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Abstract
Water quality experiments are difficult, costly, and time-consuming. Therefore, differ-
ent modeling methods can be used as an alternative for these experiments. To achieve the 
research objective, geospatial artificial intelligence approaches such as the self-organizing 
map (SOM), artificial neural network (ANN), and co-active neuro-fuzzy inference system 
(CANFIS) were used to simulate groundwater quality in the Mazandaran plain in the north 
of Iran. Geographical information system (GIS) techniques were used as a pre-processer 
and post-processer. Data from 85 drinking water wells was used as secondary data and were 
separated into two splits of (a) 70 percent for training (60% for training and 10% for cross-
validation), and (b) 30 percent for the test stage. The groundwater quality index (GWQI) and 
the effective water quality factors (distance from industries, groundwater depth, and transmis-
sivity of aquifer formations) were implemented as output and input variables, respectively. 
Statistical indices (i.e., R squared (R-sqr) and the mean squared error (MSE)) were utilized 
to compare the performance of three methods. The results demonstrate the high performance 
of the three methods in groundwater quality simulation. However, in the test stage, CANFIS 
(R-sqr = 0.89) had a higher performance than the SOM (R-sqr = 0.8) and ANN (R-sqr = 0.73) 
methods. The tested CANFIS model was used to estimate GWQI values on the area of the 
plain. Finally, the groundwater quality was mapped in a GIS environment associated with 
CANFIS simulation. The results can be used to manage groundwater quality as well as sup-
port and contribute to the sustainable development goal (SDG)-6, SDG-11, and SDG-13.

Keywords Ground water quality index · Training · Test · Groundwater quality map · 
Mazandaran plain

1 Introduction

In arid and semi-arid areas such as Iran, due to water scarcity, studies of groundwater 
are very important for water resources protection and planning. More than 90% of the 
water consumed in Iran consists of groundwater. Since Groundwater is less susceptible 
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to bacterial pollution and evaporation than surface water, it is more important. In recent 
decades, human activities such as agriculture, manufacture, and urban development have 
affected groundwater quality negatively. Therefore to optimally manage water resources, 
it is necessary to study water quality. Water qualitative measurements and experiments are 
difficult, costly, and time-consuming, therefore, researchers applied various models to sim-
ulate groundwater quality (Haddad et al. 2013; Millar et al. 2019; Wu et al. 2020). Applica-
tion of artificial intelligence (AI) in groundwater modeling was initiated in the early 1990s 
and so far, many studies have been conducted on the successful application of this method 
(Nikoo and Mahjouri 2013; Tongal and Booij 2018; Li et al. 2020; Maliqi et al. 2020; Pal 
and Chakrabarty 2020; Mosaffa et al. 2021).

Artificial neural networks (ANN) are one of the most widely used AI methods in hydro-
logical modeling. One of the distinguishing features of the ANN method is to provide an 
applied solution to simulate in a water resources system (Hsu et al. 1995; Wang et al. 2010; 
Gholami et  al. 2021; Huang et  al. 2021). Later ANNs were combined with fuzzy logic 
methods and this resulted in the advent of neuro-fuzzy systems such as the co-active neuro-
fuzzy inference system (CANFIS) (Pramanik and Panda 2010; Varvani and Khaleghi 2019). 
CANFIS as a multi-layer feed-forward network uses Gaussian functions for fuzzy sets and 
also can combine the benefits of both neural and fuzzy networls (Ullah and Choudhury 
2013; Choubin et al. 2020a, b; Fang et al. 2020). Further, the self-organizing map (SOM) 
method or a Kohonen map is another common method in the field of AI (Kohonen 1982, 
1984, 2005; Laaksonen and Honkela 2011; Mosavi et al. 2020a). It uses unsupervised, com-
petitive learning, and then combines the goals of the projection and clustering algorithms 
(Klobucar and Subasic 2012). The SOM method builds a two-dimensional map (lattice) of 
feature space, and it is suitable to deal with noisy, non-stationary, and non-Gaussian data 
(Iwashita et al. 2011). A SOM is a type of ANN that is trained by using unsupervised learn-
ing to produce an output. It shows in the input space of the training samples, called a map. A 
SOM requires a neighborhood (i.e., the adjacent nodes) function to preserve the topological 
properties of the input space (Aneetha and Bose 2012). The SOM algorithm is a powerful 
tool to analyze the data (Aneetha and Bose 2012; Toor and Singh 2013; Singh 2014; Jassar 
and Dhindsa 2015).

SOM has been developed for a wide range of water resources issues and modeling for 
water quality assessment (Ehsani and Quiel 2008; Iwashita et al. 2011; Haider et al. 2015; 
Mosavi et al. 2020b). Numerous studies showed that one of the most superior classifica-
tion accuracy results have been achieved by using SOM as well-justified machine learning 
techniques (Muller and Van Niekerk 2016; Gholami et al. 2020). The advantage of SOM 
compared to other methods is that in this method, the error due to the complexity of the 
model as well as the error related to forecasting is minimized and this model can work with 
less training data and less variables. However, it is sensitive to variations depending on the 
training data. Further, its run-time is shorter than other methods (Lin et al. 2016). Although 
SOM has excellent features, there are still limited studies using SOM in modeling ground-
water quality in arid regions with limited daily climatic data because of its short history. 
Artificial intelligence-based methods can also earn better than relationships between input 
and output parameters (Besalatpour et  al. 2014; Mosavi et  al. 2020c). Each of the three 
methods of ANN, neural fuzzy (CANFIS) and SOM showed a high performance in hydro-
logical modeling processes. Previous studies on water quality using ANNs (Ghose et al. 
2010; Pal and Chakrabarty 2020), CANFIS (Memarian et  al. 2016; Allawi et  al. 2018) 
and SOM (Han et al. 2011; Li et al. 2020) have shown their performance in hydrological 
modeling.
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In water quality studies, it is necessary to use an appropriate index. In recent decades, 
several studies have used various indices for groundwater quality investigations (Giljanovic 
1999). Numerous studies have been conducted to measure the groundwater quality index 
(GWQI). The GWQI was introduced by Brown et  al. (1970) and later improved by the 
Scottish Development Department (1975), following the suggestion in Horton (1965) that 
the various water quality data could be aggregated into one overall index (House and Ellis 
1987). Gholami et al. (2015a, b) utilized statistical and GIS techniques to classify ground-
water quality in Mazanmdaran plain (north of Iran). Singh et  al. (2011) applied a GIS-
based multi-criteria analysis by assigning weights to different water quality parameters 
(Pirasteh et al. 2006; Farjad et al. 2012). They grouped water quality into six classes rang-
ing from very mild to unfit for drinking. They found that in most of the study areas, water 
quality varies from moderate to good except in some areas where the groundwater quality 
is classified as ‘poor to unfit’.

In recent years, much progress in artificial intelligence techniques has been seen and 
applied in many cases, including environmental and water quality. The large-scale avail-
ability of high-quality and geospatial data and the advances of both hardware and software 
have contributed to the GIS modeling efficiency and creating smart maps. Processing the 
data and transforming them into computer vision and programming language incorporated 
with machine learning enabled the us to create applied maps (Li and Hsu 2020; Xie et al. 
2020).

Three (SOM, ANN, CANFIS) have been used in several studies on modeling the quan-
tity and quality of water. A review of previous studies showed that each of these methods 
has high performance in water quality modeling. We intend to evaluate their performance 
with similar data in order to compare their performance and determine the most efficient 
method, and finally to produce groundwater quality maps by automatically integrating the 
optimal method in a GIS. This study aims to test the use of three AI methods of and in 
combination with GIS to model groundwater quality. The results present the capabilities 
of a co-active neuro-fuzzy inference system (CANFIS), ANN, SOM, and GIS rapidly and 
accurately in simulate groundwater quality.

2  Materials and Method

2.1  Study Area

The study area is a plain, in the north of Iran (Mazandaran province), with an area of approxi-
mately 10,000  km2 located between 35° 55′ to 36° 45′ N latitude and 50° 30′ to 53° 50′ E 
longitude (Fig. 1). The southern coasts of the Caspian Sea include plains made of Quaternary 
sediments. The study plain is located between the Caspian Sea in the north and the Alborz 
highlands in the south. This plain has a very low slope and its elevation varies from −27 m on 
the coast to 100 m in the south of the plain. Various land uses can be found, including paddy 
lands, residential areas, water resources, gardens and limited forest lands. Its surface water 
resources include rivers and wetlands, and its groundwater resources include unconfined and 
confined aquifers. In recent decades, due to the favorable climatic conditions and proximity 
to the sea, the tourism industry in this area has grown significantly. Population growth, a lim-
ited number of industries, agricultural development (use of pesticides and fertilizers) without 
observing environmental standards have increased pollution and reduced the quality of water 
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Fig. 1  Study area (A) and location of the groundwater wells (B)
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resources in the study plain. Therefore, it is important to take the necessary measures for the 
protection of water resources.

2.2  Determination of Groundwater Quality Index

In this study, eight water quality parameters including cations and anions  (K+,  Na+,  Ca2+,  Cl−, 
 Mg2+, and  So4

2−), pH, and total dissolved salt (TDS) were selected. These parameters were 
used for estimating the groundwater quality index. Because of the lack of microbial pollu-
tion measurements in the region, there is a limitation in defining the water quality index. Out 
of 200 drinking water wells in the study area, 85 wells were selected based on their existing 
qualitative secondary data (water quality experiments). The selected wells had adequate water 
quality data over a 6-year period from 2012 to 2017 compared to shorter periods for other 
wells. (ABFAR 2017). Estimating the groundwater quality index (GWQI) for 85 wells was 
done using quantitative secondary data from (i.e., 6-year data with four samples per year). 
The location of these drinking water wells in the study area is shown in Fig. 1. Before looking 
into the groundwater quality index, it is necessary to select a standard criterion to decide the 
parameters’ greatest values. National standards of Iran for potable water quality including the 
eight parameters are given in Table 1.

Equation (1) was applied to estimate the groundwater quality index (GWQI) based on the 
standard values given in Table 1:

where Ci is the concentration of the chemical parameter (mg/L), CSi is the Iranian drinking 
water standard for each chemical parameter and wi is the relative weight of each chemical 
parameter. Each parameter has a different weight in terms of its contribution to water qual-
ity. Then the corresponding weight values of the parameters were aggregated using some 
types of sum or mean (e.g., arithmetic, harmonic, geometric), often including individual 
weighing factors (Horton 1965; Melloul and Collin 1998). To estimate the final index, by 
aggregating all the normalized parameters, the weights of parameters in the final GWQI 
are defined based on their participation in the water quality determination. The weight of 
participation of each parameter in the final groundwater quality index depicts in Table 2.

The GWQI values were classified based on Saeedi et  al. (2010) into three classes; high 
(GWQI > 0.15); low (GWQI < 0.04) and suitable (0.04 < GWQI < 0.15). GIS was applied for 
data collecting and processing. Different base maps were used in the GIS environment with a 
resolution 50 by 50 m: a digital elevation model (DEM), the transmissivity of aquifer forma-
tions, the water table depth (TAMAB 2017), residential and industrial areas using topographic 
maps of the region, and GWQI values using the secondary qualitative data (ABFAR 2017). 
Table 3 shows the factors affecting groundwater quality and the GWQI index in some drinking 
water wells.

(1)GWQI =

8∑

i=1

wi.
Ci

Csi

Table 1  Potable water quality 
standards of Iran (mgr/1 except 
pH) (Saeedi et al. 2010)

K+ Na+ Ca2+ Mg2+
SO

2−

4
Cl− pH TDS

12 200 20 150 400 600 6.5–8.5 2000
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2.3  Geospatial Artificial Intelligence (GeoAI) for Groundwater Quality Simulation

In the modeling process, ANN, SOM, and CANFIS methods were used to simulate ground-
water quality. Moreover, the same data were used for the training and test processes for each 
method. First, all data were divided into two splits: training data (60% for modeling and 10% 
for cross-validation), and test data (30% of the data). Data were normalized and the train-
ing process was performed. Then, the testing or validation was carried out and further the 
results were compared with the same statistical indices (R-sqr, MAE, and MSE). A sensitivity 

Table 2  The weight of each 
parameter in the final GWQI 
(Saeedi et al. 2010)

Parameter Parameter’s 
weight

K + 0.04
Na+ 0.06
Ca2+ 0.15
Mg2+ 0.2
SO

2−

4
0.1

Cl− 0.1
PH 0.2
TDS 0.15

Table 3  Factors affecting groundwater quality and GWQI index in some drinking water wells

No GWQI Transmissivity 
 (m2/day)

Groundwater 
depth (m)

Elevation 
(m)

Distance from 
contaminant centers 
(m)

No. of 
household

Population 
(person)

1 0.2715 1500 12.90 50 6.4 52 460
2 0.2401 750 3.00 −11 153.8 239 1077
3 0.2267 175 5.00 −13 99.4 32 144
4 0.2165 750 4.00 −10 1121.2 21 98
5 0.2125 1500 5.00 11 0 22 93
6 0.2070 500 4.17 6 20 246 1105
7 0.1971 1000 5.00 11 0 22 93
8 0.1969 750 6.50 20 20 161 666
9 0.1553 500 31.00 1062 830 30 95
10 0.1483 300 23.00 453 1100 13 62
11 0.1252 300 25.00 69 709 53 287
12 0.0568 100 38.00 1670 1023 53 342
13 0.2578 500 4.70 6 44 109 495
14 0.2042 750 3.50 −8 451 92 434
15 0.3413 3000 5.00 20 15.42 574 2770
16 0.3252 2000 3.00 2 66.37 118 820
17 0.3243 1000 1.00 3 28.07 239 1187
18 0.3146 1000 1.00 1 21.27 136 800
19 0.2597 750 5.00 12 9.21 607 2931
20 0.2571 1500 8.00 33 194.20 144 693
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analysis of the model inputs was performed to select the main parameters of groundwater 
quality. Studying the effect of inputs on the outputs and determine the importance of each 
input. The results showed that the transmissivity of aquifer formations, groundwater depth, 
and distance from industrial areas were significant factors in determining the groundwater 
quality and are the best inputs in groundwater quality simulation. In the following, the meth-
odology of each of the three methods is described.

2.3.1  Artificial Neural Network (ANN)

An ANN consists of three layers, an input layer, a hidden layer, and an output layer. A network 
can have more than one hidden layer. In this study, multi-layer perception (MLP) was used to 
simulate groundwater quality. The MLP was generated by adding one or more hidden layers 
to a one-layer perception, and this proposed topology can solve complex problems (Tokar and 
Marcos 2000). The determination of the network’s best structure and the number of neurons 
is important in network planning. MLP is the most realistic neural network architecture for 
classification or regression problems based on the literature (Lim et al. 2000; McGarry et al. 
2001; Cohen and Intrator 2002; Gholami et al. 2015a, b). A three-layer (input, hidden, and 
output) feed-forward neural network was used with different learning techniques to simulate 
the groundwater quality index (GWQI). The feed-forward neural network is the first and sim-
plest of artificial neural networks devised. In the feed-forward network, the information moves 
in only one direction forward, from the input nodes, through the hidden nodes, and the output 
nodes.

The MLP network was trained and optimized by a trial- and- error method. The trail-and 
error approach is the most applied method to find the optimum structure and the learning tech-
nique (Isik et al. 2013). The goal of network training is to determine how the network can 
simulate the relation between inputs and output variables. The modeling process was executed 
by NeuroSolutions software. The numbers of hidden neurons was varied from 1 to 10. The 
Levenberg–Marquardt (LM) training technique was found to be the best learning technique 
in groundwater quality simulation. Network training is part of the main stages in modeling 
using ANN. In the training process, the weight coefficients were calculated in intermediate 
and output layers (Tokar and Marcos 2000; May et al. 2008; Castelletti et al. 2012). The ANN 
model structure’s determination involves defining the number of layers, the number of nodes 
in each layer, and how they are linked (Isik et al. 2013). The trial–error method and sensitivity 
analysis selected the appropriate input parameters. Eight input patterns were examined, and 
their performance was compared (Eq. 2 to Eq. 9):

(2)GWQI = cf (T ,Gw,Lc)

(3)GWQI = f (T ,Gw, Lc)

(4)GWQI = f (T ,Gw, Lc,H)

(5)GWQI = f (T ,Gw, Lc,H,P)

(6)GWQI = f (T ,Gw, Lc,H,P,F)

(7)GWQI = f (Gw,Lc,H,P,F)
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where GWQI is the groundwater quality index, T  is the transmissivity of aquifer formations 
 (m2/day), Gw is the groundwater depth (m), and Lc is the distance of a well from contami-
nant and residential centers (m). P and F are populations, and the number of households in 
the area 1  km2 and H is the elevation (m).

2.3.2  Co‑Active Neuro‑Fuzzy Inference System (CANFIS)

In this study, a neuro-fuzzy hybrid model was utilized as well. The neural–fuzzy network 
is a feed-forward network supervised by a neural network learning algorithm through back-
propagation during network training. Here various input vectors and an output vector were 
utilized. In the design of the neuro-fuzzy hybrid model, a trial-and-error approach deter-
mined the structure of the optimized input. The difference between the rate of observed and 
simulated water quality index is the objective function and the goal is to equalize the simu-
lated and observed values. The rate of instantaneous error will be equal to zero according 
to Eq. (10):

where Ji (n) is the network moment error and represents the total error for neuron i in the 
output layer. ti (n) represents the desired target output of the ith network in the nth iteration, 
and ai (n) represents the predicted output from the system and is the actual output at each 
iteration. The model’s selected weight was modified by estimating the output error and 
application of the back-propagation process. Weight correction was done using a gradient 
descent method and according to Eq. (11):

where Wij(n + 1) is the synaptic weight to the ith neuron in the output layer from the jth 
neuron in the previous layer. wij(n) is the rate of the weight in nth iteration, n denotes the 
steps of the iteration. g is the extent of step size or the learning rate coefficient because of 
controls the speed (Loganathan and Girija 2013), di (n) is the local error of the modeling. 
It has been estimated from Ji(n) in nth iteration, xi (n) is the regressor vector, and di(n)xi(n) 
is the gradient vector of the performance surface at iteration (n) for the ith input node.

The modeling process included the separation of training data and test data, how to opti-
mize, select the optimal network structure and test the network in all three methods were 
the same.

2.3.3  Self‑Organizing Map (SOM)

SOMs, which are nonlinear time-series models, are among those supervised learning meth-
ods that are used for classification and regression (Vapnik 1998; Bahrami et  al. 2016). 
SOMs find an optimized decision-making plan to separate two mentioned classes so that 
two classes have the highest margin of separation in binary classification. In the SOM 

(8)GWQI = f (T , Lc,H,P,F)

(9)GWQI = f (T ,Gw,H,P,F)

(10)Ji(n) = ti(n) − ai(n)

(11)Wij(n + 1) = wij(n) + ��i(n)xi(n)
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algorithm (Kohonen map), the dimensions of the data are cut through the self-organizing 
neural network application. This technique aims to reduce the dimensions of the data to 
one or two dimensions. In this method, the only known parameter is the input neurons, 
while the weight and output neurons are the unknown parameters that must be found. Fur-
ther, each input vector x €  Rn can be evaluated with the  mi:  Rn in any metric, usually the 
Euclidean distance (the length of a line segment between the two points). In fact, the SOM 
defines a mapping from the input data space  Rn onto a regular two-dimensional array of 
nodes.The winning node c is then calculated by (Eqs. 12 & 13):

where x is mapped onto c relative to the parameter values mi.
The updated formula is as follows (Eq. 14):

where t is the discrete-time coordinate and hc,i is a function defining the neighborhood. The 
initial values of the mi can be random (Kohonen et al. 1996).

2.4  Evaluation of ANN, SOM, and CANFIS Performances

In the training phase, the best inputs were determined by changing the pattern of data 
inputs and analyzing the ANN, CANFIS, and SOM sensitivity to input data. In the next 
step, each of the three models’ optimum structure was selected by utilizing a trial-and-
error approach and testing their performance and error criteria. The models’ performance 
was evaluated by using the mean squared error (MSE) and the coefficient of determination 
(R-sqr), defined as (Eqs. 15 & 16):

where Qi is the observed value, 
∧

Qi is the simulated value, and Qi is the mean of the 
observed data and Q̃i is the mean of the simulated data and n is the number of data points.

Finally, the observed GWQI values and the simulated GWQI values were compared in 
the test stages of the three used methods. The results of the test stages and the error criteria 
values were used to evaluate the methods’ performance and to select the best method for 
simulation of the groundwater quality.

(12)‖x − mc‖ = min
�
‖x − mi‖

�

(13)c = argmin
�
‖x − mi‖

�

(14)mi(t + 1) = mi(t) + hc,i(t)
[
x(t) − mi(t)

]

(15)MSE =

∑
(Qi −

∧

Qi)

n

(16)R − sqr = [

n∑
i=1

(Qi − Qi).(Q̂i − Q̃i)

�
n∑
i=1

(Qi − Qi)2.
n∑
i=1

(Q̂i − Q̃i)2

]

2
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2.5  Groundwater Quality Mapping

Based on the results, the fuzzy neural network has the best results in simulating groundwa-
ter quality, and needs three inputs  (Gw, Ta, and  Dindustry). Therefore, the CANFIS network 
was coupled with GIS for the generation of a groundwater quality map. Raster layers cor-
responding to the three mentioned factors were prepared and were combined at a resolution 
of 50 by 50 m. One can use a higher spatial resolution which will lead to more accurate 
input values, e.g. the distance from the pollutant centers. In the CANFIS network envi-
ronment using the tested optimal network, GWQI was estimated for ten thousands pixels. 
GWQI values of 85 studied drinking water wells were overlapped on the simulated ras-
ter layer of groundwater quality. The results’ accuracy and precision were evaluated by 
comparing the simulated values of GWQI and the observed values of GWQI. The layer of 
groundwater quality was presented as a groundwater quality map after classification.

3  Results

3.1  Groundwater Quality Modeling

The groundwater quality index (GWQI) in 85 studied wells based on observational data 
ranged from 0.05 to 0.34 and the mean GWQI was estimated at 0.21. The mean groundwa-
ter depth varied from one meter in the coasts to 40 m in the south of the plain. The trans-
missivity of aquifer formations has a range between 75  m2/day in fine-grained formations 
to 3000  m2/day in light-textured structures. Distance from industries is an important and 
influential factor in groundwater quality, and ranged from 10 m to several kilometers in 
study wells. The correlation coefficient between the GWQI and the factors of distance from 
industries, the groundwater depth and transmissivity of aquifer formations was estimated 
to be −0.56, −0.68 and 0.55, respectively. Therefore these factors are the most important 
ones in the groundwater quality assessment in the study plain. There is an inverse rela-
tionship between groundwater quality and distance from industry, and the closer we get to 
industry, the larger the pollution (Gholami et al. 2015a, b). The transmissivity of aquifers 
is also directly related to the emission of pollutants (Shi et al. 2016). Moreover, the higher 
the groundwater depth, the greater the risk of contamination (Adamowski and Chan 2011; 
Gholami et al. 2015a, b). Other factors such as precipitation, population and site elevation 
did not have a strong significant relationship with the GWQI in the study plain.

The modeling process was performed using the same data and three methods to simu-
late the groundwater quality. Table 4 illustrates the results of the training stage (R-sqr and 

Table 4  Results of network training for simulating GWQI among the three used models

Model/criteria R-sqr MSE Mean absolute 
Error

Min Abs error Min ax Abs error

ANN 0.95 0.006 0.03 0.003 0.06
CANFIS 0.98 0.0004 0.018 0.001 0.05
SOM 0.96 0.0008 0.02 0.003 0.08
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MSE). The cross-validation stage was performed for suitable training, and MSE values in 
the three applied methods were estimated from 0.008 to 0.02.

Table  5 shows the test stage results to evaluate the performance of three models in 
GWQI estimation. In the training stage of the ANN method, the mean square error (MSE) 
and the coefficient of determination (R-sqr) were 0.006 and 0.95, respectively. While, in the 
test stage, they were 0.005 and 0.73, respectively. The optimal ANN was a MLP network 
with two hidden neurons, the LM learning technique, and the tangent hyperbolic transfer 
function. In the training stage of the CANFIS method, the MSE and R-sqr were 0.0004 and 
0.98, respectively. While, in the test stage, they were 0.004 and 0.89, respectively. In the 
training stage of the SOM method, it was revealed that the MSE and R-sqr are 0.0008 and 
0.96, respectively. In the test stage, they were 0.008 and 0.8, respectively.

According to the results, the CANFIS method has the best results in groundwater qual-
ity modeling among the three applied methods. Figure 2 shows a comparison between the 
simulated values and the observed values of GWQI by using the three methods.

3.2  Groundwater Quality Mapping

Groundwater quality of the study plain using the predicted GWQI values by the tested 
CANFIS network and the GIS tool was simulated. After classification of the simulated 
GWQI, the groundwater quality map was presented in Fig. 3. Moreover, GWQI values of 
85 drinking water wells were overlapped on the groundwater quality map to assess the 
accuracy and precision of the results by comparing the predicted values and the observed 
values. The classified GWQI map was used for evaluating the groundwater quality in the 
Mazandaran plain. According to the produced groundwater quality map, most of the study 
plain area has moderate groundwater quality and a limited part has very good groundwater 
quality or polluted groundwater quality.

4  Discussion

In the training stage, it was found that the best inputs include three inputs: groundwater 
depth, distance from the pollutant centers, and transmissivity of aquifer formations. The 
mentioned factors are the most important factor in groundwater quality in the study area 
(Gholami et al. 2015a, b; Sahour et al. 2020). According to the statistical analysis, these 
factors have the highest correlation with groundwater quality. The main issue in the mod-
eling process is the selection and accuracy of inputs and output. The groundwater depth 
and transmissivity of aquifer formations were measured by Mazandaran regional water 

Table 5  Results of network testing among the three used models

Model/criteria R-sqr MSE Mean absolute 
error

Min Abs error Min ax Abs error

ANN (MLP) 0.73 0.005 0.04 0.003 0.06
CANFIS 0.89 0.004 0.02 0.001 0.05
SOM 0.8 0.008 0.03 0.004 0.07
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company (MRWC). The distance from the pollutant centers can be measured using satellite 
images and GIS. Therefore, the models inputs are available.

The results showed that the ANN has a high performance in groundwater quality sim-
ulation. The ANN can be applied to simulate hydrologic variables in an extensive area. 
The results also showed that the MLP network produces the best performance for the LM 
learning technique and the tangent hyperbolic transfer function. Using ANN for hydrologic 
simulation followed good results in the past, and, in most cases, there has been a high cor-
relation between simulated and observed values (Crawford and Linsley 1966; Chang et al. 
2002).

According to the results of Table 4 the results of the three models and associated GeoAI 
are acceptable and satisfactory in the training phase. The results showed that the SOM has 
an acceptable accuracy in estimating the GWQI index in the test stage.

The results of this study also indicated the acceptable ability of the CANFIS network in 
the simulation of groundwater quality. Previous research results showed high performance 
of the neuro-fuzzy network with the structure of the Takagi–Sugeno–Kang (TSK) model in 
estimation and hydrologic simulations as well (Jang et al. 1997; Talei et al. 2010; Heydari 
and Talaee 2011). The results of present study showed that the neuro-fuzzy network has a 
higher performance in estimating the groundwater quality index (R-sqr = 0.89 in the test 
stage). Such results are consistent with the results of other researchers (Heydari and Talaee 
2011; Allawi et al. 2018).

Comparing the observed and the estimated values of GWQI showed the performance of 
the used methods, and the high performance of the procedure of incorporating the applied 
methods to GIS (Krishna et  al. 2008). All three methods of ANN, SOM, and CANFIS 
had acceptable accuracy in simulating the groundwater quality. But, the CANFIS method 
has the higher performance than the SOM and ANN methods. The maximum error in the 
simulation was observed in the minimum and maximum values of the GWQI. Models are 
generally more efficient in medium values and the maximum error in the modeling process 
is observed in the maximum and minimum data (Sahour et al. 2020). In the discussion of 
water quality, accurate estimation of maximum and minimum water quality index values 
is important to identify contaminated zones or zones with very good drinking water qual-
ity. Comparison of the results of the test phase has shown that the neural fuzzy method 
has the least error in modeling the maximum and minimum values compared to the other 
two methods, which is a potential for identifying contaminated zones with high accuracy. 
Finally, the method used to classify water quality in general or to achieve water quality 
classes have performed very well.

It is possible to estimate groundwater quality indices using artificial intelligence in a 
short period for sites without qualitative measurements. Therefore, the coupling of artificial 
intelligence and GIS is a promising way forward to support groundwater quality assess-
ments and management. The groundwater quality map was generated by the coupling of 
CANFIS and GIS tools. Fortunately, the quantitative data of network inputs are available 
in the study area. Therefore, one can use the present methodology to model groundwater 
quality on the study plan’s surface.

The produced groundwater quality map can be a tool for groundwater quality classifica-
tion, planning water resources management, and their quality protection. Further, in the 
discussion of land management and the establishment of different industries and landuses, 

Fig. 2  Comparison between the simulated and observed GWQI values in the validation (test) stage for three 
used methods A ANN (MLP) network B CANFIS network and C SOM method

▸
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the mentioned map can be used, for example, in places with high pollution, the establish-
ment of new industries should be prevented. The artificial intelligence models used in the 
present study have their own advantages and disadvantages. These methods are more accu-
rate than traditional methods such as regression method. It is also possible to define dif-
ferent management scenarios in the form of changing inputs for the model and evaluate 
their effect on the groundwater quality. For example, changes in industrial distances from 
a specific location or fluctuations in groundwater depth can be used for the tested model 
and their effect on water quality in the model can be evaluated. They also have the abil-
ity to provide multiple models with a variable number of inputs appropriate to the region 
(existing data) but their performance will be different. In addition to all the advantages 
mentioned, these models are black boxes and their use requires expertise in the field of arti-
ficial intelligence. Moreover, their combined use with a GIS is not as easy as the traditional 
methods such as regression methods. Considering all the above issues, their use is recom-
mended for high performance and quick modelling in water resources studies.

5  Conclusion

The results show that all models have acceptable accuracy in predicting the groundwater 
quality, but the fuzzy neural network has the highest performance. This study’s findings show 
that the groundwater quality assessed using the CANFIS model was in good agreement with 
experimental data. Hence, it can be concluded that CANFIS has successfully assessed the 

Fig. 3  Map of groundwater quality (GWQI) results from the coupled CANFIS network and GIS environ-
ment with a resolution of 50 by 50 m (the east of study plain). In this map, an evaluation of the accuracy 
of the results was done using a comparison between the simulated GWQI values and the observed GWQI 
values (overlapped values in the map)
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groundwater quality. All of the applied methods can be used in hydrological or environmental 
modeling. Further, the coupled artificial intelligence methods and GIS can be used for zoning 
groundwater quality and as a tool for planning and managing water resources. Coupling arti-
ficial intelligence with GIS tools can provide practitioners with an easily interpretable water 
quality production map to manage these resources. The best groundwater modeling results 
were found by using the fuzzy neural network in Mazandaran Plain, but the other methods 
such as ANN or SOM may have better results in the other places. Therefore, it can be recom-
mend to apply this proposed approach of combining three models in other geographical loca-
tions. It can be also concluded that GeoAI mapping performance depends on inputs and out-
put data and the modeling process. Therefore, using different artificial intelligence machine 
learning algorithms for groundwater quality assessment in future studies was suggested. 
These models can be used to predict and map the groundwater quality in the other regions, 
but they need to be optimized and tested. However, It can be concluded that the result of this 
study has good potential to contribute to SDG-6 (clean water and sanitation), SDG-11 (sus-
tainable city and communities), and SDG-13 (climate action).
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