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Abstract—Next generation wireless backhauling networks are
meant to share the same spectrum resources in order to deal
with the exponential base station data rate demands. One
alternative is to consider a very aggressive frequency reuse
among backhaul links and implement interference mitigation
techniques. This paper deals with the problem of analog-digital
transmit beamforming under spectrum sharing constraints for
backhaul systems. In contrast to fully-digital designs where
the spatial processing is done at baseband unit with all the
flexible computational resources of digital processors, analog-
digital beamforming schemes require that certain processing
is done through analog components, such as phase-shifters
or switches. These analog components do not have the same
processing flexibility as the digital processor but; on the other
hand, they can substantially reduce the cost and complexity of the
beamforming solution. Precisely, with an hybrid analog-digital
scheme the number of radiofrequency chains can be reduced by
extending the processing through the analog part and; therefore,
reducing the overall cost and digital bandwidth requirements.
This work presents the joint optimization of the analog and digital
parts that results in a non-convex, NP-hard and coupled problem.
In order to solve it, an alternating optimization with a penalized
convex-concave method is proposed. According to the simulation
results, this novel iterative procedure is able to find a solution
that behaves close to the fully-digital beamforming upper bound
scheme. All in all, despite the computational complexity of the
proposed scheme is relatively high, it is adequate for backhauling
networks where nodes are static and the beamforming weights
do not need to be updated on a frame basis.

I. INTRODUCTION

In the forthcoming 5G broadband communications, flexible
and high throughput backhauling systems are mandatory. Al-
though wireless backhaul solutions are currently deployed in
suburban and rural areas, future wireless backhauling systems
will have a key role in the overall 5G ecosystem. This fact
requires that the nowadays fixed wireless backhaul links shall
be re-thought. Indeed, current solutions cannot quickly react
to dynamic traffic demands by reconfiguring the network
topology and, as a consequence, the nowadays equipment is
required to be upgraded with pointing capabilities (beamform-
ing) in order to meet 5G expectations [2].

In addition, due to the tremendous increase of the user data
rate demands, very efficient spectrum allocation policies will
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become mandatory. As result, current per-link fixed licensing
will become obsolete and next generation backhauling systems
are meant to share the available spectrum.

Backhauling systems are generally deployed in the millime-
ter wave (mmWave) bands (e. g. 18 or 28 GHz). Spectrum
sharing studies in the mmWave bands have been recently
presented for the cellular access communication in [3]–[5].
According to these results, despite the harness of directive
antennas used in the mmWave bands, interference between
the different agents severely impacts the achievable data
rates. Consequently, interference mitigation techniques be-
come mandatory in order to keep the achievable rates high.

This paper considers the scenario described in [5], where a
primary operator decides to share with a secondary operator its
available spectrum devoted to its backhauling network. This
secondary operator has to maintain the interference generated
to the primary operator below a certain value. Precisely, it
is compulsory that the backhaul links are equipped with
multiple antennas in order to control the tentative interference
to the primary operator while maximizing the data rate of the
intended link. This latter requirement leads to a different multi-
antenna design compared to the growing literature in mmWave
multiantenna solutions where the secondary spectrum sharing
licensing aspects are not treated.

Focusing on the single transmitter case in presence of a
single intended receiver and multiple non-intended ones, the
sub-6 GHz fully-digital case has been studied in [6]. We cannot
mimic this design for mmWave as fully-digital beamforming
designs cannot be implemented due their cost and complexity.
Indeed, attending to the cost-performance trade-off, the most
adequate multiantenna architecture is the hybrid analog-digital
[7], where an analog beamforming network (BN) processes
the signals received by the Q antennas into a set of NRF ≤
Q radiofrequency (RF) chains. Although this BN can ideally
connect every RF chain with each antenna with amplitude and
phase control, low-complexity analog architectures with only
phase control result in a large complexity reduction [7]. The
aim of this paper is to revisit the fully-digital solution transmit
beamforming in [6] and adapt it to the hybrid analog-digital
design.

For the BN we consider different types of architectures;
namely, fully-connected, interleaved and localized. While the
fully-connected is an ideal architecture which leads to a very
costly analog design (i.e. each RF chain shall be connected
with each antenna), interleaved and localized architectures
provide a reasonable cost-complexity trade-off. For each RF
chain to antenna connection, we assume that the analog
processing is done either via phase shifters or switches. For
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each case, the optimization problem substantially differs to
each other and it shall be reconsidered. Precisely, while the
processing done via phase shifters requires the optimization
of a set of complex vectors with unit norm entries, in case we
consider switches as analog components, it requires a binary
optimization.

Interference mitigation in hybrid analog-digital beamform-
ing techniques are treated in multiuser scenarios [8]–[11].
Nevertheless, among the aforementioned works, the problem
considered in this paper is not addressed. Here, we consider
the maximization of the array gain in a single direction while
maintaining the interference generated to the primary network
receivers under a certain threshold ϵ. This problem has been
originally proposed in [1] where an optimization method based
on a non-smooth technique [12] is presented. In addition, the
work in [13] studies the interference mitigation case when a
fully-connected BN is assumed with a multiple-input-multiple-
output (MIMO) communication.

This paper extends the contribution in [1], [13] and the
current hybrid analog-digital beamforming solutions for inter-
ference mitigation since our study contemplates any arbitrary
connectivity matrix and a either phase shifters or switches
analog components. This approach is different from the current
beamforming designs. In [14] an optimization scheme for
nulling using a localized arrays is proposed. Our proposal
considers a perfect control of the interference power for
different sub-array architectures. Moreover, sub-array sparse
nulling optimization can be found in [15]. Again, our proposed
scheme is able to smartly control the interference of a larger
number of hybrid architectures.

In addition, current hybrid analog-digital MIMO process-
ing schemes are based on the Frobenius norm minimization
between the fully-digital case and the hybrid one [8], [16]–
[20]. In contrast to this approach, in this paper we tackle
the problem directly, which guarantees the fulfilment of the
interference power limit constraints. These restrictions might
be violated whenever the minimum Frobenius norm approach
is elected (i.e. the resulting beamforming approximation
might violate the interference constraints). Additionally, the
presented work considers the per-antenna power constraints
whereas in the aforementioned solutions sum-power constraint
is assumed. As a matter of fact, optimizing a multi-stream
precoding matrix is a more challenging problem than the
one studied in this paper of single-stream communication. In
any case, the open problems reported in [21] (i.e. partially-
connected with phase shifters and any arbitrary connection
with switches) are still relevant for the single-stream trans-
mission.

The proposed method consists of an alternating optimization
problem which sequentially optimizes the analog and the
digital part respectively. While the digital part can be cast as
a convex optimization problem, the analog part is a NP-hard
non-convex problem. For the analog design, even the semidef-
inite relaxation (SDR) followed by a randomization method
fails in delivering an efficient solution. This is, the relaxed
problem yields to a high-rank solution and the randomization
method is unable to provide an efficient rank-one solution due
to the equality constraints. This fact is also reported in [12] and

the solution is mimicked in [1] for the considered optimization
problem.

In contrast to the authors previous approach in [1] in here
we use the penalty convex concave procedure (PCCP) [22] for
optimizing the analog part. This novel method solves a non-
convex quadratically constraint quadratic program (QCQP)
guaranteeing that the constraints are not violated. Remarkably,
PCCP is able to deal with not only the equality constraints used
when assuming phase shifters, but also the binary constraints
when considering switches as analog components.

We compare the proposed alternate scheme with the fully-
digital beamforming with per-antenna power constraints and
it is observed that very close achievable rates are obtained.
Concretely, the simulation results show that different sub-array
schemes with different implementation complexities lead to
very similar results.

To sum up, the contributions of this work are:
1) We propose an optimization method for obtaining hybrid

analog-digital beamforming designs in spectrum sharing
scenarios. This problem was treated before the for fully-
digital case in [6], for the all-analog with phase shifters
in [23] and for the fully-connected with phase shifters
analog components BN MIMO case in [13].

2) The method admits any arbitrary connectivity matrix
but we focus on three: fully-connected, interleaved and
localized. While for fully-connected and localized there
are some recent results for the general MIMO processing
scheme with phase shifters analog components [8], [16]–
[20], none of them consider the per-antenna power
constraints as this paper focuses on.

3) Switches and phase shifters can be used with our ap-
proach. When switches are used, this work extends [20],
where a fully-connected array with total power con-
straints is considered for solving the MIMO processing
problem. Precisely, we consider an arbitrary connectivity
matrix and per-antenna power constraints.

4) In contrast to current approaches, this work considers
the direct hybrid analog-digital precoding optimization
instead of minimizing the Frobenius norm between
the fully-digital and hybrid designs. This is of great
importance as the interference power limits might be
violated in case there are no used as a constraint.

The rest of the paper is organized as follows. Section II
presents the system model and the different beamforming
architectures. Section III describes the optimization problems
to be solved. Section IV proposes and alternating projection
method for dealing with the hybrid analog-digital optimization.
Section V presents the numerical results. Finally, conclusions
are presented in Section VI.

Notation: Throughout this paper, the following notations
are adopted. Boldface upper-case letters denote matrices and
boldface lower-case letters refer to column vectors. (.)H ,
(.)T , (.)∗ and (.)+ denote a Hermitian transpose, transpose,
conjugate and diagonal (with positive diagonal elements )
matrix, respectively. IN builds N × N identity matrix and
0K×N refers to an all-zero matrix of size K × N . If A is
a N × N matrix. [X]ij represents the (i-th, j-th) element
of matrix X. ⊗, ◦ and ||.|| refer to the Kronecker product,
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the Hadamard product and the Frobenius norm, respectively.
Vector 1N is a column vector with dimension N whose entries
are equal to 1. vec (·) denotes the vectorization operator. I{·}
and R{·} denote the imaginary part and real part operators,
respectively. [x]q denotes the q-th component of the x vector.

II. SYSTEM MODEL AND HYBRID ARCHITECTURES

A. System Model

Let us assume a secondary backhaul link operating at the
mmWave band in presence of a primary backhauling network.
We assume that the transmitter is equipped with Q antennas
and the receiver with M , the received signal of the secondary
user can be modelled as

y =
√
Pγsu

HHvs+ n, (1)

where v ∈ CQ×1 is the transmit beamforming vector, P is
the transmit power , H ∈ CM×Q is the channel matrix, u ∈
CM×1 the receive beamforming vector, γs is the path-loss
between the transmitter and the intended receiver and n is the
zero-mean unit-variance additive white Gaussian noise. The
transmitter sends an unit-norm symbol which is denoted by s.

Similarly to the secondary user, we assume there are a
set of K primary interfered users equipped with Rk for
k = 1, . . . ,K receive antennas. The received signal by the
k-th non-intended primary receiver can be modelled as

zk =
√
Pγp,kt

H
k Gkvs+ ok, k = 1, . . . ,K, (2)

where tk ∈ CRk×1 is the receive beamforming of the k-
th primary user, Gk ∈ CRk×Q the channel matrix between
the secondary transmitter, γp,k is the path-loss between the
transmitter and the k-th primary receiver and ok is the zero-
mean and unit-variance additive white Gaussian noise.

We consider the narrowband mmWave channel model [24],
[25] which can be modelled as

H =
1√
L

C∑
c=1

L∑
l=1

αclarx (θ
rx
cl )atx

(
θtxcl

)H
, (3)

where L denote the number of sub-paths and C the number of
clusters. The value αcl is a small scale fading term of the l-th
sub-path at the c-th cluster for c > 1 and l > 1 otherwise, for
the value α11 is assumed to be equal to one. Vectors atx(·) and
arx(·) are the antenna array responses of both the transmitter
and the receiver respectively. The transmit and receive antenna
array responses depend on both the angles of departure (AoD),
θtxcl , and angles of arrival (AoA), θrxcl , respectively.

The steering vector a depends on the antenna array structure
and the element spacing. In the following, we consider an
uniform linear array (ULA) whose steering vector can be
written as

aULA(θ) =
1√
Q

(
1, ej

2π
λ d sin(θ), . . . , ej

2π
λ (Q−1)d sin(θ)

)
, (4)

where Q is the number of antenna elements, d the element
spacing and λ the wavelength.

Finally, γk for k = 0, . . . ,K denotes the path-loss which
can be written as

γ =

(
1

4πlλ

)
, (5)

Fig. 1: Spectrum sharing backhauling network. The transmitter
shares information with a single receiver (yellow line) in
presence of interfered secondary users (red lines).

where l is the distance between the transmitter and the receiver.
In the overall paper we consider a backhauling scenario

according to the ’above the roof top’ channel model presented
in [25]. This is further described in the numerical results
Section.

It is important to remark that we assume that the receive
beamforming vectors of both the secondary and primary
receivers are fixed and known by the transmitter. For notational
convenience, we consider the following definitions

hT = uHH, (6)

gTk = tHk Gk k = 1, . . . ,K. (7)

Figure 1 depicts an example of the backhauling spectrum
sharing scenario.

The objective of this paper is to design v so that it
maximizes the array gain to the secondary receiver

|hHv|2, (8)

while keeping the array gain to the non-intended receivers

|gHk v|2 k = 1, . . . ,K, (9)

below a certain threshold.
Prior to formalizing the optimization problem for the dif-

ferent hybrid analog-digital beamforming architectures, the
following Section describes them.

B. Hybrid Analog-Digital Antenna Array Architectures

Hybrid analog-digital schemes have been used in the past
for both radar and communication systems. These types of
beamforming structures have two separate processing parts
at the analog and at the digital domain. While the digital
processing is benefited from the use of all the computational
resources, the analog processing is done with RF components.
These components are usually phase shifters or switches. Both
the phase shifters and the switches lead to different processing
restrictions. While a phase shifter only controls the phase of
a given RF signal the switch either connects or disconnects
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Fig. 2: Fully-connected hybrid analog-digital beamformer us-
ing phase shifters or switches.

a RF chain to an antenna. The switching operation can be
modelled as a binary variable and the phase shifter as a unit-
norm complex variable.

The hybrid analog-digital beamforming solutions present
differences depending on how the connections between the RF
chain and the antenna are performed. As a general statement,
each RF chain of the digital part is connected with one or more
antenna through an analog component. The most complex
scheme is the one that considers an all-to-all connection (i.e.
each RF chain is connected to all antennas through an analog
component). Figure 2 presents a fully-connected scheme with
phase shifters. From the figure it can be observed that it is
required QNRF connection lines and components.

In order to substantially reduce the number of connec-
tions and analog components other connection matrices are
conceived. In the rest of the paper we will consider two of
them; namely, localized and interleaved. Whereas a localized
architecture connects each RF chain a subset of sequential
antennas, the interleaved scheme interconnects the different
RF chains with separated antennas. As the connection lines
are longer in an interleaved scheme than in the localized
one, the implementation complexity and losses are higher.
Figure 3 shows both interleaved and localized schemes with
phase shifters analog components, which can be substituted
by switches.

Remarkably, each scheme has a different cost and imple-
mentation complexity. The evaluation of the scheme that offers
the best cost-performance trade-off is out of the scope of
this paper and it is left for further works. Furthermore, each
scheme presents different implementation losses however, they
are not considered in this paper and ideal analog components
are assumed.

III. BEAMFORMING OPTIMIZATION PROBLEM STATEMENT

This section presents the optimization problems in order to
allow the spectrum sharing coexistence with the hybrid analog-
digital beamforming configurations presented in the previous
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(a) Interleaved hybrid analog-digital beamformer using phase
shifters or switches.
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(b) Localized hybrid analog-digital beamformer using phase
shifters or switches.

Fig. 3: On the right it is described a localized beamforming
scheme while on the left figure can be observed an interleaved
implementation. In both cases the analog component is a phase
shifter although it can also be a switch.

section. Precisely, we present the different optimization prob-
lems to be addressed depending on the underlying analog-
digital beamforming architecture and components. For the sake
of completeness and since its performance is considered as a
benchmark, the digital beamforming optimization is presented
in the following section as well.

A. Digital Beamforming

In digital beamforming the spatial processing is done at the
baseband processor. This is, the transmit signal is multiplied
by a complex vector before being delivered to the digital-to-
analog converters. As the processing is done in the digital
domain, it can perform a large number of flexible operations
at expenses of costly RF chains and very high performance
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processors.
The transmit beamforming optimization with a fully-digital

architecture can be mathematically described as follows

maximize
v

|hHv|2

subject to

|gHk v|2 ≤ ϵk k = 1, . . . ,K,

|[v]i|2 ≤ 1/Q i = 1, . . . , Q.

(10)

The values {ϵi}Ki=1 are known by the transmitter. Note that
we have considered per-antenna power constraints so that
each of them have a maximum available power of 1

Q . The
optimization problem (10) is a QCQP that admits a convex
reformulation. Bearing in mind the derivations in [6] for
total power constraint, the optimization problem for per-
antenna power constraints can be solved with the following
optimization method

maximize
v

R{hHv}

subject to

I{hHv} = 0,

|gHk v|2 ≤ ϵk k = 1, . . . ,K,

|[v]i|2 ≤ 1/Q i = 1, . . . , Q.

(11)

The optimization problem (11) can be cast as a second order
cone program (SOCP) which is convex and; thus, it can be
efficiently solved via interior point methods.

B. Hybrid Analog-Digital Beamforming

In case we consider an hybrid scheme with a phase shifter
network, both the analog BN and the digital processing part
shall be optimized. Let us denote P ∈ CQ×NRF the analog
processing part and w ∈ CNRF×1, the digital part. The joint
optimization problem of w and P can be written as

maximize
w,P

|hHPw|2 (12a)

subject to |gHk Pw|2 ≤ ϵk k = 1, . . . ,K, (12b)

|[Pw]q|2 ≤ 1/Q q = 1, . . . , Q, (12c)
P ∈ P, (12d)

where P depends on both the connectivity matrix and whether
we assume phase shifters or switches.

It is important to remark that the optimization problem in
(12) is a novel approach and constitutes a very challenging
problem. Even though the expression is a close-to-real prob-
lem, from the best of authors knowledge, it has not been
addressed previously in the literature apart from the work
in [1]. Other works like those presented in [16]–[18] only
consider the fully-connected analog part with phase shifters or
switches [19]. Neither the mentioned works nor [8], [20] where
the localized scheme with phase shifters is treated, per-antenna
power constraints as (12c) depicts are considered. To sum
up, although the aforementioned works deal with the difficult
problem of MIMO precoding, none of them considered either
such a variety of analog components or the per-antenna power
constraints as this paper proposes.

To the best of authors knowledge, the scheme in [26] is the
only one that considers the per-antenna power constraints as
we consider in this paper for the fully connected architecture
with phase shifters. However, in the numerical simulation
results Section is shown that [26] is not capable of delivering
an efficient solution as the interference constraints are not
guaranteed to be preserved with this method.

As elegantly reported in [21] for the MIMO case, depending
on P the optimization problem can become intractable for
the known convex optimization techniques. In this paper we
provide convex relaxations to the proposed architecture and
analog components.

In case phase shifter analog components are used, we
consider the following P:

Pfull-PS : |[P]m,n|2 = 1, (13)

Pinterleaved-PS : |[P]m,n|2 = [1κ ⊗ INRF ]m,n, (14)

Plocalized-PS : |[Pm,n]|2 = [INRF
⊗ 1κ]m,n, (15)

for m = 1, . . . , Q n = 1, . . . , NRF and

κ =
Q

NRF
, (16)

which is assumed to be an integer value. Remarkably, as
stated in [8] when NRF ≥ 2 and (13) is considered, the
optimization problem in (12) admits a trivial solution based
on the optimal fully-digital design. However, for the other
connectivity schemes the optimal solution of (12) is an open
problem.

In case phase shifters are not used but switches, the opti-
mization problem (12) shall be modified as follows

Pfull-SW : [P]m,n = bm,n, (17)
Pinterleaved-SW : [P]m,n = bm,n [1κ ⊗ INRF ]m,n , (18)

Plocalized-SW : [P]m,n = bm,n [INRF
⊗ 1κ]m,n , (19)

where bm,n ∈ {0, 1} and for m = 1, . . . , Q n = 1, . . . , NRF.

IV. ALTERNATING ANALOG-DIGITAL OPTIMIZATION

In light of the previous section, it is evident that the analog-
digital beamforming design is a coupled problem between
the analog and the digital optimization. In the following, we
propose an alternating optimization that iteratively computes
the analog and digital part sequentially. While the digital part
can be solved efficient by known methods, the analog part
requires a novel technique.

A. Hybrid Analog-Digital Beamforming
It can be observed that the optimization problem (12) is

coupled within the variables w and P. In order to solve
this obstacle, we consider an alternate iterative optimization.
Precisely, in the n-th iteration, we have an optimal analog
beamforming solution, P(n), the corresponding digital beam-
forming can be obtained by solving

maximize
w(n+1)

|hHP(n)w(n+1)|2

subject to

|gHk P(n)w(n+1)|2 ≤ ϵk k = 1, . . . ,K,

|[P(n)w(n+1)]q|2 ≤ 1/Q q = 1, . . . , Q,

(20)
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The optimization problem in (20) can be cast as a SOCP as
described in [6]. Once the optimal solution of (20) is obtained,
w(n+1), it is used for obtaining the analog beamforming
design. As it is described in the previous section, the analog
beamforming design depends on P . Considering the case
where the analog part is formed by phase shifters, given w(n),
the analog part can be obtained as follows

maximize
p(n+1)

|hHW(n)p(n+1)|2 (21a)

subject to |gHk W(n)p(n+1)|2 ≤ ϵk k = 1, . . . ,K, (21b)

|[W(n)p(n+1)]q|2 ≤ 1/Q q = 1, . . . , Q, (21c)

|[p(n+1)]q|2 = [vec (C)]q q = 1, . . . , QNRF, (21d)

where

p(n+1) = vec
(
P(n+1),T

)
, (22)

W(n) = IQ ⊗w(n+1),T ∈ CQ×QNRF . (23)

Moreover, matrix C collapses the connectivity schemes such
as

Cfull = 1Q⊗1TNRF
,Cinterleaved = 1κ⊗INRF ,Clocalized = INRF⊗1κ.

(24)
Whenever instead of phase shifters, switches are used, the

optimization problem in (21) shall be modified as follows

maximize
p(n+1)

|hHW(n)p(n+1)|2 (25a)

subject to (21b), (21c), (25b)

[p(n+1)]q

(
[p(n+1)]q − [vec (C)]q

)
= 0 q = 1, . . . , QNRF.

(25c)

Remarkably, the constraint in (25c) imposes 0 or 1 to the
analog component whether [vec (C)]q = 1 and it imposes a 0
in case [vec (C)]q = 0.

In both optimization problems (21) and (25) the optimiza-
tion problem becomes a QCQP with equality constraints. The
SDR followed by a randomization fails in providing a feasible
point for these type of problems as discussed in [23], [27]. Let
us remark this fact in the following.

Considering the SDP solution of either (21) or (25) relaxed
problems (P∗) not being rank one, the Gaussian randomization
technique computes a vector Gaussian random variable with
zero mean and covariance matrix P∗. With this variable, prand,
the system designer has to obtain a feasible solution of either
(21) or (25). This feasible solution is imposed by the equality
restrictions which require that the randomization is trans-
formed into either a phase-only solution or a binary one. After
this transformation, the interference and per-antenna power
constraints are generally violated. Numerically, we observed
the performance of SDR and Gaussian randomization for
solving (21) and (25) and we validate that for 100 realizations
and 1 interference, 107 Gaussian randomizations are unable to
yield to a feasible solution.

This fact differs to other optimizations that have used SDR
where the scaling factor is optimized for not violating the
constraints. This technique cannot be applied here as there is

no flexibility in the scaling factor. As a result, the SDR leading
to a high rank solution has an enormous difficulty of delivering
a feasible rank one solution due to the equality constraints.

In order to solve the analog beamforming design with
phase shifters, the authors in [1], [23] propose a non-smooth
method based on [12] that behaves well. In the following,
we propose a novel approach to solve both (21) and (25)
that yield an efficient solution with an a priori substantially
lower computational complexity. In the simulations Section,
we compare the proposed analog beamforming optimization
with [23]. In any case, we can anticipate that the presented
approach is more computationally efficient since it performs
at each iteration a SOCP in contrast to the work in [1] which
requires to solve a sequence of semidefinite programs which
are known to have a larger computational complexity [28].

B. Penalty CCP for Analog Beamforming

The underlying fact that makes the optimization problem
(21) non-convex are the quadratic forms of both the objective
function and the constraints (21d). Writing (21) in standard
form, we obtain

minimize
p

pH
(
−H

)
p

subject to

pHGkp ≤ ϵk k = 1, . . .K,

|[Wp]q|2 ≤ 1/Q q = 1, . . . , Q

pHEip ≤ [vec (C)]i i = 1, . . . , QNRF ,

pH (−Ei)p ≤ [vec (C)]i i = 1, . . . , QNRF .

(26)

where Ei is a QNRF ×QNRF matrix whose entries are zero
apart from the i-th diagonal entry which is equal to one.

H = WHhhHW, (27)

Gk = WHgkg
H
k W. (28)

For the sake of simplicity, we have omitted the superscripts
(n) in all cases. By observing (26) it is indicated that the
non-convexity of the problem is due to the objective function
and the last set of constraints which are negative definite.
In order to solve (26), we can apply penalty CCP [22]. The
idea of this technique is to linearize the aforementioned non-
convex parts of the optimization problem by its linear convex
approximation.

For any p, z ∈ CQNRF×1, the inequality

(p− z)
H
X (p− z) ≤ 0 (29)

where X ∈ CQNRF×QNRF is negative definite can be ex-
panded by

pHXp ≤ 2R
{
zHXp

}
− zHXz. (30)

Therefore, using the linear restriction around the point z, we
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might replace the non-convex inequalities in (26) so that

maximize
p

2Re
(
zHHp

)
− zHHz

subject to

pHGkp ≤ ϵk k = 1, . . .K,

|[Wp]q|2 ≤ 1/Q q = 1, . . . , Q

pHEip ≤ [vec (C)]i i = 1, . . . , QNRF ,

zHEiz ≤ [vec (C)]i + 2R
{
zHEip

}
i = 1, . . . , QNRF .

(31)
The optimization problem (31) is a SOCP that can be effi-
ciently solved via gradient based methods. Under this context,
given an initial feasible value of z, z(0), iteratively solving (31)
leads to a Karush-Kuhn-Tucker (KKT) point of (26) [29].

Obtaining an initial feasible point z(0) is as challenging as
optimizing (26). In order to solve this problem, the authors in
[22] impose the use of slack variables over all constraints and
penalizing the objective function with its sum. With this, the
optimization problem at the t-th iteration can be described as

maximize
p(t)

2R
{
z(t),HHp(t)

}
− z(t),HHz(t) − β(t)

K+2Q+M∑
m=1

sm

subject to

p(t),HGkp
(t) ≤ ϵk + sk k = 1, . . .K,

|[Wp(t)]q|2 ≤ 1/Q+ sK+q q = 1, . . . , Q

p(t),HEip
(t) ≤ [vec (C)]i + si+Q+K i = 1, . . . ,M,

z(t),HEiz
(t) ≤ [vec (C)]i + 2R

{
z(t),HEip

(t)
}
+ si+K+Q+M ,

i = 1, . . . ,M

sm ≥ 0 m = 1, . . . ,K + 2Q+M, .
(32)

where β(t) is a regularization factor that controls the feasibility
of the constraints. For high values of β, the optimization
focuses on yielding a feasible point for (31). On the other
hand, for low values of β, the optimization problem targets
to maximize the array gain towards the secondary user. This
regularization factor can be updated over the iterations. For
our case, we consider an additive update by a factor ρ. The
algorithm is summarized in Algorithm 1.

As it can be observed, the proposed algorithm includes
the stopping criteria

∣∣∣∑K+2M+1
m=1 sm

∣∣∣ ≤ χ. This condition
guarantees that all the constraints of the original problem (26)
are not violated for a sufficiently low χ. Note that, it is possible
to allow for different maximum violations of each constraint
by weighting the penalty function

∑K+2M+Q
m=1 sm. In addition,

the convergence of the solution is controlled by the condition
∥p(t) − p(t−1)∥ ≤ ν.

The role of β is to balance the optimization of the array gain
to the intended users and the minimization of the constraint
violation (i.e for very high β the optimization problem seeks
for a feasible point rather than optimizing the array gain). We
variate the value of β over the different iterations. First, we set
a relatively low value of β(0), and; posteriorly, we sequentially
increase this value. In other words, the proposed scheme first
focuses on maximizing the array gain to the secondary user
and, later, it seeks for a feasible solution. To avoid β taking a

Data: z(0) and β(0)

Result: p∗

while
∣∣∣∑K+2M+Q

m=1 sm

∣∣∣ ≤ χ and ∥p(t)−p(t−1)∥ ≤ ν do
if t < Tmax then

Compute p(t) according to (33).;
z(t+1) ← p(t);
β(t+1) ← max

(
β(t) + ρ, βmax

)
;

t← t+ 1;
else

t← 0;
Initialize with a new random value z(0);
Set up β(0) again;

end
end
Output the final solution;

Algorithm 1: Penalty CCP optimization for analog beam-
forming optimization.

very large value when the number of iterations becomes large,
leading to numerical difficulties, we consider a maximum β
value βmax.

Algorithm 1 does not guarantee convergence to a feasible
problem in (26), as [22] mentions. This is controlled by
imposing a maximum number of iterations Tmax and, in case
it is reached, we start with a new initial point.

Similarly to this optimization problem, we can convexify the
non-convex constraints in (25) in order to apply the penalty
CCP method as follows

maximize
p

2R
{
z(t),HHp(t)

}
− z(t),HHz(t) − β

K+2Q+M∑
m=1

sm

subject to

p(t),HGkp
(t) ≤ ϵl + sk k = 1, . . .K,

|[Wp(t)]q|2 ≤ 1/Q+ sK+q q = 1, . . . , Q

p(t),HEip
(t) − vec (C)

T
Eip

(t) ≤ +si+Q+K i = 1, . . . ,M,

z(t),HEiz
(t) − vec (C)

T
Eip

(t) ≤ +2R
{
z(t),HEip

(t)
}
+ si+K+Q+M

i = 1, . . . ,M ,

sm ≥ 0 m = 1, . . . ,K + 2Q+M.
(33)

Under this context, Algorithm 1 can be applied. For this
case, we can obtain a solution p ∈ {0, 1} that it does not
violate the constraints.

C. Alternating Optimization

In the previous subsection, penalty CCP method for dealing
with the analog processing optimization is presented. Bearing
this mechanism in mind, it is proposed an alternating opti-
mization which sequentially obtains efficient solutions of the
analog and digital parts. The method is depicted in Algorithm
2.

As general non-convex approximation techniques, the per-
formance of the method relies on how close the initial value,
P(0), is to the optimal value P∗. We use the following initial
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Data: P(0) considering the sub-array connectivity C
Result: w∗ and P∗

initialization ;
while |P(n)w(n)−P(n+1)w(n+1)|2 ≤ ψ do

Compute w(n+1) considering P(n), ;
Compute P(n+1) with the penalty CCP method
considering w(n+1).;
n← n+ 1;

end
Output the final solution;

Algorithm 2: Alternate analog-digital optimization.

value
P(0) =

(
vanalog ⊗ 1TNRF

)
◦C, (34)

where vanalog is the solution obtained of the following opti-
mization problem

maximize
v

|hHv|2

subject to

|hHikv|
2 ≤ ϵk k = 1, . . . ,K,

|[v]i|2 = 1/Q i = 1, . . . , Q.

(35)

As reported in [23] this optimization problem can be efficiently
solved via non-smooth methods. The assumed heuristic is that
the phase-only analog beamforming solution is close to the
hybrid analog beamforming case, despite not all the antennas
are used and independent of the analog component assumed
(phase shifter or switch).

Remarkably, little is known regarding the convergence of
non-convex alternating optimization problems from the theo-
retical point of view. Indeed, there is no theoretical evidence
that Algorithm 2 converges. Fortunately, over all the differ-
ent realizations we perform in the numerical evaluation we
observe that the alternating optimization converges more than
80 % of the realizations. Prior to the numerical validation
of our approach, we evaluate its theoretical computational
complexity.

D. Computational Complexity Analysis

The proposed alternating projection method consists of
a set of sequential SOCP. Bearing in mind that the
worst-case asymptotic complexity (WCAC) of the SOCP is
O
(
(n+ L)3.5

)
, where n is variable dimension and L the

number of inequalities [30], the digital beamforming presents
a WCAC of

WCACdigital = O
(
(4Q+ 2K + 4 + 2NRF )

3.5
)
. (36)

Similarly, the WCAC of the analog optimization becomes

WCACanalog-PS = O
(
IPCCP-PS(12QNRF + 4K)3.5

)
, (37)

WCACanalog-SW = O
(
IPCCP-SW(6QNRF + 2K)3.5

)
, (38)

for the case we employ phase shifters or switches.
IPCCP-PS, IPCCP-SW denote the average worst-case number of
iterations required by the penalty CCP method to converge.

Note that the WCAC is independent of the elected connectivity
as the number of constraints remain the same.

In light of the above discussion and based on the composi-
tion rule of the asymptotic analysis, the WCAC is dominated
by the analog processing scheme so that the overall WCAC
becomes

WCACAlternating-PS = O
(
IAlternatingIPCCP-PS(12QNRF + 4K)3.5

)
,

(39)
in case phase shifters are used and

WCACAlternating-SW = O
(
IAlternatingIPCCP-SW(6QNRF + 2K)3.5

)
,

(40)
for the switches case. The variable IAlternating denotes the worst-
case number of required iterations for solving the alternating
optimization.

V. NUMERICAL RESULTS

This section presents the numerical validation of the pro-
posed method. The beamforming schemes are evaluated over
500 realizations considering the channel model described in
Section II. In all cases, we present the empirical cumulative
distribution function (CDF) of the secondary user spectral
efficiency

Spectral Efficiency = log2
(
1 + |hHPw|2

)
. (41)

As a benchmark, we consider the achievable rates obtained
via digital beamforming when optimizing (11). We consider
both H and {Gk}Kk=1 are distributed according to the Section
II described channel model. Since in the overall paper we
consider a backhauling scenario, we set L = 5 and C = 1
according to the ’above the roof top’ channel model presented
in [25].

According to [25], in a backhauling scenario the small scale
fading can be modelled as

αcl = Acle
ψclj , (42)

where Acl is Rayleigh distributed with mean 0.1 and ψcl is
uniformly distributed from 0 to 2π. We assume that θtx11, θ

rx
11

are deterministic and it can be computed by known the relative
positions between the transmitter and the receiver. On the other
hand, for c > 1 and l > 1, we assume that

θtxcl = θtx11 + χtx, (43)

θrxcl = θrx11 + χrx, (44)

where χtx and χrx are zero mean Gaussian distributed random
variables with standard deviation equal to 5.

We consider that γs = γp,k = P = 1 for k = 1, . . . ,K. In
addition, the fixed receiver beamformers of the secondary and
primary users are considered to be the matched filter to the
direction of arrival of the deterministic ray.

For the sake of simplicity in this first evaluation we assume
only one interference (K = 1) that requires to be minimized
ϵ = −30dB. In a preliminary analysis we consider the
comparison of the analog beamforming with phase shifter
non-smooth optimization in [23] and the PCCP method that
solves (21) as described in Algorithm 1. Figures 4 and 5
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show the average array gain (20 log
(
|hHv|

)
) and the average

processing time. It has been assumed a fully-connected array
with different number of antennas and the simulations have
been performed in a with a Windows desktop with 4 Intel i5
cores and 4GB of RAM.
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Fig. 4: Array gain (20 log
(
|hHv|

)
) comparison of the non-

smooth method versus the proposed PCCP.

It can be observed in Figure 4 that PCCP behaves slightly
better than the benchmark non-smooth scheme (i.e. the array
gain difference is less than 1 dB). On the other hand, as
predicted in previous sections, the computational time severely
increases with the number of antennas. For instance, in the 81
antenna case, the non-smooth method presents 6 times higher
processing time compared to the PCCP.
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Fig. 5: Average processing time of the analog beamforming
optimization of the non-smooth and the PCCP.

This numerical result motivates the use of PCCP in the
considered scenario as for mmWave communications, large
number of antenna arrays are expected. In the following
alternating optimization performance results, we omit the
comparison with the non-smooth method in the phase shifter
analog component case as similar behaviour is expected in
most of the cases due to computational complexity difference
of each scheme.

The alternating optimization parameters in Algorithm 2 are
set so that

ψ = 10−1, χ = ν = 10−2, Tmax = 50, β(0) = 10, ρ = 10.
(45)

Considering this setting, there are a plethora of possible
evaluations which cannot be presented in here due to space
limitations. In the following we present the most relevant
results. It is important to remark that for each realization we
perform 5 trials and we take the solution which yields to the
highest array gain.

We first show an example of the beamforming design for an
array of Q = 8 and NRF = 2. Figure 6 shows the array gain
when the AoD of the intended user is located at 0 degrees
and the interference is at 30 degrees. In the Figure is also
depicted the different scatters rays obtained in the realization.
It can be observed that the digital design is the one offering
the largest array gain. For this case, it is also observed that
the localized scheme with phase shifters can attain an array
gain very close to the optimal fully-digital design. In all cases
it can be checked that the interference power level is bellow
30 dBs.
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Fig. 6: Array gain (20 log
(
|hHPw|

)
) example with Q = 8,

NRF = 2. The AoD of the desired user is 0 degrees while the
interference AoD is located at 30 degrees.

Before evaluating the spectral efficiency we investigate the
efficiency of Algorithm 2. Figure 7 shows the average number
of alternating iterations required to reach a solution for either
phase shifters or switches considering all types of connectivity
matrices and Q = 8, 16 and 32. We have also assumed NRF =
2. In all cases, the average number of iterations is below 5.5.
This numerical result supports the efficiency of the conceived
technique which is shown to quickly reach a solution. It is
important to remark that phase shifters require more iterations
than switches.

Figures 8 depicts the achievable data rates when using
phase shifters and different connectivity matrices considering
Q = 16 and NRF = 2, 4, 6. We have omitted the fully-
connected case as we know from [8] that the hybrid ana-
log digital beamforming with phase shifters can attain the
same values as for the digital beamforming design. It is
observed that whenever partial connections are considered,
lower achievable are obtained. In addition, having NRF ≥ 2
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Fig. 7: Average number of iterations for different Q, connec-
tivity matrices for either phase shifters or switches.

favors the performance of the systems. This differs from the
fully-connected case, where it is known that NRF = 2 can
achieve a data rate as large as the digital case. As the Figure
describes, the localized connectivity matrix shows a slightly
better data rate compared to the interleaved case.
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Fig. 8: Empirical CDF of the achievable data rates for different
NRF and connectivity matrices with phase shifters analog
components.

For the sake of completeness, let us compare the perfor-
mance of the proposed method in the fully-connected with
phase shifters with respect to the fully-digital alternative. The
aim of this comparison is to show how the proposed method
is able to behave closely to its upper-bound. This is shown in
Figure 9 for NRF = 2 and Q = 8, 16, 32 and 64. It can be
observed that the conceived alternating optimization results
in a performance degradation below to 1.5 dB with respect
to the upper bound. In other words, the performance loss of
employing the proposed convex relaxation approach appears
to be low.

As described in previous sections, other mmWave optimiza-
tion methods based on the Frobenius norm minimization might
fail in providing an efficient solution to the considered prob-
lem. Considering [26] as benchmark for the fully-connected
architecture with phase shifters since it is a method that takes
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Fig. 9: Average array gain upper-bound comparison for differ-
ent Q values and NRF = 2

into account per-antenna power constraints, we evaluate the
interference power limit defined as

IT k = 20 log
(
|gHk Pbenchmarkwbenchmark|

)
, (46)

where Pbenchmark and wbenchmark are obtained via the proposed
method in [26] considering the fully-digital solution (i.e. the
optimal solution of (13)). The results in Figure 10 are obtained
for NRF = 2, Q = 8, 16, 32 and 64; and a maximum power
constraint of ϵ = −30dB. It is evident that in all cases,
the beamforming solution exceeds the maximum interference
power level. Bearing this in mind, the alternative in [26] does
not offer a valid design since the interference power limits
imposed by the spectrum sharing scenario are violated. On the
other hand, our contribution always delivers a feasible solution
with IT below the imposed ϵ constraint. Note that we have
assumed K = 1.
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Fig. 10: Interference power limit for different Q given NRF =
2. It can be observed that the method in [26] violates the
interference power constraint in all realizations.

Furthermore, we consider the comparison of the proposed
method with [16], [20]. Note that neither [16] nor [20] assume
per-antenna power constraints as this paper considers. In order
to provide a fair comparison, we compute a sub-optimal
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Q K = 1 K = 2 K = 3
8 24.5 % 88 % 94 %
16 23.2 % 56 % 63 %
32 19 % 40 % 46 %
64 13 % 34 % 39 %

TABLE I: Percentage of interference constraints violation with
the PE-AltMin technique in [20].

solution of the mechanisms described in [16], [20] by re-
scaling the resulting precoding solution with a factor in order
to meet the per-antenna power constraints.
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Fig. 11: Interference power limit for different Q given NRF =
2. It can be observed that the method in [16] violates the
interference power constraint in all realizations.

The same setting as for computing the results in Figure 10
has been employed in Figure 11. Again, it can be observed
that in all cases the obtained solution exceeds the power
interference limit for the considered Q values.

The results of PE-AltMin algorithm from [20] are depicted
in Table I where it is shown the interference constraints
violation percentage during the Monte Carlo runs. That is,
whenever

IT k > ϵ, ∀k. (47)

This is done for K = 1, 2 and 3 and it is presented in %.
As it can be observed, PE-AltMin provides low percentage
of interference violation when K = 1. Nevertheless, when K
increases, the number of interference power limits constraints
violation increases, leading to unacceptable values even for
large Q. This result motivates the proposed design which con-
siders the interference constraints in the optimization process
and; thus, it ensures its inviolability.

Continuing with the spectral efficiency evaluation, we con-
sider switches as analog component in Figure 12. For this case
we observe a clear performance gain when fully-connected is
considered compared to the partial connected designs. Again,
the larger NRF the larger achievable rates are obtained. In
contrast to when phase shifters as analog components are used,

Connectivity & Analog Components Phase-shifters [bits/s/Hz] Switches [bits/s/Hz]
Interleaved 0.8 0.12
Localized 0.8 0.12
Full 1.76 0.3

TABLE II: Average achievable data rates for NRF = 2
different connectivity matrices and analog components.

Connectivity & Analog Components Phase-shifters [bits/s/Hz] Switches [bits/s/Hz]
Interleaved 1.18 0.5
Localized 1.13 0.51
Full 1.76 0.74

TABLE III: Average achievable data rates for NRF = 4
different connectivity matrices and analog components.

in Figure 12 we do not observe any relevant different between
interleaved and localized connectivity schemes.
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Fig. 12: Empirical CDF of the achievable data rate for dif-
ferent NRF and connectivity matrices with switches analog
components.

Tables II, III and IV depict the average data rates for each of
considered techniques described in previous Figures. It can be
observed that in all connectivity matrices and NRF values the
phase shifters analog component is the one that offers larger
data rates compared to the switches case. As the RF chains are
increased, the performance of the hybrid analog-digital with
partial connectivity designs becomes closer to the fully-digital
case. Precisely, with NRF = 8, the hybrid solution with phase
shifter and interleaved connectivity loses a 17% of the spectral
efficiency.

The differences between interleaved and localized schemes
are minimal for all cases. Moreover, the use of fully-connected
BN always increases the data rates, especially when phase
shifters are used.

In order to appreciate the effect of increasing the number of
antennas we compare two cases with the same number of BN
connections. This is, we consider the former Q = 16, NRF =

Connectivity & Analog Components Phase-shifters [bits/s/Hz] Switches [bits/s/Hz]
Interleaved 1.46 0.9
Localized 1.41 0.81
Full 1.76 1.04

TABLE IV: Average achievable data rates for NRF = 8
different connectivity matrices and analog components.
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4 and we compare the achievable data rates of a scheme
with Q = 32, NRF = 2. As the Figures 13 and 14 present,
whenever there is an increase on the RF chains, despite we
decrease the number of antennas, the resulting beamformer
design yields to higher data rates. This effect is notorious when
switches are considered (Figure 14). On the other hand, the
difference with phase shifters are used is low as reported in
Figure 13.
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Fig. 13: Empirical CDF of the achievable data rate for different
Q, NRF and connectivity matrices with phase shifters analog
components.
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Fig. 14: Empirical CDF of the achievable data rate for different
Q, NRF and connectivity matrices with switches analog
components.

Finally we show the performance when varying K and ϵ in
Figure 15. We consider a setting with a fully-connected array
with phase-shifters having Q = 64, NRF = 2 and a transmit
power of 104 Watts. It is evident that by increasing K and
decreasing ϵ the array gain is reduced. The reduction is more
notorious for the K = 3, ϵ = −30dB case.

VI. CONCLUSIONS

This work presents an optimization framework for obtaining
efficient hybrid analog-digital transmit beamforming designs
for spectrum sharing scenarios. The joint optimization of both,
the analog and digital parts, is solved via an alternating op-
timization method that sequentially optimizes the analog and
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Fig. 15: Average array gain for different values of K and ϵ.

digital parts. While the digital part can be cast as a SOCP, the
analog part is non-convex optimization problem that requires a
novel optimization tool. It is shown that the conceived penalty
CCP for the analog optimization behaves well for both the
phase shifters and the switches case. The numerical results
show the performance comparison of all tentative analog
components under ideal conditions (no losses and no hardware
impairments). These results are of great importance in next
generation spectrum sharing backhaul networks design as they
describe the best election in terms of ideal performance for
realizable hybrid analog-digital beamforming architectures.

It is important to remark that the presented contribution
tackles two unexplored fields on the mmWave precoding
subject: the incorporation of spatial constraints and the use of
switches. These two aspects force us two resort to methods
that completely differ to existing alternatives based on the
minimization of the Frobenius norm of the hybrid analog-
digital solution with respect to the fully-digital design. Indeed,
we showed that the minimization of the Frobenius norm suffers
from a large performance degradation since the interference
constraints are violated. In addition, the PCCP method for the
beamforming optimization with switches and phase shifters is
novel and in the paper we have shown its great potential as it
is able to deliver efficient solutions with a low computational
complexity even for large beamforming networks.
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