162 research outputs found

    Flood Forecasting Using Machine Learning Methods

    Get PDF
    This book is a printed edition of the Special Issue Flood Forecasting Using Machine Learning Methods that was published in Wate

    Statistical/climatic models to predict and project extreme precipitation events dominated by large-scale atmospheric circulation over the central-eastern China

    Get PDF
    Global warming has posed non-negligible effects on regional extreme precipitation changes and increased the uncertainties when meteorologists predict such extremes. More importantly, floods, landslides, and waterlogging caused by extreme precipitation have had catastrophic societal impacts and led to steep economic damages across the world, in particular over central-eastern China (CEC), where heavy precipitation due to the Meiyu-front and typhoon activities often causes flood disaster. There is mounting evidence that the anomaly atmospheric circulation systems and water vapor transport have a dominant role in triggering and maintaining the processes of regional extreme precipitation. Both understanding and accurately predicting extreme precipitation events based on these anomalous signals are hot issues in the field of hydrological research. In this thesis, the self-organizing map (SOM) and event synchronization were used to cluster the large-scale atmospheric circulation reflected by geopotential height at 500 hPa and to quantify the level of synchronization between the identified circulation patterns with extreme precipitation over CEC. With the understanding of which patterns were associated with extreme precipitation events, and corresponding water vapor transport fields, a hybrid deep learning model of multilayer perceptron and convolutional neural networks (MLP-CNN) was proposed to achieve the binary predictions of extreme precipitation. The inputs to MLP-CNN were the anomalous fields of GP at 500 hPa and vertically integrated water vapor transport (IVT). Compared with the original MLP, CNN, and two other machine learning models (random forest and support vector machine), MLP-CNN showed the best performance. Additionally, since the coarse spatial resolution of global circulation models and its large biases in extremes precipitation estimations, a new precipitation downscaling framework that combination of ensemble-learning and nonhomogeneous hidden Markov model (Ensemble-NHMM) was developed, to improve the reliabilities of GCMs in historical simulations and future projection. The performances of downscaled precipitation from reanalysis and GCM datasets were validated against the gauge observations and also compared with the results of traditional NHMM. Finally, the Ensemble-NHMM downscaling model was applied to future scenario data of GCM. On the projections of change trends in precipitation over CEC in the early-, medium- and late- 21st centuries under different emission scenarios, the possible causes were discussed in term of both thermodynamic and dynamic factors. Main results are enumerated as follows. (1) The large-scale atmospheric circulation patterns and associated water vapor transport fields synchronized with extreme precipitation events over CEC were quantitatively identified, as well as the contribution of circulation pattern changes to extreme precipitation changes and their teleconnection with the interdecadal modes of the ocean. Firstly, based on the nonparametric Pettitt test, it was found that 23% of rain gauges had significant abrupt changes in the annual extreme precipitation from 1960 to 2015. The average change point in the annual extreme precipitation frequency and amount occurred near 1989. Complex network analysis showed that the rain gauges highly synchronized on extreme precipitation events can be clustered into four clusters based on modularity information. Secondly, the dominant circulation patterns over CEC were robustly identified based on the SOM. From the period 1960–1989 to 1990–2015, the categories of identified circulation patterns generally remain almost unchanged. Among these, the circulation patterns characterized by obvious positive anomalies of 500 hPa geopotential height over the Eastern Eurasia continent and negative values over the surrounding oceans are highly synchronized with extreme precipitation events. An obvious water vapor channel originating from the northern Indian Ocean driven by the southwesterly airflow was observed for the representative circulation patterns (synchronized with extreme precipitation). Finally, the circulation pattern changes produced an increase in extreme precipitation frequency from 1960–1989 to 1990–2015. Empirical mode decomposition of the annual frequency variation signals in the representative circulation pattern showed that the 2–4 yr oscillation in the annual frequency was closely related to the phase of El Niño and Southern Oscillation (ENSO); while the 20–25 yr and 42–50 yr periodic oscillations were responses to the Pacific Decadal Oscillation and the Atlantic Multidecadal Oscillation. (2) A regional extreme precipitation prediction model was constructed. Two deep learning models-MLP and CNN were linearly stacked and used two atmospheric variables associated with extreme precipitation, that is, geopotential height at 500 hPa and IVT. The hybrid model can learn both the local-scale information with MLP and large-scale circulation information with CNN. Validation results showed that the MLP-CNN model can predict extreme or non-extreme precipitation days with an overall accuracy of 86%. The MLP-CNN also showed excellent seasonal transferability with an 81% accuracy on the testing set from different seasons of the training set. MLP-CNN significantly outperformed over other machine learning models, including MLP, CNN, random forest, and support vector machine. Additionally, the MLP-CNN can be used to produce precursor signals by 1 to 2 days, though the accuracy drops quickly as the number of precursor days increases. (3) The GCM seriously underestimated extreme precipitation over CEC but showed convincing results for reproducing large-scale atmospheric circulation patterns. The accuracies of 10 GCMs in extreme precipitation and large-scale atmospheric circulation simulations were evaluated. First, five indices were selected to measure the characteristics of extreme precipitation and the performances of GCMs were compared to the gauge-based daily precipitation analysis dataset over the Chinese mainland. The results showed that except for FGOALS-g3, most GCMs can reproduce the spatial distribution characteristics of the average precipitation from 1960 to 2015. However, all GCMs failed to accurately estimate the extreme precipitation with large underestimation (relative bias exceeds 85%). In addition, using the circulation patterns identified by the fifth-generation reanalysis data (ERA5) as benchmarks, GCMs can reproduce most CP types for the periods 1960–1989 and 1990–2015. In terms of the spatial similarity of the identified CPs, MPI-ESM1-2-HR was superior. (4) To improve the reliabilities of precipitation simulations and future projections from GCMs, a new statistical downscaling framework was proposed. This framework comprises two models, ensemble learning and NHMM. First, the extreme gradient boosting (XGBoost) and random forest (RF) were selected as the basic- and meta- classifiers for constructing the ensemble learning model. Based on the top 50 principal components of GP at 500 hPa and IVT, this model was trained to predict the occurrence probabilities for the different levels of daily precipitation (no rain, very light, light, moderate, and heavy precipitation) aggregated by multi-sites. Confusion matrix results showed that the ensemble learning model had sufficient accuracy (>88%) in classifying no rain or rain days and (>83%) predicting moderate precipitation events. Subsequently, precipitation downscaling was done using the probability sequences of daily precipitation as large-scale predictors to NHMM. Statistical metrics showed that the Ensemble-NHMM downscaled results matched best to the gauge observations in precipitation variabilities and extreme precipitation simulations, compared with the result from the one that directly used circulation variables as predictors. Finally, the downscaling model also performed well in the historical simulations of MPI-ESM1-2-HR, which reproduced the change trends of annual precipitation and the means of total extreme precipitation index. (5) Three climate scenarios with different Shared Socioeconomic Pathways and Representative Concentration Pathways (SSPs) were selected to project the future precipitation change trends. The Ensemble-NHMM downscaling model was applied to the scenario data from MPI-ESM1-2-HR. Projection results showed that the CEC would receive more precipitation in the future by ~30% through the 2075–2100 period. Compared to the recent 26-year epoch (1990–2015), the frequency and magnitude of extreme precipitation would increase by 21.9–48.1% and 12.3–38.3% respectively under the worst emission scenario (SSP585). In particular, the south CEC region is projected to receive more extreme precipitation than the north. Investigations of thermodynamic and dynamic factors showed that climate warming would increase the probability of stronger water vapor convergence over CEC. More wet weather states due to the enhanced water vapor transport, as well as the increased favoring large-scale atmospheric circulation and the strengthen pressure gradient would be the factors for the increased precipitation

    Analysis, Characterization, Prediction and Attribution of Extreme Atmospheric Events with Machine Learning: a Review

    Full text link
    Atmospheric Extreme Events (EEs) cause severe damages to human societies and ecosystems. The frequency and intensity of EEs and other associated events are increasing in the current climate change and global warming risk. The accurate prediction, characterization, and attribution of atmospheric EEs is therefore a key research field, in which many groups are currently working by applying different methodologies and computational tools. Machine Learning (ML) methods have arisen in the last years as powerful techniques to tackle many of the problems related to atmospheric EEs. This paper reviews the ML algorithms applied to the analysis, characterization, prediction, and attribution of the most important atmospheric EEs. A summary of the most used ML techniques in this area, and a comprehensive critical review of literature related to ML in EEs, are provided. A number of examples is discussed and perspectives and outlooks on the field are drawn.Comment: 93 pages, 18 figures, under revie

    Geospatial Artificial Intelligence (GeoAI) in the Integrated Hydrological and Fluvial Systems Modeling: Review of Current Applications and Trends

    Get PDF
    This paper reviews the current GeoAI and machine learning applications in hydrological and hydraulic modeling, hydrological optimization problems, water quality modeling, and fluvial geomorphic and morphodynamic mapping. GeoAI effectively harnesses the vast amount of spatial and non-spatial data collected with the new automatic technologies. The fast development of GeoAI provides multiple methods and techniques, although it also makes comparisons between different methods challenging. Overall, selecting a particular GeoAI method depends on the application's objective, data availability, and user expertise. GeoAI has shown advantages in non-linear modeling, computational efficiency, integration of multiple data sources, high accurate prediction capability, and the unraveling of new hydrological patterns and processes. A major drawback in most GeoAI models is the adequate model setting and low physical interpretability, explainability, and model generalization. The most recent research on hydrological GeoAI has focused on integrating the physical-based models' principles with the GeoAI methods and on the progress towards autonomous prediction and forecasting systems

    Prediction of daily water level using new hybridized GS-GMDH and ANFIS-FCM models

    Get PDF
    Accurate prediction of water level (WL) is essential for the optimal management of different water resource projects. The development of a reliable model for WL prediction remains a challenging task in water resources management. In this study, novel hybrid models, namely, Generalized Structure�Group Method of Data Handling (GS-GMDH) and Adaptive Neuro-Fuzzy Inference System with Fuzzy C-Means (ANFIS-FCM) were proposed to predict the daily WL at Telom and Bertam stations located in Cameron Highlands of Malaysia. Different percentage ratio for data division i.e. 50%–50% (scenario�1), 60%–40% (scenario-2), and 70%–30% (scenario-3) were adopted for training and testing of these models. To show the efficiency of the proposed hybrid models, their results were compared with the standalone models that include the Gene Expression Programming (GEP) and Group Method of Data Handling (GMDH). The results of the investigation revealed that the hybrid GS-GMDH and ANFIS-FCM models outperformed the standalone GEP and GMDH models for the prediction of daily WL at both study sites. In addition, the results indicate the best performance for WL prediction was obtained in scenario-3 (70%–30%). In summary, the results highlight the better suitability and supremacy of the proposed hybrid GS-GMDH and ANFIS-FCM models in daily WL prediction, and can, serve as robust and reliable predictive tools for the study regio

    Impacts of DEM Type and Resolution on Deep Learning-Based Flood Inundation Mapping

    Full text link
    This paper presents a comprehensive study focusing on the influence of DEM type and spatial resolution on the accuracy of flood inundation prediction. The research employs a state-of-the-art deep learning method using a 1D convolutional neural network (CNN). The CNN-based method employs training input data in the form of synthetic hydrographs, along with target data represented by water depth obtained utilizing a 2D hydrodynamic model, LISFLOOD-FP. The performance of the trained CNN models is then evaluated and compared with the observed flood event. This study examines the use of digital surface models (DSMs) and digital terrain models (DTMs) derived from a LIDAR-based 1m DTM, with resolutions ranging from 15 to 30 meters. The proposed methodology is implemented and evaluated in a well-established benchmark location in Carlisle, UK. The paper also discusses the applicability of the methodology to address the challenges encountered in a data-scarce flood-prone region, exemplified by Pakistan. The study found that DTM performs better than DSM at lower resolutions. Using a 30m DTM improved flood depth prediction accuracy by about 21% during the peak stage. Increasing the resolution to 15m increased RMSE and overlap index by at least 50% and 20% across all flood phases. The study demonstrates that while coarser resolution may impact the accuracy of the CNN model, it remains a viable option for rapid flood prediction compared to hydrodynamic modeling approaches

    Hybrid data intelligent models and applications for water level prediction

    Get PDF
    Artificial intelligence (AI) models have been successfully applied in modeling engineering problems, including civil, water resources, electrical, and structure. The originality of the presented chapter is to investigate a non-tuned machine learning algorithm, called self-adaptive evolutionary extreme learning machine (SaE-ELM), to formulate an expert prediction model. The targeted application of the SaE-ELM is the prediction of river water level. Developing such water level prediction and monitoring models are crucial optimization tasks in water resources management and flood prediction. The aims of this chapter are (1) to conduct a comprehensive survey for AI models in water level modeling, (2) to apply a relatively new ML algorithm (i.e., SaE-ELM) for modeling water level, (3) to examine two different time scales (e.g., daily and monthly), and (4) to compare the inspected model with the extreme learning machine (ELM) model for validation. In conclusion, the contribution of the current chapter produced an expert and highly optimized predictive model that can yield a high-performance accuracy

    River flow forecasting using an integrated approach of wavelet multi-resolution analysis and computational intelligence techniques

    Get PDF
    In this research an attempt is made to develop highly accurate river flow forecasting models. Wavelet multi-resolution analysis is applied in conjunction with artificial neural networks and adaptive neuro-fuzzy inference system. Various types and structure of computational intelligence models are developed and applied on four different rivers in Australia. Research outcomes indicate that forecasting reliability is significantly improved by applying proposed hybrid models, especially for longer lead time and peak values

    An Exploration of Neural Network Modelling Options for the Upper River Ping, Thailand

    Get PDF
    This thesis reports results from a systematic experimental approach to evaluating aspects of the neural network modelling process to forecast river stage for a large, 23,600 km2 catchment in northern Thailand. The research is prompted by the absence of evidenced recommendations as to which of the array of input processes, validations and modelling procedures might be selected by a neural network forecaster. The flood issue for forecasters at Chiang Mai derives from the monsoon rainfall, which leads to serious out-of-bank flooding two to four times a year. Data for stage and rainfall is limited as the instrumentation is sparse and the historical flood record is limited in length. Neural network forecasting models are potentially very powerful forecasters where the data are limited. The challenge of this catchment is to provide adequate forecasts from data for relatively few storm events using three stage gauges and one rain gauge. Previous studies have reported forecasts with lead times of up to 18 hours. Thus, one research driver is to extend this lead time to give more warning. Eight input determination methods were systematically evaluated through thousands of model runs. The most successful method was found to be correlation and stepwise regression although the pattern was not consistent across all model runs. Cloud radar imagery was available for a few storm events. Rainfall data from a network was not available so it was decided to explore the value of the raw cloud reflectivity data as a catchment-wide surrogate for rainfall, to enhance the data record and potentially improve the forecast. The limited number of events makes drawing conclusions difficult, but for one event the forecast lead time was extended to 24-30 hours. The modelling also indicates that for this catchment where the monsoon may come from the south west or the north east, the direction of storm travel is important, indicating that developing two neural network models may be more appropriate. Internal model training and parameterisation tests suggest that future models should use Bayesian Regularization, and average across 50 runs. The number of hidden nodes should be less than the number input variables although for more complex problems, this was not necessarily the case. Ranges of normalisation made little difference. However, the minimum and maximum values used for normalisation appear to more important. The strength of the conclusions to be drawn from this research was recognised from the start as being limited by the data, but the results suggest that neural networks are both helpful modelling processes and can provide valuable forecasts in catchments with extreme rainfall and limited hydrological data. The systematic investigation of the alternative input determination methods, algorithms and internal parameters has enabled guidance to be given on appropriate model structures
    corecore