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Abstract: This paper reviews the current GeoAI and machine learning applications in hydrological
and hydraulic modeling, hydrological optimization problems, water quality modeling, and fluvial
geomorphic and morphodynamic mapping. GeoAI effectively harnesses the vast amount of spatial
and non-spatial data collected with the new automatic technologies. The fast development of GeoAI
provides multiple methods and techniques, although it also makes comparisons between different
methods challenging. Overall, selecting a particular GeoAI method depends on the application’s
objective, data availability, and user expertise. GeoAI has shown advantages in non-linear modeling,
computational efficiency, integration of multiple data sources, high accurate prediction capability,
and the unraveling of new hydrological patterns and processes. A major drawback in most GeoAI
models is the adequate model setting and low physical interpretability, explainability, and model
generalization. The most recent research on hydrological GeoAI has focused on integrating the
physical-based models’ principles with the GeoAI methods and on the progress towards autonomous
prediction and forecasting systems.

Keywords: GeoAI; artificial intelligence; machine learning; hydrological; hydraulic; fluvial; water
quality; geomorphic; modeling

1. Introduction

Hydrology and fluvial research are inexact fields of science, with a large extent of
epistemic uncertainty and limited knowledge about the system’s complexity, structure, and
functioning [1]. Both disciplines have been hindered by the limited quality and availability
of data [2]. Nowadays, access to temporally and spatially high-resolution hydrological and
fluvial data has substantially increased, mainly due to advances in the use of automatic
sensors in monitoring, environmental 3D scanners, and high-resolution remote sensing
from different sources, producing ‘big data’. The use of big hydrological data requires the
development and the use of the applications of new geospatial tools for computational
analytics and hydrological models. Technologies under the geospatial artificial intelligence
(GeoAI) concept, such as machine learning (ML) and parallel computing, provide the means
to utilize this spatial and non-spatial dataset effectively and also to enhance integrated
hydrological and fluvial systems modeling [3].

Hydrological and fluvial modeling took a giant leap forward when the computer
revolution started in the 1960s [4–6]. Since then, engineers and scientists have developed
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a wide range of hydrological models with different levels of complexity, including em-
pirical and physical-based models [7–10]. Similarly, several 1D, 2D, and 3D numerical
hydraulic models are available to model fluvial processes, such as flow characteristics,
sediment transport, flood extent, and water depth [5,11]. Currently, despite a wide range
of physical-based model availability, those models still have challenges in adequately and
accurately modeling the complex and non-linear hydrological and hydraulic processes
occurring in nature [5]. In addition, the application of these models has been restricted to
small areas due to limited data availability, challenges in representing spatially varying
parameters, and computational intensity [12]. Alternatively, GeoAI and ML data-driven
models, such as artificial neural networks (ANNs) and long short-term memory (LSTM)
deep learning show promising results for hydrological and hydraulic prediction and fore-
casting in natural environments and at a large geographical scale [13]. They can represent
the non-linear processes and provide high-accuracy predictions [14,15]. ML application in
hydrological predictions dates to the 1990s [16], but the development of the new GeoAI
and ML algorithms, particularly the deep learning techniques, alongside new data collec-
tion technologies, has substantially increased in recent years [17,18]. Moreover, there are
new studies on developing hybrid models (ML and physical-based models) [14,19,20] and
physical process-guided ML methods [21–24]. Therefore, a review of the potential of the
new GeoAI and ML methods for integrated hydrological and fluvial systems modeling is
needed to guide scientists and practitioners to select the proper tools and to be aware of
current and potential future methodologies.

Existing reviews of GeoAI and ML applications in hydrological modeling and fluvial
studies have covered specific topics, such as the prediction of runoff, floods, and water
quality [25–29]. Other reviews have focused on applying a particular GeoAI and ML
method [30–33]. However, an overarching review of GeoAI and ML in hydrology is lacking.
We aim to review the most recent GeoAI and ML method applications in hydrological,
hydraulic, water quality, and fluvial process modeling.

This broad review on using GeoAI in hydrological and fluvial processes modeling pro-
vides a critical assessment of the technical development, the potential, and the limitations of
the models and the current research trends and gaps from the standpoint of hydrology and
fluvial system researchers. The review identified more than 1300 publications over the last
two decades, published mainly in water resources, civil and environmental engineering,
geosciences, and environmental sciences journals.

2. Review Methodology and Outline

The application of GeoAI in hydrological and fluvial systems research has substan-
tially increased and diversified in recent years, comprising a wide range of topics. There-
fore, a systematic review is challenging. In this review, we adopted a scoping review
methodology [34,35]. The scoping review supports consistent and structured literature
searches to capture relevant information and provides a comprehensive overview of the
current applications and research. We explored four categories of GeoAI applications:
(1) hydrological and hydraulic modeling; (2) hydrological model calibration and model-
ing optimization problems; (3) water quality modeling; and (4) fluvial geomorphology
and morphodynamic mapping. We searched the literature from the Web of Science, in-
cluding Scopus, Springer Link, Wiley Online Library, and MDPI. We used the Boolean
operators (AND and OR), the proximity operators (NEAR and PRE), and nested logic (use
of parentheses) to constrain the literature search to those works containing topic keywords
combined with GeoAI methods in the article’s title, abstract, or keywords. Because the
GeoAI terminologies are diverse and commonly phrase-named, e.g., deep neural networks,
deep convolutional neural networks, and deep learning, we used proximity operators to
find records containing all the terms within a defined number (n) of word neighbors. In
the case of a more common GeoAI phrase name, such as machine learning or artificial
intelligence, we used double quotation marks to indicate that the words should not be
searched separately. In addition, we used left and right truncation or shortening to ac-
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count for the GeoAI or topic names that vary in prefixes and suffixes, using the asterisk
symbol, e.g., *morpho* to select papers containing the terms geomorphologic, geomor-
phometry, morphodynamic, or hydromorphological. An example of the searching query
construction in the Web of Science database for a GeoAI application in fluvial geomor-
phology and morphodynamic studies is: (TS = (Deep NEAR/3 neural NEAR/3 learn*) OR
TS = (Artificial NEAR/3 Neural NEAR/3 Network*) OR TS = “Artificial Intelligence” OR
TS = AI OR TS = geoAI OR TS = “Machine learning”) AND TS = fluvial AND TS = *morpho*.
We used different keywords combined with GeoAI terminologies according to the hydro-
logical subfields of interest, e.g., hydrological, optimization, calibration, water quality,
nutrient, pollutant, sediment, etc. In some cases, we also used the NOT operator to further
refine the searching by excluding papers containing certain words from other topics or
subfields. For example, we excluded water quality terminologies to search for papers
focusing purely on hydrological modeling. Figure 1 shows the yearly publication statistics
of the GeoAI and ML applications in the different hydrological subfields.

Water 2022, 14, x FOR PEER REVIEW 3 of 42 
 

 

case of a more common GeoAI phrase name, such as machine learning or artificial intelli-
gence, we used double quotation marks to indicate that the words should not be searched 
separately. In addition, we used left and right truncation or shortening to account for the 
GeoAI or topic names that vary in prefixes and suffixes, using the asterisk symbol, e.g., 
*morpho* to select papers containing the terms geomorphologic, geomorphometry, mor-
phodynamic, or hydromorphological. An example of the searching query construction in 
the Web of Science database for a GeoAI application in fluvial geomorphology and mor-
phodynamic studies is: (TS = (Deep NEAR/3 neural NEAR/3 learn*) OR TS = (Artificial 
NEAR/3 Neural NEAR/3 Network*) OR TS = “Artificial Intelligence” OR TS = AI OR TS = 
geoAI OR TS = “Machine learning”) AND TS = fluvial AND TS = *morpho*. We used dif-
ferent keywords combined with GeoAI terminologies according to the hydrological sub-
fields of interest, e.g., hydrological, optimization, calibration, water quality, nutrient, pol-
lutant, sediment, etc. In some cases, we also used the NOT operator to further refine the 
searching by excluding papers containing certain words from other topics or subfields. 
For example, we excluded water quality terminologies to search for papers focusing 
purely on hydrological modeling. Figure 1 shows the yearly publication statistics of the 
GeoAI and ML applications in the different hydrological subfields. 

 
Figure 1. The yearly number of publications found in Web of Science (2000–2021) on GeoAI and 
machine learning applications in the different hydrological subfields. 

We applied additional selection criteria in each database, including only peer-re-
viewed journal publications. After gathering the initial list, we briefly reviewed them to 
select only papers within our review’s scope. The publication list was further filtered to 
ensure that the selected publications provided relevant information about GeoAI applica-
tions in hydrological and fluvial studies. We thoroughly studied the selected papers to 
extract information about the GeoAI model performance, the software used, and the ad-
vantages and limitations. Based on this information, we further discussed the comparison 
of GeoAI methods with the conventional and physical-based hydrological models (Sec-
tion 5) and identified further opportunities and future trends in applying GeoAI methods 
in hydrological and fluvial studies (Section 6). 

3. Brief Introduction to Geospatial Artificial Intelligence 
GeoAI is an emerging discipline that combines innovations in spatial data science, 

AI, ML, and big geospatial data [36]. GeoAI is the study, development, and application of 
intelligent computer programs to automatic geospatial and non-spatial data processing; it 
models geospatial association and interaction, predicts spatial dynamics phenomena, pro-
vides spatial reasoning, and discovers spatio-temporal patterns and trends [37,38]. GeoAI 
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machine learning applications in the different hydrological subfields.

We applied additional selection criteria in each database, including only peer-reviewed
journal publications. After gathering the initial list, we briefly reviewed them to select only
papers within our review’s scope. The publication list was further filtered to ensure that the
selected publications provided relevant information about GeoAI applications in hydrologi-
cal and fluvial studies. We thoroughly studied the selected papers to extract information
about the GeoAI model performance, the software used, and the advantages and limitations.
Based on this information, we further discussed the comparison of GeoAI methods with
the conventional and physical-based hydrological models (Section 5) and identified further
opportunities and future trends in applying GeoAI methods in hydrological and fluvial
studies (Section 6).

3. Brief Introduction to Geospatial Artificial Intelligence

GeoAI is an emerging discipline that combines innovations in spatial data science,
AI, ML, and big geospatial data [36]. GeoAI is the study, development, and application of
intelligent computer programs to automatic geospatial and non-spatial data processing; it
models geospatial association and interaction, predicts spatial dynamics phenomena, pro-
vides spatial reasoning, and discovers spatio-temporal patterns and trends [37,38]. GeoAI
includes the methods, techniques, and tools of AI and ML to carry out geospatial modeling,
such as spatial hydrological prediction and fluvial landform classifications. The GeoAI
and ML methods (henceforth, GeoAI) can be grouped into unsupervised learning (clus-
tering and dimension reduction), supervised learning (regression and classification), and
modeling optimization problems (see Table 1). A detailed theoretical and mathematical de-
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scription of the GeoAI and ML methods is given by Hastie et al. [39], Goodfellow et al. [40],
and Lee et al. [41].

Table 1. General classification of geospatial artificial intelligence (GeoAI) and machine learning methods.

Unsupervised Learning Supervised Learning Modeling Optimization Problems

Clustering: Regression and Classification: Evolutionary Computing:

- K-mean
- K-medoids
- Fuzzy C-means
- Density-based spatial clustering

of applications with noise
(DBSCAN)

- Linear and logistic regression
- Least absolute shrinkage and selection

operator (LASSO)
- Classification and regression trees

(CART)
- Generalized boosted regression
- k-nearest neighbors algorithm (k-NN)
- Support vector machine (SVM)
- Random forest (RF)
- Naive Bayesian
- Bayesian network
- Multilayer perceptron (MLP)
- Artificial neural networks (ANNs)
- Adaptive neuro-fuzzy inference system

(ANFIS)
- Restricted Boltzmann machine
- Convolutional neural network (CNN,

depth learning)
- Recurrent neural network (RNN)
- Gated recurrent units networks (GRUs)
- Long short-term memory networks

(LSTMs)

Genetic algorithm (GA)

- Non-dominated sorted genetic
algorithm II (NSGA-II)

- The genetically adaptive
multi-objective method
(AMALGAM)

Genetic programing (GP)

Dimension reduction unsupervised/
semi-supervised depth learning: Metaheuristic methods:

- Self-organized map (SOM)
- t-distributed stochastic neighbor

embedding (t-SNE)
- Uniform manifold approximation

and projection (UMAP)
- Restricted Boltzmann machine
- AutoEncoder
- Generative adversarial networks

(GANs)

Particle swan optimization (PSO) algorithm
Artificial bee colony (ABC)
Ant colony optimization (ACO)
Gray wolf optimization algorithm
Whale optimization algorithm (WOA)

Self-supervised learning/Reinforced
learning (RL)

Single agent/Multi-agent RL
Model-based RL
Model-free RL

Unsupervised clustering techniques are oriented towards automatically grouping or
clustering the input data [42]. Several GeoAI clustering algorithms are used for geospa-
tial and time-series data clustering (Table 1). A clustering algorithm does not require
prior knowledge about the types and number of classes. More advanced dimension re-
duction clustering algorithms, such as autoencoders, can be used for data compression,
reconstruction, and anomalies detection [43].

GeoAI regression techniques are oriented towards evaluating the relationship between
response variables (dependent) and with one or more causative/independent variables
(predictors). There is a wide range of methods and techniques in this category, ranging from
traditional regression methods to ensemble and boosting regression trees, e.g., random
forest, boosted regression, SVM, the traditional ANN, and deep learning methods [39,40,44].

The GeoAI supervised learning techniques are oriented towards identifying classes or
categories. They learn from the given set of observations, called training data, and based
on that, classify new observations into predefined classes. Unlike regression-based ML
algorithms, the output variable of the classification is a category. The values represent class
names or labels [39]. Several GeoAI classification methods are available (Table 1), e.g., SVM,
random forest, ANN, and deep learning. GeoAI classification is widely used in remote
sensing image classification, landform pattern recognition, and change detection.

An ML optimization algorithm is applied to find the best solution out of the solution
space [45]. The ML optimization algorithm plays an essential role in optimizing the objective
function, e.g., identifying the optimal parameter values of a complex model. ML optimiza-
tion algorithms can be broadly categorized into evolutionary computing and metaheuristic
methods (Table 1). ML optimization shows a wide range of applications, e.g., catchment
models, parameter calibration by identifying the optimal set of parameter values and scale of
analysis, identification of the best management scenarios for a multi-objective operation, etc.
Additionally, the reinforced learning method is another approach for problem optimization.
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It enables an agent(s) to learn in a dynamic environment by defining states, actions, and
maximum rewards, using feedback from an agent’s actions and experiences [46].

4. Current GeoAI Applications in Integrated Hydrological and Fluvial Systems Modeling

GeoAI applications in hydrology and fluvial studies are rapidly increasing and replac-
ing the traditional methods. A reason for rapid GeoAI adoption in hydrological sciences
might be linked to the progress in collecting big hydrological datasets, using automatic
sensors with internet transmission, or the internet of things (IoT). Similarly, the evolution
and increase in earth observation satellites (conventional and nanosatellites), unmanned
aerial vehicles (UAV), light detection and ranging (LiDAR), and other surveying technolo-
gies produce high-resolution geospatial data, allowing better landscape characterization.
GeoAI allows the harnessing of big and high-dimensional data to better understand the hy-
drological processes in a particular system. Specifically, GeoAI provides new data analytic
tools to the entire data processing cycle, such as sensor data fusion, hydrological modeling,
data assimilation, multi-objective scenario optimization, smart decision support, evaluation
of climate change impact, construction of early warning systems, and geo-visualization.
Therefore, GeoAI greatly enhances and supports decision making in integrated water
resources management (IWRM) and nexus approaches [47]. Figure 2 depicts a GeoAI
application model for a smart IWRM support system.
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Figure 2. A GeoAI application model for a smart decision support system for integrated water
resources management (IWRM). (1) Internet of things (IoT) supports real-time, high-frequency,
hydrological monitoring. The data are stored in a cloud platform and accessed by an application
programming interface (API). These data can be used for the real-time identification of problems
in the system, e.g., a river basin. (2) GeoAI provides data analytic and online real-time modeling
tools for hydrological system analysis and prediction. (3) GeoAI also supports multi-objective, multi-
scenario optimization modeling, which in turn is the basis of smart decision support systems for
IWRM. (4) Geovisualization in web mapping and mobile apps can be used for data dissemination
and stakeholder engagements and implementing early warning systems. The smart IWRM system
can be closed with the evaluation and adjustment of the IWRM plan and the improvement of the
hydrological monitoring system. WQ (automatic water quality monitoring), ADCP (acoustic doppler
current profiler for water current velocity measurement and river bathymetry), GW (automatic
groundwater monitoring in wells), UAV (unmanned aerial vehicle for very high-resolution land cover
mapping and surface elevation models), EOS (earth observation system for environmental condition
monitoring), LiDAR (LiDAR survey of high-resolution topography data), and GNSS (use of global
navigation satellite systems for ground truth data collection).
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This section provides an overview of the current applications of the GeoAI methods
and techniques and their advantages and limitations in many hydrological subfields such
as hydrological and hydraulic modeling, optimization problems for hydrological model
calibration and decision-making support, surface water quality, and fluvial geomorpholog-
ical studies.

4.1. Hydrological and Hydraulic Modeling

Water flow in the catchments and river networks is a complex and stochastic process,
operating in different spatio-temporal scales and characterized by non-stationarity, dy-
namism, and non-linearity [48,49]. These properties have limited the development of a
reliable hydrological and hydraulic prediction model that can be generalized to a large
geographical area. The increasing sensor-based, high-frequency (sub-hourly) hydrological
data collection and the high spatial and temporal resolution mapping of land cover and
topography have enhanced the understanding of hydrological processes. This fact has led
to the development of more sophisticated physical-based hydrological models. However,
these models are computationally expensive and limited to small-scale applications. Alter-
natively, several data-driven GeoAI methods have emerged for hydrological and hydraulic
classification and prediction at multiple spatial-temporal scales. Table 2 shows examples of
the current applications of the GeoAI in hydrological and hydraulic modeling.

Table 2. Selected GeoAI applications in hydrological and hydraulic modeling.

Method and Software Objectives, Advantages, and Limitations Reference

ANN and RF and permuted feature
importance
Software: Coded in r, available online:
https://gitlab.com/lennartschmidt/
floodmagnitude
(accessed on 21 June 2022).

Objective: To compare ANN and RF flood prediction at the national level
in Germany
Advantages: ANN and RF achieved higher prediction accuracy for a large
area with a large dataset than linear models. They reflect basic
hydrological principles.
Limitations: Heterogeneity of results across algorithms. The
non-uniqueness/equifinality problem was identified due to the ML
model setting.

[50]

ANN, ANFIS, wavelet neural networks,
and hybrid ANFIS with wavelets
transformation
Software:
MATLAB toolboxes

Objective: Hourly rainfall-runoff forecasting in Richmond River, Australia
Advantages: Several ML methods compared, showing that hybrid ANFIS
wavelet-based models significantly outperform ANFIS and ANN.
Limitations: Only rainfall and runoff data were used in the modeling.
Catchment physical features were not included.

[51]

RF and hybrid RF and
the hydromad hydrological model.
Software:
RF package in R and hydromad package
(available online:
https://hydromad.catchment.org)
(accessed on 21 June 2022).

Objective: To study the RF model performance vs. hydromad conceptual
models in USA and Canada.
Advantages: The RF model is simple and outperformed existing
conceptual flood-forecasting models, predicting low and medium flood
magnitudes.
Limitations: The RF models exhibit inaccuracies for higher flood events,
and their performance depends on the catchment characteristics.

[52]

ANN
Software:
Matlab toolboxes (e.g., wavelet)

Objective: Comparison of ANN and ARMA, combining them with
wavelet analysis, empirical model decomposition, and singular spectrum
analysis, for hindcasting and forecasting of monthly streamflow in two
Chinese basins.
Advantages: In hindcasting, the hybrid ANN and ARAM models
performed better than the non-hybrid ones.
Limitations: Hybrid models were not suitable for monthly streamflow
forecasting, needing further refinement.

[53]

https://gitlab.com/lennartschmidt/floodmagnitude
https://gitlab.com/lennartschmidt/floodmagnitude
https://hydromad.catchment.org
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Table 2. Cont.

Method and Software Objectives, Advantages, and Limitations Reference

SOM and modified SOM (MSOM)
Software: Not stated

Objective: To compare SOM and the MSOM clustering approaches, to
deal with missing values, identifying groundwater exchange areas
between the Serra Geral and Guarani aquifers (Brazil).
Advantages: The MSOM showed higher accuracy in mapping
hydrochemistry and groundwater physical properties, quantifying
relationships in a large set of variables, which would not be revealed
with conventional multivariate statistics.
Limitations: SOM requires extensive data to obtain accurate and
informative clusters.

[54]

CNN with transfer learning in time-series
flood prediction
Software: Not stated

Objective: To introduce a new CNN transfer-learning model as a
conversion tool between time-series and image data to predict water
levels in flood events.
Advantages: CNN showed acceptable agreement with the observed water
level data. Quantitative improvement in the CNN transfer learning
appeared in the reduction in computational costs.
Limitations: CNN captured higher peaks poorly. CNN was not as good as
a fully connected deep neural network or RNN, especially when
predicting the highest peaks.

[55]

Deep neural network (DNN) and data
augmentation.
Software: Not stated

Objective: To assess the feasibility of DNN in urban flood mapping,
integrated with the stormwater management model (SWMM). Study
area was two small urban catchments in Seoul, Korea.
Advantages: The DNN was about 300 times faster than SWMM. Data
augmentation could improve the poor predictive power of DNN.
Limitations: Limited amount of input data needed to be improved by
applying data augmentation.

[56]

CNN-based segmentation, VGG16, U-net,
and Segnet
Software: Not stated

Objective: To learn the spatiotemporal patterns of the mismatch between
total water storage anomalies derived from the GRACE satellite mission
and those simulated by the NOAH land surface model. Study area
was India.
Advantages: CNN models significantly improve the match with modeled
and satellite-based observations of terrestrial total water storage.
Limitations: Current grid resolution is relatively coarse.

[57]

LSTM and sequence-to-sequence
(seq2seq) model
Software: uses the Keras and TensorFlow
packages in Python 3

Objective: To present a prediction model based on LSTM and the seq2seq
structure to estimate hourly rainfall-runoff. Study area was two small
watersheds in Iowa, US.
Advantages: The LSTM-based seq2seq model was demonstrated to be an
effective method for rainfall-runoff predictions and applicable to
different watersheds.
Limitations: Needs sufficient predictive power.

[58]

Transfer entropy (TE), ANN, LSTM,
random forest regression (RFR), and
support vector regression (SVR)
Software: Not stated

Objective: To predict discharge with ML models and identify dominant
drivers of discharge and their timescales using sensor data and TE. Study
area was the Dry Creek Experimental Watershed, ID, USA.
Advantages: The LSTM model is effective in identifying the key lag and
aggregation scales for predicting discharge. TE was able to identify
dominant streamflow controls and the relative importance of different
mechanisms of streamflow generation.
Limitations: Restricting ML models based on dominant timescales
undercuts their skill at learning these timescales internally.

[59]

ANN and K-nearest neighbor
Software: Not stated

Objective: To introduce the coupled ANN with the K-nearest neighbor
hybrid machine learning (HML) for flood forecast. The study area was
the Tunxi watershed, Anhui, China.
Advantages: HML model showed satisfactory performance and reliable
stability and predicted discharge continuously without accuracy loss.
Limitations: Peak flow was not well captured.

[60]
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Table 2. Cont.

Method and Software Objectives, Advantages, and Limitations Reference

Extreme learning machine (ELM) and the
multilayer perceptron (MLP) for data
assimilation with GR4J lumped
hydrological model.
Software: Not stated

Objective: To test two new ELM and MLP data assimilation methods in
the rainfall-runoff models. The study catchments were Mistassibi
(Canada), Schwuerbitz (Germany), Ourthe (Belgium), and Los Idolos
(Mexico).
Advantages: It shows that ELM and MLP can be successfully used for
data assimilation, with a noticeable improvement over the GR4J and
OpenLoop hydrological models for all studied catchments.
Limitations: The ELM, MLP, and hydrological models are loosely coupled
and simulated on an open-loop approach, and no feedback from the
model output is considered. Furthermore, few observed variables in the
ANN training are used (discharge and temperature).

[61]

Bayesian and variational data
assimilation hybrid algorithm called
OPTIMISTS (Optimized PareTo Inverse
Modeling through Integrated STochastic
Search)
Software: code available online:
https://github.com/felherc/OPTIMISTS
(accessed on 21 June 2022).

Objective: To introduce the new data assimilation algorithm OPTIMISTS
and to test it using the DHSVM hydrological models in the Blue River
and Indiantown watershed, USA.
Advantages: OPTIMISTS combines the features from Bayesian and
variational approaches. OPTIMISTS produced probabilistic forecasts
efficiently, with the combined advantages of allowing for fast,
non-Gaussian, non-linear, and high-resolution prediction and for the
balancing of the imperfect observation.
Limitations: The model seems to be under development.

[62]

4.1.1. Hydrological System Classification

The classification of the different types of hydrological systems is one of the most
widely applied modeling tasks in hydrology and ecohydrology. It aims to find similarities
between different hydrological systems, e.g., those based on the hydrological response, the
hydromorphological and climatic characteristics, and other variables. Unsupervised GeoAI
algorithms, such as K-mean clustering [63] and SOM [64,65], have been applied to catch-
ment classification. Both algorithms organize multidimensional input data through linear
and non-linear techniques, depending on the intrinsic similarity of the data themselves.
Several studies highlight the SOM nonlinear techniques for producing robust and consis-
tent hydrological classification [66–68], even though the classification consistency is highly
influenced by the quality of the input variables [69]. Additionally, where training data is
available, supervised GeoAI methods have produced highly accurate and biophysically
meaningful catchment classification [70,71].

4.1.2. Hydrological Data Fusion and Geospatial Downscaling

Integrated hydrological modeling requires the extensive data collocation of different
components of the hydrological system in various spatial and temporal scales. Therefore, it
is necessary to complete data and/or create new data by integrating several datasets from
different sources, resolutions, and measurement noisiness [72]. This approach is called
data fusion. Data fusion can increase the measurement quality and reliability, estimate
unmeasured states, and increase spatial and temporal coverage. Several probabilistic and
GeoAI data fusion techniques are available [73,74]. The commonly used GeoAI techniques
in data fusion are non-linear Bayesian regression, ANN, RF, and deep learning [73–76].
These methods provide several advantages in representing non-linear, complex, and lagged
relationships in different hydrological datasets. GeoAI data fusion is also applied to
automatic data denoising and anomaly detection and remote sensing data fusion [77].
GeoAI data fusion is also used in rain, soil moisture, and discharge data generation.
Sist et al. [78] introduce the ANN-based data fusion of multispectral (visible and infrared)
satellite data with radar (microwave) satellite data to improve rainy area mapping and the
estimation of the precipitation amount. Zhuo and Han [79] used data fusion to generate soil
moisture products from satellite data, land surface temperature, and multi-angle surface
brightness reflectance and were able to significantly increase the availability of daily soil

https://github.com/felherc/OPTIMISTS
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moisture products. Fehri et al. [80] used the best linear unbiased predictor data fusion
technique to generate discharge data from crowdsourced data and existing monitoring
systems. There are more examples of using data fusion in data integration in areas other
than in improving knowledge, which could be the next step to be further explored.

Environmental geospatial data, particularly remote sensing data, are usually measured
at different spatial and temporal scales; high-temporal resolution data are usually measured
at coarse (low) spatial resolution, and fine (high) spatial resolution data are obtained with
low temporal frequency [77,81]. Therefore, combining the different datasets by downscaling
methods is necessary to generate spatio-temporal high-resolution data. GeoAI-based
downscaling has shown several advantages. For example, CNN is frequently used for
downscaling coarse-resolution to fine-resolution precipitation products, using different
static and dynamic variables as predictors [82,83]. These studies have shown that CNN
achieves different degrees of accuracy, depending on the precipitation rate and the condition
complexity; it has, e.g., lower accuracy in extreme wet conditions [83]. Other studies have
shown a higher downscaling accuracy of GeoAI methods by having a spatial component in
the model, e.g., spatial RF vs. RF in downscaling daily fractional snow cover [84] and land
surface temperature from MODIS data [85–87].

4.1.3. Spatial Prediction of Hydrological Variables

The application of GeoAI in hydrological spatial prediction is diverse; it can be
used, for example, in the risk mapping of hydrological extremes such as flood and
drought [88–90]. In particular, GeoAI is widely applied in flood mapping, using satel-
lite imagery, UAVs, high resolution LiDAR topographic data, and automatic water level
sensors [91–93]. The common GeoAI algorithms used, e.g., in flood prediction are SVM,
RF, ANN, and deep learning [92–94]. The selection of the methods is variable and depends
on the mapping objective, the system complexity, and the data availability [91]. In areas
with limited data and/or complex systems, where nonlinear methods are not easily in-
terpretable, ANFIS soft computing has been applied with good prediction accuracy and
strong generalization ability [95]. ANFIS combines data and expert knowledge through a
set of fuzzy semantic conditional rules [96–98].

Another GeoAI application is the spatial prediction of hydrological model variables,
e.g., saturated hydraulic conductivity [99,100] and weather data [101]. This is particularly
useful as spatial hydrological variables are not available. Thus, they can only be predicted
using points observation and surrogate spatial data such as remote sensing data. GeoAI
spatial prediction has shown advantages in modeling nonlinear processes. However, the
prediction quality depends on the quality and quantity of the observed data points and the
applied GeoAI method [102].

4.1.4. Hydrological Process Modeling

GeoAI has shown the potential for accurate hydrological modeling, such as for rainfall-
runoff, river discharge, soil moisture dynamics, and groundwater table fluctuation [95,103,104].
The non-linear nature of these processes is challenging to model with simple empirical
and physical-based models. Therefore, GeoAI methods such as ANNs have proved to be
better for modeling complex hydrological processes and forecasting them in the short and
long term and in different management scenarios [26]. However, traditional ANNs do not
model sequential order data such as time-series data. Therefore, a further development
for the temporal dynamics of hydrological sequential events is the RNN and LSTM neural
networks. RNN and LSTM use the previous information in the sequence to produce the
current output, although RNN is better designed to model short sequences only. In the case
of long temporal sequences of the antecedent conditions, LSTM is preferred. LSTM uses an
additional ‘memory cell’ compared to RNN to maintain information for long sequences or
periods of time [105,106]. This memory cell lets the model learn longer-term dependencies,
e.g., the effects of antecedent soil moisture conditions on runoff generation [105,107]. LSTM
is advantageous for modeling hydrological processes in regions with strong seasonality,



Water 2022, 14, 2211 10 of 38

such as a northern climate with varying winter conditions [91,105]. The LTSM model
also allows the use of multiple time-series predictors, such as precipitation, temperature,
discharge, and time [58,108]. A further extension of LSTM is created by combining it with
CNN. In CNN, learning is achieved through convolving an input with filter layers to speed
up parameter optimization [107,109]. Combining CNNs and LSTM encodes both the spatial
and the temporal information [87,110]. LSTM techniques can also be coupled with other
signal-processing algorithms such as wavelet transformation (WT). WT is applied to time-
series data decomposition, e.g., the decomposition of high- and low-frequency flow signals,
the identification of seasonality and trend, the decomposition of non-stationary signals,
and data denoising [30]. Denoised data are used as inputs for the LSTM model [111].

Another approach is to use a physical-based model coupled with GeoAI, e.g., for
runoff and flood prediction [19,112,113]. Overall, the output of the physical-based model is
used as the input for GeoAI model training. For example, Noori and Kalin [14] used the
SWAT model to simulate daily streamflow and estimate baseflow and stormflow, which
were used as inputs for ANNs. The benefit of this approach is that once the model is
trained, it can perform orders of magnitude faster than the original physical-based models
without impairing prediction accuracy [17]. Another benefit of the hybrid modeling is that
a trained model, e.g., in catchment hydrological modeling, can achieve better performance
for other catchments than the uncalibrated process-based models [105,112].

Overall, most of the GeoAI models achieved higher prediction accuracy than the
physical-based hydrological models. However, there are several types of GeoAI algorithms,
with different architectures and mathematical formulations (e.g., ANN, CNN, and LSTM) to
perform similar tasks. In addition, different types of predictor variables and data sampling
sizes are used, making the GeoAI model performance comparison challenging. GeoAI
models are less physically interpretable, as they do not explicitly represent the physical
laws governing the hydrological processes. Therefore, their causal inference is still limited.
GeoAI applications are currently oriented towards hydrological prediction. GeoAI has the
potential to provide accurate and timely information which is applicable to large areas, and
using data from IoT sensors and cloud computing, it can deliver real-time prediction [114].

4.1.5. Hydraulic Modeling

The new generation of very-high-resolution river bathymetry has improved the 1D,
2D, and 3D hydraulic modeling of rivers [115,116]. River hydraulic models have been
widely used in the estimation of flood extent, water depth and velocity, sediment transport,
and the assessment of fluvial morphodynamics [5,11,117]. However, very complex hy-
draulic models (3D) are data and computationally demanding and restricted to small-scale
applications. Hydraulic modeling is sometimes inconsistent and does not represent all the
bio-physical processes occurring in the natural fluvial environment [118,119]. In addition,
the numerical solving approach of the hydraulic model results in high numerical instability
due to sensitivity to the initial and boundary conditions, model structure, and spatial
and temporal discretization [120]. Thus, the GeoAI method has emerged as a promising
tool for hydraulic modeling in large-scale and natural systems [19,119,121,122]. Emerging
deep learning applications in computer fluid dynamics have also shown potential for the
modeling of turbulent and complex flow structures [123–125]. Additionally, coupling the
hydraulic model with the Bayesian GeoAI methods improves hydraulic modeling over a
broad range of spatiotemporal scales and physical processes [126].

4.1.6. Hydrological Data Assimilation

Hydrological data assimilation (DA) is a state estimation theory that assumes that
models are an imperfect representation of the system and that hydrological data might con-
tain noise. Both can also contain different types of information and be complementary [127].
DA aims to harness the information in the hydrological model and in the observations to
approximate the true state of the system, considering its uncertainty statistically [127–129].
DA methods include linear dynamics (e.g., Kalman filter, the most popular state estimation
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method) and nonlinear dynamics [127]. The DA methods can be related to ML. Data fusion
and DA use similar techniques, but the problem formulation differs [130].

In hydrological modeling, the ML-based DA is the most common type of coupling of
ML and the physical-based model, the so-called loosely hybrid hydrological model [131].
DA updates the state system predicted by a physical-based model at a given time or place
with observational data, using Bayesian approximation such as the ensemble Kalman filter
(EnKF) [127] or ML methods, e.g., ANN, RNN, and LSTM [132]. Both the DA and the ML
methods solve an inverse problem, expressed as the model y = h(x,w), where h is the model
function, x represents the state/feature variable, w is the parameters/weights of the model,
and y is the observations/labels in DA/ML, respectively. DA is oriented to find the true
state of the system (x) from the observation and ML is commonly oriented to find model
parameters or weight (w) from the observation. DA holds w constant to estimate x; ML
holds x constant to estimate w; see [133] for a detailed revision.

Many studies have shown that ANN data assimilation outperforms conventional DA,
particularly for complex and non-linear response systems [61]. An additional development
of ML-based DA methods is the so-called deep DA [132], which trains deep learning neural
networks such as LSTM for high dynamic systems. Deep DA has shown potential for
accurate prediction for periods or sites where observations are unavailable and conventional
DA cannot be applied to reduce the model error [132].

4.2. Modeling Optimization Problems for Hydrological Model Calibration and Decision
Support System
4.2.1. Hydrological Model Calibration

In hydrological modeling, the inverse modeling approach is widely applied. In inverse
modeling, the model features and parameter values are unknown, and those are identified
by minimizing the error between the model output and the observed data [134,135]. The
model feature identification includes the definition of the main hydrological processes, the
mathematical equations representing it, the boundary conditions, and the time regime [136].
The parameter identifications encompass the identifying of the model optimal parameter
set values that reproduce the observed data acceptably [136]. In highly parameterized
models, identifying the optimal values of the parameters is challenging and represents a
substantial part of the modeling work. Usually, there is not a single set of optimal values
of parameters that can simulate the observed data well but a set of optimal parameters
values that can achieve similar model performance. This modeling phenomenon is called
the non-uniqueness or equifinality problem [137]. The hydrological model calibration often
requires specialized optimization algorithms, and several ML-based calibration algorithms
have been developed to support model calibration (see Table 3 for examples).

Table 3. Selected GeoAI applications for model calibration and decision support systems.

ML Method Objectives, Advantages, and Limitations Reference

Non-dominated sorting genetic algorithm II
(NSGA-II), particle swarm optimization
(MPSO), the Pareto envelope-based selection
algorithm II (PESA-II), the strength Pareto
evolutionary algorithm II (SPEA-II) with the
combined objective function and
genetic algorithm.
Software: Not stated

Objective: To compare optimization techniques to calibrate conceptual
hydrological models.
Advantages: All techniques perform well, better results gained than
when using a single-objective algorithm. The NSGA-II with two
indicators performed better than the MPSO with one indicator.
Limitations: Depending on the selected performance indicators, the
best model varied.

[138]

The multi-objective evolution algorithm
MODE-ACM and the enhanced Pareto
multi-objective differential evolution
algorithm (EPMODE).
Software: Not stated

Objective: To introduce the MODE-ACM and the enhanced EPMODE
model. To test model efficacy by comparing the NSGA-II and SPEA2
model.
Advantages: The EPMODE and the MODE-ACM were both reliable
and showed better performance than the NSGA-II and SPEA2 models.
Limitation: Very complex model.

[139]
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Table 3. Cont.

ML Method Objectives, Advantages, and Limitations Reference

The multi-objective particle swarm
optimization (MOPSO), NSGA-II and the
multi-objective shuffled complex evolution
metropolis (MOSCEM-UA).
Software: Not stated

Objective: Comparison of three multi-objective algorithms for
hydrological model calibration.
Advantages: All three algorithms are able to find Pareto sets of
solutions. The most uniform distribution of the solutions was derived
with MOSCEM-U as the NSGA-II has the shortest Pareto optimal
front and the MOPSO has the maximal extent of the obtained
non-dominated front.
Limitations: The rate of convergence with the optimal solutions varies
across the three algorithms.

[140]

MOSCEM-UA and shuffled complex
evolution metropolis (SCEM-UA).
Software: Not stated

Objective: To calibrate hydrological models using more effective and
efficient multi-objective algorithms called MOSCEM-UA.
Advantages: MOSCEM-UA allows multi-objective calibration,
preventing the collapse of the algorithm to a single region of highest
attraction. It combines the complex shuffling and the probabilistic
covariance-annealing search procedure of the SCEM-UA algorithm.
Limitations: Challenging to make sure that a diverse and large initial
population size is provided, which supports multiple objective
approaches.

[141]

ANN coupled with SWAT model.
Software: SWAT-ANN, available online:
https://zenodo.org/record/3699658#
.YewXid_RZaQ (accessed on 21 June 2022).

Objective: Evaluation of SWAT-ANN rainfall-runoff simulation in a
catchment, Italy.
Advantages: The SWAT-ANN prediction accuracy was acceptable and
useful in the absence of observational data.
Limitations: The overall model calibration is only evaluated by model
residual error.

[142]

Genetic algorithm
Software: Multi-objective evolutionary
sensitivity handling algorithm (MOESHA),
programed in Python

Objective: River discharge modeling with a hydrological model called
EXP-HYDRO, applied in a small catchment in Wales, UK.
Advantages: The MOESHA algorithm determines well the optimal
distribution of the model parameters that maximize model
robustness and minimize error; it also estimates model parameter
uncertainty.
Disadvantages: Computationally expensive.

[143]

Multi-algorithm, genetically adaptive
multi-objective method (AMALGAM), single
evolutionary multi-objective optimization
(SPEA-II and NSGA-II).
Software: AMALGAM code in Visual Basic

Objective: Comparative study of SWAT model calibration using
single- and multi-evolutionary optimization algorithms. The study
areas are the Yellow River Headwaters Watershed (Tibet Plateau,
China), the Reynolds Creek Experimental Watershed (Idaho, USA),
the Little River Experimental Watershed (Georgia, USA), and the
Mahantango Creek Experimental Watershed (Pennsylvania, USA).
Advantage: The advantage of the multi-evolutionary algorithm
AMALGAM calibrating the SWAT model has been demonstrated.
AMALGAM provides fast, reliable, and computationally efficient
solutions to multi-objective optimization problems.
Limitations: With a small number of run schemes, multiple trials
might be needed for implementing AMALGAM. The solution
contribution of the different algorithms used in AMALGAM varies in
the different watersheds.

[144]

Single-objective and multi-objective particle
swarm optimization (PSO) algorithms.
Software: Not stated

Objective: Automatic calibration of hydrologic engineering center-
hydrologic modeling systems (HEC-HMS) rainfall-runoff model. The
study area is the Tamar sub-basin of the Gorganroud River Basin, Iran.
Advantages: Multi-objective PSO calibration outperforms the
single-objective one. However, an appropriate combination of
objective functions is essential in multi-objective calibration.
Limitations: Increasing the number of objective functions did not
necessarily lead to a better performance than the bi-objective
calibration. The increasing number of objective functions also
introduces computational challenges. Insufficient data and flood
events seriously affect the calibration performance.

[145]

https://zenodo.org/record/3699658#.YewXid_RZaQ
https://zenodo.org/record/3699658#.YewXid_RZaQ
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Table 3. Cont.

ML Method Objectives, Advantages, and Limitations Reference

The deep learning gradient-based optimizer.
Software: Python code, available online:
https://github.com/ckrapu/gr4j_theano
(accessed on 21 June 2022).

Objective: Estimating unknown parameters for GR4J conceptual
hydrological model.
Advantages: The deep learning gradient-based optimizer is effective
for high-dimensional inverse estimation problems for hydrological
models.
Limitations: Need for hydrological model to be established at the site
and high computational effort.

[146]

Partial least squares regression (PLSR) and
ANFIS.
Software: Not stated

Objective: Development of a smart irrigation decision support system,
using PLSR and ANFIS as reasoning engines. The study area is in the
southeast of Spain.
Advantages: ANFIS prediction was better than PLSR for water
requirement estimation and identifying timely crop irrigation needs.
Limitations: The model has been tested with a few soil and weather
variables.

[147]

Reinforcement learning (RL)
Software: Python code, available online: https:
//github.com/kLabUM/rl-storm-control
(accessed on 21 June 2022).

Objective: To implement a smart stormwater real-time system control
based on RL.
Advantages: The RL-based model learned the control valve strategy in
a distributed stormwater system by interacting with the system it
controls under thousands of simulated storm scenarios. It effectively
tries various control strategies until it achieves target water level and
flow set points.
Limitations: RL performance is highly sensitive to the RL agent
reward formulation and requires a significant amount of
computational resources to achieve a good performance.

[148]

Hydrological models are often calibrated with a single objective function, although
adequate and fast multi-objective optimization techniques exist, which better support the
several output variables [141]. There are many optimization algorithms, meta-heuristic and
ML-based, for model parameter calibration, such as particle swarm optimization (PSO),
grey wolf optimization (GWO), genetic algorithms (GAs), genetic programming (GP),
strength Pareto evolutionary algorithms (SPEA), micro-genetic algorithms (micro-GA),
and Pareto-archived evolution strategies (PAES). Depending on the selected performance
indicators of the model, the best model for hydrologists varied. According to the free lunch
theorem [149], this is not expected to change for a while; it proposes that no one model fits
all. In any case, all the models performed well. See Yusoff et al. [150] and Ibrahim et al. [45]
for a specific review of optimization algorithms.

Meta-heuristic optimization algorithms, which are mostly inspired by the biologi-
cal/behavioral strategies of animals, provide a good solution to optimization problems, par-
ticularly with incomplete or imperfect information or limited computational capacity [151].
An advantage of these algorithms is that they make relatively few assumptions about the
optimization problems and reduce the computational demand by randomly sampling a sub-
set of solutions, which otherwise would be too large to be iterated entirely [151]. However,
some meta-heuristic algorithms such as PSO may not guarantee that a globally optimal
solution will be found, particularly when the number of decision variables or dimensions
being optimized is large [45]. The GA is inspired by genetic evolutionary concepts, such
as the non-dominated sorted genetic algorithm II (NSGA-II). The genetically adaptive
multi-objective method (AMALGAM) [152] has been applied for multi-objective, multi-site
calibration and to solve highly non-linear optimization problems [144,153]. AMALGAM is
a multi-algorithm that blends the attributes of several optimization algorithms (NSGA-II,
PSO, the adaptive metropolis search, and differential evolution) [144]. The GA has been
shown to be well-suited for hydrological models, such as the SWAT semi-distributed hy-
drological models, which cannot be adequately calibrated by gradient-based calibration
algorithms [144,153,154]. The objective function for each solution in a GA can be assessed

https://github.com/ckrapu/gr4j_theano
https://github.com/kLabUM/rl-storm-control
https://github.com/kLabUM/rl-storm-control
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in parallel computation, providing computational efficiency [144]. Additional calibration
methods based on deep learning have also been developed, outperforming many of the
existing evolutionary and regionalization methods [20,146].

4.2.2. Decision Support System for Integrated Water Resources Management

Integrated water resources management (IWRM) deals with multiple actors to con-
sensually and communicatively integrate decisions in a hydrological unit to ensure eq-
uitable economic development and social welfare while assuring hydrological system
sustainability [155]. IWRM demands quality and timely information. Hence, increasing au-
tomation with GeoAI-based decision support systems is thought to enhance IWRM [17,156].
Multi-objective and scenario analysis are typical applications of GeoAI techniques in IWRM
to find solutions for conflicting objectives, forecast the impact of management strategies,
and optimize hydrological system operation [157,158]. We found widespread applications
of GeoAI in reservoir and water distribution optimization using ANN [159,160], assembled
and deep learning algorithms, and genetic programming [161,162]. Another application
is found in building a smart irrigation decision support system [147]. Here, partial least
square regression and the adaptive network-based fuzzy inference system (ANFIS) are
proposed as reasoning engines for automated decisions. An additional example of arti-
ficial intelligence application is the adaptive intelligent dynamic urban water resource
planning [158]. It uses Markov’s decision process to tackle complex water management
problems, predicting water demand, scheduling management, financial planning, tariff
adjustment, and the optimization of water supply operations [158] (See Table 3). Overall,
the GeoAI-based IWRM integrates various types of algorithms to perform different tasks,
such as prediction and forecasting using various types of geospatial data, and optimization
algorithms for management scenarios with multiple objectives. Algorithms such as ANFIS
are used for system reasoning to automate the decision support [157,158,163]. ANFIS
allows the mimicking of human reasoning and decision making based on a set of fuzzy
IF-THEN rules. ANFIS has the learning capability to approximate nonlinear functions and
can self-improve in order to adjust the membership function parameters directly from the
data [164].

4.3. Automatic Water Quality Monitoring and Spatio-Temporal Prediction
4.3.1. Automatic Water Quality Monitoring

The data collection of water quality with wireless sensor networks and internet of
things (IoT) technologies is rapidly increasing and providing very-high-frequency WQ data
(sub-hourly) [165,166]. There is evidence that the high-frequency data better represent the
dynamics variation of river discharge and sediment and solute fluxes [167]. It enables the
early mitigation of floods and drinking water problems [168,169]. High-frequency data can
also lead to a more precise and accurate classification of the biochemical status of rivers
and lakes [170]. However, such sensors and devices are subject to failures, poor calibration,
and inaccurate data recording in certain conditions [171,172]. Therefore, automatic data
quality control, error and anomaly detection, sensor drift compensation, and uncertainty
assessment are important [171–173]. GeoAI showed advantages in managing WQ sensor
networks and sensor data fusion, such as fault detection, data correction, and upgrades
from different monitoring sensors by data fusion [174]. See Table 4 for selected examples
of GeoAI applications on WQ monitoring. Additional applications of GeoAI are in the
detection, localization, and quantification of pollutant critical sources and critical periods
of loading in monitoring networks [175,176]. The most common GeoAI algorithms for WQ
sensor fusion are based on Bayesian algorithms, fuzzy set theory, genetic programming,
ANN, and LSTM [177–180].
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Table 4. Selected GeoAI applications in monitoring and spatio-temporal prediction of water quality.

Method and Software Objective, Advantages, and Limitations Reference

ANN
Software: ANNs computed and fitted with the
Keras package in R.
Available online: https:
//github.com/benoit-liquet/AD_ANN
(accessed on 21 June 2022).

Objective: To use ANN to detect anomalies caused by the technical
error of in situ sensor monitoring of conductivity and turbidity.
Advantage: Semi-supervised ANN very well suited to identifying
short-term anomalous events. Supervised classification able to
identify long-term anomalies.
Limitations: High rate of false positive detection. Large dataset
required due to relative scarcity of anomalous events to train data.

[174]

MLP, SVM-SMO, lazy-instance-based
learning K nearest-neighbor (IBK), KStar, RF,
random tree, and REPTree.
Software: Python

Objective: To compare ML techniques for soft sensor monitoring of
biological oxygen demand (BOD).
Advantage: IBK algorithm was best for estimating BOD based on
turbidity, dissolved oxygen, pH, and water temperature sensors. IBK
algorithm can also be used within a low-cost system to allow
incorporation into IoT-based WQ systems.
Limitations: Overloading of servers may occur in IoT-based systems if
prediction algorithms run on the cloud for a large number of
sensing nodes.

[181]

Feed-forward ANN (FF-ANN).
Software: Python using the scikit-learn library.

Objective: To compare FF-ANN and traditional methods for
drift correction.
Advantages: The FF-ANN model outperformed traditional methods
for drift calibration and may increase calibration lifetime and reduce
calibration frequency for water quality sensors.
Limitations: High error rate apparent when using logistic function.

[172]

RF, SVM, and logistic regression
Software: Python

Objective: Evaluation of 3D wide-area WQ monitoring and analysis
systems, using unmanned surface vehicles (USV) and ML algorithms.
Advantage: RF demonstrated high precision for estimating WQ status,
using WQ measured data (turbidity, total dissolved solid, and pH) by
USV at multiple points and different water depth levels.
Limitations: USV drifting control, working performance, and system
accuracy were evaluated just in one environmental condition (a small
lake) and for a few WQ parameters.

[177]

Gradient boosting (XGBoost), RF, coupled
with denoising model called CEEMDAN.
Software: Not stated

Objective: Hourly prediction of several WQ parameters in Tualatin
River, Oregon, USA.
Advantages: The best model performance depended on the predicted
WQ variable. CEEMDAN-RF and CEEMDAN-XGBoost show better
performance, less errors, and higher stability than simple RF and
XGBoost. New error metric is introduced for model performance
evaluation and compared with conventional methods of
model evaluation.
Limitations: The prediction model only depends on time-series data
and no other explanatory variables were included.

[182]

Multi-layer perceptron, radial basis function
ANN, ANFIS, and ANFIS with wavelet
denoising technique (WDT-ANFIS).
Software: wavelet and fuzzy logic toolboxes
of MATLAB

Objective: Prediction of WQ parameters such as ammoniacal nitrogen,
suspended solid, and pH in Johor river, Malaysia.
Advantages: Several ML algorithms were compared, where the
WDT-ANFIS model advantage was well illustrated.
Limitations: Complex models and not possible to identify a single
network structure that can best predict WQ parameters.

[28]

Decision tree (DT), RF, and deep cascade
forest (DCF), trained by big data.
Software: Python. RF and DT built using the
package Scikit-learn v.019. DCF was built
with the package gcForest

Objective: Comparison of 7 traditional learning models vs. 3 ensemble
models for prediction of 6 levels of WQ parameters for major rivers
and lakes in China.
Advantages: DT, RF, DCF trained by big data all had significantly
better prediction of WQ compared with traditional learning models.
DCF had the best performance overall for prediction of all 6 levels
of WQ.
Limitations: DCF unable to learn directly from big raw data.

[183]

https://github.com/benoit-liquet/AD_ANN
https://github.com/benoit-liquet/AD_ANN
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Table 4. Cont.

Method and Software Objective, Advantages, and Limitations Reference

RF
Software: Python using the libraries
Scikit-Learn (0.20.1) and MLxtend (0.13.0)

Objective: Comparison of random forest to multiple linear regression
for estimation of high-frequency nutrient concentration.
Advantages: RF outperformed linear models when more than one
predictor was included.
Limitations: At least 3 predictors required to identify clear benefit of
using RF compared to multiple linear regressions.

[184]

Integrated LSTM, using cross-correlation and
association rules (apriori).
Software: Not stated

Objective: GeoAI system to identify and trace point sources of
pollution in Shandong Province, China.
Advantages: LSTM algorithm had high prediction accuracy for tracing
the main point sources of pollution.
Limitations: GeoAI model was not aware of the change in aquatic
environment conditions. It requires multi-dimensional and
multi-spatial perspectives to identify, analyze, and respond to data.

[185]

ANN
Software: Mathematica

Objective: Modeling daily total organic carbon (TOC), total nitrogen
(TN), total phosphorous (TP), and predicting future fluxes under
climate change scenarios for two streams in Finland.
Advantages: ANN model managed to recreate most dynamics in TOC,
TN, and TP.
Limitations: ANN model struggled to capture extreme values for TOC,
TN, and TP.

[186]

Least square-SVM (LS-SVM) and
multivariate adaptive regression spline
(MARS).
Software: Not stated

Objective: Prediction of 5-day biochemical oxygen demand (BOD) and
chemical oxygen demand (COD) in natural streams in Karoun River,
southwest Iran.
Advantages: LS-SVM and MARS models performed better in terms of
external validation criteria and F test compared with
multiple-regression-based models and ANN and ANFIS equations.
Limitations: Intensive amount of data collection required for a wide
variety of parameters.

[187]

ANN using feed-forward network with
Levenberg–Marquardt back-propagation
learning.
Software: Not stated

Objective: Hybrid approach using a SWAT model as an input to an
ANN to simulate monthly nitrate, ammonium, and phosphate loads
in Atlanta, GA, USA.
Advantages: Hybrid model outperformed standalone SWAT and ANN
models for prediction of monthly loads. Hybrid models are useful for
predictions in unmonitored catchments.
Limitations: Hybrid model for nitrate had substantially better
predictions than the ammonium and phosphate models. Large peaks
of ammonium and phosphate were underestimated.

[188]

ANN compared with SVM and group
method of data handling (GMDH).
Software: Not stated

Objective: ML techniques compared for predicting various WQ
components in Tireh River, southwest Iran.
Advantages: SVM models were most accurate, with less
data dispersion.
Limitations: All models overestimated some properties.

[189]

Twelve hybrid data mining algorithms
compared, spanning two main groups.
Group one featured decision tree algorithms,
and group two featured meta-classifier or
hybrid algorithms.
Software: Not stated

Objective: Comparison of 12 hybrid GeoAI models predicting WQ
indices in Talar Catchment, Iran.
Advantages: Hybrid models showed improved predictive power
compared to standalone algorithms.
Hybrid bagging random tree (BA-RT) model showed greatest
predictive power and was able to produce reliable results despite a
dataset spanning a short time period.
Limitations: BA-RT model struggled to accurately predict extreme
WQ index values, while most models also overestimated WQI values.

[190]
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Table 4. Cont.

Method and Software Objective, Advantages, and Limitations Reference

SVM and RF
Software: e1071 R package used to build SVM
model and random forest R package used to
build RF model.

Objective: SVM and RF algorithms compared to predict
high-frequency variation in stream solutes in Hubbard Brook,
New Hampshire, USA.
Advantages: Both ML algorithms were capable of effectively
predicting concentrations of major ions.
Limitations: Solutes with atmospheric, episodic, or strong biotic and
abiotic controls were much more poorly predicted than solutes least
affected by ecosystem dynamics.

[191]

Many WQ parameters cannot easily be measured in situ and in real time for various
reasons, such as high-cost sensors, low sampling rate, multiple processing stages, and the
requirement of frequent cleaning and calibration. Therefore, a common practice is the
estimation of a particular WQ parameter value based on other surrogate parameters, called
soft sensors [181,183,184]. ML techniques showed higher accuracy in implementing soft
sensors than conventional regression-based models [181,183,184,192].

The ML method has also shown an advantage in automatic hysteresis pattern analysis
using high-frequent water quality data with, e.g., restricted Boltzmann ANN [193]. A
more detailed hysteresis pattern classification allows the gaining of new insights into WQ
pollutants sources and drivers, the influence of catchment and riverine features, the effect of
antecedent conditions, and the influence of changes in rainfall and snowmelt patterns [193].

4.3.2. Spatio-Temporal Water Quality Prediction

We found diverse applications of the GeoAI methods in WQ spatio-temporal pattern
analysis, the classification of WQ, and the prediction of WQ variables and the pollutant
loading estimation. A detailed review of the ML application in WQ prediction is found
in Rajaee et al. [27], Naloufi et al. [29], and Chen et al. [194]. Table 4 shows examplesof
GeoAI applications for this purpose. Commonly used GeoAI for WQ prediction and
classification are unsupervised clustering such as k-means, density-based spatial clustering
of applications with noise (DBSCAN), and SOM, but also time-series segmentation such as
dynamic time warping [195]. Supervised ML classification and prediction algorithms for
WQ are RF, SVM, the Bayesian network, and ANN, and deep learning such as LSTM is also
frequently used [190,196,197].

High-frequency WQ monitoring data contains noise signals due to random and sys-
tematic errors, impairing the WQ prediction accuracy. Hence, combining data denoising
techniques such as Fourier and wavelet transform with GeoAI improves WQ prediction.
For example, Song et al. [198] found that combining synchro-squeezed wavelet transform
and an LSTM network substantially improved the WQ parameter prediction. Similarly, Na-
jah Ahmed et al. [28] integrated wavelet discrete transform with the artificial neuro-fuzzy
inference system (WDT-ANFIS) to obtain high-accuracy prediction of river WQ parameters.

Additionally, the WQ data usually have temporal autocorrelation and multi-collinearity
between the WQ parameters. To consider these characteristics in the prediction models,
Zhou et al. (2020) [199] proposed an ML model based on t-distributed stochastic neighbor
embedding (t-SNE) and self-attention bidirectional LSTM (SA-Bi-LSTM), demonstrating
substantial WQ prediction improvement. Another promising approach is uniform mani-
fold approximation and projection (UMAP) for multidimensional WQ data ordination and
classification. Unlike other dimension reduction methods, UMAP retains a global and local
information structure, and the data ordination is bio-physically meaningful [200].

Inland water has naturally high spatial variation. It requires complex spatial pre-
diction models and large datasets. The GeoAI have shown breakthroughs in spatial WQ
prediction by combining field observations, remote sensing data, or UAV imagery. For
example, using deep learning, RF, genetic algorithm—RF, adaptive boosting (AdaBoost),
genetic algorithm—AdaBoost and the genetic algorithm—extreme gradient boosting (GA-
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XGBoost) [183,194]. However, these models usually demand extensive training data, which
are restricted to a few pilot areas or intensely monitored areas.

Another approach in WQ prediction is the application of hybrid models and the
integration of physical-based models with GeoAI methods, such as SVM, RF, ANN, and
LSTM. Hybrid models usually outperformed physical-based models. For example, Noori
et al. [188] found substantial improvement in monthly nitrate, ammonium, and phosphate
load prediction when using hybrid SWAT-ANN models. Hybrid models are also helpful
for unmonitored catchment predictions [188]. The hybrid model also improves GeoAI
explanatory and generalization capability, although some disadvantages observed in the
physical-based model, such as extreme values not being well predicted, persisted in the
hybrid models. Similarly, the process-guided recurrent neural network (RNN), which
combines the biophysical principles of the process-based model and RNN, modeled the
seasonal variation of lake phosphorus loading with lower bias and better reproduced the
long-term changes of phosphorus loading compared to using the physical-based model
and RNN independently [21].

Overall, the GeoAI water quality prediction depends not only on the selected algo-
rithms and settings but also on the WQ parameters, data size, and training data quality for
the learning models [183,188,191].

4.4. Machine Learning in Fluvial Geomorphic and Morphodynamic Mapping

Fluvial geomorphology triggered the quantitative dynamic paradigm [201] as an ap-
proach to quantifying and understanding the processes of the fluvial environment [5]. The
simultaneous development of techniques such as multispectral satellite images, synthetic
aperture radar (SAR), LiDAR, UAV imagery, structure from motion photogrammetry (SfM),
multibeam sonar (sound navigation and ranging), among others, has resulted in an un-
precedented, seamless characterization and quantification of the fluvial environment and
its dynamics [202–204]. This geospatial dataset explosion, as in many other disciplines, has
resulted in the perfect foundation for applying GeoAI methods in fluvial geomorphology.
Here, we reviewed the recent GeoAI applications in fluvial geomorphological studies.
Table 5 shows selected examples of GeoAIapplications in fluvial geomorphic studies.

Table 5. Selected GeoAI applications in fluvial geomorphic and morphodynamic mapping.

Method and Software Objective, Advantages and Limitations Reference

NASNet CNN
Software: Python based. CNN supervised
classification available for PyQGIS

Objective: To classify fluvial scenes in 11 rivers in Canada, Italy, Japan,
the United Kingdom, and Costa Rica.
Advantages: The NasNet-CNN model outperformed other supervised
classifiers, e.g., maximum likelihood, MLP, and RF. The NasNet-CNN
model can be transferable to other rivers with no training data,
obtaining good classification accuracy of fluvial land cover.
Limitations: CNN is sensitive to the hyperparameters definition. CNN
was also affected by imbalanced training data size in land cover
classes. Some features were misclassified.

[205]

Fuzzy-CNN
Software: Python based. Dependency
packages: TensorFlow

Objective: To predict vegetation, bare sediment, and water bodies at a
sub-pixel scale with Sentinel-2 images, trained with high resolution
UAV images. Study areas were Sesia, Po, and Paglia Rivers in Italy.
Advantages: Fuzzy-CNN models were successfully used to provide
continuous and crisp subpixel classification of Sentinel-2 imagery.
The model was transferable to satellite images with different
acquisition time. It can be used for annual change detection.
Limitations: UAV reference data obtained with manual OBIA was
highly time-consuming. The process was computationally expensive
due to the “super-resolution” process used to feed the CNN. The
model was tested only in Mediterranean drainage basins.

[206]



Water 2022, 14, 2211 19 of 38

Table 5. Cont.

Method and Software Objective, Advantages and Limitations Reference

ANN
Software: MATLAB-based software. Leaf area
index calculation (LAIC)

Objective: Hydromorphological features classification using very high
resolution UAV images (2.5 cm) in a reach of the River Dee,
Wales, UK.
Advantages: ANN LAIC model showed satisfactory classification
accuracy and potential to identify multiple hydromorphological
classes that can be attributed to site features based, e.g., on their
hydraulic, habitat, or vegetation types. The model settings seem to be
transferable to other rivers without training data.
Limitations: The algorithm showed misclassification of small fluvial
entities, e.g., shallow water areas with rippled surface, water areas
affected by tree shadow, and vegetated banks and/or areas obscured
by brown submerged vegetation.
The authors provided very limited information about the model
parameter setting in the paper.

[207]

CNN
Software: Matlab- based software.
Visualization and image processing for
environmental research (VIPER)

Objective: To measure river wetted width (RWW) with a novel
approach at the subpixel scale by using MODIS and Landsat OLI
images in Bay of Bengal, India, and Landsat TM in
Columbia River, USA.
Advantages: CNN-based sub-pixel scale classification resulted in a
more accurate estimation of RWW than the conventional hard
image classification.
Limitations: No full spectral unmixing was possible due to the
spectral variations of land cover classes and the nonlinear mixture
phenomenon. Misclassification issues were reported when shadows,
bridges, or trees were located along riverbanks. In such situations,
RWW was unmeasured.

[208]

GEOBIA, EL, RF, extra tree (ET), gradient tree
boosting (GTB), extreme gradient boosting
(XGB). Then, it was combined with a
voting classifier.
Software: Python-based with scikit-learn
package.

Objective: To map the main hydromorphological types that
characterize fluvial landscapes in Europe by using Copernicus image
mosaic and EU DEM. Target classes: water, sediment bars, riparian
vegetation, other floodplain units.
Advantages: RF outperformed any other tested classifier, e.g., ET, GTB,
and XGB. Hierarchical object-based segmentation is robust for
combining spectral and topographical data at different spatial
resolutions and enhancing low spectral resolutions. Area-based
validations were the preferred method to validate the quality of the
object-based maps.
Limitations: Vegetation units and sediment bars were not very well
classified. Main source of error was related to the high mixture of
riparian vegetation, sediment bars, and other floodplain features.

[209]

Object-based RF and pixel-based RF,
combined with recursive feature elimination
and PCAs
Software: rpart and caret R packages, and
EnMAP-Box (environmental mapping and
analysis program) 2.1.1 software.

Objective: To reveal uncertainty, overfitting, and efficiency of terrain
attribute identification in fluvial landforms using morphometric
variables derived from a LiDAR DTM from Tisza River, Hungary.
Advantages: Object-based RF method had a better classification
accuracy (95%) than the pixel-based RF method (78%) when
identifying 4 different river landforms (crevasse channels, swales,
point bars, levees). Overfitting was controlled in the study by
limiting the number of input variables.
Limitations: Object-based RF classifications needed visual
interpretation, field observations, and high-resolution data. PCAs did
not help to select more efficient and important variables.

[210]
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Table 5. Cont.

Method and Software Objective, Advantages and Limitations Reference

RF and SVM
Software: eCognition developer 9 software.

Objective: Semi-automatic map of riverscape units and in-stream
microhabitats, providing continuous, objective, and multi-scale
classification using very-high-resolution near-infrared aerial imagery
and LiDAR DTM from the Orco River, Italy.
Advantages: RF better identified riverscape elements, e.g., channel and
bars, while SVM did better when classifying in-stream meso-habitats.
Topographical data, in particular detrended DTM (DDTM), was a
relevant data source for an accurate classification of the riverscape
units. Near-infrared imagery combined with DDTM was the
best predictor.
Limitations: Extensive expert-based training was necessary for
detailed post-classification. Several subjective rules added to the
process. Most confusion in the classification was detected between
the floodplain and sparse vegetation classes, where the DDTM was
not helpful.

[211]

K-means clustering
Software: ArcGIS based. Geoprocessing tool
(multivariate clustering)

Objective: To delineate valley bottom extent across large catchments
and automatically classify valley bottom segments of variable length
by using DEM-based derivatives from Richmond River, Australia.
Advantages: The k-means successfully clustered the entire river
network into 6 valley bottom segments of varying length.
Limitations: The resulting cluster is unlabeled and needs expert
recognition. Only used a low number of the variables selected (slope
and valley bottom width). The model was validated with a
basin-scale expert mapping of valley types. This is time-consuming
and not available for other areas.
The model was only proposed as a preliminary assessment for
further studies.

[212]

Modified Hebbian algorithms and k-mean
clustering.
Software: On-line batch Hebbian algorithm
and CoSA (clustering of sparse
approximations) packages.

Objective: To investigate the applicability of ML classifier in Arctic
regions using DigitalGlobe Worldview-2 visible/near-infrared,
high-resolution imagery from Mackenzie River, Canada, and Selawik
and Barrow Rivers in Alaska (USA).
Advantages: Allows automatic discretization of landscape units in
large areas. Useful as a preliminary method to learn which scale of
clustering is suitable to study different processes or focuses of the
study (e.g., hydrology versus vegetation). Capable of detecting
vegetation changes as it recognizes vegetation levels in
different classes.
Limitations: No error assessment was performed, nor was there
ground truth validation. The selection of an appropriate number of
clusters depends on the expert’s decision.

[213]

SVM, RF, ANN, partial least squares,
multivariate adaptive regression splines,
flexible discriminant analysis, k-NN,
regression tree, bagged trees, linear
discriminant analysis, regularized linear
discriminant analysis, and naive Bayes.
Software: Caret and h2o R packages.

Objective: To extrapolate a geomorphic classification of channel types
to a regional stream network using DEMs and thematic maps
(e.g., lithology, soil, stream network, etc.) from
Sacramento River, USA.
Advantages: Multiple algorithms compared. RF outperformed other
models with more accuracy and stability and lower entropy in
reach-scale river type classification. Rigorous approach in model
design and evaluation of performance with 20 × 10-fold cross
validation used for clarification of some black box aspects of ML.
Limitations: Needs large expert-based field survey data. It is unclear if
ML is able to integrate predictors at different scales and to show
different uncertainty across the watershed.

[214]
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Table 5. Cont.

Method and Software Objective, Advantages and Limitations Reference

RF and RF combined with recursive feature
elimination (RF-RFE).
Software: R program

Objective: To detect structural and/or neotectonic controls influencing
the knickpoints of the drainage network using DEM and thematic
maps (geology and geomorphology) from Abaeté Watershed, Brazil.
Advantages: Simple and reproducible methodology that provides
causal relationship of knickpoint formation to lithological contacts
and neotectonic configuration and activity. RF succeeded in partially
predicting geomorphic indices (e.g., stream length gradient index or
normalized channel steepness index) and can be used to predict them
in unsampled areas without overfitting.
Limitations: Low performance of the methods, obtaining R2 = 0.38 as
the highest correlation between predicted and direct estimation
values of geomorphic indices. It may have been affected by the
selection of the covariables.

[215]

Template-matching (object-based) algorithm
(TMA) and pixel-based SVM.
Software: Feature Analyst (Overwatch
Systems Ltd.). Not specified for SVM.

Objective: To delineate water surface boundaries and assess the
influence of river and bank characteristics in the efficacy of a
template-matching compared to a pixel-based algorithm, using
high-resolution images with false-color infrared, from the Brazos
River, USA.
Advantages: Both algorithms adequately delineate the water surface.
SVM performed better and handled complex and noisy class
relationships. TMA performed better than SVM in spatially complex
channel morphologies (e.g., partially submerged sediment deposits,
sediment bar structures) due to its capability to incorporate both
spectral and spatial information.
Limitations: Validation relies on expert knowledge and previous maps.
Selection of ancillary data types depends on expert decision and the
delineation accuracy of TMA. In addition, the low spectral dimension
of the images limited the pixel-based classification. Both algorithms
encounter problems when classifying multiple complex features (e.g.,
overhanging trees) and illumination conditions (e.g., shading). The
TMA performance was less spatially consistent than that of SVM.

[216]

SOM
Software: R based (R v3.5.1). Package
“kohonen” v3.0.7

Objective: To produce waterbody typology from 22 GIS-derived
continuous catchment characteristics to capture the dominant
controls that influence river reaches across England and Wales.
Advantages: SOM-based water body topology reflects catchment
functional feature controls on river reaches. The method is extendable
to other areas where reach-level monitoring is relevant. The SOM
combined with hierarchical clustering can be applied over a wide
range of catchment, e.g., a national-level waterbody typology map.
Limitations: The method could not isolate individual effects from
catchment controls as they are dependent on each other. It does not
detect temporal change and local controls such as dams,
channelization, and others not taken into account.

[217]

U-Net convolutional neural networks
(CNNs).
Software: Not stated.

Objective: To introduce the BathyNet framework, a photogrammetry
and radiometric-based combined retrieval of water depth using
U-Net CNNs. Study area was Lech river, Augsburg,
Bavaria, Germany.
Advantages: U-Net CNNs approximate arbitrary functions and
include spatial context. The U-Net CNN-based depth retrieval
outperformed traditional regression-based optical inversion methods.
Limitations: U-Net CNNs require large amounts of training data and
their application might be unfeasible in areas with scarce water-depth
field samples.

[218]

The current state-of-the-art of GeoAI in fluvial geomorphology consists of an auto-
matic extraction of fluvial features at a fine scale by integrating larger and multidimen-
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sional datasets, using unsupervised classifiers (e.g., K-means, SOM), supervised classifiers
(e.g., RF, SVM, ANN, deep learning, CNN), or by combining both methods, e.g., K-means
with ANN. Most of the reviewed articles were focused on the development of the methods
and workflow, the testing of new applications, or the comparison of algorithm perfor-
mances [205,207,209], rather than the study of fluvial processes and underlying dynamics.
These applications of GeoAI provide the basis to the discovery of new fluvial patterns and
trends and increase knowledge about fluvial environments (e.g., Ling et al. 2019; Guillon
et al. 2020, Heasley et al. 2020) [208,214,217].

Overall, GeoAI outperforms conventional methods of fluvial landform classification,
reaching a classification accuracy of over 80%. Most common applications are found in river
channels and water body mapping [208,216], the classification of riverine landforms and
vegetation successions [213,214,219,220], the estimation of catchment hydrogeomorphic
characteristics (e.g., valley bottom, floodplain, and terrace) [212,221], and benthic and fish
habitat mapping [207,211,222,223].

Another application of GeoAI is the integration of multiple techniques to provide
more accurate and very-high-resolution data for fluvial studies. For example, the fluvial
environment is highly dynamic and demands frequent bathymetry surveys to understand
the change and morphodynamic drivers in lakes and rivers. Emerging technologies,
such as acoustic Doppler current profiler (ADCP), green LiDAR, high-resolution image
radiometric model, and 3D cloud points generation with SfM, allow more frequent and
accurate bathymetry mapping [203,204]. However, each approach has limitations, e.g.,
ADCP collects data only from areas where the sensor has passed, and it does not provide
continuous spatial scanning. It does not measure near-bank areas, and it is subject to
the acoustic side-lobe effect [224]. Photogrammetry and the green LiDAR method are
sensitive to water turbidity and light penetration in the water column [225,226]. Therefore,
multisource bathymetry modeling using the GeoAI method increases the bathymetric data
accuracy and reduces uncertainties due to data quality in change detection. For example,
ADCP data, image radiometric-based water depth, and SfM depth data can be integrated
using U-Net convolutional neural networks [218,227].

The GeoAI approach, when using multi-temporal remote sensing data, allows the
mapping of a broader fluvial landscape and its change, thereby revealing spatiotemporal
scales of fluvial morphodynamics, as in e.g., Van Iersel et al. [228], Hemmelder et al. [229],
and Boothroyd et al. [230]. There are different GeoAI approaches for automatic change
detection using multi-temporal images such as generative adversarial networks (GAN),
autoencoder, CNN, and others, as presented by Shi et al. [231].

Although GeoAI has been rapidly adopted in fluvial geomorphological studies, a
wide spectrum of workflows and software is found; many GeoAI approaches seem to be
under development and in the testing stage. Therefore, without a general, consistent, and
robust workflow among them, it is difficult to generalize and compare the GeoAI methods
performance and overall accuracies, as well as the study results.

The current limitations of GeoAI methods in fluvial studies are that the classification
quality is highly dependent on expert knowledge. The unsupervised classification output is
often inconsistent, and the cluster classes do not have direct geomorphic or fluvial process
meaning and need a post-classification labeling. Supervised GeoAI classifiers require
a large training sampling, and the training data quality is highly dependent on expert
knowledge. In addition, many of the studies using GeoAI to classify fluvial landform or
river typologies have been conducted in areas where an extensive quantity of previous
studies and data collection exists [212,214]. Therefore, its application in poorly sampled
areas is somewhat limited.

In many cases, GeoAI is enhanced with the use of fine-scale fluvial geomorphic
mapping, e.g., LiDAR or UAV-based images, which are still restricted to pilot areas, mostly
in Western countries. In addition, several different landform class names are used to rename
fine-scale fluvial landforms, and therefore, a standardized fluvial landform taxonomy is
lacking [232].
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Another limitation of supervised GeoAI applications is the misclassification of el-
ements out of the GeoAI training range, as presented, e.g., in Carbonneau et al. [205].
Moreover, the use of very different methods for assessing the GeoAI algorithm’s per-
formance and accuracy may lead to inconsistencies in the validity of results, e.g., map
cross-tabulation often uses limited validation points rather than areal-based reference data,
due to the lack of geomorphological reference maps at a very fine scale. Another issue
with regard to performance and accuracy assessments is the use of scalar error statistics,
such as root mean square error, which may not be reliable in fluvial mapping. Here the
resulting error is a complex combination of random and systematic components, and the
isotropy and stationary assumptions do not apply to the fluvial process [233]. It is also
heavily influenced by a small percentage of classification errors, which lead to incorrect
rankings of overall model performances or to prediction error [206]. Therefore, a more
consistent and comparable GeoAI-based fluvial mapping accuracy assessment is needed.

5. GeoAI Causal and Predictive Inference Capability
5.1. Renewed Data-Driven Research

Observational and experimental studies have been the basis of understanding the
empirical relationships of physical processes occurring in the earth and the development
of the mechanical or physical-based models to predict them [234]. With the substantial
increase in observational data and the development of GeoAI methods, empirical studies
have been renewed with data-driven models [17,235]. Unlike traditional statistical models,
GeoAI methods do not rely on a formal assumption about the data structure and types of
data distribution such as normality. They are more flexible and adaptable for nonlinear
and high-dimensional data. GeoAI methods automatically identify and exploit correlations
and patterns (classification) in the data to make predictions. For example, an ANN, with
many hidden layers and free parameters estimated by training and arbitrary fitting curves,
converts inputs to outputs by simply minimizing error variances [39].

To date, in most of the GeoAI applications for hydrological studies the cause–effect
relationship inference has been limited, because the multiple driven factors and interactions
between the used variables and scales are not explicitly represented in the models [50,123].
In addition, the GeoAI and ML internal hyper-parameter optimization is not explicitly
stated in most of the modeling studies. For this reason, GeoAI methods are often called
“black-box” models [236]. See Table 6 for the characteristics of physical-based and GeoAI
hydrological models. Therefore, causal inferences might be questionable without robust
assumptions and the veracity of the assumed data structure [237]. Thus, most GeoAI
models are mostly inductive approaches, mainly oriented for operational prediction and
forecasting work, such as early warning systems. Nevertheless, GeoAI models have the
potential to reveal unknown associations and complex patterns of hydrology processes
by integrating more high-dimensional and multi-source data than traditional methods.
By implementing proper model interpretation and explainability methods, they can also
extend GeoAI applications for causal inference [236,237].

Table 6. Characteristics of physical-based and GeoAI hydrological models.

Process-Based Model GeoAI Model

Based on general physical laws. A data-driven approach, inductive model building, may not fully
respect physical laws.

All input variables and parameter ranges are
well-structured and known.

Unstructured data, not all input variables’ role in the model is known,
making the output less interpretable.

Limited to the current state-of-the-art. Able to reveal unknown associations and patterns.

It is a deductive, hypothesis testing approach. It can be
used for causal inference.

It is an inductive, exploratory approach. Their use in causal inference
depends on the GeoAI model building and selected variables.
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Table 6. Cont.

Process-Based Model GeoAI Model

No uniqueness problem due to inverse modeling in
model parameterization.

No uniqueness problem due to GeoAI hyper-parameter optimizations.

Mostly deterministic, the system is represented by the
average values of variables.

Deterministic and probabilistic, depending on the GeoAI method,
variables can be treated as probabilistic.

Reductionist, considerable simplification of complex
processes which can result in prediction bias.

Integrative, GeoAI can be integrated into several types of observation
and may be able to reveal patterns not represented by a physical-based
model. Therefore, GeoAI prediction can be less biased.

It is assumed to be of general application. It is assumed to be applied only within the range of the training data.

Fixed to the model basis data requirement, and unable to
deal with multisource data.

Flexible to data input, from minimal input to big data. GeoAI can
maximize the use of all types of available data, from different sources,
types, and quality.

High computing demand for high-frequency and
large-scale modeling.

High computing efficiency and suitable for high-frequency and
large-scale modeling.

One-time calibration, once the model is calibrated, the
parameters are usually fixed.

Continuous learning model, the model calibration is constantly
updated with past and new data.

Well-defined framework for model performance,
uncertainty, and error propagation evaluation.

Diverse and developing approaches for model performance,
uncertainty, and error propagation evaluation.

5.2. Generalization of GeoAI Prediction

GeoAI models may only be applicable within their specific training data or calibrated
ranges [238], unless the modeling scheme and variables used can be argued to be generally
valid, e.g., representing general laws such as conservation and momentum laws that govern
natural processes [234]. GeoAI modeling generalization is also a challenging problem from
the perspective of model performance assessment, depending on the model complexity,
variables, and training dataset size. A very simple model cannot learn the problem being
modeled (underfitting problem), whereas a highly complex model with a large dataset
might overfit the training dataset (overfitting problem). Both cases are not generalizable
or applicable to new datasets. Current GeoAI generalization approaches are based on
finding an optimal tradeoff between training and validation accuracy, using regularization,
weight decay, ensembles, and other approaches in the model training stage [40]. However,
the decision boundary in complex models becomes sensitive to data size and outliers,
model architecture, and hyper-parameter optimization. It has also been observed that
different sets of the model architecture and hyper-parameters can produce a similar model
performance, leading to the non-uniqueness modeling problem [50,239].

5.3. GeoAI Data Requirement for Reliably Prediction

GeoAI models depend on the quality and quantity of the data. The amount of data
required for them depends on many factors, such as the complexity of the hydrological
system and the applied GeoAI algorithm [47]. A complex system with more sophisticated
GeoAI methods will demand a large and multidimensional dataset [42]. For example,
deep/extreme learning algorithms usually demand large sample sizes to compute accept-
able results [240]. Current hydrological and geospatial data are increasing rapidly, fostered
by the development of automatic monitoring systems and land surveying technologies.
However, the data quantity (volume) and quality (veracity and value) vary; the data
types are diverse (unstructured, structures, spatial, non-spatial, etc.), and the datasets
usually come from different sources. Datasets with these characteristics are called big
data [241,242] and require advanced and new methodologies to integrate them with GeoAI
models properly.
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5.4. GeoAI Capacity to Provide Novel Physical Insights

GeoAI data-driven research and data mining are increasingly used to gain information
from data, elucidate systems behavior, reveal new insights about the system functioning,
and detect change in the system responses [17]. There are several examples of GeoAI
applications in hydrological modeling [91,105,107,243]. Recent studies applying deep
learning to rainfall-runoff simulation indicate that there is significantly more information
in large-scale hydrological data sets than hydrologists have been able to translate into
theory or models [129]. GeoAI has also revealed new hydrological patterns and trends,
using heterogeneous data from different sources and quality [244,245]. Therefore, novel
data-driven modeling provides the potential to gain new information and knowledge and
a better understanding of the hydrological system and its changes [129,235].

6. GeoAI Research Trends in Integrated Hydrological and Fluvial Systems Modeling
6.1. Toward Transdisciplinary GeoAI Research in Hydrological Modeling

Nowadays, earth science has mostly adopted GeoAI approaches developed in other
fields, particularly computer science. GeoAI is also an active field of research in advanced
hydrological modeling, providing new insights into hydrological system functioning,
advantages in computational efficiency, and prediction accuracy. Nevertheless, it depends
on how the hydrological GeoAI model has been set up by the user, the quantity and quality
of the data, and the types and number of variables used.

GeoAI methods can be integrated with other data analysis techniques, e.g., Fourier
and wavelet transformation, to remove noise and provide better hydrological feature
extraction [30,198]. Hence a transdisciplinary approach is demanded to ensure insightful
research on GeoAI applications in hydrological and fluvial studies [235]. This is particularly
relevant as the complexity of the GeoAI models is increasing continuously, and model
parametrization and parallel computing solutions require expert knowledge for proper
GeoAI technology adoption [18,240]. Similarly, these issues also arise when hydrological
science principles are not explicitly integrated with the GeoAI data-driven models, resulting
in a limited explainability of the underlying physical laws that govern hydrological and
hydraulic processes [50,129].

6.2. Augmenting GeoAI Prediction Capability with Open Data and Crowdsourced Data

GeoAI models demand a large amount of training data. Although data collection
technology has progressed substantially, only a few geographical areas or pilot hydrological
systems are well equipped. For example, very few catchments have implemented IoT hy-
drological monitoring technology. GeoAI models will demand a rapid and massive increase
in data collection. The current open-access policy of many governmental environmental
agencies, related to climatological, hydrological, and environmental data, enhances the
data-driven research and GeoAI applications, particularly in Western countries. Similarly,
open access to high-resolution topographical and earth observation data (e.g., NASA and
the ESA-EU Copernicus Programme) also accelerates the development of GeoAI-based hy-
drological models [241,246]. Additionally, the current trend of implementing open-access
training libraries, e.g., training data for land cover classification, is valuable, but more
specialized hydrogeomorphic labeled data are still under development.

Citizen science also plays a key role in complementing and increasing data collection
worldwide. There are several examples of how hydrological crowdsourcing enhances hy-
drological data availability for scientific research, using images and social media data [247]
and low-cost data loggers [248,249], but the success and quality of hydrological crowd-
sourcing are variable, depending on the regions, the instrument used, and the variables
reported [250]. GeoAI-based hydrological model development will benefit from crowd-
sourcing data collection.
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6.3. From Physical-Based and GeoAI Hybrid Models to Fully Integrated
GeoAI–Physical-Based Models

Physical-based and GeoAI hydrological models have had different paths of devel-
opment. As discussed previously, a physical-based model is derived from empirical and
experimental research; meanwhile, a GeoAI model is derived from data sciences techniques.

Physical-based and GeoAI models are not complementary per se, but in many cases,
the integration of both approaches has shown a great potential to improve hydrological
modeling [18,129]. Currently, there is a different level of integration; most of them are
still so-called loose integrated models, where the GeoAI and the physical-based models
work independently. The GeoAI method is used for data preparation and the refining
of physical-based models, e.g., data fusion, ad hoc parameter optimizations, and data
assimilation. In some cases, the outputs of physical-based models are used to train GeoAI
models [19,188,251]. Currently, full GeoAI-physical integration is under development, em-
bedding machine learning solutions into physical-based models or developing physically
guided GeoAI models; see, e.g., Hanson et al. [21]. Both approaches tend to overcome
current GeoAI model limitations by providing more physical explanatory power, physically
consistent and robust prediction, and a high level of generalization.

6.4. From Small-Scale to Global-Scale Hydrological Modeling

In recent years, substantial attention has been paid to large-scale and global-scale
hydrological modeling [252–254]. Although only experimental catchments have sufficient
data to perform a reliable hydrological prediction, the global availability of climatological,
hydrological, and remote sensing data allows for the parametrizing of the global-level
hydrological model. This planet-wide dataset can only be handled thanks to a combined
advancement in GeoAI application and cloud computing development, e.g., Google Earth
Engine, CoLab, SEPAL [255], and many other national high-performance computer clusters.
However, global-scale hydrological modeling still involves a high level of prediction
uncertainty [256,257], but current progress in the development of physical-based GeoAI
models and remote sensing data assimilation can improve global modeling accuracy.

6.5. Automation of Hydrological and Fluvial System Modeling

GeoAI applications are increasing the automation of hydrological prediction and fore-
casting [258]. Some hydrological modeling has already applied internal self-calibration [259–261].
Similarly, there is also substantial progress in developing automated machine learning
(autoML) by self-tuning the models’ hyperparameters, such as, e.g., autotune and AUTO-
SKLEARN [262,263]. The hyperparameters drive both the efficiency of the model training
process and the resulting model quality [262]. Therefore, a self-tuning module will enhance
a more rapid adoption of GeoAI models in hydrological modeling, and the integration of
physical-based and GeoAI models can improve autonomous hydrological prediction.

Similarly, self-supervised image classification, particularly that developed in the
robotic field [264], is rapidly being adopted in hydrological studies in, e.g., satellite im-
age classification, fluvial landform classification, and landform change detection. Self-
supervised models use automatically generated pseudo-labels, significantly reducing
manual labeling, one of the most time-consuming tasks in supervised classification [265].
Self-supervised image classification is enhanced by machine learning methods such as
autoencoder and the generative adversarial network (GAN). Autoencoder enhances im-
age quality and reduces noise by dimension reduction and retaining latent features [266].
GAN is a promising technique to further automate high-dimensional image classifica-
tion with limited data training. GAN generates new data instances that resemble the
existing training data by the competition between a generator and a discriminator [267].
Several examples show the advantages of incorporating GAN models in hydrological
classification [267–269] or combining it with autoencoder [270]. Integrating GAN with an
LSTM network model [271–273]; combining GAN with an ANN fuzzy model [274] was also
found to improve the automated hydrological and weather prediction using satellite data.
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6.6. GeoAI-Based Multi-Dimensional Geo-Visualization and Digital Twin

Hydrological systems are complex by nature and have been challenged to compre-
hensively and effectively convey spatial and non-spatial hydrological information. The
explosion of high-dimensional, multi-source, spatio-temporal hydrological data demands
new ways of multi-dimensional geo-visualization [275]. The GeoAI model optimizes the
transformation of multi-dimensional data into conventional 3D geo-visualization (x, y, and
z features), but also into 4D (including temporal dimension) and 5D geo-visualization
(including geographical scale). The 4D and 5D visualization is crucial for dynamic and
interactive web-based geo-visualization [276]. The GeoAI also supports building hydrolog-
ical digital twins, integrating IoT sensors, and multi-scale satellite and close-range remote
sensing data, with web-based hydrological GeoAI models for real-time prediction and
geo-visualization. A ‘digital twin’ is a comprehensive digital emulator of the real-world
system that aims to optimize the design and operations of complex processes through a
highly interconnected workflow [277]. Hydrological digital twins support the correct im-
plementation of the IWRM actions, including natural disaster response, nexus approaches,
and adaptation to climate change. Those actions require approaches underpinned by a
deeper analysis of river basin systems functioning, scaling-up field-based knowledge, and
new digital solutions to provide real-time, high-resolution information [278]. Addition-
ally, the advance in web-mapping services (WMS) and mobile app development with
interactive geo-visualization [279] enhances hydrological information dissemination for
decision-makers, stakeholders, and the general public engagement.

7. Conclusions

GeoAI applications in integrated hydrological and fluvial system modeling have
steadily increased in recent years. We found plenty of GeoAI applications in hydrological
and fluvial studies. The main applications were for assessing GeoAI hydrological prediction
and classification performance, comparing GeoAI methods with hydrological physical-
based models and integrating physical-based models with GeoAI. A wide range of GeoAI
methods are currently applied in this field, e.g., RF, SVM, ANN, LSTM, GAN, GA, and meta-
heuristic algorithms. The selection of a particular algorithm depends on the application
objective, data availability, and user expertise.

Overall, GeoAI applications showed advantages in non-linear modeling, computa-
tional efficiency, integration of heterogeneous data sources, high-accuracy prediction, and
the unraveling of new hydrological patterns or in detecting changes using high-dimensional,
multi-source geospatial data. GeoAI methods seem particularly relevant for complex sys-
tems and large geographical-scale modeling. A significant disadvantage of GeoAI models
is the low level of physical interpretability, explainability, and model generalization. There-
fore, current research trends focus on integrating the physical-based model with GeoAI
methods to bridge data-driven and theory-driven knowledge generation. Several levels of
model integrations exist, but a full physical-based GeoAI model is still under development.
The GeoAI models have shown high potential for autonomous hydrological prediction and
forecasting and early warning systems.
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