2,157 research outputs found

    AI and OR in management of operations: history and trends

    Get PDF
    The last decade has seen a considerable growth in the use of Artificial Intelligence (AI) for operations management with the aim of finding solutions to problems that are increasing in complexity and scale. This paper begins by setting the context for the survey through a historical perspective of OR and AI. An extensive survey of applications of AI techniques for operations management, covering a total of over 1200 papers published from 1995 to 2004 is then presented. The survey utilizes Elsevier's ScienceDirect database as a source. Hence, the survey may not cover all the relevant journals but includes a sufficiently wide range of publications to make it representative of the research in the field. The papers are categorized into four areas of operations management: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Each of the four areas is categorized in terms of the AI techniques used: genetic algorithms, case-based reasoning, knowledge-based systems, fuzzy logic and hybrid techniques. The trends over the last decade are identified, discussed with respect to expected trends and directions for future work suggested

    Modeling and Solving Flow Shop Scheduling Problem Considering Worker Resource

    Get PDF
    In this paper, an uninterrupted hybrid flow scheduling problem is modeled under uncertainty conditions. Due to the uncertainty of processing time in workshops, fuzzy programming method has been used to control the parameters of processing time and preparation time. In the proposed model, there are several jobs that must be processed by machines and workers, respectively. The main purpose of the proposed model is to determine the correct sequence of operations and assign operations to each machine and each worker at each stage, so that the total completion time (Cmax) is minimized. Also this paper, fuzzy programming method is used for control unspecified parameter has been used from GAMS software to solve sample problems. The results of problem solving in small and medium dimensions show that with increasing uncertainty, the amount of processing time and consequently the completion time increases. Increases from the whole work. On the other hand, with the increase in the number of machines and workers in each stage due to the high efficiency of the machines, the completion time of all works has decreased. Innovations in this paper include uninterrupted hybrid flow storage scheduling with respect to fuzzy processing time and preparation time in addition to payment time. The allocation of workers and machines to jobs is another innovation of this article

    An Iterated Greedy Heuristic for Mixed No-Wait Flowshop Problems

    Full text link
    [EN] The mixed no-wait flowshop problem with both wait and no-wait constraints has many potential real-life applications. The problem can be regarded as a generalization of the traditional permutation flowshop and the no-wait flowshop. In this paper, we study, for the first time, this scheduling setting with makespan minimization. We first propose a mathematical model and then we design a speed-up makespan calculation procedure. By introducing a varying number of destructed jobs, a modified iterated greedy algorithm is proposed for the considered problem which consists of four components: 1) initialization solution construction; 2) destruction; 3) reconstruction; and 4) local search. To further improve the intensification and efficiency of the proposal, insertion is performed on some neighbor jobs of the best position in a sequence during the initialization, solution construction, and reconstruction phases. After calibrating parameters and components, the proposal is compared with five existing algorithms for similar problems on adapted Taillard benchmark instances. Experimental results show that the proposal always obtains the best performance among the compared methods.This work was supported in part by the National Natural Science Foundation of China under Grant 61572127 and 61272377, in part by the Key Research and Development Program in Jiangsu Province under Grant BE2015728, and in part by the Collaborative Innovation Center of Wireless Communications Technology. The work of R. Ruiz was supported in part by the Spanish Ministry of Economy and Competitiveness through the project "SCHEYARD-Optimization of Scheduling Problems in Container Yards" under Grant DPI2015-65895-R, and in part by the FEDER Funds.Wang, Y.; Li, X.; Ruiz García, R.; Sui, S. (2018). An Iterated Greedy Heuristic for Mixed No-Wait Flowshop Problems. IEEE Transactions on Cybernetics. 48(5):1553-1566. https://doi.org/10.1109/TCYB.2017.2707067S1553156648

    Algorithms for Scheduling Problems

    Get PDF
    This edited book presents new results in the area of algorithm development for different types of scheduling problems. In eleven chapters, algorithms for single machine problems, flow-shop and job-shop scheduling problems (including their hybrid (flexible) variants), the resource-constrained project scheduling problem, scheduling problems in complex manufacturing systems and supply chains, and workflow scheduling problems are given. The chapters address such subjects as insertion heuristics for energy-efficient scheduling, the re-scheduling of train traffic in real time, control algorithms for short-term scheduling in manufacturing systems, bi-objective optimization of tortilla production, scheduling problems with uncertain (interval) processing times, workflow scheduling for digital signal processor (DSP) clusters, and many more

    A memetic algorithm for minimizing the makespan in the Job Shop Scheduling problem

    Get PDF
    The Job Shop Scheduling Problem (JSP) is a combinatorial optimization problem cataloged as type NP-Hard. To solve this problem, several heuristics and metaheuristics have been used. In order to minimize the makespan, we propose a Memetic Algorithm (MA), which combines the exploration of the search space by a Genetic Algorithm (GA), and the exploitation of the solutions using a local search based on the neighborhood structure of Nowicki and Smutnicki. The genetic strategy uses an operation-based representation that allows generating feasible schedules, and a selection probability of the best individuals that are crossed using the JOX operator. The results of the implementation show that the algorithm is competitive with other approaches proposed in the literature

    Two-Stage Adaptive Memetic Algorithm with Surprisingly Popular Mechanism for Energy-Aware Distributed Hybrid Flow Shop Scheduling Problem with Sequence-Dependent Setup Time

    Get PDF
    This paper considers the impact of setup time in production scheduling and proposes energy-aware distributed hybrid flow shop scheduling problem with sequence-dependent setup time (EADHFSP-ST) that simultaneously optimizes the makespan and the energy consumption. We develop a mixed integer linear programming model to describe this problem and present a two-stage adaptive memetic algorithm (TAMA) with a surprisingly popular mechanism. First, a hybrid initialization strategy is designed based on the two optimization objectives to ensure the convergence and diversity of solutions. Second, multiple population co-evolutionary approaches are proposed for global search to escape from traditional cross-randomization and to balance exploration and exploitation. Third, considering that the memetic algorithm (MA) framework is less efficient due to the randomness in the selection of local search operators, TAMA is proposed to balance the local and global searches. The first stage accumulates more experience for updating the surprisingly popular algorithm (SPA) model to guide the second stage operator selection and ensures population convergence. The second stage gets rid of local optimization and designs an elite archive to ensure population diversity. Fourth, five problem-specific operators are designed, and non-critical path deceleration and right-shift strategies are designed for energy efficiency. Finally, to evaluate the performance of the proposed algorithm, multiple experiments are performed on a benchmark with 45 instances. The experimental results show that the proposed TAMA can solve the problem effectively

    Recent Research Trends in Genetic Algorithm Based Flexible Job Shop Scheduling Problems

    Get PDF
    Flexible Job Shop Scheduling Problem (FJSSP) is an extension of the classical Job Shop Scheduling Problem (JSSP). The FJSSP is known to be NP-hard problem with regard to optimization and it is very difficult to find reasonably accurate solutions of the problem instances in a rational time. Extensive research has been carried out in this area especially over the span of the last 20 years in which the hybrid approaches involving Genetic Algorithm (GA) have gained the most popularity. Keeping in view this aspect, this article presents a comprehensive literature review of the FJSSPs solved using the GA. The survey is further extended by the inclusion of the hybrid GA (hGA) techniques used in the solution of the problem. This review will give readers an insight into use of certain parameters in their future research along with future research directions

    The Distributed and Assembly Scheduling Problem

    Full text link
    Tesis por compendio[EN] Nowadays, manufacturing systems meet different new global challenges and the existence of a collaborative manufacturing environment is essential to face with. Distributed manufacturing and assembly systems are two manufacturing systems which allow industries to deal with some of these challenges. This thesis studies a production problem in which both distributed manufacturing and assembly systems are considered. Although distributed manufacturing systems and assembly systems are well-known problems and have been extensively studied in the literature, to the best of our knowledge, considering these two systems together as in this thesis is the first effort in the literature. Due to the importance of scheduling optimization on production performance, some different ways to optimize the scheduling of the considered problem are discussed in this thesis. The studied scheduling setting consists of two stages: A production and an assembly stage. Various production centers make the first stage. Each of these centers consists of several machines which are dedicated to manufacture jobs. A single assembly machine is considered for the second stage. The produced jobs are assembled on the assembly machine to form final products through a defined assembly program. In this thesis, two different problems regarding two different production configurations for the production centers of the first stage are considered. The first configuration is a flowshop that results in what we refer to as the Distributed Assembly Permutation Flowshop Scheduling Problem (DAPFSP). The second problem is referred to as the Distributed Parallel Machine and Assembly Scheduling Problem (DPMASP), where unrelated parallel machines configure the production centers. Makespan minimization of the product on the assembly machine located in the assembly stage is considered as the objective function for all considered problems. In this thesis some extensions are considered for the studied problems so as to bring them as close as possible to the reality of production shops. In the DAPFSP, sequence dependent setup times are added for machines in both production and assembly stages. Similarly, in the DPMASP, due to technological constraints, some defined jobs can be processed only in certain factories. Mathematical models are presented as an exact solution for some of the presented problems and two state-of-art solvers, CPLEX and GUROBI are used to solve them. Since these solvers are not able to solve large sized problems, we design and develop heuristic methods to solve the problems. In addition to heuristics, some metaheuristics are also designed and proposed to improve the solutions obtained by heuristics. Finally, for each proposed problem, the performance of the proposed solution methods is compared through extensive computational and comprehensive ANOVA statistical analysis.[ES] Los sistemas de producción se enfrentan a retos globales en los que el concepto de fabricación colaborativa es crucial para poder tener éxito en el entorno cambiante y complejo en el que nos encontramos. Una característica de los sistemas productivos que puede ayudar a lograr este objetivo consiste en disponer de una red de fabricación distribuida en la que los productos se fabriquen en localizaciones diferentes y se vayan ensamblando para obtener el producto final. En estos casos, disponer de modelos y herramientas para mejorar el rendimiento de sistemas de producción distribuidos con ensamblajes es una manera de asegurar la eficiencia de los mismos. En esta tesis doctoral se estudian los sistemas de fabricación distribuidos con operaciones de ensamblaje. Los sistemas distribuidos y los sistemas con operaciones de ensamblaje han sido estudiados por separado en la literatura. De hecho, no se han encontrado estudios de sistemas con ambas características consideradas de forma conjunta. Dada la complejidad de considerar conjuntamente ambos tipos de sistemas a la hora de realizar la programación de la producción en los mismos, se ha abordado su estudio considerando un modelo bietápico en la que en la primera etapa se consideran las operaciones de producción y en la segunda se plantean las operaciones de ensamblaje. Dependiendo de la configuración de la primera etapa se han estudiado dos variantes. En la primera variante se asume que la etapa de producción está compuesta por sendos sistemas tipo flowshop en los que se fabrican los componentes que se ensamblan en la segunda etapa (Distributed Assembly Permutation Flowshop Scheduling Problem o DAPFSP). En la segunda variante se considera un sistema de máquinas en paralelo no relacionadas (Distributed Parallel Machine and Assembly Scheduling Problem o DPMASP). En ambas variantes se optimiza la fecha de finalización del último trabajo secuenciado (Cmax) y se contempla la posibilidad que existan tiempos de cambio (setup) dependientes de la secuencia de trabajos fabricada. También, en el caso DPMASP se estudia la posibilidad de prohibir o no el uso de determinadas máquinas de la etapa de producción. Se han desarrollado modelos matemáticos para resolver algunas de las variantes anteriores. Estos modelos se han resuelto mediante los programas CPLEX y GUROBI en aquellos casos que ha sido posible. Para las instancias en los que el modelo matemático no ofrecía una solución al problema se han desarrollado heurísticas y metaheurísticas para ello. Todos los procedimientos anteriores han sido estudiados para determinar el rendimiento de los diferentes algoritmos planteados. Para ello se ha realizado un exhaustivo estudio computacional en el que se han aplicado técnicas ANOVA. Los resultados obtenidos en la tesis permiten avanzar en la comprensión del comportamiento de los sistemas productivos distribuidos con ensamblajes, definiendo algoritmos que permiten obtener buenas soluciones a este tipo de problemas tan complejos que aparecen tantas veces en la realidad industrial.[CA] Els sistemes de producció s'enfronten a reptes globals en què el concepte de fabricació col.laborativa és crucial per a poder tindre èxit en l'entorn canviant i complex en què ens trobem. Una característica dels sistemes productius que pot ajudar a aconseguir este objectiu consistix a disposar d'una xarxa de fabricació distribuïda en la que els productes es fabriquen en localitzacions diferents i es vagen acoblant per a obtindre el producte final. En estos casos, disposar de models i ferramentes per a millorar el rendiment de sistemes de producció distribuïts amb acoblaments és una manera d'assegurar l'eficiència dels mateixos. En esta tesi doctoral s'estudien els sistemes de fabricació distribuïts amb operacions d'acoblament. Els sistemes distribuïts i els sistemes amb operacions d'acoblament han sigut estudiats per separat en la literatura però, en allò que es coneix, no s'han trobat estudis de sistemes amb ambdós característiques conjuntament. Donada la complexitat de considerar conjuntament ambdós tipus de sistemes a l'hora de realitzar la programació de la producció en els mateixos, s'ha abordat el seu estudi considerant un model bietàpic en la que en la primera etapa es consideren les operacions de producció i en la segona es plantegen les operacions d'acoblament. Depenent de la configuració de la primera etapa s'han estudiat dos variants. En la primera variant s'assumix que l'etapa de producció està composta per sengles sistemes tipus flowshop en els que es fabriquen els components que s'acoblen en la segona etapa (Distributed Assembly Permutation Flowshop Scheduling Problem o DAPFSP). En la segona variant es considera un sistema de màquines en paral.lel no relacionades (Distributed Parallel Machine and Assembly Scheduling Problem o DPMASP). En ambdós variants s'optimitza la data de finalització de l'últim treball seqüenciat (Cmax) i es contempla la possibilitat que existisquen temps de canvi (setup) dependents de la seqüència de treballs fabricada. També, en el cas DPMASP s'estudia la possibilitat de prohibir o no l'ús de determinades màquines de l'etapa de producció. S'han desenvolupat models matemàtics per a resoldre algunes de les variants anteriors. Estos models s'han resolt per mitjà dels programes CPLEX i GUROBI en aquells casos que ha sigut possible. Per a les instàncies en què el model matemàtic no oferia una solució al problema s'han desenrotllat heurístiques i metaheurísticas per a això. Tots els procediments anteriors han sigut estudiats per a determinar el rendiment dels diferents algoritmes plantejats. Per a això s'ha realitzat un exhaustiu estudi computacional en què s'han aplicat tècniques ANOVA. Els resultats obtinguts en la tesi permeten avançar en la comprensió del comportament dels sistemes productius distribuïts amb acoblaments, definint algoritmes que permeten obtindre bones solucions a este tipus de problemes tan complexos que apareixen tantes vegades en la realitat industrial.Hatami, S. (2016). The Distributed and Assembly Scheduling Problem [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/64072TESISCompendi

    Platooning-based control techniques in transportation and logistic

    Get PDF
    This thesis explores the integration of autonomous vehicle technology with smart manufacturing systems. At first, essential control methods for autonomous vehicles, including Linear Matrix Inequalities (LMIs), Linear Quadratic Regulation (LQR)/Linear Quadratic Tracking (LQT), PID controllers, and dynamic control logic via flowcharts, are examined. These techniques are adapted for platooning to enhance coordination, safety, and efficiency within vehicle fleets, and various scenarios are analyzed to confirm their effectiveness in achieving predetermined performance goals such as inter-vehicle distance and fuel consumption. A first approach on simplified hardware, yet realistic to model the vehicle's behavior, is treated to further prove the theoretical results. Subsequently, performance improvement in smart manufacturing systems (SMS) is treated. The focus is placed on offline and online scheduling techniques exploiting Mixed Integer Linear Programming (MILP) to model the shop floor and Model Predictive Control (MPC) to adapt scheduling to unforeseen events, in order to understand how optimization algorithms and decision-making frameworks can transform resource allocation and production processes, ultimately improving manufacturing efficiency. In the final part of the work, platooning techniques are employed within SMS. Autonomous Guided Vehicles (AGVs) are reimagined as autonomous vehicles, grouping them within platoon formations according to different criteria, and controlled to avoid collisions while carrying out production orders. This strategic integration applies platooning principles to transform AGV logistics within the SMS. The impact of AGV platooning on key performance metrics, such as makespan, is devised, providing insights into optimizing manufacturing processes. Throughout this work, various research fields are examined, with intersecting future technologies from precise control in autonomous vehicles to the coordination of manufacturing resources. This thesis provides a comprehensive view of how optimization and automation can reshape efficiency and productivity not only in the domain of autonomous vehicles but also in manufacturing
    corecore