411 research outputs found

    Optimal Beamforming for Hybrid Satellite Terrestrial Networks with Nonlinear PA and Imperfect CSIT

    Get PDF
    In hybrid satellite-terrestrial networks (HSTNs), spectrum sharing is crucial to alleviate the "spectrum scarcity" problem. Therein, the transmit beams should be carefully designed to mitigate the inter-satellite-terrestrial interference. Different from previous studies, this work considers the impact of both nonlinear power amplifier (PA) and large-scale channel state information at the transmitter (CSIT) on beamforming. These phenomena are usually inevitable in a practical HSTN. Based on the Saleh model of PA nonlinearity and the large-scale multi-beam satellite channel parameters, we formulate a beamforming optimization problem to maximize the achievable rate of the satellite system while ensuring that the inter-satellite-terrestrial interference is below a given threshold. The optimal amplitude and phase of desired beams are derived in a decoupled manner. Simulation results demonstrate the superiority of the proposed beamforming scheme.Comment: 5 pages, 5 figures, journa

    Phase only transmit beamforming for spectrum sharing microwave systems

    Get PDF
    This paper deals with the problem of phase-only transmit beamforming in spectrum sharing microwave systems. In contrast to sub-6 GHz schemes, general microwave systems require a large number of antennas due to its huge path loss. As a consequence, digital beamforming needs a large number of computational resources compared to analog beamforming, which only needs a single radio-frequency chain, results the less computational demanding solution. Analog schemes are usually composed by a phase shifter network whose elements transmit at a certain fixed power so that the system designer shall compute the phase values for each element given a set of directions. This approach leads to non-convex quadratic problems where the traditional semidefinite relaxation fails to deliver satisfactory outcomes. In order to solve this, we propose a nonsmooth method that behaves well in several scenarios. Numerical evaluations in different spectrum sharing scenarios, which show the performance of our method, are provided.Peer ReviewedPostprint (author's final draft

    Low-Cost Hybrid Analog-Digital Beamformer Evaluation in Spectrum Sharing Systems

    Get PDF
    This paper evaluates different analog-digital beamforming solutions for future spectrum sharing mm-wave scenarios. In contrast to sub-6 GHz multiantenna schemes where all-digital solutions provide an excellent performance-cost tradeoff, in the mm-wave bands where a very large number of antennas is required, all-digital designs cannot be deployed due to their cost and complexity. In order to solve this problem, subarray solutions are conceived such that a reduced number of radiofrequency chains are simultaneously connected to different antennas through an analog beamforming network formed by phase shifters (i.e. with no amplitude control). Different connectivity solutions are evaluated; namely, full-connected, localized and interleaved considering that either the phase shifters have full resolution or only one control bit. As reported in the paper, while for the full resolution case the same performance is obtained for all connectivity schemes, in case the phase shifters have one control bit, differences show up. The numerical evaluation is done with an alternating feasible point pursuit successive convex approximation (FPP-SCA) optimization which yields to efficient solutions even for this non-convex optimization problem

    Hybrid analog-digital transmit beamforming for spectrum sharing backhaul networks

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper deals with the problem of analog-digital transmit beamforming under spectrum sharing constraints for backhaul systems. In contrast to fully digital designs, where the spatial processing is done at baseband unit with all the flexible computational resources of digital processors, analog-digital beamforming schemes require that certain processing is done through analog components, such as phase-shifters or switches. These analog components do not have the same processing flexibility as the digital processor, but on the other hand, they can substantially reduce the cost and complexity of the beamforming solution. This paper presents the joint optimization of the analog and digital parts, which results in a nonconvex, NP-hard, and coupled problem. In order to solve it, an alternating optimization with a penalized convex-concave method is proposed. According to the simulation results, this novel iterative procedure is able to find a solution that behaves close to the fully digital beamforming upper bound scheme.Peer ReviewedPostprint (author's final draft

    Shared access satellite-terrestrial reconfigurable backhaul network enabled by smart antennas at mm-wave band

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.5G traffic expectations require not only the appropriate access infrastructure, but also the corresponding backhaul infrastructure to ensure a well-balanced network scaling. Optical fibre and terrestrial wireless backhaul will hardly meet 100% coverage and satellite must be considered within the 5G infrastructure to boost ubiquitous and reliable network utilization. This work presents the main outcomes of SANSA project, which proposes a novel solution that overcomes the limitations of the traditional fixed backhaul. It is based on a dynamic integrated satelliteterrestrial backhaul network operating on the mm-wave band. Its key principles are a seamless integration of the satellite segment into terrestrial backhaul networks; a terrestrial wireless network capable of reconfiguring its topology according to traffic demands; and an aggressive frequency reuse within the terrestrial segment and between terrestrial and satellite segments. The two technological enablers of SANSA are smart antenna techniques at mm-wave and a software defined intelligent hybrid network management. This article introduces these 5G enablers, which permit satellite communications to play a key role in different 5G use cases, from the early deployment of 5G services in sparse scenarios to enhanced mobile broadband in denser scenarios.Peer ReviewedPostprint (author's final draft

    Smart Beamforming for Direct Access to 5G-NR User Equipment from LEO Satellite at Ka-Band

    Get PDF
    Study how spatial diversity can help in massive IoT and develp signal processing access for MIMO beamformingNon-Terrestrial Networks (NTN), in particular LEO Satellite Networks, are expected to play a key role in extending and complementing terrestrial 5G networks in order to provide services to air, sea and un-served or under-served areas. This work proposes the implementation of a novel scheme called Resource Sharing Beamforming Access (RSBA), which seems a promising solution to deal with scenarios where Bit Error Rate (BER), probability of collision and/or achievable rate are important aspects of study. Given the system architecture presented in this work, RSBA will be proposed as solution in the 5G-NR Sat-IoT scenario. As it is expected, a huge amount of IoT devices will be transmitting in the uplink, and being the case of Non-Orthogonal-Multiple-Access (NOMA), the risk of collisions between devices will increase. The idea, after assessing the channel impairments of a direct link between a LEO Satellite and a NB-IoT device, it to study how spatial diversity via smart beamforming at the receiver will reduce the probability of collision between the devices, and thus increasing the number of users that can access to the media

    Joint Beamforming and Power Allocation for Satellite-Terrestrial Integrated Networks With Non-Orthogonal Multiple Access

    Get PDF
    In this paper, we propose a joint optimization design for a non-orthogonal multiple access (NOMA)-based satellite-terrestrial integrated network (STIN), where a satellite multicast communication network shares the millimeter wave spectrum with a cellular network employing NOMA technology. By assuming that the satellite uses multibeam antenna array and the base station employs uniform planar array, we first formulate a constrained optimization problem to maximize the sum rate of the STIN while satisfying the constraint of per-antenna transmit power and quality-of-service requirements of both satellite and cellular users. Since the formulated optimization problem is NP-hard and mathematically intractable, we develop a novel user pairing scheme so that more than two users can be grouped in a cluster to exploit the NOMA technique. Based on the user clustering, we further propose to transform the non-convex problem into an equivalent convex one, and present an iterative penalty function-based beamforming (BF) scheme to obtain the BF weight vectors and power coefficients with fast convergence. Simulation results confirm the effectiveness and superiority of the proposed approach in comparison with the existing works

    The Role of Physical Layer Security in Satellite-Based Networks

    Full text link
    In the coming years, 6G will revolutionize the world with a large amount of bandwidth, high data rates, and extensive coverage in remote and rural areas. These goals can only be achieved by integrating terrestrial networks with non-terrestrial networks. On the other hand, these advancements are raising more concerns than other wireless links about malicious attacks on satellite-terrestrial links due to their openness. Over the years, physical layer security (PLS) has emerged as a good candidate to deal with security threats by exploring the randomness of wireless channels. In this direction, this paper reviews how PLS methods are implemented in satellite communications. Firstly, we discuss the ongoing research on satellite-based networks by highlighting the key points in the literature. Then, we revisit the research activities on PLS in satellite-based networks by categorizing the different system architectures. Finally, we highlight research directions and opportunities to leverage the PLS in future satellite-based networks
    corecore