It
was shown that DEM techniques which are optimized to enhance the static
behaviour of the DAC (due to the matching error) can even worsen the
dynamic DAC response. By doubling the number of unit cells in the DAC
and by constraining the use of a specific cell to only one of two subsequent
clock cycles, dynamic DAC errors can also be shaped using the standard
DEM techniques.

3.3 Excess Loop Delay

In the system architecture of fig. 3.1 the quantizer determines the modulator
output bits at the clock sample moment. At the same time, these bits are
directly fed back by the DAC pulse to the input of the modulator. In reality,
the quantizer cannot make an instantaneous decision and some delay will
always be present. Furthermore, the feedback DAC will also exhibit delay
in the production of its output waveform. For multibit quantization it also
includes the delay of DEM techniques, necessary to improve the feedback
DAC performance. These two time delay effects can be modeled by an
extra analog delay element in the feedback path of the modulator. This is
shown in fig. 3.4 were the dashed rectangle contains an analog element with
delay τ . The effect is denoted as excess loop delay (ELD) and has been
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described by several authors as being an extra cause of degradation of the
loop performance [20,46,47].
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Figure 3.4: The modeling of ELD in a third-order CT Σ∆ modulator archi-
tecture.

Fig. 3.5 shows the effect of ELD on the third order maximally flat design
with H∞ = 4. The delay is swept from 0 to a half clock cycle delay.
The nominal NTF is shown in black, the grey bundle indicates the effect
of increasing delay. For the nominal NTF, one can see that the pole-zero
plot contains a pole-zero doublet at the origin. With non-zero delay, the
pole of this doublet shifts away while the zero remains at the origin, and
the effective order of the resulting NTF increases with 1. In the pole-
zero inlet of fig. 3.5, the root locus curve of the poles can be seen. For
small delays, two real poles are present, which move towards each other
to become complex once the delay has crossed a certain threshold. In the
mean time, the original complex poles are shifting towards the unit circle
and for delays in the order of 0.17Ts, the NTF becomes unstable. This can
also be seen from the resonance, which is visible in the NTF plots. Since
we are dealing with an oversampled system, it is clear that the influence of
delays up to half a clock cycle is rather limited within the signal band. As
such, ELD in mutibit CT Σ∆ modulators mainly affects the stability. This
makes sense, because the delay can be seen as an extra phase shift, which
does not change the amplitude behaviour of the loop. Remember that this
will limit the maximum stable input amplitude. Although in-band noise
has not increased, the peak SQNR will non the less decrease.

A simple explanation why the loopfilter order increases due to excess loop
delay can be found in fig. 3.6. The delayed NRZ pulse can be written as
the sum of two pulses, of which the second one is a short pulse of length
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Figure 3.5: Third order NTF with poles in Butterworth position, optimized
zeros and H∞ = 4. Effect of ELD between [0, Ts2 ] on the NTF
with a NRZ feedback DAC.

τ that is delayed by 1 clock cycle. As such, the equivalent DT loopfilter
can be found by taking the impulse-invariant-transformation of the sum of
these two contributors:

Heq(z) = IIT{H(s)HDAC,1(s)e−sτ}+ IIT{H(s)HDAC,2(s)e−sTs}
= Heq,1(z) + z−1Heq,2(z). (3.3)

Both equivalent DT filters Heq,1(z) and Heq,2(z) are still N -th order filters,
but due the clock-cycle delay in the second term, the global DT loopfilter will
become of order N+1. An extra pole in the origin appears for the equivalent
DT loopfilter. This results in the NTF zero at the origin, illustrated in
fig. 3.5.
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0 Ts

τ

τ

HDAC(s) · e−sτ

≡

+

HDAC,1(s) · e−sτ

HDAC,2(s) · e−sTs
τ

Figure 3.6: Illustration of the modulator’s order increase due to ELD.

3.3.1 Synchronization Flip-flop and Coefficient Tuning

In reality, the loop delay is not fixed but depends on the quantizer input
level. Typically, the quantizer delay will be larger for smaller input signals.
Therefore the system behaviour will become signal dependent and spurious
tones will appear in the output spectrum. A generally applied solution to
make the loop delay fixed, is the introduction of a synchronization flip-flop
in front of the feedback DAC [24, 33]. The clock signal for this flip-flop is
usually a delayed version of the system clock by a half or a quarter of the
clock period. This way only the delay of the feedback DAC contributes to
the variable part of the loop delay, which should be made small by design.

Once the delay has been fixed by a synchronization flip-flop, the coefficients
of the modulator can be adjusted to compensate for the delay [20]. The
only problem is that the design lacks one degree of freedom to fully map the
required NTF behaviour. We identify this as a constrained design. This is
clear from equation 3.3, as the number of design coefficients remains N , the
modulator order, but the filter order becomes N + 1. As such, the desired
filter can only be approximated by this strategy.

3.3.2 Alternative Feedback Structures

So far, we have only considered the use of a NRZ feedback DAC. For this
DAC type, the slightest delay already leads to a constrained design. Other
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types of feedback DACs do not suffer from this disadvantage. In general,
the rectangular feedback DAC pulse can be described by (fig. 3.7):

HDAC(s) =
e−αs − e−βs

s
, (3.4)

which reduces to a NRZ pulse for α = 0 and β = Ts. An alternative is the
return-to-zero (RZ) DAC [20], where the feedback value is only held during
the first half of the clock period (α = 0 and β = Ts

2 ). For the RZ DAC,
the delay can be as high as a half clock cycle, before the modulator order
rises. As such, the system can still be fully controlled in the case of ELD.
Since charge is only fed back during half of the clock cycle, the total current
consumption for the RZ DAC doubles, compared to the NRZ DAC.

0 Ts

HDAC(s)

α
β

Figure 3.7: General rectangular feedback DAC pulse.

Another solution to fully control the modulator’s NTF, is the use of a direct
feedback to the input of the quantizer [46]. This is illustrated in fig. 3.8. In
the next clock cycle, the previous output is also sampled by the quantizer
input. When using a NRZ DAC, the new equivalent loopfilter can be written
as:

Heq(z) = IIT{H(s)HDAC(s)e−s
Ts
2 }+ dz−1. (3.5)

The direct feedback path adds an extra degree of freedom and the global
N + 1-th order loopfilter can be fully controlled. In [47], the coefficients
for the new unconstrained modulator design (including the direct feedback
coefficient) are calculated based on a Taylor series expansion of the delay
factor e−sτ .

In a feedback topology, a drawback of the direct feedback path is that
generally a dedicated extra adder circuit is necessary. In the example of
fig. 3.8 an analog adder circuit was already present because of the feedfor-
ward topology. In [33], the direct feedback path is combined with the use
of a combination of NRZ and RZ DAC pulses. The combination of these
DAC pulses implements a digital differentiation of the output, and this way
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the direct feedback path can be applied at the input of the last integrator,
instead of at the input of the quantizer. The need for an extra adder can
be avoided this way.

Vin(s) Vout(z)
c1
sΣ

−
c2
sΣ c3

s
a3

−
g

a2

a1

Σ

HDAC(s)

fs

FF
fs

d

−

Figure 3.8: Third order FF topology with a synchronization flip-flop on the
falling clock edge and a direct feedback path to the quantizer.

3.4 Clock Jitter

Clock jitter is the effect of uncertainty on the actual modulator clock edge.
It originates from non-idealities in the clock generation circuit (e.g. thermal
noise in a phase-locked loop). The resulting clock edges do not exactly
appear at time instants t = nTs, but instead there is an extra statistical
uncertainty on their arrival: t = nTs + ∆Ts(n). In most cases, this extra
clock jitter term is modeled as white noise and follows a zero-mean Gaussian
distribution with variance σ2

∆Ts
[48, 49].

In a CT Σ∆ modulator, the clock impacts the system in two places. First
the quantizer inherently contains a sampling operation. However, as already
stated, the error made here is suppressed by the loop gain and its impact
is considered to be negligible [49]. Second, the clock edge has impact on
the DAC feedback pulse. The errors made in the DAC are not suppressed
by the loop. As such, the impact of clock jitter is most dominant for the
feedback DAC. The situation is depicted in fig. 3.9 for the NRZ pulse and
the RZ pulse.
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Figure 3.9: Impact of clock jitter on the DAC feedback pulse for a NRZ and
a RZ DAC pulse.

The ideal clock edges are indicated in gray, the actual ones in black. We
assume that the variation on both rising and falling edge compared to the
ideal clock edge has the same variance σ2

∆Ts
. The errors made on the multi-

bit feedback signals are indicated by the grey rectangles. For the NRZ pulse,
the error ejitt(n) is proportional to the difference between subsequent mod-
ulator output codes:

e[jitt,NRZ](n) =
[
Vout(n)− Vout(n− 1)

]∆Ts(n)

Ts
. (3.6)

The in-band noise contribution due to jitter can be calculated as [49]:

IBN[jitt,NRZ] =
σ2

∆Ts

T 2
s

2

OSR

∫ fs
2

0

|(1−e−j2πfTs)NTF(ej2πfTs)|2 ∆2

12
df . (3.7)

For the RZ pulse, the error ejitt(n) is only proportional to the current
modulator output code. Also, because the feedback pulse is reset in the
second half of the clock cycle, an error occurs on both rising and falling
edge:

e[jitt,RZ](n) = Vout(n)
∆Ts,rise(n)−∆Ts,fall(n)

Ts
. (3.8)
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Remember that the feedback signal levels in the RZ DAC are also double
as high as in the NRZ pulse. On average, the same energy must be fed back
and the RZ pulse only uses half of the clock period to do so. The in-band
noise contribution due to jitter can be calculated as [18,49]:

IBN[jitt,RZ] = 8
σ2

∆Ts

T 2
s

2

OSR

∫ fs
2

0

|NTF(ej2πfTs)|2 ∆2

12
df . (3.9)

Compared to the NRZ pulse an extra factor of 8 appears, of which a factor
of 2 is associated to the jitter influence on both rising and falling edge and
another factor of 4 originates from the double signal levels.

A third feedback pulse, which we did not mention so far, is the switched
capacitor (SC) feedback pulse [18, 23, 50]. The switched capacitor pulse
appears by connecting a charged capacitor to the first integrator input. This
situation is similar to a DT Σ∆ modulator. The waveforms are depicted in
fig. 3.10. The current pulse can be described by the following equation:

hDAC,SC(t) = ISCe
− t
τ , (3.10)

where τ is the settling time-constant of the charge transfer, correlated to
the first integrator opamp GBW. To integrate the same charge as for the
NRZ pulse in one clock period, the current factor can be calculated as:

ISC =
Ts
τ

1

1− e−Tsτ
≈ Ts

τ
. (3.11)

The approximation is valid due to the requirement that the GBW needs to
exceed the sample frequency by a factor 3 or more and hence Ts � τ .

The in-band noise contribution due to jitter can now be calculated as [18,
23]:

IBN[jitt,SC] = 2

(
Ts
τ

e−
Ts
τ

1− e−Tsτ

)2
σ2

∆Ts

T 2
s

2

OSR

∫ fs
2

0

|NTF(ej2πfTs)|2 ∆2

12
df .

(3.12)

The first term scales the error contribution to a very small value compared
to the rectangular pulses. This can be seen from fig. 3.10, as the errors
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Figure 3.10: Impact of clock jitter on the DAC feedback pulse for a SC DAC
pulse.

occur at the end of the clock period, when the largest portion of the charge
has already been transferred.

To conclude, we can state that independent of the DAC pulse, the in-band
jitter contribution is mainly determined by the NTF out-of-band behaviour.
As such, it is closely related to the stability issue for Σ∆ modulators. Not
only will more aggressive NTFs have a lower maximum stable amplitude,
they will also be more subjective to clock jitter. On the other hand, the
DAC pulse has a significant impact on the in-band jitter noise. For the
rectangular feedback pulses originating from a current steering DAC, the
RZ pulse is more subjective to clock jitter, because of the influence of both
rising and falling edge and because of the higher signal levels compared to
the NRZ pulse. These pulses are generally outperformed by an order of
magnitude by the switched capacitor pulse. This explains why the issue of
clock jitter is mainly allocated to CT Σ∆ modulators. Of course, there exists
a large difference in current profile between the pulses. In a SC DAC, a peak
current has to be delivered by the first stage. This will increase both the
bandwidth and slew rate requirements for this stage (and thus the current
consumption). For a RZ DAC pulse, the current always drops back to zero
in the middle of the clock period. Although slew rate requirements are not
as stringent as for the SC pulse, it still remains a point of attention. For the
NRZ DAC pulse, slew rate requirements are most relaxed, since the current
only jumps between the different output codes of the multibit modulator.
In that case, inter-symbol interference (ISI) is a point of attention, as data
dependent settling of the DAC can create harmonic distortion in the output
signal [51].
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3.5 STF Design

In chapter 2, the STF and its implicit anti-aliasing property were already
briefly covered. In the STF frequency response, an important role is played
by the continuous-time forward filter. This is the continuous filter from
the modulator input to the input of the quantizer, when no feedback DAC
signal is present. In fig. 2.10 this filter happened to coincide with the loop-
filter, which exhibits a first order roll-off at high frequencies due to stability
reasons. This would be the case for a FF modulator topology (see fig. 2.14).
For a FB topology, the forward filter G(s) can be written as:

G(s) =

∏N
i=1 ci
sN

, (3.13)

which exhibits an N -th order roll-off for high frequencies. More generally
the STF is identified by following equation:

STF (s) = G(s)NTF (es). (3.14)

The STF displayed in fig. 3.11, shows the implementation of the example
of chapter 2 in a FB topology. The increased high-frequency suppression is
immediately visible when comparing to fig. 2.13. A beneficial side-effect of
this higher order suppression is that the peaking behaviour just outside the
signal band has disappeared. In some cases, it will still be present depending
on the aggressiveness of the NTF, but at least it is better suppressed than
for the FF topology.

The explicit design of the STF has gained more attention in the scientific
community. Proper design could avoid the need for complex high-order
overload prevention filters. This is especially important for ADCs used
in analog front-ends for wireless/wireline communication, where adjacent
channels and interferers should not compromise the dynamic range used
for the actual received channel. In [25], a combination of explicit lowpass
filtering on the input and highpass filtering on the feedback DAC signal
is used in combination with a FF topology. This way the first order STF
is extended by the roll-off of this extra lowpass input filter. The overall
stability of the NTF is not affected and thus still benefits from the better
power efficiency of the FF topology. In [52], the modulator loop is extended
with highpass filter feed-forward paths from the global input to the inputs
of each integrator section. This way, both for the FF and FB topology, a
flat STF frequency response can be achieved. The STF in multi-stage noise
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Figure 3.11: Signal transfer function for the CT Σ∆ modulator with third
order NTF with poles in Butterworth position, optimized zeros
and H∞ = 4 for the FB topology.

shaping (MASH) CT Σ∆ modulators is investigated in [53]. It is proven
that, contrary to previous belief, also the cascaded stages have an influence
on the STF behaviour.

3.6 Parasitic Poles and Zeros

The loopfilter of a CT Σ∆ modulator is a continuous cascade of integrator
sections. Depending on the actual integrator circuit implementation (single-
stage opamp-RC, two-stage opamp-RC with Miller compensation, gmC,
. . . ), multiple high-frequency parasitic poles and zeros can be present in
the loopfilter. As a consequence of the impulse-invariant-transformation,
this will also result in extra poles and zeros in the NTF possibly degrading
the stability. This is different than for the DT modulator. For switched
capacitor circuits, the interfaces between the integrator stages are cleanly
separated. This simplifies the design of the DT Σ∆ modulator as correct
operation of the individual stages, generally leads to the expected loopfilter
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behaviour. For the CT modulator, stability issues can still occur when
cascading the individually characterized integrator stages.

When using an active-RC integrator, the limited GBW of the opamp in-
troduces a parasitic pole with time-constant τp in the integrator transfer
function:

ITFGBW =
ci
s
· 2πfGBW
s+ 2πfGBW + ci

≈ ci
s
· 1

1 + s
2πfGBW

(3.15)

=
ci
s
· 1

1 + sτp
. (3.16)

Due to the oversampled nature, the integrator coefficients are generally
much smaller than the opamp GBW and the approximation is justified.
Similar to the integrator coefficients, the GBW of an opamp is a combination
of a capacitor and a transconductance. For this reason, the variation on the
time-constant τp will also be in the range of ± 20 %.

The effect of parasitic integrator poles shows resemblance with the effect of
excess loop delay, which also introduces phase shift at higher frequencies.
This was identified in [29]. A method is described to approximate the effect
of higher order dynamics as extra loop delay. As such, the same strategies
as for ELD can be applied to tackle this non-ideality: coefficient tuning and
introduction of extra feedback paths.
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Chapter 4

Robust Design Based on the
Nyquist Criterion

4.1 Introduction

Due to the large correspondence between the loop characterization in both
DT and CT Σ∆ modulators, pioneer designers of CT modulators thankfully
made use of the extensive knowledge on systematic NTF design for DT
modulators [5, 6, 8]. This was a logical step, but it did not always lead to
the expected system performance. In the previous chapter, several parasitic
effects for CT Σ∆ modulators were presented. It should be clear that these
effects will lead to modulator designs which will most certainly deviate from
the intended design, or in some cases can even be unstable.

So far, design strategies for CT Σ∆ modulators have not enjoyed a lot of at-
tention in literature. In [54] a systematic design strategy for Σ∆ modulators
is introduced. It can be used to map to any modulator architecture (FF, FB
or MASH) both for DT and CT modulators. It consists of an algorithmic
optimization mainly on the system level. However, it does not take into
account any of the parasitic effects of CT Σ∆ modulators and, as such it
is mainly useful for unconstrained designs. In [24] a different approach was
followed. Instead of starting off from a desired NTF, the system design was
initiated from the CT modulator architecture. The continuous-time design
parameters were optimized to achieve the required performance. To the
author’s opinion this is definitely the most promising approach. However,
not much details about the optimization procedure were given.
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In this chapter, we present a first new design strategy for CT Σ∆ modu-
lators [55]. The strategy starts off from a nominal continuous-time system
definition, including some of the parasitic effects. The design strategy is
based on the work already performed in [18, 56]. It uses the Nyquist cri-
terion, to install a stability robustness figure of merit. In a second phase,
optimal design parameters for the nominal system can be searched, such
that its stability robustness is maximized. We will show that this new
strategy is particularly interesting for constrained systems.

4.2 Nominal System Definition

To illustrate the design strategy we will use the modulator of fig. 4.1 as a
test vehicle. It is a third order CT Σ∆ modulator with the loopfilter in
a FF topology. Zero spreading is present by the local feedback path with
weight g around the second and third integrator.

Vin(s) Vout(z)I1(s)Σ
−

Σ a3

−
g

a2

a1

Σ

HDAC(s)

fs

z−
1
2

I2(s) I3(s)

e−sτ

Figure 4.1: Third order FF modulator topology to illustrate the design
strategy.

For pure integrator transfer functions Ii(s), the continuous-time loopfilter
can be denoted as:

H(s) =
a1c1(s2 + c2c3g) + a2c1c2s+ a3c1c2c3

s(s2 + c2c3g)
. (4.1)

It is clear that the FF coefficients ai are only involved in the integrator out-
put scaling. This can be performed afterwards without changing the global
loopfilter. It is a tradeoff between the FF coefficients and the integrator
coefficients ci. As such, we will only consider the integrator coefficients as
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design parameters, while the FF coefficients will by systematically taken
1 during the system design. Since we have stressed out to insert some of
the parasitic effects in the nominal system, a fixed parasitic pole at fs is
included in each integrator transfer function:

Ii =
ci
s
· 1

1 + s
2πfs

, τp =
1

2πfs
. (4.2)

Next to this, also a synchronization flip-flop is present which introduces a
fixed delay of a half clock cycle Ts

2 (clocked on the negative clock edge). On
top of this, an extra delay of 10 % of the clock period is added to model the
mean process delay for the feedback DAC:

τ =
Ts
10

. (4.3)

A NRZ DAC pulse is chosen. The quantizer unit has a 3-bit resolution and
the OSR equals 16. Although this system is defined quite in detail, the
principles which will be illustrated hereafter are valid in a broader sense,
also for other topological choices.

The equivalent DT loopfilter for the nominal system can be found by means
of the IIT:

Heq(z) = IIT

{
H(s) · 1− e

−s

s
· e−s 6

10

}
. (4.4)

This DT transfer function will be further used to analyze the stability of
the modulator design. By using the IIT, we have now incorporated the in-
formation of the extra parasitics that we have added in the nominal system.
For example, we already know that by adding ELD, the DT loop order has
increased by 1 and our system has become constrained.

On top of this nominal system, parameter variations will be superimposed.
In this case the integrator coefficients and the parasitic pole time-constants
will still vary with ±20 %. Also, since we consider a converter with a low
OSR and a high signal bandwidth, a high speed feedback DAC is present.
The delay τ can easily vary with ±50 % due to process variations. These
variations will not be considered as a-priori information for the Nyquist-
based design strategy. Instead, we will try to optimize the global stability of
the nominal system (without parameter variations) in function of the design
parameters. Afterwards, the variations will be superimposed to check if the
design still remains stable even in the presence of these variations.
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4.3 Stability Robustness

4.3.1 Discrete-Time Nyquist Criterion

Similar to continuous-time systems, the stability of a closed-loop discrete-
time system can be investigated by means of the open-loop transfer function.
The situation is depicted in fig. 4.2. The zeros of the characteristic equation
1 +Heq(z) should not be located outside of the unit circle for stability. To
evaluate the Nyquist criterion, the Nyquist plot is constructed. This plot
evaluates the loopfilter along a specific contour in the complex plane, namely
the unit circle: z = ej2πfTs , where f goes from − fs2 to fs

2 . The Nyquist
criterion defines the following relation:

Z = P +N , (4.5)

where

• Z is the number of unstable zeros of 1 +Heq(z),

• P is the number of unstable poles of Heq(z),

• and N is the net number of counter clockwise encirclements of the
critical point −1 in the Nyquist plot.

Σ

Heq(z)

−

Figure 4.2: Stability for a discrete-time feedback loop.

An example is displayed in fig. 4.3 for our third order test vehicle. In the
example the NTF zeros are spreaded inside the signal band. Due to this,
the equivalent DT loopfilter Heq(z) contains three resonant poles on the
unit circle, which is displayed in the inlet of the figure. In the proximity of
these resonant poles the Nyquist contour is slightly adjusted. An infinitesi-
mal encirclement around a resonant pole is provided which will result in a
semicircle in the Nyquist plot with infinite radius accompanied by a phase
decrease of 180 ◦. The resonant poles do not account for unstable open loop
poles, as such P = 0 and there should be no net encirclements of −1 for
a stable modulator. In fig. 4.3 this is the case, as the three resonant poles
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create 1 clockwise encirclement with infinite radius which is counteracted by
the counter clockwise encirclement in the figure. Also note that at f = fs

2
the Nyquist plot ends on the real axis. This is in contrast with CT systems
where the Nyquist plot for band-limited systems always ends in the origin
for f →∞.
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Figure 4.3: Nyquist plot example for the equivalent loopfilter of a third order
CT Σ∆ modulator with the architecture of fig. 4.1.

4.3.2 Stability Robustness Figure of Merit

Although we can evaluate stability with the Nyquist criterion, it still de-
fines a binary criterion. A system is either stable or it is unstable. In the
context of the expected parameter variations, we are interested in defin-
ing a figure of merit which indicates the modulator’s stability robustness.
From control theory, we are already familiar with two stability margins,
phase margin (PM) and gain margin (GM) [57]. They are also indicated in
fig. 4.3. PM is defined on the unit circle as the extra phase shift required
to make the system unstable. GM is defined on the real axis, as the gain
increase or decrease required to make the system unstable. Although these
criteria indicate a sound margin for respectively extra phase shift and ex-
tra gain in the loop, parameter variations in a CT Σ∆ modulator translate
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into more complex combinations of both gain and phase variations. If we
look at pure integrator coefficient variations we can see from equation 4.1
that, although the different coefficients will vary in the same direction, the
influence is different for the individual terms of the loopfilter numerator.
As such it cannot be seen as a pure gain scaling and also introduces extra
phase variation. Furthermore, this is only the effect on the analog loopfil-
ter. The IIT which produces the equivalent DT loopfilter also introduces
extra gain scaling and phase shift. It will only approximate the continuous-
time loopfilter properly for low frequencies. For higher frequencies, where
the stability properties of the loop are determined, the approximation will
start to divert. Due to the latter, the variation of ELD and of the parasitic
poles of the integrators also does not evaluate to a pure phase shift in the
discrete-time domain.

The observation of a combined phase and gain shift due to modulator pa-
rameter variations has influenced the introduction of a new stability robust-
ness criterion. The minimum distance from the Nyquist plot to the critical
point −1 is proposed [18, 55], which we will define as Rmin. This distance
is illustrated in fig. 4.3 and can mathematically be identified as:

Rmin = min
f
|1 +Heq(j2πf)|. (4.6)

As stability is determined by the number of encirclements of−1, a dangerous
situation occurs when the Nyquist plot comes close to this critical point.
The parameter variations in a CT Σ∆ modulator will create a family of
Nyquist plots, around the nominal Nyquist plot. This illustrated in fig 4.4.
On the left hand side, the variations are applied to the nominal modulator
of fig. 4.3 with moderate design parameters. We can see the influence for
100 random modulators, with uniform distributed parameter variations. As
described above, 20 % variation is included for the integrator coefficients and
parasitic poles, and 50 % for the delay variation of the feedback DAC. The
nominal system exhibits an Rmin value of 0.257. We can see that all the
resulting modulators remain stable. A clear eye opening still exists around
the critical stability point. This means that the variations could even be
more aggressive, before the modulator starts suffering from instability. On
the right hand side of fig. 4.4, a more aggressive version of the third order test
vehicle architecture is implemented. The nominal modulator only exhibits
an Rmin value of 0.157 in this case. The system is only marginally stable
anymore for the same parameter variations. This can be seen from the fact
that the eye opening in the Nyquist plot is practically closed. Although
all modulators still have their NTF poles within the unit circle, for some
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samples small additional variations will definitely draw them to instability.
From these two examples, it can be seen that a larger value of Rmin for the
nominal modulator leads to increased stability robustness against parameter
variations.
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Figure 4.4: Nyquist plots due to parameter variations for (left) the modula-
tor from fig. 4.3 with moderate design parameters and (right) a
more aggressive implementation with decreased stability robust-
ness. The gray curves are the Nyquist plots due to parameter
variations, the black curve is the nominal Nyquist plot.

4.3.3 Relation to H∞ Design

Surprisingly the value of Rmin can also be linked to H∞, the maximum
out-of-band gain of the NTF, as:

H∞ = max
f
|NTF (ej2πf )| =

[
min
f
|1 +Heq(e

j2πf )|
]−1

=
1

Rmin
. (4.7)

As a consequence, the Rmin value is practically located in the interval [0, 1],
since H∞ is always lower bounded by 1. We know from previous chapters
that higher values for H∞ give rise to better in-band noise suppression but
also to a lower value of the MSA. Now we also see that a higher out-of-band
gain gives rise to lower stability robustness. This is intuitively clear as better
performance must comply with a more aggressive and hence more sensitive
modulator. The design strategy from [5] using H∞ as design parameter, is
therefore also in line with optimizing stability robustness. The difference
to our design strategy is that it proposes a fixed NTF pole constellation to
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attain the same goal. Also it originates from DT Σ∆ modulator design, and
hence can only be used for unconstrained designs.

4.4 Design Strategy

The design strategy that we introduce, is based on the optimization of the
Rmin value for the nominal modulator. We have found that this optimiza-
tion is numerically difficult, especially for higher modulator orders. This
is partially due to the fact that the Rmin value cannot be determined an-
alytically. Gradient-based optimization did not perform well in practical
cases, therefore we have used the genetic optimization algorithm Differen-
tial Evolution [58]. Genetic optimization is based on the biological concept
of survival of the fittest. An initial population of several modulators is used
to start breeding several generations. A crossover step combines individ-
uals from the current generation (parents), and generates new individuals
(children) which contain properties of the both parents. Once in a while,
a mutation step also randomly changes the inherited material to guarantee
more coverage over the parameter space. The next generation is preserved
from the individuals with the best stability robustness (highest Rmin val-
ues). After a fixed number of generations, the optimum is acquired as the
best individual from the final generation.

4.4.1 Rmin Optimization for CT Σ∆ Modulators

A flowchart for the design strategy is displayed in fig. 4.5. The genetic
optimization runs within an iteration loop, where we increase the requested
peak SQNR by 1 dB after each optimization. The optimization itself starts
off from a random population. The size of the population is chosen as twice
the number of design parameters. After each iteration, the initial population
is randomly regenerated, but it is also extended with the optimal modulators
of the 3 previous iterations (with lower peak SQNR values). By choosing
the initial SQNR value low enough, the resulting modulator from the first
iteration is not very aggressive and the genetic optimizer will definitely find
a solution in this case. The actual genetic optimization routine runs for 50
generations. The fitness value F for each individual is the core function to
determine the optimal nominal modulator. The population members are
tested against following criteria for being considered as a valid solution:
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Figure 4.5: Flowchart describing the design strategy based on the Nyquist
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61



Chapter 4 Robust Design Based on the Nyquist Criterion

1. The modulator should be stable (have its NTF poles within the unit
circle).

2. The modulator should have a reasonable MSA ≥ 1√
2

to be practically

usable. As optimization of Rmin will generate a lower NTF out-of-
band gain, this will automatically lead to more favourable MSA values.

3. The modulator should attain a SQNR[peak,dB] > SQNR[peak req,dB].

This is resembled in the fitness value F for each population member:

F =





+∞ unstable or MSA < 1√
2
,

SQNR[peak req,dB]−SQNR[peak,dB]

SQNR[peak req,dB]

SQNR[peak,dB]

SQNR[peak req,dB]
< 1,

−Rmin valid solution.

(4.8)

The Differential Evolution algorithm is a minimization algorithm, therefore
the fittest member is identified by the lowest F value. The first two ac-
ceptance criteria (stability and MSA criterion), are implemented as hard
binary criteria, by assigning an infinite positive value in the case when they
are not met. From experience, we found that it was better to install the
SQNR criterion as a dynamic criterion in the fitness function. If the mod-
ulator attains a too low peak SQNR value, the fitness function is assigned
with a term which equals the relative distance from the required SQNR.
This way, the violation of the SQNR is favourised compared to the hard
binary criteria for stability and MSA. This gives better directions to the
optimizer so that the chance of finding a solution in later cross-overs will be
more likely. The fitness function will result in a small positive number in
this case. Finally, when all acceptance criteria are met, the fitness function
is assigned with the inverse of Rmin. Indeed, it was the purpose all along
to optimize the robustness stability. This will result in a negative value for
the fitness function between -1 and 0. Only this last category of modulators
are valid solutions from the optimization routine. The optimum is selected
as the individual with the highest Rmin value amongst this category.

Due to the iteration loop, optimal modulator parameters will arise for each
increasing value of SQNR[peak req,dB]. The higher the SQNR performance
we require from the modulator, the harder it will become to optimize the
Rmin value. Hence, we expect the optimum Rmin to decrease in function
of the required SQNR. If we require too high SQNR requirements, no valid
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solutions will be found anymore. This will mainly be due the fact that
the MSA criterion cannot be met anymore. The global iteration loop stops
if 3 attempts at a certain SQNR value did not lead to any valid solution
anymore.

4.5 Design Examples

In this section the design strategy will be applied to third order design
examples. To illustrate the advantage of using the Nyquist based Rmin
criterion, also a comparison is made with the optimization of phase margin
as robustness criterion.

4.5.1 Third Order Modulator in Feedforward Topology
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Figure 4.6: Third order CT Σ∆ design example: Rmin value in function of
the peak SQNR for the optimal nominal modulator.

In this example, the nominal modulator follows the architecture of fig. 4.1.
There are 4 design parameters, namely the 3 integrator coefficients ci and
the local feedback coefficient g. The feedback DAC delay parameter τ has
a nominal value of Ts

10 . Also a nominal parasitic pole at fs is present for
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the integrators (according to equation (4.2)). These last two parameters are
not considered as design parameters. The design algorithm of fig. 4.5 was
applied to these boundary conditions, starting off from a required SQNR
of only 54 dB. The optimized Rmin values for the nominal modulator in
function of the required peak SQNR are displayed in fig. 4.6.

As predicted, the Rmin values show a global decreasing trend in function
of the performance. The question now remains which nominal modulator
to choose to be tolerant to the defined parameter variations. Therefore, pa-
rameter variations are applied to evaluate the robustness. For this example
the integrator coefficients and parasitic poles are varied by ± 20% and the
feedback DAC delay τ is varied by ± 50%. We choose to evaluate the nom-
inal modulator which achieves a peak SQNR of 66 dB (Rmin = 0.257) and
the extreme optimization with a peak SQNR of 70 dB (Rmin = 0.157).

0

5

10

15

20

25

30

0.65 0.7 0.75 0.8 0.85 0.9
0

5

10

15

20

25

30

0.65 0.7 0.75 0.8 0.85 0.90.60.550.5

MSA MSA

nu
m
b
er

of
oc
cu
re
n
ce
s

nu
m
b
er

of
oc
cu
re
n
ce
s

Figure 4.7: Histogram for the maximum stable amplitude due to parameter
variations for (left) the nominal modulator with 66 dB perfor-
mance and (right) the more aggressive nominal modulator with
70 dB performance.

A family of 100 randomly perturbated modulators is generated. On top of
that also the corner cases of the variation space are included (8 extra corner
cases in this example). The family of resulting Nyquist plots for these 2
optimal nominal modulators were already displayed in fig. 4.4. There, we
concluded that the more aggressive nominal modulator is on the edge of
instability. This is even more confirmed when we evaluate the maximum
stable amplitude. In fig. 4.7, histograms are shown for the MSA in both
cases. As the nominal modulator achieves a MSA higher than 1√

2
(due to the

design algorithm), we require the MSA to stay above 0.5 for practical use of
the modulator. In the left hand figure, this is the case for all 108 perturbated
modulators. All MSA values remain quite confined around the target value.
On the right hand side, we can see that the spread in the maximum stable
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amplitude has increased. Also, from the 108 resulting modulators, only
98 achieved an MSA above 0.5. Modulators with an MSA below 0.5 have
not been displayed in the histogram. Moreover, even though all resulting
modulators in this case still have their NTF poles within the unit circle,
the resulting MSA values for the most aggressive instances became negative
according to equation 2.22. This means that these modulators have become
practically unusable.

Table 4.1: Optimal parameters for the third order design example using the
Nyquist criterion based Rmin optimization.

c1 c2 c3 g
MSA SQNRpeak

nom min nom min
0.879 0.198 0.443 0.308 0.802 0.65 66 dB 57.4 dB

The 66 dB optimization has led to the highest performance nominal modu-
lator which, subjective to parameter variations, was still practically usable
(stable and MSA values above 0.5). The design parameters for this opti-
mization are displayed in table 4.1.
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Figure 4.8: Histogram for the peak SQNR due to parameter variations for
the nominal third order modulator with 66 dB performance.
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Of course, the variations will also influence the peak SQNR performance.
In fig. 4.8, a histogram for the peak SQNR is shown. We can see that the
performance can drop as low as 57.4 dB. The nominal modulator almost has
the best performance. This is because for larger integrator coefficients the
in-band quantization noise will decrease, but at the same time the MSA will
also decrease due to a more aggressive modulator.

Fig. 4.9 shows the effect of the parameter variations on the resulting optimal
nominal NTF. The edge of the signal band for an OSR of 16, is indicated by
the dashed vertical line. The variation in the SQNR can be assigned to the
large spread in NTF value there. Also, at higher frequencies the variations
will increase the out-of-band gain, which will result in a lower MSA value
for those specific modulators.
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Figure 4.9: Third order design example NTFs due to parameter variations.
The nominal modulator is plotted in black.

Extensive time-domain simulations were carried out to obtain the SQNRpeak

for a significant number of perturbated systems. Also, all the corner points
of the variation space were added (where all parameters have an extreme
variation). For this purpose a Simulink model of the modulator was con-
structed. A single tone of frequency fs

4OSR is applied. Fig. 4.10 shows the
result of a the specific modulator where δIC = −20 %; δτ = −50 % and
δτp = −20 %. This modulator variation gives rise to a MSA of 0.85 and
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the minimum peak SQNR of 57.4 dB. The left hand figure shows the output
spectrum of the modulator when an input amplitude equal to the MSA is
applied. The black curve shows the simulated output spectrum, while the
gray curve indicates the design strategy prediction. Good correlation was
acquired. The resulting SQNR from the simulation is 57.6 dB. On the right
hand side, a dynamic range plot for the specific modulator is displayed.
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Figure 4.10: Time-domain simulation results for the optimal third order
modulator with δIC = −20 %; δτ = −50 % and δτp = −20 %:
(left) the output spectrum together with the system model pre-
diction and (right) the dynamic range of this specific modula-
tor.

4.5.2 Comparison to Phase Margin Design

To support the statement of using the Rmin criterion, we have repeated this
design example under identical conditions, but now using the phase margin
as optimization criterion. As expected, also the phase margin will drop in
function of the required peak SQNR. To make a fair comparison, we have
also selected the resulting modulator with a nominal SQNRpeak of 66 dB.
This modulator achieves a phase margin of 25 ◦in contrast to the previous
optimization example where the phase margin was only 21 ◦. The resulting
Nyquist plots due to the variations are shown in fig. 4.11. We can see that
due to the phase margin optimization, the nominal Nyquist plot is already
very close to the critical point -1 on the real axis. As a consequence, some
of the perturbated modulators will have their NTF poles outside of the unit
circle. From the 108 samples, only 91 were stable and/or had an MSA which
exceeds 0.5.

When we calculate theRmin value for the nominal modulator a value of 0.05
appears. Compared to the previous example where the nominal modulator
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Figure 4.11: Nyquist plots due to parameter variations for the third order
modulator using the phase margin as the optimization criterion
for the design strategy. The gray curves are the Nyquist plots
due to parameter variations, the black curve is the nominal
Nyquist plot.

achieves a Rmin value of 0.257, we can conclude that the Rmin criterion
is clearly a better criterion for stability robustness of CT Σ∆ modulators
than the phase margin.

4.5.3 Third Order Modulator in Feedforward Topology with
Direct Feedback Path

From chapter 3, we know that a possible solution to avoid the constraintness
of the system is the introduction of an extra direct feedback path [46]. This
feedback path is situated directly at the input of the quantizer as illustrated
in fig. 4.12. An extra design parameter d is now present. If we repeat the
Nyquist based Rmin optimization with the same boundary conditions, the
optimal nominal modulator achieves an Rmin value of 0.41. Table 4.2 shows
the resulting design parameters.
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Figure 4.12: Third order FF modulator topology with extra direct feedback
path.

Table 4.2: Optimal parameters for the third order design example with
direct feedback path using the Nyquist criterion based Rmin
optimization.

c1 c2 c3 g d
MSA SQNRpeak

nom min nom min
2.122 0.503 0.43 0.113 1.1 0.78 0.61 81 dB 72.7 dB

We choose the optimization with a nominal SQNRpeak of 81 dB as final
solution. This optimization still leads to modulators with an MSA above
0.5. The histogram for both the MSA and the SQNRpeak for a family of 108
modulators subjected to variations, is shown in fig. 4.13. Due to the extra
design parameter d, which avoids a constrained design, we can see that
the robustness of the nominal modulator is already higher than the first
example. It is clear that better performance can be achieved. A minimum
SQNR of 72.7 dB can be found. This is a significant increase compared
to the minimum peak SQNR of 57.4 dB without the extra feedback path.
As such, it is worthwhile installing this extra direct feedback path. In
contrast to an increase in modulator order to boost the performance, where
an extra integrator coefficient is introduced, the feedback path does not
include an extra inaccuracy in the system. The parameter is only subjective
to mismatch, which we identified as a negligible effect for the loopfilter. This
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will lead to a better controllability of the modulator, in the context of the
parasitic effects experienced by CT Σ∆ modulators.
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Figure 4.13: Histograms for the nominal modulator with 81 dB performance
subjected to parameter variations (left) histogram for the max-
imum stable amplitude and (right) histogram for the peak
SQNR.

Fig. 4.14 shows the effect of the parameter variations on the nominal NTF.
Here we can also clearly see the impact of the extra design parameter when
comparing to fig. 4.9. The NTF suppression in the signal band is much
better than without the direct feedback path. The out-of-band gain of
approximately 20 dB is comparable to the first example. As the MSA is
mainly determined by this out-of-band behaviour, these values are quite
similar between table 4.1 and table 4.2.

Again, extensive time-domain simulations were carried out to obtain the
SQNRpeak for a significant number of perturbated systems. Fig. 4.15 shows
the result for the specific modulator which attains the lowest peak SQNR.
The variations for this modulator are δIC = −20 %; δτ = −50 % and δτp =
+20 %. This modulator variation gives rise to an MSA of 0.77. The left
hand figure shows the output spectrum of the modulator when an input
amplitude equal to the MSA is applied. The resulting SQNR from the
simulation is 73.1 dB, which is even slightly better than the design strategy
prediction of 72.7 dB. On the right hand side, a dynamic range plot for the
specific modulator is displayed.
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specific modulator.
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Chapter 5

The S-figure

5.1 Introduction

In the previous chapter a first design strategy was introduced based on
the Nyquist criterion. This strategy allows to design CT Σ∆ modulators,
robust to any kind of parameter variations. Furthermore, it can also deal
with constrained modulators, which lack the freedom of implementing any
NTF possible. The robustness is only optimized for the nominal modulator
(without any parameter variations). This means that the resulting optimal
design has to be subjected to the variations experienced by the modulator
afterwards. In most cases however, the variations can be well defined a-
priori. For example, in the previous chapter we have installed a maximum
relative variation for the integrator coefficients, the parasitic poles of the
integrators and the feedback DAC delay. It should be clear that by utilizing
this information, a more targeted modulator design could be achieved.

In this chapter a new design strategy is introduced which does take into
account the a-priori knowledge of the variation spread. We will introduce
a new figure of merit, the S-figure [4]. It expresses the relative degree in
which a specific modulator is able to meet all the performance requirements,
even in the presence of predefined parameter variations. This way we can
optimize the designed modulator to achieve a guaranteed performance over
the whole parameter variation range.
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5.2 Design Framework

The design framework that we will use for this new design strategy is very
similar to the one from the previous chapter. The main difference lies in the
fact that the parameter variation spread is a key part of the framework. It
consists of three elements: a nominal system model, normalized variations
on some of the system parameters and finally the performance requirements.
These three elements are combined into the S-figure.

5.2.1 Nominal System Definition

As a test vehicle, we will reuse the modulator architecture from section 4.2.
Similar to the Nyquist criterion based design strategy, the principles ex-
plained further on are valid in a broader sense, also for other topological
choices.

5.2.2 Normalization of the Parameter Variations

We will focus on the variation of the integrator coefficients to elaborate on
the definition for the normalized variations. Formally we can write for the
integrator coefficients:

− δIC,max ≤ δIC ≤ δIC,max, (5.1)

where δIC,max equals 20 %. An important step is the introduction of a
normalized version of this variation:

∆IC =
δIC

δIC,max
, (5.2)

such that,

− 1 ≤ ∆IC ≤ 1. (5.3)

The normalized parameter range will further on be correlated to the value
of the S-figure.
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5.2.3 Performance Requirements

The performance requirements can initially also be taken over from the
previous chapter. Of course, a hard requirement remains stability of the re-
sulting modulator (all its NTF poles should be within the unit circle). Next
to that, also the requirement for a maximum stable amplitude larger than
1√
2

seemed to make sense. It prevents the fact that theoretically stable

modulators, which are in fact practically unstable due to quantizer over-
loading, are retained. A minimum peak SQNR is also required. The main
difference in the SQNR requirement is that not only the nominal modulator
should achieve this requirement, but also the whole family of modulators
which arise from the parameter variations.

Next to this, performance requirements are considered in a broader sense
here. In fact, no limitations are posed, and all possible performance require-
ments can be combined into the S-figure. Later on, we will show examples
where clock jitter and the behaviour of the STF are also part of the design.
This is again a difference to the Nyquist based design strategy, where only
robustness in terms of the Nyquist plot was taken into account.

5.3 The S-figure

In this section we introduce the S-figure, a new figure-of-merit to quantify
the robustness of a CT Σ∆ modulator. We will start off by choosing the sys-
tem parameters from table 4.1. The nominal peak SQNR equals 66 dB and
we propose a guaranteed peak SQNR of 60 dB for this design. In this exam-
ple, we will only subject the modulator to integrator coefficient variations.
It is instructive to represent this graphically, by drawing the performance
boundaries on the ∆IC axis (fig. 5.1). The valid range for the integrator co-
efficients is in the ∆IC interval [−1, 1]. The performance requirements for
stability, maximum stable amplitude and guaranteed peak SQNR, which
were posed in the previous chapter, are represented by their boundaries as
dashed vertical lines in the figure. The regions in gray, indicate the violation
of 1 or more design requirements.

To the left hand side, when the integrator coefficients become smaller, we
expect the peak SQNR to drop. In this case, when the relative variation of
the integrator coefficients becomes −0.79, the peak SQNR of 60 dB cannot
be guaranteed anymore. To the right hand side, the integrator coefficients
rise, and the NTF becomes more aggressive. We expect both the stability
and the MSA boundary to eventually be broken. The MSA requirement is
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Figure 5.1: Graphical representation of the performance boundaries on the
∆IC axis for a 3rd-order Σ∆ modulator design with only one
parameter variation.

only broken outside the valid parameter range, when ∆IC = 1.011. For the
NTF poles pi to cross the unit circle, even higher variations can be tolerated
(∆IC = 2.4). As such, this specific design example will remain stable over
integrator coefficient variations of ±20 %. However, it is not possible to
meet all the requirements over the entire variation range. We define the
S-figure as the absolute value of the minimum normalized variation, that
will cause one of the performance boundaries to be crossed. In this case, the
S-figure is connected to breaking the SQNR requirement and equals 0.79.

A different parameter selection for the system is given by: c1 = 0.8836,
c2 = 0.1724, c3 = 0.4723, g = 0.4864. These parameters were obtained by
performing an optimization on the S-figure. The nominal NTF reaches a
peak SQNR of only 61.6 dB here, which is less than in the previous case.
Fig. 5.2 again shows the graphical representation of the performance bound-
aries. We get a completely different image here. The distance to breaking
the stability boundary is not shown in the figure anymore, as this only
happens for ∆IC = 2.8. Both the distances to the peak SQNR and MSA
boundary are approximately equal. This means that the design parame-
ter selection is quite optimal, as the nominal system is perfectly centered
between the two most stringent performance boundaries. The resulting S-
figure equals 1.05. The modulator is robust against the full 20 % variation
of the integrator coefficients and even has an extra margin for 5 % larger
variations.

Generally, striving for an S-figure equal to 1 should always be the goal.
Larger S-figures are non-optimal in a sense that the modulator could achieve
more stringent performance requirements (e.g. a higher guaranteed peak
SQNR). There is still margin to sustain even larger parameter variations.
This is the case for the example here. However the extra performance
increase here is expected to be negligible as S is reasonably close to 1. On
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Figure 5.2: Graphical representation of the performance boundaries on the
∆IC axis for a 3rd-order Σ∆ modulator design with only one
parameter variation and optimized nominal design parameter
selection.

the other hand, an S-figure below 1 is definitely out of the question, as
the modulator is not able to meet all requirements over the full variation
range.

5.3.1 The S-figure in Multiple Dimensions

So far, only one parameter variation was present, which allowed an easy
linear interpretation of the S-figure. Here we will extend the S-figure to
multiple dimensions. A similar graphical representation as in the previous
section is shown in fig. 5.3 for the case where there are two parameter varia-
tions ∆1 and ∆2 and three performance requirements. In the origin we have
the nominal system, which should meet the performance specifications by
definition. The performance boundaries are again indicated by the dashed
lines. Consider now the vector ~v1 which makes an angle θ1 with the ∆1 axis.
If we increase the norm of this vector, we will cross design requirement 2 at
the point (∆1, ~v1

;∆2, ~v1
). We identify the maximum absolute value of these

two coordinates as the “local S-figure” for the direction θ1, in this case:

Slocal,θ1 = max
[
|∆1, ~v1

|; |∆2, ~v1
|
]

= |∆2, ~v1
|. (5.4)

We can repeat this procedure for all other angles. From the previous chap-
ter, we already know that especially the corner points of the variation space
are interesting to analyze. For these angles both coordinates change equally
when increasing the vector norm in that direction. This is for example the
case for the direction θ2. Design requirement 3 is crossed in this direction
and the local S-figure equals:
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Figure 5.3: Graphical representation of the S-figure in a 2D parameter vari-
ation situation.

Slocal,θ2 = |∆1, ~v2
| = |∆2, ~v2

|. (5.5)

The S-figure is defined as the minimum of all these “local S-figures”:

S = min
∀i

[
Slocal,θi

]
. (5.6)

In two dimensions, the S-figure equals half of the side of the largest inner
square, which can be drawn around the origin in the variation plane with-
out breaking the performance requirements. If the normalized parameter
variations remain smaller than S the system will definitely satisfy all the
specifications. The concept can be extended to 3 or more dimensions where
the inner square then becomes a cube or a hypercube.
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5.3.2 Calculating the S-figure

The S-figure is one of the variants of the “worst case distance” methodol-
ogy described in [59–61]. Obviously, determining this S-figure is non-trivial.
There are many possible ways to calculate it. Summarizing, there are two
important aspects. First, we need an efficient algorithm to calculate the
“local S-figure” for a given direction. By investigating only one direction,
this has become a scalar problem, which can always be solved as follows: we
start from the origin and we gradually increase the vector norm until the
corresponding system violates the design requirements. In our implemen-
tation we first made a rough sweep, which determines an upper and lower
boundary for Slocal,θi . Then we use a bisectional (binary search) algorithm
to obtain a more accurate result. Second, we need to scan all the possible
directions, to find the worst-case “local S-figure”. Obviously, this proce-
dure would be numerically intensive. We therefore make the assumption
that this worst-case point always lies in the direction of one of the corner
points of the search space. E.g. in the 2D example of fig. 5.3 the location
of the S-figure coincides with the direction of vector ~v2 at an angle of 135 ◦.
Increasing ∆2 and decreasing ∆1 both deteriorate requirement specification
3. Empirically, we have found that this assumption is valid for each of the
examples considered in this chapter. This extremely simplifies the problem
and provides a fast and effective way of determining the robustness of a CT
Σ∆ modulator. In fact, this is only possible by choosing the square variant
from [61] (using the `∞ norm). This way, we really consider the worst case
parameter variation combinations, without making any assumptions about
the statistics between these variations. For our 2D example it means that
we only have to execute the algorithm for finding the “local S-figure” 4
times. The resulting S is selected as the minimum of these 4 values.

5.4 Design Strategy

From the discussion above, it is clear that this S-figure is an unambiguous
figure of merit to assess the robustness of a CT Σ∆ modulator against fore-
seeable imperfections, and hence it can be used as an optimization target.
Finding the most robust modulator now boils down to maximization of the
S-figure in function of the design parameters. We can reuse most of the
algorithm described in the previous chapter. It was slightly adapted for
this optimization, which is displayed in fig. 5.4. Again, we use the genetic
optimization algorithm Differential Evolution [58].
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Figure 5.4: Flowchart describing the design strategy based on the S-figure.
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For now we will only consider the three requirements that we have claimed
so far in this dissertation. The resulting modulator should be stable, have
a MSA larger than 1√

2
and have a peak SQNR requirement. Later on, we

will see in the design examples how to incorporate other requirements in
the design strategy using the S-figure.

The global iteration loop, where we increase the requested peak SQNR by
1 dB after each optimization, is still present. The global objective is to end
up with the modulator design which has an S-figure as close as possible
to, but larger than 1. The fitness value F for each population member is
defined as:

F =





+∞ unstable or MSA < 1√
2
,

SQNR[peak req,dB]−SQNR[peak,dB]

SQNR[peak req,dB]

SQNR[peak,dB]

SQNR[peak req,dB]
< 1,

−S valid solution.

(5.7)

Again the dynamic criterion for the peak SQNR is contained within the
fitness value. For valid solutions, maximizing the S-figure is now the goal.
It is important to notice that the validity of the solutions is not only checked
for the nominal system, but for all the corner points where the S-figure is
evaluated. As such, all performance requirements are guaranteed over the
whole parameter variation space.

5.5 Design Examples

In this section we will provide the results of the S-figure design strategy,
applied to several examples of different modulator architectures. We will
determine the optimal parameters for only third order CT Σ∆ modulators.
As a reference, the optimal design parameters for both second and third
order modulators are bundled in appendix A. For all design examples we
fix the OSR at 16, the number of quantizer bits at 3 and we introduce
parasitic poles at fs in the integrator transfer functions, according to equa-
tion (3.15). Besides the variation of the integrator coefficients, also the
normalized variations for the feedback DAC delay and the parasitic pole
location are introduced (similar to the previous chapter):
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∆τ =
δτ

δτ,max
(5.8)

∆τp =
δτp

δτp,max
, (5.9)

where δτ,max equals 50 % and δτp,max equals 20 % just like the integrator
coefficient variation.

5.5.1 Third Order Modulator in Feedforward Topology

In this design example we repeat the optimization that we also performed
in section 4.5.1, but now using the design strategy based on the S-figure.
The modulator is mapped on the architecture of fig. 4.1. The usual per-
formance requirements are installed: stability and a guaranteed maximum
stable amplitude of a least 1√

2
. The optimization will increase the SQNR

for as long as the S-figure remains just above 1. A guaranteed peak SQNR
performance of 59 dB is found. The resulting optimal design parameters are
displayed in table 5.1.
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Figure 5.5: Histograms for the modulator with 59 dB guaranteed perfor-
mance subjected to parameter variations (left) histogram for
the maximum stable amplitude and (right) histogram for the
peak SQNR.

The histogram for both the MSA and the SQNRpeak for a family of 108
modulators subjected to variations, is shown in fig. 5.5. We can indeed
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5.5 Design Examples

Table 5.1: Optimal parameters for the third order design example using the
S-figure optimization.

c1 c2 c3 g
MSA SQNRpeak

nom min nom min
0.828 0.181 0.402 0.536 0.82 0.71 60.7 dB 59 dB

verify that all modulators attain a guaranteed performance of at least 59 dB.
The MSA is also larger than 1√

2
in all cases.

Fig. 5.6 shows the effect of the parameter variations on the NTF. We can
see that the nominal NTF is quite similar to the one from fig. 4.9. Subjected
to variations however, the out-of-band properties are more beneficial here.
Also, the zero spreading coefficient is at a higher frequency. This results in
a variation for the SQNR of only a few dB.
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Figure 5.6: Third order design example NTFs due to parameter variations.
The nominal modulator is plotted in black.

Extensive time-domain simulations were carried out to obtain the SQNRpeak

for a significant number of perturbated systems. Fig. 5.7 shows the result
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for the specific modulator which attains the minimum peak SQNR of 59 dB.
The variations for this modulator are δIC = +20 %; δτ = +50 % and δτp =
+20 %. These variations gives rise to an MSA of 0.71. The left hand figure
shows the output spectrum of the modulator, when an input amplitude
equal to the MSA is applied. The black curve shows the simulated output
spectrum while the gray curve indicates the design strategy prediction. The
resulting SQNR from the simulation is 58.97 dB, which is in good agreement
with the design strategy prediction. On the right hand side, a dynamic range
plot for the modulator is displayed.
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Figure 5.7: Time-domain simulation results for the third order modulator
with δIC = +20 %; δτ = +50 % and δτp = +20 %: (left) the
output spectrum together with the system model prediction and
(right) the dynamic range of this specific modulator.

5.5.2 Third Order Modulator in Feedforward Topology with
Direct Feedback Path

Similar to the previous chapter, we extend the system with the direct feed-
back path to increase the performance. The modulator is now mapped on
the architecture of fig. 4.12. The resulting optimal design parameters using
the S-figure design strategy are displayed in table 5.2.

Fig. 5.8 shows the effect of the parameter variations on the NTF. Again
the nominal modulator NTF is quite similar to the one from fig. 4.14. The
main difference lies again in the out-of-band behaviour due to parameter
variations, which is much lower here. Again, the zero spreading coefficient
is optimized in such a way that the SQNR variation is limited to only a few
dB.
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Figure 5.8: Third order design example with direct feedback path NTFs due
to parameter variations. The nominal modulator is plotted in
black.

Table 5.2: Optimal parameters for the third order design example with di-
rect feedback path using the S-figure optimization.

c1 c2 c3 g d
MSA SQNRpeak

nom min nom min
2.114 0.414 0.47 0.194 1.132 0.78 0.71 76 dB 74.1 dB

Fig. 5.9 shows the time-domain simulation result for the specific modulator
which attains the minimum peak SQNR of 74.1 dB. The variations for this
modulator are δIC = −20 %; δτ = −50 % and δτp = −20 %. This gives rise
to an MSA of 0.74. The left hand figure shows the output spectrum of the
modulator when an input amplitude equal to the MSA is applied. The black
curve shows the simulated output spectrum while the gray curve indicates
the design strategy prediction. The resulting SQNR from the simulation
is 73.6 dB, which is in good agreement with the design strategy prediction.
On the right hand side, a dynamic range plot for the specific modulator is
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displayed.
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Figure 5.9: Time-domain simulation results for the third order modulator
with direct feedback path with δIC = −20 %; δτ = −50 % and
δτp = −20 %: (left) the output spectrum together with the sys-
tem model prediction and (right) the dynamic range of this spe-
cific modulator.

5.5.3 Third Order FF Modulator with Direct Feedback
Path and Coefficient Trimming

In chapter 3, we saw that a general way to tackle the large integrator co-
efficient variations is to introduce trimmable devices on chip [26, 33]. We
propose a new variation spread of 5 % for the integrator coefficients, which
should be easily achievable with on-chip trim circuitry:

−0.05 ≤ δIC ≤ 0.05. (5.10)

Table 5.3: Optimal parameters for the third order design example with di-
rect feedback path and coefficient trimming using the S-figure
optimization.

c1 c2 c3 g d
MSA SQNRpeak

nom min nom min
2.491 0.48 0.56 0.102 1.19 0.75 0.71 83.3 dB 82.2 dB
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The same optimization as for the previous case was performed and the
resulting optimal modulator parameters are shown in table 5.3. It is clear
that the impact of trimming (even with this modest accuracy) is very large.
The guaranteed peak SQNR has increased to 82 dB. This can also be seen
in fig. 5.10, where the effect of the parameter variations on the NTF is
shown.
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Figure 5.10: Third order design example with direct feedback path and inte-
grator coefficient trimming: NTFs due to parameter variations.
The nominal modulator is plotted in black.

5.5.4 Adding Robustness to Clock Jitter

The design strategy using the S-figure can easily be extended to also take
into account the effect of clock jitter. For this, we just have to modify
the calculation of the peak SQNR, to include the effect of in-band jitter
noise according to equation (3.7). Suppose now that we want to design
a modulator that is tolerant to a very high level of wideband clock jitter
with an effective value σ∆Ts up to 1% of the clock period Ts. We keep
the trimming condition of the previous example. The optimal modulator
parameters are summarized in table 5.4.
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Figure 5.11: Third order design example with direct feedback path and inte-
grator coefficient trimming: NTFs due to parameter variations.
This modulator is robust against wideband clock jitter. The
nominal modulator is plotted in black.

Table 5.4: Optimal parameters for the third order design example with di-
rect feedback path and coefficient trimming using the S-figure
optimization, which is robust against wideband clock jitter.

c1 c2 c3 g d
MSA SQNRpeak

nom min nom min
1.074 0.275 0.351 0.29 0.424 0.85 0.83 62 dB 61.7 dB

It is clear that a lot of performance is lost compared to the case without
wideband jitter. The guaranteed peak SQNR merely reaches a value of
61.7 dB anymore. The resulting NTFs due to the parameter variations are
plotted in fig. 5.11. A low out-of-band gain is maintained over all variations
(particularly near fs

2 ). This is consistent with [49], where it was shown that
this is indeed a requirement for low clock jitter sensitivity.
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5.5.5 Controlling the STF
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Figure 5.12: Third-order CT Σ∆ modulator architecture with the loopfilter
in a hybrid feedforward/feedback topology.

The previous examples all used the FF topology, which is more sensitive to
out-of-band peaking of the STF. The control of the peaking behaviour to an
acceptable level is important, as it allows relaxation of the ADC pre-filter.
In this example we propose the modulator topology of fig. 5.12, which is
also used in [33]. This hybrid feedforward/feedback topology compromises
a tradeoff between second-order anti-aliasing behaviour and reduced out-of-
band peaking by introducing an extra feedback path. Again, we choose the
FF/FB coefficients equal to 1 and thus perform a loopfilter optimization.
The parameter variations assume 5 % variation for the integrator coefficients
due to trimming. The performance requirements for stability, MSA and
SQNR are extended with an extra specification to limit the out-of-band
STF peak to 2 dB:

max
f
|STF (j2πf)| < 2 dB. (5.11)

For comparison, the previous 3 examples gave a worst-case STF out-of-band
peak of 18.3, 22.6, 22.4 and 15.1 dB respectively. The resulting optimal
modulator parameters for this optimization are given in table 5.5. Clearly,
controlling the STF has to be paid for with a performance penalty. The
guaranteed peak SQNR was found to be 67 dB.
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Figure 5.13: STFs with parameter variation influence for the optimal hybrid
3rd-order with controlled STF behaviour.

Table 5.5: Optimal parameters for the third order design example with di-
rect feedback path and coefficient trimming using the S-figure
optimization. This modulator has an STF peaking below 2 dB.

c1 c2 c3 g d
MSA SQNRpeak

nom min nom min
0.373 0.113 2.075 0.098 1.13 0.78 0.75 68.3 dB 67 dB

Fig. 5.13 shows the resulting STFs under influence of parameter variations.
The STF has unity gain in the signal band. For higher frequencies the
anti-aliasing performance has a second order profile dropping at 40 dB per
decade. The out-of-band peaking is indeed limited to 2 dB as required.
This is also confirmed in a time-domain simulation. For the worst-case
STF peaking modulator (δIC = +20 %; δτ = −50 % and δτp = +20 %), a
simulation is performed with a multitone signal over the whole Nyquist band
to identify the STF. This is shown in fig. 5.14. The gray curve indicates the
STF predicted by the design strategy. We can see good correlation between
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the single-tone peaks and the theoretical envelope.
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Figure 5.14: Time-domain simulation results for STF of the optimal hybrid
3rd-order (δIC = +20 %; δτ = −50 % and δτp = +20 %). The
black curve shows the simulation multitone output. The gray
curve is the system model prediction.

5.6 Comparison to Robust Design based on the
Nyquist Criterion

If we compare the results of the S-figure design strategy with the corre-
sponding results from the previous chapter, we can see great resemblance
in the guaranteed values for both the MSA and the peak SQNR. Indeed,
comparing the guaranteed MSA and peak SQNR of table 4.1 with table 5.1,
shows that the results from the Nyquist based design strategy are only
slightly lower than when using the S-figure. The same accounts when com-
paring table 4.2 with table 5.2. On one hand this is a good sign, as it
indicates that both design strategies lead to sensible results. On the other
hand we can also see from the tables that the S-figure design strategy not
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only performs systematically better, but that mainly the variation on the
results is more confined. The peak SQNR variation is only a few dB here,
while for the Nyquist-based design strategy variations of nearly 10 dB can
be identified. Due to a better boundary condition setting, it is clear that
the optimization for the S-figure can find a superior solution. The Nyquist
criterion based design strategy can be seen as a more conservative approach,
when boundary conditions cannot be narrowly defined. On top of that, the
Nyquist based design strategy focuses on optimizing only the stability ro-
bustness, defined in the Nyquist plot by the Rmin criterion. The S-figure
design strategy can be used for any kind of performance criterion, which
can be included in the framework.
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Chapter 6

Time-Encoding

6.1 Introduction

In the previous chapters, high bandwidth, high resolution continuous-time
Σ∆ converters were obtained by combining a low oversampling ratio with
multibit quantization. In today’s deep sub-micron CMOS technology with
reduced voltage headroom, two components in the conventional CT Σ∆
modulator tend to become more difficult to design. The first difficulty is
formed by the multibit DAC in the feedback path. Its linearity must be
equal to the full modulator’s resolution. Therefore, calibration or dynamic
element matching techniques are required [41, 43, 44]. A second difficulty
arises in the multibit flash quantizer, where the number of comparators
rises exponentially with the number of quantizer bits. In deep sub-micron
technologies the decrease in supply voltage tends to be more aggressive than
the increase of matching properties of MOS devices. As such, the area of
the devices at the input stage of the comparators has to be increased to
suffice the input-referred offset specification of the quantizer unit. This
generally leads to non-minimum length devices and thus a limitation of the
operation speed due to the parasitic input capacitance. A solution for this
problem can be the introduction of offset calibration techniques [62, 63].
In [64], an offset averaging technique is introduced by spreading the offset
of the individual comparators over several decision levels. It is shown that
this lowers the global input-referred offset. Besides the flash topology, also
other topologies have been presented as quantizer for a Σ∆ modulator such
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as the use of 2-step quantization [65,66], the use of a tracking ADC [67,68]
or a low-resolution successive approximation (SAR) ADC [69].

In this chapter, time-encoding is employed as a promising technique to avoid
the main issues from multibit quantization, while preserving multibit per-
formance. Essentially, the multibit quantization is replaced by some kind
of quantization in time. As such, this solution is considered to be very well
suited for today’s ultra deep sub-micron technology which should be able
to provide ample time resolution due to their multi-GHz switching ability.
In the first section we focus on VCO-based quantization. Next, pulsewidth
modulation (PWM) is introduced as a means of time-encoding in the feed-
back DAC. Time-encoding can also be combined in both the quantizer and
the feedback DAC, for example in self-oscillating Σ∆ modulators. This is
the subject of the rest of the chapter. Special attention is given to syn-
chronous self-oscillating modulators based on a delay element in the feed-
back path. The chapter ends with a conspectus on the jitter performance
of self-oscillating Σ∆ modulators.

6.2 VCO-Based Quantization

6.2.1 Principle of Operation

The first ideas for using a voltage-controlled oscillator (VCO) as a time-
encoding quantizer were proposed in [70–72]. An interesting publication
is [73], where these concepts were first used in a real wide-bandwidth CT
Σ∆ modulator prototype. Based on this publication, the operation princi-
ple of the VCO-based quantizer is illustrated in fig. 6.1. The VCO-based
quantizer consists of the actual VCO core and a digital counter. The input
voltage modulates the VCO frequency. A digital counter is present which
counts the number of positive VCO crossings within each sample period in-
terval. To provide a quantized value of the input, the counter is reset at the
beginning of each clock period. In the figure, the input value is displayed
as a signal which has been already sampled. In reality this signal will vary
continuously, but only at a very slow pace due to the oversampled nature of
a Σ∆ modulator. The VCO is usually implemented with a ring-oscillator.
Hence, this type of quantizer is well suited for integration in ultra deep
sub-micron CMOS technologies, as it only uses components which are digi-
tal in nature and have increased time-resolution with each new technology
node.
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Figure 6.1: Principle of operation of a VCO-based quantizer based on [73].

An important property of the VCO-based quantizer is the implicit first-
order quantization noise shaping. This is due to the fact that the actual
quantization occurs in the phase domain. The input-dependent phase state
of the VCO can be written as:

φV CO(t) =

∫ τ=t

τ=0

2πKV Vin(τ)dτ , (6.1)

with KV the VCO sensitivity parameter in Hz/V. The digital counter reacts
to the crossings of this phase signal with multiples of 2π. The phase signal
is quantized at the end of each clock period with a quantization error q[n]:
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φ̂V CO[n] =

∫ τ=nTs

τ=0

2πKV Vin(τ)dτ + q[n]. (6.2)

Due to the reset operation at the beginning of each clock cycle, the effective
output code Dout is the discrete-time differentiation of the quantized phase
signal:

Dout[n] = φ̂V CO[n]− φ̂V CO[n− 1] (6.3)

=

∫ τ=nTs

τ=(n−1)Ts

2πKV Vin(τ)dτ + q[n]− q[n− 1]. (6.4)

This reveals the implicit first-order quantization noise shaping. This impor-
tant advantage of the VCO-based quantizer can also be seen from fig. 6.1.
The quantization error per sample is displayed as the gray rectangle at the
end of each sample period. Only the counter is reset at beginning of a new
clock period while the internal phase signal of the VCO just continues based
on the previous state. The end state of the previous sample is transferred
as an inverse initial condition in the current sample. This brings us to the
same conclusion. The operation in the frequency domain is illustrated in
the block diagram of fig. 6.2.

Vin(s) Dout(z)

VCO

fs

1− z−12πKV

s

Q(z){σ2=∆2

12 }

Σ
Vquant(z)

fs

Figure 6.2: Block diagram for the VCO-based quantizer in the frequency
domain.

6.2.2 Improved Architecture

The implementation of fig. 6.1 is problematic due to the reset operation of
the counter. If one of the VCO phase edges happens to be close to the reset
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pulse, information can get lost due to subtle gate delay differences in the
digital logic. This would kill the first-order noise shaping behaviour. An
improved architecture is proposed in [73, 74] (see fig. 6.3). In this archi-
tecture, all the internal states of the ring oscillator are used to make the
quantization decision.
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N XOR gates
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t
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Figure 6.3: VCO-based quantizer with a multiphase ring oscillator.

An example is shown in the figure for a 5-stage ring oscillator. The quantized
output value is made up by an XOR operation on two subsequent states of
the ring oscillator. This coincides with a digital differentiation on the phase
state of the oscillator. A boundary condition in this architecture is that
the number of state changes per sample cannot exceed the number of ring
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oscillator stages. This leads to the condition that:

fs > 2fV CO,max. (6.5)

A beneficial side-effect from this architecture is the circular thermometer
encoded quantizer output value. This coincides with the circular pointer of
the DWA algorithm [43, 44]. As such, implicit dynamic element matching
is present at the output of this type of VCO-based quantizer.

6.2.3 CT Σ∆ modulators with a VCO-based Quantizer

The bottleneck for using a VCO-based quantizer lies in its modest linearity
properties. The voltage to frequency conversion in a current-starved ring
oscillator will be in the order of 5-6 bit. As such, the VCO-based quantizer
is hardly used as a standalone ADC, but instead can be incorporated as the
quantizer of a Σ∆ loop (see fig.6.4). In [73] a second order CT loopfilter, of
which one of the integrators is implemented with a passive stage, is combined
with a 5-bit VCO-based quantizer. In total, a third order noise shaping
profile is acquired due to the VCO-based quantizer. The prototype achieves
12-bit linearity in a 20 MHz bandwidth.

fs

1− z−12πKV

s
Vout(z)Vin(s) H(s)Σ

HDAC(s)

−

VCO-based
quantizer

Figure 6.4: CT Σ∆ modulator with a VCO-based quantizer.

In [74], the linearity is improved by installing a first order feedback path
around the VCO-based quantizer using the quantized phase signal. This
way, the first order differentiation of the quantization noise disappears, but
it is exchanged with a suppressed input signal due to the VCO integrator
operation. An extra drawback is that also the implicit DEM property of
the output codes is removed.
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6.3 Pulsewidth Modulation in the Feedback DAC

The multibit feedback DAC signal can be encoded in the time domain by
using pulsewidth modulation. The idea is illustrated in fig. 6.5, where a
comparison is made with the NRZ and RZ DAC pulses. The clock period
is subdivided into the required number of time quantization intervals. A
single element DAC is present, of which the quantized activation time de-
termines the feedback value. For the same net charge to be fed back, the
single element current must equal the total current of the NRZ DAC or
half of the total current of the RZ DAC. The generation of the quantized
time intervals usually involves more complex frequency synthesis strategies.
Either a higher frequency clock is necessary, either a very clean multiphase
clock signal.

In [75], a 3-bit PWM feedback DAC is used in the outer feedback loop of a
5th order continuous-time Σ∆ modulator. For the generation of the differ-
ent clock phases, an on-chip LC tank VCO is co-integrated. This oscillator
includes a complementary injection-locked frequency divider (CILFD) to
ensure multi-phase digital signals with low time-domain jitter noise. Jit-
ter sensitivity is identified in this paper as the most severe drawback of
PWM-based feedback. This can intuitively be seen from fig. 6.5. The jitter
influence of two clock edges is involved in the feedback signal error, which is
similar to the case of the RZ pulse. Furthermore, the signal amplitude level
always remains equal to the total current of the equivalent NRZ DAC.

Of course the advantage of the PWM-based feedback DAC lies in the in-
creased resolution in the time domain. This way static delay errors due
to process and Monte Carlo variations can be better controlled than the
matching between the individual current source units from the NRZ DAC.
An approximate equation for the linearity improvement of the PWM versus
NRZ DAC is proposed [75]:

SNDRNRZ

SNDRPWM
=

2

B

σ2
∆T%

σ2
∆I%

, (6.6)

where B is the number of quantizer bits, and ∆T% and ∆I% represent the
relative clock phase deviation and relative unit current source deviation for
the PWM and NRZ DAC respectively. The equation appears due to the
fact that for the extreme feedback values, the deviation of all B unit current
sources is involved for the NRZ DAC while in all feedback cases only 2 clock
phase deviations are involved for the PWM DAC. As the relative timing
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Figure 6.5: Illustration of the PWM multibit feedback DAC as opposed to
the more common NRZ and RZ feedback DAC pulses.

variations are smaller than the current source mismatch in deep sub-micron
technologies, the PWM DAC outperforms the conventional NRZ DAC.

6.4 Self-Oscillating Σ∆ Modulators

The two previous sections each proposed a solution for avoiding a multibit
implementation for either the quantizer or the DAC. In this section both
ideas are combined. In contrast to the VCO-based quantizer where the
oscillation is clearly limited to the VCO core, here it is extended to the full
Σ∆ loop. The CT Σ∆ will be designed in such a way that it operates in
a limit cycle mode. The oscillation is sustained by using only a single-bit
quantizer (comparator). The low-frequency input will modulate the output
oscillation mode in a way similar to PWM encoding.

Originally, limit cycles in Σ∆ were regarded as undesired oscillations in the
output signal at high frequencies [76]. They originate from the non-justified
assumption of white quantization noise, particularly in low-order Σ∆ mod-
ulators with single-bit quantizers [21, 77]. The problem was alleviated in
multibit Σ∆ modulators, since the multibit quantizer reduces the corre-
lation of the quantization error with the modulator input signal. In [78],
the asynchronous CT Σ∆ modulator is introduced. Here, the limit cycle
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is no longer considered as a parasitic effect, but instead it is deliberately
introduced in the loop. The basic architecture consists of a feedback config-
uration of a continuous-time loopfilter and a hysteresis comparator. As it is
a non-clocked comparator, the output of the loop remains an analog signal,
but which is quantized to only two levels. Therefore the loop is followed
by an external sampler. The loop configuration shows great resemblance
with a self-oscillating power amplifier (SOPA) [79]. In [80], the sampler is
also incorporated into the loop. This gives the extra advantage that the
errors from the sampling operation also get shaped with the NTF. The ar-
chitecture is identical to a conventional single-bit CT Σ∆ modulator, but
the loopfilter and comparator hysteresis are designed in such a way that the
system deliberately operates in a self-oscillation mode. Next to the use of a
hysteresis comparator, adding delay in the feedback path of the modulator
can also be used to control the self-oscillation. In the following, we will
focus on delay-based self-oscillating Σ∆ modulators.

6.4.1 Delay-Based Self-Oscillating Σ∆ Modulators

Fig. 6.6 shows the basic architecture for the delay-based self-oscillating Σ∆
modulator. Similar to a conventional single-bit modulator, it consists of
a continuous loopfilter H(s), a comparator clocked at fs and a single-bit
feedback DAC. To obtain the self-oscillation, we add a digital delay in the
modulator feedback path. This way, we obtain a very well controlled self-
oscillation at much lower frequency than the sample frequency fs. This
self-oscillation, which is an integer fraction of the sample frequency fs, will
serve as the carrier for the pulsewidth modulation of the output signal.

Dout(z)Vin(s) H(s)Σ
−

fs

DAC z−d
(1b)

Asin(2πfct) + C

Figure 6.6: Self-oscillating CT Σ∆ modulator with digital delay in the feed-
back path.

The system shown in fig. 6.6 is non-linear due to the presence of the com-
parator and therefore hard to analyze. In [80] the describing function theory
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is proposed as a way to linearize such systems. The system is described by
considering the behaviour for a superposition of different kinds of signals
at the comparator input. For each type of signal the comparator is lin-
earized. In our case, the comparator input can contain two types of signals:
we will consider a high-frequency contribution (∝ sin(2πfct)) from the self-
oscillation and a low-frequency contribution from the input signal Vin(s).
It is assumed that the frequency of the input signal is sufficiently smaller,
such that it can be approximated as a constant C in the time scope of the
self-oscillation.

System Behaviour for the Self-Oscillation Mode

To investigate the self-oscillation mode, we set the input signal Vin(s) equal
to zero. Since the loop should be designed to sustain a stable self-oscillation
mode, the output signal should then be a square wave signal of frequency
fc. This signal is lowpass filtered through the loopfilter H(s). Therefore
only the first order harmonic is considered. This way, we have a sine wave
with amplitude A and frequency fc appearing at the input of the quantizer.
This is shown in fig. 6.6. To simplify the analysis we will now assume that
the sampling frequency of the comparator is infinite. Of course this can not
be achieved in practice, but this corresponds to what ultimately could be
achieved after technology scaling. The assumption is necessary to apply the
describing function theory.

Dout(z)Σ
−

e−sdTs

Asin(2πfct)c
sTs

GC

1−e−sTs

s

amplitude = 1

Figure 6.7: Block diagram for the self-oscillation mode: simplified first-order
system with infinite sampling frequency.

To obtain a very simple analytic result, we will first assume that the loop-
filter is a first-order integrator, later on we will do the analysis properly
with the exact loopfilter. Taking into account that we use a NRZ pulse
for the feedback DAC, this results in the block-diagram of fig. 6.7. The
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Barkhausen stability criterion states that we will have an oscillation where
the loop has a 180◦ phase shift. We immediately obtain, for our simple
integrating loopfilter, that the oscillation frequency equals:

fc =
fs

4(d+ 1
2 )

, (6.7)

where the 1
2 term originates from the delay of the NRZ DAC-pulse (see

equation (2.44)). The oscillation frequency is accurately controlled by the
digital delay in the loop. For a zero-delay system, which coincides with a
conventional delay-less CT Σ∆ modulator, the self oscillation appears at fs

2
as expected.

Moreover, even the amplitude of the oscillation is accurately controlled by
the designer. This can be understood by noting that the overall output
is a square wave with an amplitude equal to 1 (see fig. 6.7) and a well
controlled frequency fc. The describing function theory [81] provides a
linearized quantizer gain which is function of the self-oscillation amplitude
A:

GC =
4

πA
. (6.8)

The gain originates from the contribution of the fundamental sine wave
component in the Fourier series of a square wave of amplitude 1. The
Barkhausen amplitude criterion can now be applied for the self-oscillation
frequency found in (6.7):

A =
4

π

∣∣∣∣
(

1− e−sTs
s

H(s)

)∣∣∣∣
s=j2πfc

(6.9)

≈ 4

π
|H(j2πfc)| . (6.10)

The approximation can be made because the oscillation frequency is at least
a factor of 4 lower than the sampling frequency. For the simplified first-order
system from fig. 6.7, the amplitude could be further calculated as:

A ≈ 4

π
· c

2πfcTs
=

8c

π2

(
d+

1

2

)
. (6.11)
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Adding delay not only reduces the self-oscillation frequency, but will also
increase the self-oscillation amplitude. This can be seen as a general state-
ment as the loopfilter will always have integrator operation, even for more
complex filter topologies.

Note that the previous analysis is only an approximation because of two
reasons. First, only the fundamental frequency of the self-oscillation is
taken into account and second, the effect of sampling is ignored. However,
the approximation provides a simple means for a good understanding of the
underlying mechanism. Sampling causes the output oscillation frequency to
be an even integer fraction of fs:

fc =
fs
M
, with M even. (6.12)

Indeed, without any input signal the mean output value should still remain
zero. The effect of sampling in the comparator is illustrated in fig. 6.8. The
figure shows the effect of sampling on the fundamental tones at both fs

2 and
fs
4 .

clock

Ts

fs
2

fs
4

comparator
output

comparator
output

180◦

90◦

Figure 6.8: Phase uncertainty in a clocked comparator.

For the fs
2 oscillation a phase shift up to 180◦ gives rise to the same com-

parator output signal. For the fs
4 oscillation this is a maximum phase shift
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of 90◦. The effect of sampling can thus be incorporated by modeling it as
a phase uncertainty in the loop. The phase shift uncertainty is linked to
the self-oscillation subharmonic number. In general, for the phase shift ∆φ
accounts:

∆φ =
360◦

M
, with M even. (6.13)

Using this knowledge, a more detailed analysis of self oscillation of the
loop can be made by using a graphical interpretation of the Barkhausen
criterion [80]. An example with a unit delay in the feedback loop of a second
order self-oscillating Σ∆ modulator is shown in fig. 6.9. The Nichols plot
representation is used to visualize the amplitude and phase of the loop. The
plot is organized in such a way that the crossings with the 180◦ phase line
coincide with the amplitude of the fundamental tone of the self-oscillation
at the comparator input. Furthermore, for each even integer fraction of
the sample frequency, phase uncertainty is added by extending the phase
according to equation (6.13).
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Figure 6.9: Nichols plot of a second order self-oscillating Σ∆ modulator.
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Although the approximation from equation (6.7) would predict a self os-
cillation tone at fs

6 , the more accurate second-order filter behaviour and

the clocked comparator give rise to oscillations starting from fs
8 . Assuming

that the comparator reference level coincides with the analog output range
of the loopfilter, oscillations with amplitude above 1 are not shown, as they
would oversteer the system. It can be seen that multiple oscillation modes
are possible. In practice, the system will operate in the mode which com-
plies with the most high-frequent solution. Indeed, for a conventional Σ∆
modulator, the output also oscillates at fs

2 for a zero-input signal.

The existence of the self-oscillation is fundamental for the circuit-level re-
quirements. While in a conventional Σ∆ modulator the integrators require
parasitic poles which are beyond the sample frequency fs, here the loopfil-
ter only has to process signals that are of the order of the self-oscillation
frequency (much lower than fs). As a result of this, we expect that the
requirements on the opamp GBWs will remain quite moderate and hence a
significant reduction in current consumption can be achieved.

System Response to the Input Signal

To analyze the response to the input signal, we can observe the comparator
output. This is shown in fig. 6.10(a). From the figure it is clear that the
comparator output signal consists of a pulsewidth modulated version of its
input signal. This way, we can consider two components in the comparator
output signal: a component at a high frequency (the self-oscillation compo-
nent) and a component at low frequency (the signal component). Since we
are now interested in the response to the input signal, we can associate a
best-fit gain GS for the low-frequency signal component. Again this best-fit
gain is provided by the describing function theory [81]:

GS =
2

πA
. (6.14)

It is important to notice that this low-frequency gain is dependent on the
amplitude of the high-frequency oscillation, as such it can be linked to the
evaluation of equation (6.9).

Due to the pulsewidth modulation of the oscillation, spectral tones around
the self-oscillation frequency will appear in the output spectrum. Further-
more, from the previous section, we know that sometimes multiple self-
oscillation modes are possible. The input signal tends to add to the ampli-
tude of the self oscillation [80]. If the input power is large enough, the self-
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fs

Asin(2πfct) + C C
GS

(a) (b)

Figure 6.10: Comparator behaviour for the input signal: (a) comparator
output in a system with a self-oscillation and (b) its low-
frequency approximation.

oscillation could jump to a lower frequency. As such, the input signal band-
width should be low enough compared to the possible self-oscillations.

To study the low-frequency behaviour of the system we could now just
plug the linear model for the comparator in the system model of fig. 6.6.
However, we would then obtain a system without quantization noise and
hence obtain an infinite resolution for the associated A/D converter. In this
system, the quantization noise originates from the discretisation in time
of the output waveform. The basic mechanism is elaborated in fig. 6.11
for a Σ∆ modulator with a self-oscillation at fs

8 . The figure shows the
unsampled comparator output waveform x(t) and its zero-order-held version
y(t). Without quantization, y(t) should have the same shape as the input
signal x(t). Still there is half a clock cycle delay between x(t) and y(t) which
is caused by the delay of the ZOH-pulse. To separate the quantization effect
from this delay effect, we introduce the time-shifted signal y′(t). It is clear
that y′(t) can only change at a falling clock edge. This causes a quantization
error q(t), which consists of a set of consecutive pulses. As is common for
quantization noise, the next step is to assume that q is a zero mean white
noise sequence. To calculate the power σ2

Q, we note that each pulse in
the q(t) waveform has a magnitude of ±2 and a duration between ±Ts/2.
Moreover, during each period of the self-oscillation, 2 such pulses occur.
This way:

σ2
Q = 4

1

12

2fc
fs

=
2

3

fc
fs

. (6.15)
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Figure 6.11: Illustration of quantization noise in a time-encoding self-
oscillating modulator.

6.4.2 Modeling of a Self-Oscillating Σ∆ Modulator

Prior work on pulsewidth modulated and limit cycle Σ∆ modulators tried to
set up an equivalence with a conventional multibit CT Σ∆ modulator [78,80,
82]. The system could be compared to a conventional modulator operating
at a sample frequency of 2fc (a conventional modulator would have a limit
cycle at fs

2 ), and a multibit quantizer with fs
fc

levels. The OSR would be
similarly defined with respect to the signal bandwidth fb:

OSR =
fc
fb

. (6.16)

This way, using equation (6.15), the in-band noise for a plain oversampling
converter could be written as:

IBQN[OSR] =
2

3

fc
fs

2

fs
fb =

4

3

(
fc
fs

)2
1

OSR
. (6.17)
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Next to the effect of oversampling, also a 6 dB decrease per octave can be
identified for the ratio fs

fc
. This is compliant with the decrease of quanti-

zation noise power by increasing the number of bits in a multibit quantizer
and hence the equivalence accounts. However, this equivalence is only an
approximation and neglects several aspects of the actual self-oscillating CT
Σ∆ modulator. Furthermore, the self-oscillation frequency fc should still
be much higher than the signal bandwidth fc (OSR large enough) for the
spectral broadening due to pulsewidth modulation not to interfere in the
signal band.

An alternative model that is derived through the describing function theory
is shown in fig. 6.12. It is based on the low-frequency linearization and
quantization noise mechanism outlined above. In this model the comparator
is replaced by its best-fit gain, calculated according to equation (6.14). The
quantization noise is modeled as white noise with a variance according to
equation (6.15).

Dout(z)Vin(s) H(s)Σ
−

DAC z−d(1b)

Q(z){σ2= 2
3

fc
fs
}

Σ
fs

GS

Figure 6.12: Low-frequency linearized model for analysis of the self-
oscillating Σ∆ modulator.

6.4.3 Jitter Performance of Self-Oscillating Σ∆ Modulators

Clock jitter was described in chapter 3 as a phenomenon which affects the
performance of CT Σ∆ modulators because it introduces a random compo-
nent in the DAC feedback signal. For conventional modulators, the jitter
performance was clearly influenced by the modulator loopfilter. Indeed, the
more aggressive the loopfilter, the higher the energy of the out-of-band quan-
tization noise and thus the switching activity. In the case of self-oscillating
Σ∆ modulators, such an analysis is not needed because the switching ac-
tivity is well controlled and signal independent: i.e. the output waveform
switches twice per period of the self-oscillation. As such the output is af-
fected by a white jitter error with a variance:
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σ2
jitter,SO = 4

σ2
∆T

T 2
s

2fc
fs

. (6.18)

Since this jitter is white and occupies the band from DC to fs/2, obviously
most of the jitter is outside the signal band. For a signal bandwidth fb this
leads to an in-band noise variance due to jitter:

IBN[jitt,SO] = 4
σ2

∆T

T 2
s

2fc
fs

2

fs
fb = 16

σ2
∆T

T 2
s

(
fc
fs

)2
1

OSR
. (6.19)

Again, for a fixed OSR the jitter noise decreases by 6 dB per octave in
function of the self-oscillation frequency to sample frequency ratio.
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A 5-MHz, 11-bit Self-Oscillating
Σ∆ Modulator with a Delay-Based
Phase Shifter in 0.025 mm2

7.1 Introduction

The increased attention for self-oscillating Σ∆ modulators has recently led
to the publication of measurement results from several prototypes. Com-
mon to all these prototypes is the reduced system complexity due to the
use of only a single bit comparator. The sample frequency can therefore be
chosen close to the technological process limit, while the loopfilter compo-
nents only have to operate at the self-oscillation frequency. Also the digital
part of the modulator loop is quite simple as only 1-bit signals have to
be fed back. Besides the reduced design complexity, especially the area of
the resulting modulators is quite impressive in comparison to conventional
multibit modulators. In [80], an asynchronous Σ∆ modulator is designed,
based on a hysteresis comparator. In this type of modulator, the actual
sampling operation occurs outside of the loop. A first and second order
prototype are designed, that achieve an outstanding 70 dB signal-to-noise
ratio (SNR) performance in a bandwidth of 8 and 12 MHz respectively. The
designs were processed in a 0.18µm CMOS technology and occupy a mere
area of 0.05 mm2. In [82] a third order delay based self-oscillating Σ∆ mod-
ulator was implemented. The prototype achieves an SNDR of 65 dB for a
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6.4 MHz bandwidth mode and 58 dB SNDR for a 17 MHz bandwidth mode.
The area is only 0.1 mm2 in a 0.13µm CMOS technology.

In this chapter, the results of a second order self-oscillating Σ∆ modulator
prototype are reported [83, 84]. A delay-based implementation is chosen to
sustain the self-oscillation. An additional key element in this design, is the
use of a feedback finite-impulse-response digital-to-analog converter (FIR-
DAC) which reduces the jitter sensitivity and further relaxes the slewing
requirements of the first operational amplifier in the loop. The prototype
modulator is fabricated in a 0.18µm CMOS technology and achieves a dy-
namic range (DR) of 66 dB for a 5 MHz bandwidth. Due to the low com-
plexity of the circuit, the modulator core area is only 0.025 mm2. The power
consumption of the modulator equals 6 mW.

7.2 System Level Design

Dout(z)Vin(s) Σ
−

fs

c1
s

c2
sΣ

−

g

F
IR

D
A
C

(
4
t
)

D
A
C

(
1
b
)

z−1z−
1
2

outer loop

inner loop

Figure 7.1: Block diagram of the self-oscillating Σ∆ modulator.

Fig. 7.1 shows the block diagram of the second order system that we have
implemented. The system-level and corresponding circuit-level parameters
can be found in table 7.1. In the structure 2 loops can be considered.
The inner loop dominates at high-frequency and controls the self-oscillation.
The integrator coefficients are chosen such that they are well below the
self-oscillation frequency. One unit delay is introduced in the inner loop
to supply enough phase shift for the self-oscillation. This delay is readily
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implemented by inserting 1 additional flip-flop in the loop. According to
equation (6.7), this would lead to a self-oscillation frequency of fs6 . However,
there is a small phase shift due to the outer loop as well. This way, the
overall loop exhibits a phase shift of 180◦ at a frequency of fs

7.8 . Since the
zero-input limit cycles are constrained to integer fractions of the sampling
frequency, this leads to a self-oscillation frequency of fs

8 . This was also
illustrated in fig. 6.9 from the previous chapter, where the Nichols plot for
this system implementation was displayed.

Table 7.1: Second order self-oscillating Σ∆ modulator prototype parameters

Parameter System level value Circuit level value
c1/(2π) 0.05fs 42.5 MHz
c2/(2π) 0.05fs 42.5 MHz
g 0.0046 0.0046
fs 850 MHz
fc fs/8 106.25 MHz
fb fs/170 5 MHz

The outer loop dominates at low-frequency. Its task is to provide sufficient
loop gain to suppress the quantization noise. It has half a clock cycle delay
as well, to relax the settling requirements of the comparator. In addition
to this, a uniform 4-tap finite-impulse-response digital-to-analog converter
is included here:

HFIRDAC(z) =
1

4

(
1 + z−1 + z−2 + z−3

)
. (7.1)

This FIR filter serves multiple purposes. First it reduces the high-frequency
gain of the outer loop. This way, the interaction with the inner loop is
minimal and the self-oscillation is mainly determined by the inner loop.
The large self-oscillation component is heavily reduced in the outer loop.
This way, the first opamp does not have to process fast slewing signals and
hence its requirements are significantly relaxed. Finally, this filter improves
the jitter sensitivity of our modulator [85, 86]. Due to the averaging effect
of the 4-taps FIRDAC the overall jitter variance is reduced by a factor 4
compared to equation (6.18):

σ2
jitter,SO,4t-FIRDAC =

σ2
∆T

T 2
s

2fc
fs

. (7.2)
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The number of taps L in the FIR-filter was the result of a co-optimization
process with the first-integrator gain c1. In terms of performance, both
L and c1 should be as high as possible. However increasing L and c1 re-
duces the loop stability. Therefore the selected values for L and c1 are a
compromise of performance versus stability.

To further enhance the noise shaping capability of the loop, local feedback
(through the branch with the coefficient g) is added. This way, an optimized
zero is implemented [5]. Finally, a feed-in path from the input is also present
to reduce to output swing of the first integrator [22].

ou
tp
u
t
sp
ec
tr
u
m

(d
B
F
S
)

f (Hz)

0

-20

-40

-60

-80

-100

-120
104 105 106 107 108

si
gn

al
b
an

d

li
m
it
cy
cl
e

H
D

3
=
76

d
B
c

SQNR=66dB

Figure 7.2: Simulated output spectrum for a -4.3 dBFS input signal on the
system model (8× averaged 32k FFT).

A system-level simulation was performed with a commercially available
continuous-time simulator (Simulink). It was found that the simulation was
quite tricky. The simulator time step had to be set to a very small value to
avoid additional time-domain quantization effects which caused the results
to be unreliable. A resulting simulated output spectrum for a -4.3 dB input
relative to full scale (dBFS), is shown in Fig. 7.2. The signal band and the
nominal oscillation frequency are indicated by two vertical lines. Clearly,
the output contains a lot of content around the oscillation frequency. Due
to the pulsewidth modulation of the oscillation mode, spectral broadening
appears around fs

8 .
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The resulting signal-to-quantization-noise ratio (SQNR) equals 66 dB. The
calculated noise spectrum according to the low-frequency linearized model
from fig. 6.12 is superimposed on the figure. The linearized model under-
estimates the in-band noise by roughly 3.5 dB and predicts an SQNR of
nearly 70 dB. This deviation is due to the fact that the amplitude of the
self-oscillation is assumed to be fixed in the calculation. It was found in the
simulation that the amplitude increases slightly if a non-zero input signal
is applied to the modulator. As a result the effective comparator gain (and
hence also the modulator loop gain) is reduced, leading to a degraded perfor-
mance. Still the matching between the simulated and calculated spectrum
can be considered reasonable in the low-frequency band. Because of the non-
linear nature of the system, a third-order harmonic is also present at -78 dB
relative to the carrier (dBc). This non-linearity can also be understood
by noting that the actual low-frequency comparator gain GS depends on
the magnitude of the low-frequency signal component (see equation (6.14)).
This way, this non-linear behaviour is inherent to this type of modulator.
Of course this non-linearity is reduced by the loop gain and hence the design
of the loopfilter greatly affects this undesired component. In our case the
non-linearity was sufficiently suppressed to obtain an accuracy in the order
of 12 bit.
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Figure 7.3: Simulated dynamic range vs. jitter rms value for white jitter.

A simulation result of the jitter performance for our modulator is shown in
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Chapter 7 A 2.5-MHz, 11-bit Self-Oscillating Σ∆ Modulator

fig. 7.3. In the simulation model, white jitter was applied to the modula-
tor clock and the corresponding dynamic range was determined. This was
repeated for increasing values of the jitter rms value. The result is plotted
together with the predicted dynamic range according to equation (7.2). De-
spite of the simplicity of the derived equation, it matches reasonably well
(within 1.5 dB) with the simulation result.

7.3 Circuit Level Design
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Figure 7.4: Toplevel schematic of the active-RC opamp based loopfilter and
the switched-resistor feedback DACs.

The prototype is designed for a 5 MHz bandwidth and a clock frequency of
850 MHz. The clock frequency limitation lies in the maximum speed of the
digital cells in the target 0.18 µm CMOS process. The resulting limit cycle
is 8 times lower than the clock frequency at 106.25 MHz. The circuit-level
parameters are shown in table 7.1. The toplevel schematic is illustrated in
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7.3 Circuit Level Design

fig. 7.4. The integrators are implemented with active-RC feedback opamps,
where a small Rz resistor is added to compensate for the finite GBW of
the opamp feedback loop. No RC time constant tuning or trimming was
incorporated. A local feedback path is formed by the resistors Rfb to install
an NTF zero in the signal band. A clocked comparator drives the feedback
signals, which are implemented using resistive DACs. They are digitally
controlled by standard cell D-flip-flops who trigger a resistor driver which
switches either to Vref+ or Vref−. The FIRDAC is formed by a 4-tap shift
register. To install the half clock cycle delay in the outer loop, this shift
register operates on the negative clock edge.

CCRz

Vout+Vin+

CC Rz

Vout− Vin−

C
M
F
B

C
M
F
B

Vb1p Vb2pVb2p

Vb1p

Vb1p Vb2p

CMref

Vout−

Vout+

CMFB

(a)

(b) (c)

Figure 7.5: Circuit implementation for the opamp: (a) Miller compensated
two-stage operational amplifier, (b) the bias circuit for the
opamp and (c) the CMFB auxiliary amplifier.

Although the circuit is clocked at 850 MHz, in principle the analog circuits
don’t have to be sized for this speed. Basically, it is sufficient that the
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Chapter 7 A 2.5-MHz, 11-bit Self-Oscillating Σ∆ Modulator

circuits are capable to process the limit cycle (at 106.25 MHz). This way,
quite conventional circuit design techniques could be used for the opamps.
To drive the resistive loads, a two-stage Miller compensated opamp topology
is used for both integrators. Fig. 7.5 shows the schematic of this opamp.
The common-mode feedback (CMFB) control signal is applied at the NMOS
transistors in the first stage. The common-mode voltage is sensed with a
resistive voltage divider at the outputs and compared to a reference value
using an auxiliary amplifier. The opamp was designed to obtain a phase
margin of at least 70◦. This resulted in a GBW of about 1 GHz, which
is definitely enough for this modulator. The opamps in both integrators
are basically identical designs. But due to the different drive requirements
between the opamp in the first versus the second integrator, an impedance
scaling was applied for the second opamp. All transistor widths and the
compensation capacitor are decreased by a factor 2 compared to the first
opamp. For power optimization, the first integrator was designed for a
thermal noise level approximately 6 dB above the quantization noise level.

Vin+Vin−

Vb1p

clk

Vout− Vout+
clk clk

Figure 7.6: Schematic of the comparator consisting of a pre-amplifier and a
latch.

The clocked comparator is displayed in fig. 7.6 and is a downscaled version
of the circuit that was used in [87]. It consists of a pre-amplifier followed by
a latch. The pre-amplifier is a simple PMOS differential pair loaded with
ordinary active load NMOS devices to suppress the offset of the clocked
latch.

Note that this system is highly portable to a more advanced technology. We
could then use a higher clock frequency and adjust the number of digital
delays in the inner loop to obtain the same limit cycle. That way, we would
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have obtained a nearly equivalent system but with less quantization noise
and hence improved performance. Since the circuits in the loop essentially
would have to process the same limit cycle, this should not affect the speed
requirements on the building blocks (opamps).

7.4 Experimental Results

210 um

12
0 

um

Figure 7.7: Microphotograph of the 0.18µm CMOS prototype. Left: entire
pad-limited die, right: the actual modulator circuit.

Fig. 7.7 shows a microphotograph of the prototype chip fabricated in a
single-poly six-metal layer 0.18µm digital CMOS process. It is shown on
the left and is obviously pad-limited. One of the reasons for this, is that the
digital outputs are brought off the chip as a parallel 16-bit bus. Internally
a shift register is present to convert the 1-bit output stream at 850 MHz to
a parallel stream at a 16 times lower rate. The modulator core is shown on
the right. It fits in a rectangle of only 0.025 mm2. From the photograph it
is clear that the layout is not dense at all. This is because not much effort
was spent to minimize the area. The power consumption is 6 mW from a
1.8 V supply voltage for fs equal to 850 MHz. The analog blocks (opamps,
comparator) consume 5 mW, while the digital blocks consume 1 mW. These
digital blocks include clock drivers, the flip-flops in the FIRDAC, and also
the shift register that is used to buffer the data out.

A measured output spectrum is shown in fig. 7.8. The input conditions are
similar to fig. 7.2 (-4.3 dBFS input tone). A full scale input corresponds to
a sine wave with a differential amplitude of 1.8 V. High correlation between
the measured spectrum and the simulated spectrum can be observed. The
resulting SNR equals 61.1 dB. Also second-order and third-order distortion
appear at -57 dBc and -70 dBc respectively. Especially the second-order
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Figure 7.8: Measured output spectrum for a 1 MHz, -4.3 dBFS input signal
(64K FFT).

distortion is worrying as it limits the signal-to-noise and distortion ratio
(SNDR) of the modulator. Imbalance in the differential behaviour of the
system was found to be the cause of this distortion. This is due to the fact
that the negative side of the differential DAC is driven by the Q output of
the standard cell flip-flop, while the positive side of the differential DAC
is driven by the Q output (see fig. 7.4). Since the standard cell flip flop is
internally asymmetric, the Q and the Q output have different gate delays
and rise/fall times. This creates a systematic difference between the positive
side and the negative side of the DAC. However, this is a non fundamental
problem which can be fixed in future designs. From the spectrum also an
offset can be observed. Based on measurements on the 10 samples that we
received, we found that this offset has a systematic component (≈ 6 mV
input referred) and a random part (σ ≈ 9 mV input referred). The random
offset is caused by limited transistor matching in the first opamp. The
systematic offset is caused by the imbalance in the feedback FIRDAC.

In fig. 7.9 the SNR, SNDR and the SNDR without the inclusion of the
second-order distortion are shown in function of the input amplitude. The
peak SNR of 61.1 dB is found for the -4.3 dBFS input. Even for a full scale
input the SNR is still 50.2 dB. However, distortion becomes quite large then,
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Figure 7.9: SNR (solid), SNDR (dashed-dotted) and the SNDR without
second-order distortion (dashed) in function of the input am-
plitude.

which lowers the SNDR to 41.8 dB. As one can see, second-order distortion
is clearly dominant as the SNDR already starts dropping at much lower
input signal levels compared to the situation where second-order distortion
was neglected. The dynamic range of the modulator equals 66 dB which
corresponds to an 11-bit resolution.

Based on the power consumption, signal bandwidth and attained bit reso-
lution we can estimate a figure of merit (FOM) for our prototype [88]:

FOM =
P

2fb2B
= 360 fJ/conversion. (7.3)

A performance summary can be found in table 7.2.

The jitter performance of the prototype was measured as well. For this pur-
pose a low-jitter pulse generator (Agilent 81134A) was modulated through
its delay-control input with a noise signal and used as the modulator clock.
Under this condition the dynamic range for a 1 MHz input signal was de-
termined. This procedure was repeated for increasing effective values of the
jitter. The result is shown in fig. 7.10. It is clear that the dynamic range
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Table 7.2: Prototype performance summary

Technology 0.18µm CMOS
Clock frequency 850 MHz

Bandwidth 5 MHz
Power consumption 5 mW analog

1 mW “digital”
Dynamic range 66 dB

Peak SNR 61.1 dB
Peak SNDR 56.1 dB

Peak SNDR without HD2 60.6 dB
Converter Area 0.025 mm2

remains unaffected over a wide range of jitter values. For an effective value
of 35 ps,rms the performance drops with 3 dB. For very large values of the
jitter, clock pulses that are shorter than 1 ns start to occur. This leads to
timing violations in the digital cells. This causes bit errors, leading to a very
steep drop of the dynamic range. The white jitter limit according to equa-
tion (7.2) is shown as well in the figure. Surprisingly the measured dynamic
range is nearly an order of magnitude better than the calculated value. This
turns out to be due to the fact that the jitter in our measurement setup is
not white but has a limited bandwidth of about 50MHz.
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Chapter 8

Conclusion

8.1 Overall Summary

An overall summary can be found at the beginning of this work, both in
English and Dutch. This gives a complete overview of the work performed
in this dissertation.

8.2 Improvements and Future Research

• The design strategies developed for robust CT Σ∆ modulators could
be extended to the domain of bandpass and quadrature bandpass Σ∆
modulators. This is an interesting topic in the context of ADCs for
communication standards. Clearly, these are more challenging cases
than the conventional lowpass case. It can be understood from the
fact that all problems for lowpass CT Σ∆ modulators also occur here.
But in addition to this, the modulator performance is very sensitive
to the accurate position of the center frequency.

• The system modeling of CT self-oscillating Σ∆ modulators needs some
refinement. Indeed, the design of the discussed prototype is actually
ad hoc. There are still significant gaps in the tradeoffs between linear-
ity and modulator performance. Also, there are several architectural
paths which have not been explored. For example the use of hysteresis-
based self-oscillating Σ∆ modulators is expected to provide improved
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noise shaping performance, although this may come at the cost of less
good control of the self-oscillation frequency. Note that in the dis-
cussed prototype, a very stable limit cycle is obtained, because it is
controlled by a digital delay in the feedback loop.

• An important next step would be to investigate the overall robustness
of self-oscillating Σ∆ modulators. I hope that many of the techniques
that were developed for conventional modulators, can also be applied
for this class of modulators. However, the current techniques assume
that the modulator can be treated as a linear system, whereas due to
the non-linear behaviour of the self-oscillating Σ∆ modulator, several
of the techniques will need to be revised.
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Appendix A

Optimal Coefficients for CT Σ∆
Modulators Based on the S-figure

Optimal design parameters for CT Σ∆ modulators, based on the S-figure
design strategy from chapter 5, are given in this appendix. We focus on
second and third order designs. The results displayed here are for mod-
ulators which contain a 3-bit quantizer, have an OSR of 16 and a NRZ
feedback DAC pulse. The results can easily be extended to a different num-
ber of quantizer bits. A performance increase/decrease by 6 dB compared
to the results displayed here has to be accounted for every quantizer bit
change. For a different OSR, the local feedback coefficient can in first order
be scaled with the ratio of the desired OSR compared to 16. For a lower
OSR than 16, we expect the signal band to interfere even more with the
high-frequency behavior of the NTF. In that case, the optimization would
have to be re-evaluated. For higher OSRs, the performance increase in first
order follows the basic Σ∆ properties of SQNR increase in function of the
modulator order (see also fig. 2.7).

All design examples include parasitic poles at fs in the integrator transfer
functions, according to equation (3.15). Next to this, also a synchronization
flip-flop is present which introduces a fixed delay of a half clock cycle Ts

2
(clocked on the negative clock edge). On top of this, an extra delay of
τ = Ts

10 is added to model the mean process delay for the feedback DAC. In
general we consider variations for the integrator coefficients, the parasitic
pole time-constants and the feedback DAC delay. The usual performance
requirements are installed: the modulator should be stable and attain a
guaranteed MSA of at least 1√

2
.
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A.1 Second Order Designs

A.1.1 Second Order Modulator in Feedforward Topology
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Σ a2

−
g
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Σ

HDAC(s)
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z−
1
2

I1(s) I2(s)

e−sτ

Figure A.1: Second order FF modulator topology.

Following variations apply for the system architecture of fig. A.1:

δIC,max = 20 % (A.1)

δτ,max = 50 % (A.2)

δτp,max = 20 %. (A.3)

Table A.1 shows the results of the S-figure optimization.

Table A.1: Optimal parameters for the second order design example using
the S-figure optimization.

c1 c2 g
MSA SQNRpeak

nom min nom min
0.553 0.290 0.137 0.858 0.743 51.2 dB 49.5 dB
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A.1.2 Second Order Modulator in Feedforward Topology
with Direct Feedback Path
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Figure A.2: Second order FF modulator topology with direct feedback path.

Following variations apply for the system architecture of fig. A.2:

δIC,max = 20 % (A.4)

δτ,max = 50 % (A.5)

δτp,max = 20 %. (A.6)

Table A.2 shows the results of the S-figure optimization.

Table A.2: Optimal parameters for the second order design example with
direct feedback using the S-figure optimization.

c1 c2 g d
MSA SQNRpeak

nom min nom min
1.731 0.513 0.024 1.11 0.798 0.722 65.1 dB 62.3 dB
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A.1.3 Second Order FF Modulator with Direct Feedback
Path and Coefficient Trimming

This example uses the same system architecture of fig. A.2. Following vari-
ations apply:

δIC,max = 5 % (A.7)

δτ,max = 50 % (A.8)

δτp,max = 20 %. (A.9)

Table A.3 shows the results of the S-figure optimization.

Table A.3: Optimal parameters for the second order design example with
direct feedback path and coefficient trimming using the S-figure
optimization.

c1 c2 g d
MSA SQNRpeak

nom min nom min
1.992 0.644 0.011 1.2 0.767 0.728 69.4 dB 68.2 dB
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A.1.4 Second Order FB Modulator with Direct Feedback
Path and STF control
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Figure A.3: Second order FB modulator topology for controlled STF peak-
ing.

Following variations apply for the system architecture of fig. A.3:

δIC,max = 5 % (A.10)

δτ,max = 50 % (A.11)

δτp,max = 20 %. (A.12)

Table A.4 shows the results of the S-figure optimization.

Table A.4: Optimal parameters for the second order FB design example
with direct feedback path and coefficient trimming using the
S-figure optimization. This modulator has a controlled STF
peaking below 2 dB.

c1 c2 g d
MSA SQNRpeak

nom min nom min
0.392 2.048 0.0183 1.203 0.774 0.72 65.6 dB 64.2 dB

In this example, the modulator is in a FB topology because the performance
requirements are extended with an extra specification to limit the out-of-
band STF peak to 2 dB:
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max
f
|STF (j2πf)| < 2 dB. (A.13)
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A.2 Third Order Designs

A.2.1 Third Order Modulator in Feedforward Topology
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Figure A.4: Second order FF modulator topology.

Following variations apply for the system architecture of fig. A.4:

δIC,max = 20 % (A.14)

δτ,max = 50 % (A.15)

δτp,max = 20 %. (A.16)

Table A.5 shows the results of the S-figure optimization.

Table A.5: Optimal parameters for the third order design example using the
S-figure optimization.

c1 c2 c3 g
MSA SQNRpeak

nom min nom min
0.828 0.181 0.402 0.536 0.82 0.71 60.7 dB 59 dB
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A.2.2 Third Order Modulator in Feedforward Topology
with Direct Feedback Path
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Figure A.5: Third order FF modulator topology with direct feedback path.

Following variations apply for the system architecture of fig. A.5:

δIC,max = 20 % (A.17)

δτ,max = 50 % (A.18)

δτp,max = 20 %. (A.19)

Table A.6 shows the results of the S-figure optimization.

Table A.6: Optimal parameters for the third order design example with di-
rect feedback using the S-figure optimization.

c1 c2 c3 g d
MSA SQNRpeak

nom min nom min
2.114 0.414 0.47 0.194 1.132 0.78 0.71 76 dB 74.1 dB
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A.2.3 Third Order FF Modulator with Direct Feedback
Path and Coefficient Trimming

This example uses the same system architecture of fig. A.5. Following vari-
ations apply:

δIC,max = 5 % (A.20)

δτ,max = 50 % (A.21)

δτp,max = 20 %. (A.22)

Table A.7 shows the results of the S-figure optimization.

Table A.7: Optimal parameters for the third order design example with di-
rect feedback path and coefficient trimming using the S-figure
optimization.

c1 c2 c3 g d
MSA SQNRpeak

nom min nom min
2.491 0.48 0.56 0.102 1.19 0.75 0.71 83.3 dB 82.2 dB
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A.2.4 Third Order Hybrid FF/FB Modulator with Direct
Feedback Path and STF control
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Figure A.6: Third order hybrid FF/FB modulator topology for controlled
STF peaking.

Following variations apply for the system architecture of fig. A.6:

δIC,max = 5 % (A.23)

δτ,max = 50 % (A.24)

δτp,max = 20 %. (A.25)

Table A.8 shows the results of the S-figure optimization.

Table A.8: Optimal parameters for the third order hybrid FF/FB design ex-
ample with direct feedback path and coefficient trimming using
the S-figure optimization. This modulator has a controlled STF
peaking below 2 dB.

c1 c2 c3 g d
MSA SQNRpeak

nom min nom min
0.373 0.113 2.075 0.098 1.13 0.78 0.75 68.3 dB 67 dB

142



A.2 Third Order Designs

In this example, the modulator is in a hybrid FF/FB topology because the
performance requirements are extended with an extra specification to limit
the out-of-band STF peak to 2 dB:

max
f
|STF (j2πf)| < 2 dB. (A.26)
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[16] del Ŕıo, R. and de la Rosa, J. M. and Pérez-Verdú, B. and
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