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Flexible Job Shop Scheduling Problem (FJSSP) is an extension of the classical Job Shop Scheduling Problem (JSSP). The FJSSP
is known to be NP-hard problem with regard to optimization and it is very difficult to find reasonably accurate solutions of the
problem instances in a rational time. Extensive research has been carried out in this area especially over the span of the last 20 years
in which the hybrid approaches involving Genetic Algorithm (GA) have gained the most popularity. Keeping in view this aspect,
this article presents a comprehensive literature review of the FJSSPs solved using the GA. The survey is further extended by the
inclusion of the hybrid GA (hGA) techniques used in the solution of the problem. This review will give readers an insight into use
of certain parameters in their future research along with future research directions.

1. Introduction

The share of manufacturing sector in the Gross Domestic
Product (GDP) of the world is up to 18% thus making it
extremely important to the worldwide economy [1]. Efficient
manufacturing leads to improvement in profits,market share,
and ultimately a competitive advantage in new product
launch time [2]. Manufacturing needs to have efficient and
optimal operations of the facility which were later termed as
“scheduling.” Owing to the importance of the subject, huge
amount of research has been conducted to formulate tech-
niques, separately for each shop type, which can effectively
handle the complex problem of scheduling.

Genetic Algorithmhas proven to be one of themost effec-
tive evolutionary techniques for solving Job Shop Scheduling
Problem (JSSP) and consequently Flexible Job Shop Schedul-
ing Problem (FJSSP). Çaliş and Bulkan [3] pointed out that

26.4% of the research studies for solution of JSSP have been
conducted using GA. This is the highest percentage of any
artificial intelligence based technique used for the solution of
the said problem which became motivation for this review
paper.

This paper critically analyzes the state-of-the-art Flexible
Job Shop Scheduling Problem (FJSSP) solution techniques
belonging to the GA class. In this review paper, Section 2
introduces the machine layouts and a classification scheme.
FJSSP is then presented along with formulation and com-
plexity along with scheduling algorithms. Section 3 gives
an insight to the Genetic Algorithms (GA), basic elements,
and their adaptation for the solution of FJSSP. Section 4
presents the schematic review of literature for obtaining
solution of FJSSP with GA, advanced GA, and hybrid GA
(hGA) approaches. Section 5 provides analysis and discussion
and afterwards Section 6 presents the conclusion. Notations
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Figure 1: Classification of scheduling problem.

are widely used in this paper for clutter-free presentation
of literature, which have been summarized in Notations. All
other abbreviations are explained in paper where they appear
for the very first time.

2. Manufacturing Scheduling

2.1. Scheduling. Scheduling refers to the allocation of tasks
(e.g., jobs, parts, and operations) to resources (e.g., machines)
in such away that they can be processed and/ormanufactured
in an optimal manner [4]. The consumer wants to get the
product delivered at required time and hence scheduling
becomes a critical factor in meeting this demand [5] and
plays a vital role in the operation of any manufacturing
environment. The scheduling problem aims to formulate
a processing order that can achieve a desired objective in
an optimal manner which can be total time required for
completing all operations, maximum lateness, maximum
earliness, and so on. Therefore schedules can be generated
to attain various performance measures of the shop floor.
Scheduling can be of the following two types:

(i) Static: jobs arrive at an idle machine after a fixed time
interval.

(ii) Dynamic: jobs arrive in random manner.

Dynamic scheduling is considered a situation when any dis-
ruption occurs in themanufacturing environment in contrast
to the static scheduling. This may require necessary changes
in the schedule so that it can remain optimal. Such problems
are classified as job and/or recourse related [6]. Due to the
importance of scheduling in manufacturing environments,
handsome literature is published in this area. Some of the
salient works on scheduling in a general context are included
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Partial Flexible
Job Shop

Total Flexible
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Figure 2: Classification of shop layouts.

in references [7–12], whereas the classification of scheduling
problem is presented in Figure 1 [13].

2.2. Classification of Machine Layouts. Based upon the
requirement of manufacturing process and product require-
ments, the machine shops have been classified in various
layouts. Figure 2 presents a schematic classification of the
machine layout with emphasis on the Job Shop. The JSSP is a
classical combinatorial optimization problemwhich has been
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attracting research interest since 1950s [14, 15]. JSSP has the
following salient features:

(i) It deals with the sequencing of a number of operations
on fixed machines.

(ii) Every job can have a different processing time.
(iii) Each job must undergo a set of tasks performed in

a given manner on different machines in order to be
completed.

The FJSSP is a further extension of JSSP in which the opera-
tions can be performed on anymachinewhich can be selected
from a finite number of given set of machines in a flexible
manufacturing cell. Thus the problem is intricate in a sense
that it also involves machine assignment problem for each
operation and thus it is subdivided into following two parts:

(i) Routing, through which the jobs should be processed
on available set of machines

(ii) Sequencing, that is, the order inwhich the jobs should
be processed on the selected machines.

Thus there is inherent “flexibility” in the FJSSP in contrast
to the JSSP, which may be used as advantage for processing
various types of parts, both through routing and sequencing.
Flexibility has been introduced in the classical JSSP in some
of the following ways:

(i) The idea of FJSSP was first adapted by Brucker and
Schlie [16] as multipurpose machines equipped with
different tools.

(ii) Barnes and Chambers [17] argued that a JSSP can
be converted into FJSSP by incorporating multiple
instances of a single machine where a bottleneck
is encountered during the scheduling process. This
concept is sometimes called parallel machine FJSSP.

(iii) Najid et al. [18] argued that flexibility is brought in the
JSSP with the condition that onemachinemay be able
to perform more than one type of operation.

Kacem et al. [19] classify the FJSSPs into the following types:

(i) Total FJSSP (T-FJSSP): in this type, required opera-
tion can be performed on any of the available identical
machines in themachine cell; thus complete flexibility
has been achieved.

(ii) Partial FJSSP (P-FJSSP): in this type, some operations
can only be performed on specific machines and
remaining operations can be executed on any of the
machines in the machine cell.

According to Chan et al. [20], there are the following two
types of FJSSP:

(i) Type I FJSSP: in this type, jobs under considera-
tion have different operation sequences and iden-
tical/nonidentical machines for each operation. In
this problem, the interest is to find the operation’s
sequence and job processing order.

(ii) Type II FJSSP: in this type, jobs under consideration
have fixed operation sequences, but different identical
or nonidentical machines for each operation. In this
problem, the interest is to arrange jobs on machines
according to their operation sequences.

2.3. Optimization. A schedule for any manufacturing prod-
uct has to be optimum in order to obtain effectiveness. Opti-
mization refers to obtaining the best solution in a solution
space with respect to some predefined criteria [21, 22]. The
criterion to be minimized or maximized is called objective
function. For constrained optimization, the objective func-
tion is to be optimized keeping in view the constraints which
govern the system. When viewed from a manufacturing
system perspective, optimized process produces maximum
outputwithminimum input, or vice versa, as desired. Figure 3
presents a flow of a generic optimization process.

A general optimization problem can be defined as follows:

Minimize/maximize (objective function) 𝑧 = 𝑓 (𝑥)

Subject to (constraints) 𝑔𝑖 (𝑥) ≤ 0

ℎ𝑖 (𝑥) = 0

𝑥 ≥ 0;

𝑖 = 1, 2, . . . , 𝑛,

(1)

where 𝑥 is the decision variable and 𝑔 and ℎ are inequality
and equality constraints, respectively. The model presented
above is for single objective optimization. The multiobjective
optimization problem is formulated as follows:

Minimize/maximize (objective function) 𝑧 = 𝑓 (𝑥) = (𝑓1 (𝑥) , 𝑓2 (𝑥) , . . . , 𝑓𝑘 (𝑥))

Subject to (constraints) 𝑔𝑖 (𝑥) ≤ 0; 𝑖 = 1, . . . , 𝑝

ℎ𝑗 (𝑥) = 0; 𝑗 = 1, . . . , 𝑞.

(2)

The function 𝑓(𝑥) is a 𝑘-dimensional vector of objective
functions, where 𝑘 is the total number of objective functions
(𝑘 ≥ 2), 𝑝 is the number of inequality constraints, and 𝑞 is the
number of equality constraints.

Multiobjective optimization is more complex than the
single objective optimization due to the fact that simulta-
neous minimization of two or more functions can lead to a
situation where decreasing one function further may cause
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Figure 3: A generic optimization process.

the other function to increase. To address this optimization
issue, the concept of Pareto optimality [23] is used. A
Pareto optimal point is such a point in a feasible design
space where further decreasing any function beyond that
point will result in the increase of other functions. Another
approach for multiobjective optimization is to assign weights
to different objects and formulate a weighted single objective
optimization problem.

2.4. FJSSP Formulation and Complexity. The classical JSSP
can be formulated as follows [209]:

(i) A set of 𝑛 jobs are available to be scheduled on 𝑚
machines.

(ii) The set of jobs is denoted by 𝐽 (𝐽 = 𝐽1, 𝐽2, . . . , 𝐽𝑛).
(iii) The set of machines is denoted by 𝑀 (𝑀 =

𝑀1,𝑀2, . . . ,𝑀𝑚).
(iv) Each job 𝑖 consists of a sequence of 𝑛𝑖 operations.
(v) Each operation𝑂𝑖,𝑗 of job 𝑖 has to be processed on one

machine,𝑀𝑘 out of the given set of machines,𝑀 (𝑖 =
1, 2, . . . , 𝑛; 𝑗 = 1, 2, . . . , 𝑛𝑖).

(vi) The processing time for each operation 𝑂𝑖,𝑗 is prede-
termined as 𝑡𝑖,𝑗,𝑘 on each machine.

For FJSSP the following additional parameters are added
[210]:

(i) Each operation can be processed on one𝑀𝑘 out of the
available machines such that 𝑀𝑘 ∈ 𝑀𝑖,𝑗 and 𝑀𝑖,𝑗 ⊆
𝑀.

(ii) For P-FJSSP,𝑀𝑖,𝑗 ⊂ 𝑀.
(iii) For T-FJSSP,𝑀𝑖,𝑗 = 𝑀.

It is generally assumed for FJSSP that all machines and jobs
are available at time 𝑡 = 0 and one machine can only process
one operation at a time such that jobs are independent from
each other; thus no priority restriction exists.

Initially, the Job Shop Scheduling Problem (JSSP) either
was not solvable or could take excessive time period for
obtaining solution. In context of computational complexity,
the JSSP is NP-hard [211] and it belongs to one of the most
difficult problems in this class [212]. This is due to the fact
that, in a JSSP, every job can have a different and separate
processing time; thus the complexity of the problem grows
with the number of jobs.

Framinan et al. [12] have shown that it will take 1.68
billion years to evaluate all possible solutions for 30 jobs

to be scheduled on a single machine with a fast running
computer at 5 Picohertz (PHz). Similarly in a state-of-the-art
survey of JSSP complexity, Brucker et al. [213] pointed out
that JSSP can go up to binary NP-hard class. As FJSSP is a
further extension of the classical JSSP, it is further complex.
A schedule for JSSP with 𝑛 jobs and 𝑚 machines will have
(𝑛!)𝑚 possible sequences [214]. Therefore an exact solution to
these problems cannot be found in a reasonable time keeping
in view the manufacturing priorities. The computation time
increases exponentially for NP-hard problems with a linear
increase in size of problems [215].

2.5. Scheduling Algorithms. According to Cormen et al. [216],
algorithms are a sequence of activities which can transform
an input value to a desired output, hence serving as a tool
for solving a specified computational problems. The origins
of algorithms can be traced back to 8th century when Al-
Khwarizmi defined steps for solution of quadratic equations
[217]. With the immense increase in the computational
power, more and more complex calculations can now be
performed to address various issues and thus more advanced
algorithms have been developed. Figure 4 presents a classifi-
cation for the scheduling algorithms.This classification is not
exhaustive and only contains a broad view of the algorithm
classes.

Exact algorithms guarantee that there will be no better
solution after a problem has been solved. However, as
mentioned earlier, the complexity of the FJSSP is of extreme
nature and there is very limited scope for the use of exact
algorithms. In the modern era, approximate algorithms have
gained extreme popularity due to the fact that problems have
become more complex and the need to reach the solution in
a reasonable time has become a prominent research area.

3. Genetic Algorithms

GA belongs to the evolutionary algorithms class and its
development was inspired through the process of natural
genetic evolution. The original work on natural evolution
was contributed by Darwin [218] in which he claimed that
natural populations evolve according to the process of natural
selection on the basis of “survival of the fittest” rule. Initial
work on GA was conducted by Holland [219] in 1975, which
was then extended majorly by Goldberg [220].

Giraffes use their long necks to eat the leaves at higher
parts of the plants. Thus as per the rule of the survival of the
fittest, giraffes have evolved with generations having longer
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Figure 4: Scheduling algorithms.

necks. The GAs can be used to mimic this natural process
of genetic evolution on the principal of survival of the fittest
to obtain solutions to the engineering problems. The beauty
of GA lies in its adaptive nature; that is, it can change/fit
itself according to the changing environment. Next section
explains basic working of GA.

3.1. Basic Elements of GA. The basic working element of GA
is gene, a group of which constitutes a chromosome. The
chromosomes contain the current state data coded in the
form of binary digits 0 or 1 which is distinctively stored
in a gene. This structure represents a candidate solution to
the problem in consideration. GA works on these coded
forms of the data instead of working on actual data elements.
The chromosomes combine to form a population which in
turn formulates a generation. GA is an iterative evolutionary
process which formulates a generation after each iteration.
Figure 5 represents the schematic representation of the
relation of these elements.

3.2. Genetic Operators. Each generation is subjected to the
genetic operators to obtain a new generation. The new gen-
eration is theoretically better than the previous generation,
as the new generation is generated after implementing the
principle of “survival of the fittest” and thus it replaces
the older generation. During this process, either the whole
population can be changed or only the worst chromosome
can be replaced [221]. Obviously, these are two extreme
methods and several strategies for new population can be
formulated.

The iterations are guided in a way that they satisfy a
fitness criterion and they are repeated to obtain an acceptable
generation. The genetic operators are used to bring in the

beauty of randomization in the algorithm. Standard GA
operators are presented in the following.

3.2.1. Selection. Selection operator is used to select chromo-
somes in a generation based upon fitness. The chromosomes
satisfying the fitness criteria are likely to be selected in each
newer generation. Generally used selection criteria are as
follows:

(i) Roulette wheel selection: the selection probability of
a chromosome is directly proportional to its fitness as
assessed by the fitness criteria. Thus a chromosome
with higher fitness will have more probability to be
selected; however, lower fitness chromosomes may
also be selected.

(ii) Rank based fitness assignment: thismethod associates
relative fitness between individual chromosomes,
hence preventing a generation from containing an all-
fit chromosome structure.Themethod is mainly used
to maintain diversity in the population.

(iii) Tournament selection: a set of chromosomes are
selected randomly and then the fittest chromosomes
are selected for further operation. This method is
completely random.

(iv) Elitism: the crux of this method is that it maintains
a fixed number of fittest chromosomes and the rest
of the population is generated by using any of the
preferred selection methods. Thus this method not
only ensures that the best solutions remain in the
population, but also ensures the diversification of the
population by selecting chromosomes from the entire
solution space.
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3.2.2. Crossover. The crossover operator is applied on the
genes of two parent chromosomes to produce two offsprings
which contain distinctiveness of the parent chromosomes.
These offsprings have more probability of survival than their
parents as they are fit as compared to their parents. Consider
two parent chromosomes having 4 genes each. Crossover can
be applied to these chromosomes at third gene (at pointed
arrows) to obtain two offsprings as presented in Figure 6.This
technique is known as single-point crossover. Manymodified
crossover techniques have been proposed in literature which
will be identified in this review.

3.2.3. Mutation. Mutation operator is applied on a single
chromosome for the purpose of changing a gene at its
respective location. The gene 1011 can be mutated as 1111, as
the gene at location 2 is flipped from 0 to 1. The mutation
operator is used to change some information in a selected
chromosome or diversify the solution space for further
exploration. Many modified mutation techniques have been
proposed in literature which will be identified in this review.

3.3. A Simple GA. First of all, the problem is coded in
such a way that it can be represented in the form of
binary numbers in a chromosome. As GA requires an initial
candidate solution for its initiation, the initial solution is
generated by randomization or diversification.The solution is
then subjected to genetic operators (selection, crossover, and
mutation) until the termination criteria are met. Algorithm 1
represents a typical GA.

3.4. General Approaches for FJSSP Solution Using GA. Keep-
ing in view the combinatorial nature of the FJSSP, evolution-
ary algorithms have proven to be highly effective in providing
acceptable solutions. Mesghouni et al. [222] were the first to
useGA for the solution of FJSSP by proposing parallel job and
parallel machine representation. In literature, the approaches
for FJSSP solution can be classified as follows:

(i) Hierarchical approach: this approach aims to solve
the FJSSP by decomposing into two parts and solving
them separately according to its structure, that is,
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Start
Encode initial solutions in chromosomes
Randomly generate an initial population of chromosomes
Compute fitness for each chromosome in the population
Repeat the following until number of offsprings <= number of chromosomes,

(i) Select a pair of parent chromosomes using selection method
(ii) Crossover the selected pair with the crossover probability at randomly chosen point to form two offsprings
(iii) Mutate the offsprings with mutation probability at all locations

Obtain new set of chromosomes
Replace the current population with new population using replacement strategy
Compute fitness
Generate new population until the fitness criteria is met

End

Algorithm 1: A simple GA.

machine selection problem and operation sequencing
problem. Examples include the classical work of
Brandimarte [223].

(ii) Integrated approach: this approach solves the two
subproblems of FJSSP simultaneously instead of deal-
ing with them in a separate way. Examples include
state-of-the-art works of Dauzère-Pérès and Paulli
[224], Hurink et al. [225], and Mastrolilli and Gam-
bardella [226].

The scheduling problem cannot be solved without efficient
solution aids due its difficult nature. Therefore, scheduling
modules/systems have been designed to handle the problem.
These types of systems help in performing experiments and
also prove very helpful in debugging and validation of the
scheduling algorithm. A modular and schematic represen-
tation of such scheduling system architecture with GA is
presented in Figure 7.

4. FJSSPs Involving GA

Many different approaches have been applied to solve the
problem due to its difficult nature. Some of the very recent
approaches include biogeography based optimization [227],
firefly algorithm [228], heuristics [229], invasive weed opti-
mization [230], and differential evolution [231]. However, GA
remains the most used algorithm for the FJSSP [3, 232]. This
section presents the literature survey of the FJSSP solved
using GA. First the methodology and scope are defined and
then the literature survey is presented in following three
areas:

(i) FJSSP solved using only GA and NSGA
(ii) FJSSP solved using advanced forms of GA
(iii) FJSSP solved using hGA.

4.1. Methodology and Scope. For the purpose of literature
review, databases of Elsevier, Springer, Taylor and Francis,
IEEE, and Hindawi are searched with the phrases “Flexible
Job Shop Scheduling” and “Genetic Algorithm”. Both con-
ference and journal papers have been reviewed; however,

emphasis has been laid on the journal publications. Book
sections, thesis, and technical reports have not been included.
Thepublications occurring after 2001 have been considered in
this review. Data has been collected manually from selected
publications using EndNote�.

4.2. Available Reviews. JSSP is a classical optimization prob-
lem, so the reviews of this problem can be traced back to
1966 [214].However, the reviewpapers aiming at the survey of
FJSSP have appeared after 2000. Some of the salient features
of reviews are outlined below.

(i) Gen and Lin [233] have presented the survey ofmulti-
objective evolutionary algorithms for JSSP. They have
reviewed FJSSP in this paper along with other shop
layouts and identified various evolutionary strategies
for achieving the solution of the said problem.

(ii) Vincent and Durai [234] have presented a survey
of optimization techniques for multiobjective FJSSP.
They have compared five algorithms and their perfor-
mance results have been summarized.

(iii) Çaliş and Bulkan [3] have reviewed the artificial
intelligence based approaches for JSSP.They have also
included some instances of FJSSP in their survey.

(iv) Chaudhry and Khan [232] have presented a survey
on all available solution strategies for FJSSP. They
have segregated the literature based upon the solution
techniques and provided insight to the research direc-
tions in FJSSP.

(v) Genova et al. [210] have also presented the solution
approaches for multiobjective FJSSP.

It can be concluded from the data presented above that there
is a need to assess the application and implementation of
GA based approaches as they have not been addressed in a
separate manner.

4.3. Objective Functions of FJSSP. The aim of solving the
FJSSP is to satisfy a predefined performance criterion in
order to obtain an optimal schedule. Therefore the FJSSP
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is essentially an optimization problem with a cost function
which is required to be either minimized or maximized.
Several optimization criteria have been formulated as a
result and researchers have carried out single objective and
multiobjective optimization with these criteria.

Table 1 presents a summary of commonly used objective
functions in FJSSP along with their impact and applicability
with respect to the production environment. Obviously, this
list is not exhaustive and many other objective functions can
be found in the literature.

4.4. Benchmark Problems. Anumber of benchmark problems
have been formulated for FJSSP in order to compare the
performance of new scheduling algorithms.The validation of
a newly developed scheduling algorithm is done by the stated
comparison. Various benchmark problems/data sets for
FJSSP have been published. However this article reviews the

benchmark data published by Fisher and Thompson [235],
Lawrence [236], Tillard [237], Brandimarte [223], Hurink et
al. [225], Lee and DiCesare [238], Barnes and Chambers [17],
Dauzère-Pérès and Paulli [224], Kacem et al. [19, 133], and
Fattahi et al. [239]. A detailed benchmark instances data has
been presented by Dennis and Geiger [240].

4.5. FJSSPwithGAandNSGA. GAhas been used for solution
of JSSP for above thirty years now; for example, Lawrence
[241] has used GA for the solution of JSSP in 1985. However,
the implementations of GA in FJSSP started after 1990 when
Brucker and Schlie [16] presented their study in this area.
Since then, there has been an immense increase in the
research interest in this area. Table 2 presents the year-wise
literature review. The single objective functions solved using
GA have been included. Furthermore, the algorithms for
multiobjective optimization are also included in this section.
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Table 1: Commonly used FJSSP objective functions.

Measure Symbol Formula Meaning Impact/applicability

Makespan 𝐶max
max
1≤𝑗≤𝑛

𝐶𝑗 The time taken to complete all jobs Minimizing makespan will directly
minimize the production cost

Mean completion time 𝐶
∑𝑛𝑗=1 𝐶𝑗
𝑛

Average time required for completion
of a single job

Minimizing this will directly reduce
the production cost

Maximum Flowtime 𝐹𝑗 max
1≤𝑗≤𝑛

𝐹𝑗
The time that a job j spends in a shop
while the processing takes place or

while waiting

The longer the time a job spends on
the production floor, the bigger its cost

Total tardiness 𝑇
𝑛

∑
𝑗=1

𝑇𝑗
The positive difference between the
completion time and due date of all

jobs

Applicable when early jobs do not give
a reward but late jobs are penalized

Average tardiness 𝑇
∑𝑛𝑗=1 𝑇𝑗
𝑛

Average difference between the
completion time and due date of a

single job

Applicable when overall production is
required to be completed in a

stipulated time

Total weighted tardiness 𝑇wt
𝑛

∑
𝑖=1

𝛼𝑖𝑇𝑖
Sum of weighted difference between
the completion time and due date of a

job

Applicable when some jobs are more
important than others

Maximum lateness 𝐿max
max
1≤𝑗≤𝑛

𝐿𝑗 The maximum slack of a job with
respect to its due date

Applicable when early jobs give a
reward

Number of tardy jobs 𝑛𝑇
𝑛

∑
𝑗=1

𝑈𝑗 Number of jobs that are late Directly affects the production cost
and machine availability

Total workload of machines 𝑊𝑇
𝑛

∑
𝑗=1

𝑊𝑗 The total working time on all machines Ensures maximum utilization of
machines

These problems are primarily solved with Nondominated
Sorting Genetic Algorithm (NSGA) and similar approaches.

4.6. FJSSP with Advanced Forms of GA. With the advance-
ment in computing power and artificial intelligence tech-
niques, various advances have been made in the original GA
by incorporation of innovative ideas, majorly learning based
evolution. Table 3 presents the year-wise literature in this area.

4.7. FJSSP with hGA. Although better results have been
obtained with the techniques presented in Section 4.6,
other standalone optimization techniques have also been
proposed for the solution of FJSSP. However, researchers
have amalgamated some standalone techniques with GA to
obtain better solution times and results. These techniques
have primarily been used to further improve the solution of
a stated GA iteration before starting the new iteration. In this
way, optimum solution is reached in amore effective manner.
Table 4 presents year-wise literature in this class.

5. Analysis and Discussion

As obvious from the data presented in Section 4, FJSSP is an
important research area which is highly published and which
has been attended to with continuity over the last twenty
years. This is due to the fact that the exact solution of this
optimization problem has not been found yet and efforts are
still being made to attain good solutions in a reasonable time
and with reasonable computational resources.

Wehave reviewed a total of 190 research articles published
from 2001 to December, 2017. These articles were narrowed

down from a total of 384 articles found on the FJSSP. The
articles have strictly been selected if they are on optimization
of FJSSP and solved using a variant of GA. Furthermore,
data also depicts the use of various types of GA operators
(crossover, mutation, and selection) used by the researchers.
The following facts have been revealed by this survey.

5.1. Source-Wise Distribution. Source-wise distribution of
this survey is presented in Table 5. We have emphasized the
number of journal articles over conference publications. It is
evident from Figure 8 presenting the patch-wise distribution
that 41% articles have been collected from 2009 to 2012
while 38% articles have been collected from 2013 to 2017.
The combined percentage of articles published during years
2009–2017 comes out to be 79% of the total published
research. Thus, a major chunk has been published in the last
seven years.

5.2. Year-Wise Distribution. Year-wise distribution of these
articles (journal and conference) is presented in Figure 9.
There has been an increasing trend in the publications in this
area from 2009 to 2012 while a constant and healthy trend has
been observed in years 2013–2017.

5.3. Most Published Journals. The journals covering the
subject of FJSSP are presented in Table 6. A total of 113
journals have given coverage to FJSSP related articles, while
the journals publishing more than 2 papers are presented
here. The International Journal of Production Research has
published most research articles in this area.
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Table 5: Distribution of article types.

Article type Quantity
Journal article 108
Conference paper 64
Conference proceedings 18
Total 190

Table 6: Paper distribution in journals.

Journal name Number of
publications

International Journal of Production Research 13
Computers & Operations Research 6
International Journal of Advanced Manufacturing
Technology 5

Expert Systems with Applications 5
Journal of Intelligent Manufacturing 5
Computers & Industrial Engineering 4
International Journal of Production Economics 3

5.4. Country-Wise Publication Data. Figure 10 presents
country-wise publication data. A total of 184 countries have
contributed in this area, out of which China has published
43.53% of publications while Iran, France, and Japan have
published 11.18%, 10.59%, and 7.06% publications, respec-
tively. Other notable countries are India, Turkey, and Taiwan.

5.5. Techniques Used for FJSSP. There are 78 different tech-
nique combinations used in the selected papers, out of
which only 10 techniques constitute 119 papers (62.63%).
A distribution of techniques having at least 3 publications
is presented in Table 7. It is evident that 70 publications
have used GA as a sole technique for solution of FJSSP and
GA + TS is the most used hybrid technique. A group-wise
division of the whole techniques in Table 8 shows that hybrid
techniques constitute a 37.5% of our study, while pure GA
based publications amount to 39.5%. It is also evident that
GAhas been hybridizedmajorly with local search approaches
like TS, SA, and VNS. This technique improves the initial
solution of GA routine. There is a need to explore the pos-
sibility of hybridizing various other standalone optimization
algorithms with GA.

5.6. Most Used Objective Functions. A total of 62 objective
functions have been optimized in single/multiobjective man-
ner. Table 9 summarizes the occurrences and percentages
of the objective functions giving at least 02 occurrences. It
is evident that makespan is the most sought after objective.
Figure 11 shows that 46 different multiobjective functions
have been addressed in contrast with 13 different single
objective functions.

Table 10 indicates that makespan has been addressed
the most as a single objective function, while makespan,
workload of most loaded machine, and total workload of
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Table 7: Algorithms used for FJSSP having at least 3-publication
count.

Algorithm details Publication count Percentage
GA 70 54.69
GA + TS 13 10.16
NSGA-II 11 8.59
GA + local search 10 7.81
GA + heuristic 5 3.91
GA + SA 5 3.91
GA + VNS 5 3.91
Adaptive GA 3 2.34
GA + PSO 3 2.34
GA with learning 3 2.34

Table 8: Group-wise publication count.

Group Publication count Percentage
GA 79 39.5
Hybrid 75 37.5
Advanced GA 31 15.5
NSGA 15 7.5

machines have been addressed the most as a multiobjective
function.
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Table 9: Most addressed objective functions.

Objective function Number of
occurrences Percentage

Makespan 162 71.37
Total workload of
machines 32 14.10

Workload of most
loaded machine 14 6.17

Total tardiness 7 3.08
Max lateness 2 0.88
Mean flow time 2 0.88
Mean tardiness 2 0.88
Min of fuzzy
makespan 2 0.88

Tardiness 2 0.88
Weighted tardiness 2 0.88

5.7. Most Benchmark Problems Attempted. The benchmark
problems attempted the most are tabulated in Figure 12.
The benchmark problems have been addressed 262 times.
It is pertinent to mention here that there is a tendency
in literature, especially conference papers, to attempt using
the selected data sets. Thus if an author has attempted to
solve only one of the ten problems of Brandimarte, we have

Table 10: Occurrences of objective functions.

Objective functions Nature Occurrences
Makespan Single 92
Makespan, workload of most
loaded machine, total workload
of machines

Multi 28

Total tardiness Single 4
Makespan, production costs Multi 4
Makespan, total workload of
machines Multi 4

Min of fuzzy makespan Single 3

Table 11: Use of software tools for FJSSP solution.

Software tool Times used
C++ 32
MATLAB 28
JAVA 10
C# 7
Visual Basic 5
C 4
Visual C++ 3

counted it as one instance.The problems of Kacem have been
attempted the most with Brandimarte at the 2nd priority.The
industrial problems have been addressed only 5% of the time
and other than that the research has been inclined towards
algorithm development and comparison with benchmark
instances.

5.8. Software Tools Used. This survey shows that 25 software
tools have been used for the competent solution of FJSSP.
Table 11 depicts that C++ has been themost popular language
for programming the problem, with MATLAB being the
second most popular.

5.9. Special Cases of FJSSP. Although there aremany different
cases of FJSSP studied in literature, the following cases have
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Figure 12: Distribution of benchmark problems attempted.

Table 12: Distribution of mutation schemes.

Mutation type Times used
Swap mutation 60
Random 53
Inverse mutation 9
Assignment mutation 8
Insertion mutation 7
Precedence preserving shift mutation 7
Intelligent mutation 7
Allele mutation 5
Immigration mutation 4
Neighborhood mutation 4
Exchange mutation 3

received special attention as they have been studied more
often than others.

(i) Dual-resource constrained FJSSP, for example, [52,
162]

(ii) Sequence dependent setup times, for example, [88,
207]

(iii) Distributed and flexible JSSP, for example, [79, 99]

(iv) Just-In-Time dynamic scheduling, for example, [80,
83]

(v) Overlapping in operations, for example, [73, 98]

(vi) Random machine breakdowns, for example, [91, 184]

(vii) Dynamic FJSSP, for example, [94, 96].

5.10. GA Parameters. It is evident from the literature review
presented in Tables 2, 3, and 4 that various GA parameters
have been used to address the FJSSP. Table 12 presents the
major types of mutation and their frequency of use. Similarly,
Tables 13 and 14 present the frequency of crossover and
selection operators.

Table 13: Distribution of crossover schemes.

Crossover type Times used
Two-point crossover 49
Precedence preserving order-based crossover 44
Uniform crossover 20
Single-point crossover 15
One-point crossover 13
Multipoint crossover 12
Assignment crossover 7
Modified crossover 7
Random 7
Generalized order crossover 5
Order crossover 5
Partially mapped crossover 5
Enhanced order crossover 4
Improved precedence preserving order-based
crossover 5

Table 14: Distribution of selection schemes.

Selection type Times used
Tournament 50
Roulette wheel 33
Elitism 30
Fittest 9
Linear ranking 6
Random 6
Ranking selection 8

6. Conclusions

This paper has presented the review of GA based techniques
for solution of FJSSP with the help of literature published
in the conference and journal papers in the time frame of
2001–2017. The study presents a comprehensive insight into
the research trends in this area.
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The contribution of this work is twofold. Firstly, it
addresses the application of GA specifically to the FJSSP
and provides a startup for researchers who want to excel in
this area by providing recent research trends. Secondly, the
parameters that have been used the most are also identified
which can be mapped with references for advanced studies.
Furthermore, the special cases of FJSSP have also been
identified.

The study has surveyed the implementation of GA for
FJSSP in detail and the trends for use of GA parameters
have also been presented, along with the benchmark studies
conducted with each approach. It is obvious that GA is
the most popular technique for the solution of FJSSP. The
researchers have made no claim that any of the methods is
the best, but the trend is to compare the solutions with the
standard benchmarks. The study has pointed out the mostly
used parameters of GA in the literature. It was also observed
that hybrid GA is even more popular than the pure GA.
Furthermore, due to the known phenomena of local minima
trap in GA routine, local search techniques have mostly been
integrated with the GA. Consequently, there is a need to
explore options for integration of more advanced artificial
intelligence based algorithms with GA.

Notations

ACX: Assignment crossover
AllM: Allele mutation
AssM: Assignment mutation
BC: Barnes and Chambers
BR: Brandimarte
C: Conference paper
𝐶max: Makespan
CP: Conference proceedings
𝐶𝑝: Production costs
DP: Dauzère-Pérès and Paulli
𝐸: Earliness
EM: Exchange mutation
𝐸min: Minimum of efficiency
EOX: Enhanced order crossover
𝐹: Mean flow time
FH: Fattahi
FT: Fisher and Thompson
Fuzzy 𝐶max: Min of fuzzy makespan
GA: Genetic Algorithm
GOX: Generalized order crossover
HU: Hurink
ImmM: Immigration mutation
InsM: Insertion mutation
IntM: Intelligent mutation
InvM: Inverse mutation
IPOX: Improved precedence preserving

order-based crossover
J: Journal article
𝐽𝑤: Waiting time of jobs
KA: Kacem
LA: Lawrence
LD: Lee and DiCesare
LEGA: LEarnable Genetic Architecture

𝐿max: Max lateness
LS: Local search
MBM: Machine based mutation
MGOX: Modified generalized order crossover
MGPMX1: Modified generalized partially mapped

crossover 1
MGPMX2: Modified generalized partially mapped

crossover 2
MOGA: Multiobjective Genetic Algorithm
MPPX: Modified precedence preserving crossover
MPX: Multipoint crossover
MX: Modified crossover
NM: Neighborhood mutation
NRGA: Nondominated ranked Genetic Algorithm
NSGA: Nondominated sorting Genetic Algorithm
OPX: One-point crossover
OX: Order crossover
PAES: Pareto archive evolutionary strategy
PBM: Position based mutation
PMX: Partially mapped crossover
POX: Precedence preserving order-based crossover
PPS: Precedence preserving shift mutation
PPX: Precedence preserving crossover
PSO: Particle swarm optimization
RM: Random mutation
RX: Random crossover
SA: Simulated annealing
SM: Swap mutation
SPEA: Strength Pareto evolutionary algorithm
SPX: Single-point crossover
𝑆𝑠: Stability of schedules
SSX: Subsequence exchange crossover
𝑇: Total tardiness
𝑇: Average tardiness
TI: Tillard
TPGA: Two-population Genetic Algorithm
TPX: Two-point crossover
TS: Tabu search
𝑇wt: Weighted tardiness
UX: Uniform crossover
VNS: Variable neighborhood search
𝑊𝑀: Workload of most loaded machine
𝑊𝑇: Total workload of machines
MSCEA: Multi-swarm collaborative evolutionary

algorithm
MILP: Mixed integer linear programming
ACO: Ant colony optimization
hGA: Hybrid Genetic Algorithm
JBX: Job based crossover.
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[3] B. Çaliş and S. Bulkan, “A research survey: review of AI solution
strategies of job shop scheduling problem,” Journal of Intelligent
Manufacturing, vol. 26, no. 5, pp. 961–973, 2015.

[4] H. Emmons and G. Vairaktarakis, Flow Shop Scheduling: Theo-
retical Results, Algorithms, And Applications, vol. 182, Springer
Science & Business Media, 2012.

[5] J. Grobler, A. P. Engelbrecht, S. Kok, and S. Yadavalli,
“Metaheuristics for the multi-objective FJSP with sequence-
dependent set-up times, auxiliary resources andmachine down
time,”Annals of Operations Research, vol. 180, no. 1, pp. 165–196,
2010.

[6] P. Cowling and M. Johansson, “Using real time information for
effective dynamic scheduling,” European Journal of Operational
Research, vol. 139, no. 2, pp. 230–244, 2002.

[7] R. W. Conway, W. L. Maxwell, and L. W. Miller, Theory of
Scheduling, Addison-Wesley, Reading, Mass, USA, 1967.

[8] S. Dauzère-Pères and J. B. Lasserre, An integrated approach in
production planning and scheduling, vol. 411 of Lecture Notes in
Economics and Mathematical Systems, Springer-Verlag, Berlin,
1994.

[9] M. L. Pinedo, Scheduling: Theory, Algorithms, and Systems,
Springer, New York, NY, USA, 2012.

[10] K. R. Baker and D. Trietsch, Principles of Sequencing and
Scheduling, John Wiley & Sons, New York, NY, USA, 2009.

[11] J. Blazewicz, K. H. Ecker, P. Erwin, G. Schmidt, and J. Weglarz,
Scheduling Computer and Manufacturing Processes, Springer
Science & Business Media, 2013.

[12] J. M. Framinan, R. Leisten, and R. R. Garćıa, “Manufacturing
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flexible job shop problem by hybrid metaheuristics-based mul-
tiagent model,” Journal of Industrial Engineering International,
pp. 1–14, 2017.

[209] F. Geyik and I. H. Cedimoglu, “The strategies and parameters
of tabu search for job-shop scheduling,” Journal of Intelligent
Manufacturing, vol. 15, no. 4, pp. 439–448, 2004.

[210] K. Genova, L. Kirilov, and V. Guliashki, “A survey of solving
approaches for multiple objective flexible job shop scheduling
problems,”Cybernetics and Information Technologies, vol. 15, no.
2, pp. 3–22, 2015.



32 Mathematical Problems in Engineering

[211] M. R. Garey and D. S. Johnson, Computers and Intractability:
A Guide to the Theory of NP-Completeness, W. H. Freeman, San
Francisco, Calif, USA, 1979.

[212] Y. Takeshi and N. Ryohei, “Job shop scheduling,” IEE Control
Engineering Series, pp. 134-134, 1997.

[213] P. Brucker, Y. N. Sotskov, and F. Werner, “Complexity of shop-
scheduling problems with fixed number of jobs: a survey,”
Mathematical Methods of Operations Research, vol. 65, no. 3, pp.
461–481, 2007.

[214] P. Mellor, “A review of job shop scheduling,” OR, vol. 17, no. 2,
pp. 161–171, 1966.

[215] N. Bhatt andN. R. Chauhan, “Genetic algorithmapplications on
Job Shop Scheduling Problem: A review,” in Proceedings of the
2015 International Conference on SoftComputing Techniques and
Implementations, ICSCTI 2015, pp. 7–14, India, October 2015.

[216] T. H. Cormen, C. E. Leiserson, R. Rivest, and C. Stein, Introduc-
tion to Algorithms, The MIT Press, 2009.

[217] E. Barbin, J. Borowczyk, J.-L. Chabert et al., A history of
algorithms: from the pebble to the microchip, Springer Science
& Business Media, 2012.

[218] C. Darwin, On the Origin of Species by Means of Natural
Selection, J. Carroll, Ed., Broadview, Toronto, Canada, 2003.

[219] J. H. Holland, Adaptation in Natural And Artificial Systems,
University of Michigan Press, Ann Arbor, Mich, USA, 1975.

[220] D. E. Goldberg,Genetic Algorithms in Search, Optimization and
Machine Learning, Addison-Wesley Longman Publishing Co.,
Inc., 1989.

[221] T. El-Ghazali, Metaheuristics: From Design to Implementation,
vol. 74, John Wiley & Sons, 2009.

[222] K.Mesghouni, S. Hammadi, and P. Borne, “Evolution programs
for job-shop scheduling,” in Systems, Man, and Cybernetics,
Computational Cybernetics and Simulation, IEEE International
Conference, 1997.

[223] P. Brandimarte, “Routing and scheduling in a flexible job shop
by tabu search,”Annals of Operations Research, vol. 41, no. 3, pp.
157–183, 1993.

[224] S. Dauzère-Pérès and J. Paulli, “An integrated approach for
modeling and solving the general multiprocessor job-shop
scheduling problem using tabu search,” Annals of Operations
Research, vol. 70, pp. 281–306, 1997.

[225] J. Hurink, B. Jurisch, and M. Thole, “Tabu search for the job-
shop scheduling problem with multi-purpose machines,” OR
Spectrum, vol. 15, no. 4, pp. 205–215, 1994.

[226] M. Mastrolilli and L. M. Gambardella, “Effective neighbour-
hood functions for the flexible job shop problem,” Journal of
Scheduling, vol. 3, no. 1, pp. 3–20, 2000.

[227] J. Lin, “A hybrid biogeography-based optimization for the
fuzzy flexible job-shop scheduling problem,” Knowledge-Based
Systems, vol. 78, no. 1, pp. 59–74, 2015.

[228] S. Karthikeyan, P. Asokan, S. Nickolas, and T. Page, “A hybrid
discrete firefly algorithm for solving multi-objective flexible job
shop scheduling problems,” International Journal of Bio-Inspired
Computation, vol. 7, no. 6, pp. 386–401, 2015.

[229] M. Ziaee, “A heuristic algorithm for the distributed and flexible
job-shop scheduling problem,” The Journal of Supercomputing,
vol. 67, no. 1, pp. 69–83, 2014.

[230] M. Souad and C. B. Fayech, “A modified invasive weed opti-
mization algorithm formultiobjective flexible job shop schedul-
ing problems,” International Journal of Computer Science &
Information Technology, vol. 6, no. 6, pp. 51–60, 2014.

[231] Y. Yuan and H. Xu, “Flexible job shop scheduling using hybrid
differential evolution algorithms,”Computers & Industrial Engi-
neering, vol. 65, no. 2, pp. 246–260, 2013.

[232] I. A. Chaudhry and A. A. Khan, “A research survey: review of
flexible job shop scheduling techniques,” International Transac-
tions in Operational Research, vol. 23, no. 3, pp. 551–591, 2016.

[233] M. Gen and L. Lin, “Multiobjective evolutionary algorithm for
manufacturing scheduling problems: state-of-the-art survey,”
Journal of Intelligent Manufacturing, vol. 25, no. 5, pp. 849–866,
2014.

[234] L. Vincent and C. Durai, “A survey on various optimization
techniques with respect to flexible job shop scheduling,” Inter-
national Journal of Scientific and Research Publications, vol. 4,
no. 3, 7 pages, 2014.

[235] H. Fisher andG. L.Thompson, “Probabilistic learning combina-
tions of local job-shop scheduling rules,” Industrial scheduling,
vol. 3, no. 2, pp. 225–251, 1963.

[236] S. Lawrence, “Resource constrained project scheduling: an
experimental investigation of heuristic scheduling techniques
(supplement),” Graduate School of Industrial Administration,
1984.

[237] E. Taillard, “Benchmarks for basic scheduling problems,” Euro-
pean Journal of Operational Research, vol. 64, no. 2, pp. 278–285,
1993.

[238] D. Y. Lee and F. DiCesare, “Scheduling Flexible Manufacturing
Systems using Petri Nets and Heuristic Search,” IEEE Transac-
tions on Robotics and Automation, vol. 10, no. 2, pp. 123–132,
1994.

[239] P. Fattahi, F. Jolai, and J. Arkat, “Flexible job shop scheduling
with overlapping in operations,” Applied Mathematical Mod-
elling, vol. 33, no. 7, pp. 3076–3087, 2009.

[240] B. Dennis and M. J. Geiger, Test Instances for the Flexi-
ble Job Shop Scheduling Problem with Work Centers, Uni-
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