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Abstract 
This thesis reports results from a systematic experimental approach to evaluating 
aspects of the neural network modelling process to forecast river stage for a large, 
23,600 km2 catchment in northern Thailand. The research is prompted by the absence 
of evidenced recommendations as to which of the array of input processes, validations 
and modelling procedures might be selected by a neural network forecaster. 
 

The flood issue for forecasters at Chiang Mai derives from the monsoon rainfall, which 
leads to serious out-of-bank flooding two to four times a year. Data for stage and 
rainfall is limited as the instrumentation is sparse and the historical flood record is 
limited in length. Neural network forecasting models are potentially very powerful 
forecasters where the data are limited. The challenge of this catchment is to provide 
adequate forecasts from data for relatively few storm events using three stage gauges 
and one rain gauge. Previous studies have reported forecasts with lead times of up to 
18 hours. Thus, one research driver is to extend this lead time to give more warning.  
 

Eight input determination methods were systematically evaluated through thousands of 
model runs. The most successful method was found to be correlation and stepwise 
regression although the pattern was not consistent across all model runs. 
 

Cloud radar imagery was available for a few storm events. Rainfall data from a network 
was not available so it was decided to explore the value of the raw cloud reflectivity 
data as a catchment-wide surrogate for rainfall, to enhance the data record and 
potentially improve the forecast. The limited number of events makes drawing 
conclusions difficult, but for one event the forecast lead time was extended to 24-30 
hours. The modelling also indicates that for this catchment where the monsoon may 
come from the south west or the north east, the direction of storm travel is important, 
indicating that developing two neural network models may be more appropriate. 
 

Internal model training and parameterisation tests suggest that future models should 
use Bayesian Regularization, and average across 50 runs. The number of hidden 
nodes should be less than the number input variables although for more complex 
problems, this was not necessarily the case. Ranges of normalisation made little 
difference. However, the minimum and maximum values used for normalisation appear 
to more important.  
 

The strength of the conclusions to be drawn from this research was recognised from 
the start as being limited by the data, but the results suggest that neural networks are 
both helpful modelling processes and can provide valuable forecasts in catchments 
with extreme rainfall and limited hydrological data. The systematic investigation of the 
alternative input determination methods, algorithms and internal parameters has 
enabled guidance to be given on appropriate model structures. 
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P  Method of selecting input variable based on PMI 
P1  Water level station number and it is the primary target to predict 
P21, P4a Upper water level station numbers located at tributary 
P67, P75 Upper water level station numbers located at the main river 
PDF  Probability Density Function 
PDIFF  Peak Difference 
PMI  Partial Mutual Information 
PPI  Plan Position Indictor 
Pr  Method of selecting input variable based on pruning algorithm 
R  Correlation Coefficient 
R1  Rain gauge station 
R2   Coefficient of Determination 
RBF  Radial Basis Function 
RBFN  Radial Basis Function Network 
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RMSE  Root Mean Squared Error 
S1  Storm in 2003 
S2-S6  Storms in 2005 
S7, S8  Storms in 2006 
S  Stepwise Regression 
SHE  Type of physically based model (System Hydrologique European) 
SOLO  Self Organizing Linear Map 
SOM  Self Organizing Maps 
WinNN  Window Neural Network 
Z Radar reflectivity 
Z-R  The empirical relationships between radar reflectivity (Z) and rainfall rate 

(R) 
 

Definitions 
Architecture 

Description of the number of the layers in a neural network, each layer apply with 
transfer function, each layer contain numbers of node and connect node between 
layers. 

Backpropagation learning rule 
Weights and biases are adjusted by error-derivative backpropagated through the 
network.  

Bayesian framework 
Assumes that the weights and biases of the network are random variables with 
specified distributions. 

Bias 
Node’s parameter that is summed with the node’s weighted inputs and passed 
through the node’s transfer function to generate the node’s output.  

C band 
Radar wavelength of 5 cm. 

Doppler radar 
A type of radar that measures not only the intensity of a returned signal but 
Doppler shift and hence the radial velocity of the target. 

Early stopping 
Technique to avoid the overfit, it based on dividing the data into three subsets. 
The first subset is the training set, used for computing the gradient and updating 
the network weights and biases. The second subset is the validation set. When 
the validation error increases for a specified number of iterations, the training is 
stopped, and the weights and biases at the minimum of the validation error are 
returned. The third subset is the test set. It is used to verify the network design.  

Epoch 
Presentation of the set of training.  

Feedforward network 
Layered network in which each layer only receives inputs from previous layers. 

Generalization 
Attribute of a network whose output for a new input vector tends to be close to 
outputs for similar input vectors in its training set. 

Global minimum 
Lowest value of a function over the entire range of its input parameters.  
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Gradient descent 
Process of changing the weights and biases, where the changes are proportional 
to the derivatives of network error with respect to those weights and biases.  

Initialization 
Process of setting the network weights and biases to their original values. 

Input layer 
Layer of node receiving inputs directly from outside the network.  

Input vector 
Input of a neural network. Each element of the input vector is the input of next 
layer node. Input of this study is water stage, radar data and rainfall. 

Input weights 
Weights connecting network inputs to layers. 

Kohonen learning rule layer 
Learning rule that trains a selected node’s weight vectors to take on the values of 
the current input vector. 

Learning or Training 
Process by which weights and biases are adjusted to achieve some desired 
network behaviour. 

Learning rate 
Training parameter that controls the size of weight and bias changes during 
learning.  

Levenberg-Marquardt 
Algorithm that trains a neural network 10 to 100 times faster than the usual 
gradient descent backpropagation method. Ti always computes the approximate 
Hessian matrix, which has dimensions n-by-n. 

Linear transfer function 
Transfer function that produces its input as its output.  

Local minimum 
Minimum of a function over a limited range of input values. A local minimum 
might not be the global minimum.  

Log-sigmoid transfer function 
Squashing function of the form shown below that maps the input to the interval (0, 
1). 

Lumped models 
Hydrological model which relates the characteristics of the river hydrograph to 
the physiographic factors. 

Mean square error function 
Performance function that calculates the average squared error between the 
network outputs a and the target outputs t. 

Momentum 
Technique often used to make it less likely for a backpropagation network to get 
caught in a shallow minimum.  

Node 
Basic processing element of a neural network. Includes weights and bias, a 
summing junction, and an output transfer function.  

Neural network 
Information processing systems, inspired by biological neural systems but not 
limited to modelling such systems. 

Output layer 
Layer whose output is passed to the world outside the network. 

Output vector 
Output of a neural network. Each element of the output vector is the output of a 
node. Output of this study is water stage at P1. 

Overfitting 
Case in which the error on the training set is driven to a very small value, but 
when new data is presented to the network, the error is large. 
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Perceptron 
Single-layer network with a hard-limit transfer function. This network is often 
trained with the perceptron learning rule. 

Perceptron learning rule 
Learning rule for training single-layer hard-limit networks. It is guaranteed to 
result in a perfectly functioning network in finite time, given that the network is 
capable of doing so.  

Performance 
Behavior of a network. 

Performance function 
Commonly the mean squared error of the network outputs. However, the toolbox 
also considers other performance functions. 

Radar 
Radio detecting and ranging. 

Radar reflectivity factor 
A measure of the fraction of the energy reflected back to a radar by the targets in 
a volume of air. 

Radial basis networks 
Neural network that can be designed directly by fitting special response elements 
where they will do the most good. 

Regularization 
Modification of the performance function, which is normally chosen to be the sum 
of squares of the network errors on the training set, by adding some fraction of 
the squares of the network weights.  

S band 
Radar wavelength of 10 cm. 

Sigmoid 
Monotonic S-shaped function that maps numbers in the interval (-∞, ∞) to a finite 
interval such as (-1, +1) or (0, 1). 

Sum-squared error 
Sum of squared differences between the network targets and actual outputs for a 
given input vector or set of vectors. 

Tan-sigmoid transfer function 
Squashing function of the form shown below that maps the input to the interval (-
1, 1). 

Transfer function 
Function that maps a node’s (or layer’s) net output n to its actual output.  

Update 
Make a change in weights and biases. 

X band 
Radar wavelength of 3 cm. 
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Chapter 1 Introduction 
 
1.1 Background 
Regular flooding occurs in Thailand during the monsoon season, which results in both 

loss of life and infrastructural damage. During the last 10 years alone, there have been 

severe floods reported in most years (e.g. BBC, 2001; 2002; 2007; NineNews, 2006; 

UPI, 2008). There is also a great deal of uncertainty surrounding the effects of climate 

change. Since the middle of the last century, the occurrence of heavy precipitation 

events has already increased. A warmer climate may lead to increased summer 

precipitation in the Asian monsoon region and therefore result in increased flooding 

(IPCC, 2007). 

 

Timely and accurate flood warnings are crucial in order to minimise the loss of life and 

to be able to put into place operational measures to minimise the flood damage. A flood 

warning system usually has some type of physical or conceptual hydrological model to 

produce flood forecasts, which are based on physical and/or empirical relationships. 

Neural Networks (NNs) and other data-driven methods (e.g. fuzzy logic, support vector 

machines, M5 model trees) offer an alternative to traditional hydrological models as 

they do not require any knowledge of these physical relationships. Instead these 

methods can learn them from the data. Neural network also have other advantages 

such as the ability to generalise to unseen datasets and to perform distributed parallel 

processing (Kasabov, 1996). 

 

There are now hundreds of papers in the academic literature that demonstrate that 

neural networks or other data-driven methods can be used successfully for rainfall-

runoff modelling and other hydrological applications as evidenced by two recent 

reviews (Abrahart et al., 2010; Maier et al., 2010). Unlike physically-based or 

conceptual hydrological models which require physical parameters, these models 

require some historical input data, usually stage, discharge or precipitation for their 

development (ASCE, 2000a; Wilby, 1997). Moreover, neural network models are 

relatively easy to develop, and to update when new data become available (Haykin, 

1999; Wood and Connell, 1985). There are many examples of hybrid, data fusion or 

soft computing applications, where different technologies are used together to produce 

a better forecast than an individual model (See, 2008; Solomatine et al., 2008). 

However, the black box nature of neural network modelling and many other kinds of 

data-driven approaches have meant that hydrologists have been reluctant to use these 

technologies operationally. A rainfall-runoff neural network model integrated with 
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telemetered flow and rainfall data to produce real-time forecasts was developed by 

Kneale et al. (1999) but this system was never used for operational flood forecasting.  

 

This thesis reports the results from a systematic experimental approach to evaluating 

the use of neural network modelling to forecast river stage for the Upper Ping 

catchment in northern Thailand. The flood issue for local forecasters derives from the 

monsoon rainfall which leads to serious out-of-bank flooding two to four times a year. 

As might be expected, the historic flood record is limited in both length and number of 

stage gauging stations. The Hydrology and Water Management Centre for the Upper 

Northern region (2005, 2007a, b) has responsibility for flood warning in the Upper Ping 

catchment. The technique currently in use is based on a correlation between the water 

stage at an upstream station (P67) and the downstream station (P1) at Chiang Mai. 

The maximum flood warning is currently 6-7 hours. There are also several hydrological 

applications in the Ping catchment using conceptual and physical hydrological models 

but most of these predict either monthly or daily discharge (Schreider et al., 2002; 

Vongtanaboon et al., 2008; Taesombat and Sriwongsitanon, 2006, 2010; Mapiam and 

Sriwongsitanon, 2009). Moreover, the disadvantage of these models is that they 

require a lot of data for their development, and they are not forecasting at an hourly 

level, which is needed for effective operational flood forecasting. Neural network 

forecasting models are potentially very powerful forecasters where the data are limited. 

One of the unique aspects of trying to develop a flood forecasting model for Chiang Mai 

is the limited amount of data available, in particular hourly rainfall, so the challenge is to 

see whether good performing models can be produced with such a limited data set. For 

this thesis, there are 7 years of data available from 2001 to 2007 for stage and rainfall 

data, and 3 years, i.e. 2003 and 2005 to 2006, for the radar data.  

 

There have also been neural network models developed for this catchment 

(Patsinghasanee et al., 2004; Thaisawasdi et al., 2007; Ninprom and Chumchean, 

2009; Chidthong et al., 2009). However, Thaisawasdi et al. (2007) only modelled daily 

flow at ungauged station. Patsinghasanee et al. (2004) applied neural networks to 

predict a storm in the period September to November 2000 for a 12 hour lead time at 

the station P1 but the results were that the peak was underestimated. However, a 

separate study by Patsinghasanee (2004) found that the performance of the neural 

networks was better when compared with MIKE11. Ninprom and Chumchean (2009) 

built neural network models using water stage at 3 hour intervals for a lead time of 72 

hours. However, they did not show any hydrograph or model performance results in 

terms of peak prediction. The models by Chidthong et al. (2009) are the most relevant. 

They built a series of hybrid forecasting models to predict the flood at Chiang Mai in 
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2005 using hourly river level data but they only used daily rainfall as an input. It was 

possible to obtain hourly rain gauge information from one station for this study so the 

effect of having better information will be evaluated.  

 

One of the problems with many of the neural network and data-driven rainfall-runoff 

models reported in the literature and also the ones listed above for the Ping catchment 

is that they have been developed for short lead times. To determine whether models 

with longer lead times can be developed, investigations with weather radar data have 

been undertaken. Weather radar data are normally used for calibrating rainfall using 

rain gauges (Chumchean, 2007; Collier, 1996; Hitch, 1991; Kalinga and Gan, 2007; 

Rachaneewan, 2006a, b) in order to predict rainfall (Cole and Moore, 2008; 

Georgrakakos et al., 2000; Hsu et al., 2000). Other researchers have specifically 

applied this to flood forecasting (Borga, 2002; Knowles, 1987; Moore, 1987, Schultz, 

1987; Smith et al., 2007; Wardah et al., 2008). However, predicting floods using raw 

radar reflectivity as an input to a neural network has not been attempted before. There 

is only one hourly rain gauge right near Chiang Mai so using the radar data with this 

one rain gauge would not have been very useful. Instead, the method used here takes 

advantage of the spatial and temporal coverage of the radar images. This thesis will 

investigate the effect of adding raw radar data as an input to the neural network to 

determine whether the accuracy and the lead time of the forecast can be improved. 

With the excellent temporal and spatial coverage of radar data, this is potentially an 

important source of information in this data sparse catchment.  

 

Another major issue addressed in this thesis is the lack of guidance in neural network 

model development, in particular, which input variables to use. Maier et al. (2010) 

continue to highlight the importance of this issue as an area where further research is 

needed. Hydrological knowledge can help inform this choice but the input variable 

inclusion is often determined through trial and error, simple statistical methods (Li et al., 

2009; Shamseldin, 1997; Jia et al., 2009; Kim et al., 2009, Shevnina, 2009) or 

sensitivity analysis (Kalra and Ahmad, 2009; Sudheer, 2005). However, there are other 

methods available such as partial mutual information (Bowden et al., 2005b; Fernando 

et al., 2009, May et al., 2008a), neural network pruning (Chen and Yu, 2007; Corani 

and Guariso, 2005), saliency analysis (Abrahart et al., 2001) and the use of data-driven 

methods such as a self-organizing map (Bowden et al., 2005b; Hsu et al., 2002) or 

genetic algorithms (Abrahart et al., 1999). This thesis will review a range of different 

input determination methods available for the development of neural network 

hydrological models and choose a subset for subsequent experimentation. 
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This lack of guidance in the literature is also evident in other areas of neural network 

model development. For example, making choices such as the number of hidden 

nodes, the learning algorithms, the learning rate, the momentum, the activation function 

and what normalization to use are all choices that the modeller must make. These 

choices are either determined through trial-and-error or are based on heuristics 

provided by different researchers (e.g. Campolo et al., 1999; Dawson and Wilby, 1998, 

1999; Golob et al., 1998; Maier and Dandy, 1996, 1998, 2000). This thesis will also 

address the lack of guidance in some of these areas through experimentation to 

determine if changes to these internal parameters will improve the neural network 

models developed for this catchment. These types of experiments will also add to the 

literature on neural network model development heuristics. 

 

1.2 Aims and Objectives 
The overall aim of this study is to determine the most effective neural network 

approach to forecasting stage in a large monsoon-fed river system through multiple 

experiments with different inputs and neural network parameterisations. There are few 

neural network applications to forecast stage in large monsoon-fed rivers. As Chapter 2 

discusses, there are individual river studies but the rationale for the methods selected 

are rarely explored or explained. Rainfall data in northern Thailand comes from a very 

sparse rain gauge network. This thesis explores the practicalities and potential for 

integrating radar data to improve the forecasts.  

 

The overall aim will be achieved through the following objectives: 

  

1. To review the relevant literature on neural network modelling in hydrology. This 

review is presented in Chapter 2. 

2. To review and critically evaluate existing input determination techniques, which 

is the subject of Chapter 4. 

3. To experiment with a range of different input determination techniques for 

selecting input variables by training a series of neural network models and 

evaluating the results with various goodness of fit statistics and visual methods. 

These experiments are presented in Chapter 5.  

4. To experiment with radar data as an input to the neural network models as a 

way of improving the model accuracy and extending the lead time of the 

forecasts. A series of experiments are undertaken in Chapter 6. 
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5. To investigate model improvements through experimentation with the training 

algorithm and internal neural network parameters. A series of experiments are 

described in Chapter 7. 

6. To highlight the limitations of the study and to make recommendations for areas 

for further research. These follow the conclusions in Chapter 8. 

 

The value of this thesis derives from a) its systematic experimental approach to 

evaluating all aspects of the modelling process and b) its inclusion of radar imagery in 

a novel way not used before in neural network modelling. The ambition is to make 

suggestions for future users of neural network models for forecasting stage in large 

monsoon-fed catchments. The outcomes cover parameterisation and training and 

should be relevant for similar large catchments with sparse stage and rainfall records. 

 

1.3 Thesis Structure 
Following this introductory chapter, a literature review on neural networks and 

hydrological modelling is presented. This chapter begins with a review of the relevant 

literature on hydrological modelling in general and then focuses specifically on neural 

networks. The main issues with neural network development are highlighted using a 

range of hydrological applications to illustrate these issues. Hydrological modelling in 

Thailand and the Upper Ping catchment in particular, both physical and data-driven, 

are then critically evaluated. Chapter 3 provides an overview of the study area and the 

data that are available for modelling. As mentioned already, this is a data sparse 

catchment so there are particular challenges with hydrological modelling on such a 

large monsoon-fed catchment. Chapter 4 then provides an in-depth review of existing 

input determination methods that have been used in neural network modelling. These 

methods are evaluated and a subset is selected for experimentation in Chapter 5. This 

chapter critically evaluates the accuracy of forecasts given different input variables as 

determined by the approaches coming out of the review in Chapter 4. The subject of 

Chapter 6 is evaluating the value of radar imagery for stage forecasting. This chapter 

focuses on the use of raw radar data as an input to the neural network models to 

determine the potential for increasing the forecasting accuracy and the extension of the 

forecast lead times. In Chapter 7, three issues with neural network development are 

addressed. The first is the use of a particular neural network training algorithm 

(Bayesian Regularization) and the need to produce many training runs to provide an 

acceptable averaged solution. This is an area that is rarely discussed in the literature 

and therefore receives treatment in this study. The second and third parts consider 

issues to do with the internal parameters of the network, specifically determination of 
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the number of hidden nodes and the range of normalization of the data prior to 

modelling. There is little guidance in the literature on determining these internal 

parameters so experimentation is undertaken to see whether any useful patterns 

emerge that may translate into guidance for other modellers. Chapter 8 concludes the 

thesis with a summary of the main research results, relating these back to the original 

aims and objectives of the thesis. The chapter also discusses some of the problems 

and limitations that were encountered, and then makes suggestions for areas of further 

research. 

 

1.4 Conclusions 
This chapter has introduced the background, aims and objectives and research 

rationale for this study. The next chapter presents a literature review of neural networks 

and their application to hydrology. Studies specific to the Upper Ping catchment are 

also critically evaluated.  
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Chapter 2 Neural Network Hydrological Modelling and the Ping Catchment 
 

2.1 Introduction 
This chapter establishes the academic background for the thesis through reviewing the 

literature on modelling hydrological flood events using neural network (NN) techniques. 

There is first a brief consideration of styles of modelling in hydrology to set the context 

for neural network modelling, which is then considered in detail with particular 

emphasis on neural network structures and what internal parameters to select. Neural 

network modelling is a relatively new technique so the third section considers some of 

the recent research evaluating neural networks for hydrological forecasting. These 

techniques, and their value for forecasting in the context of Thailand, are the focus of 

the research experiments presented in Chapters 5 to 7 where neural networks are 

applied to one large tropical river catchment, the Upper Ping River catchment in 

northern Thailand. Chapter 3 gives details of the catchment area, and the data 

available for the project. This chapter concludes with a survey of the research reported 

to date on neural networks and flood forecasting on the Upper Ping River.  

 

2.2 Hydrological Modelling 
The aim of hydrological modelling is to forecast flows or levels and water quality in real 

time for practical flood forecasting, and without a time reference for planning purposes 

(Anderson and Burt, 1985). A model requires one or more input variables which are 

processed to forecast one or multiple output variables. Applications for hydrological 

modelling include forecasting of rainfall, runoff, water supply and discharge, water 

quality, extreme flood events, snow melt, evaporation, soil water, and sediment 

movement and deposition.  

 

Approaches to modelling in hydrology have been classified in a number of different 

ways including three system types by Wilby (1997), Wood and Connell (1985), 

O’Connor (2002), Anderson and Burt (1985), ASCE (2000a) and a four group system 

from Wheater et al. (1993). The four groups are metric models, conceptual models, 

physics-based models and hybrid metric-conceptual (HMC) models that are a mixture 

of statistical and conceptual models. Each system has its own advantages and 

drawbacks, and accuracy in forecasting is a continuing issue. The neural network 

model can be viewed as a black box input-output model. Data are fed into the 

processor, and the model learns the relationships in the data to produce the forecast. 

This is a process that does not necessarily appeal to modellers who prefer the core of 

the model to be a dynamic, physically-based, representation of the processes involved. 
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However, in very large catchments, where process representation would require 

considerable instrumentation, historical records and detailed data, a neural network 

offers strengths through its relatively light demands for data.  

 

2.2.1 Conceptual or lumped models 
The conceptual model (Wilby, 1997), the lumped conceptual model (Wood and Connell, 

1985) and the geomorphology-based model (ASCE, 2000a), and similar models of this 

type are “quasi-physical in nature” (Wood and Connell, 1985). They are structured to 

represent the watershed and the stream network, rather than the physical equations of, 

for example, conservation of mass or movement. An example is the United States 

National Weather Service River Forecasting Model. Conceptual models are more 

detailed than input-output black box models, and not less demanding than physically-

based models. Conceptual models aim to capture dominant catchment dynamics while 

remaining parsimonious and computationally efficient (Kavetski et al., 2006). They do 

not consider the physical processes in detail and retain the processing speed that 

empirical models exemplify. Conceptual or lumped models are generally seen as being 

the most successful in rainfall-runoff simulation where the parameters are limited to 

between 8 and 20 (Blackie and Eeles, 1985). The success of these models has made 

them well known, and popular forecasting tools for river flow and flooding applications. 

Typical models include HYRROM (Haigh, 1997) and TOPMODEL (Beven and Kirkby, 

1979). One advantage of TOPMODEL is that it can deal with changing conditions on 

the catchment, such as land use changes (Anderson and Burt, 1985). Other successful 

models of this type include applications for large-scale modelling in southern Iran 

(Noruani and Mano, 2007), Tank modelling (Tingsanchali and Gautam, 2000), the 

United States National Weather Service River Forecasting Model (Wood and Connell, 

1985), the degree-day snow model (Martinec, 1975) and Lee and Chang (2005) 

surface and subsurface flow model.  

 

2.2.2 Physically-based or deterministic models 
Physically-based models (Wilby, 1997) or deterministic models (Anderson and Burt, 

1985) are based on complex physical parameters. The aim is to mirror numerically the 

characteristics and physical processes that take place in the catchment. Typically, 

these models consider the equations of energy and the movement of the water on the 

surface, and through the unsaturated and saturated zones to the watercourses, and 

build the flood hydrograph dynamically from the runoff (Wood and Connell, 1985). The 

catchment system is represented by a three-dimensional grid. The advantage of these 

types of model is in giving the operator a fuller understanding of the catchment 

processes. Where catchments are developing and changing, the operator can alter 
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some of the catchment characteristics and then evaluate the impact on runoff or water 

quality (Anderson and Burt, 1985). In contrast, the disadvantage is that these models 

require rich and complex field data from a range of sources and in a variety of 

timeframes. They are also computationally complex and time consuming to run. For 

these reasons they frequently have more value in planning than in real-time forecasting. 

Kuchment and Gelfan (2009) used a physically-based model for long term forecasting 

of spring flood flows on the Vyatka River. This example showed that the physically-

based model was more accurate than black box regression approaches, but that it 

needs a good understanding of the flow process in the watershed to correctly 

parameterise it.  

 

Probably the best known model of this type is the SHE model, where a wide range of 

applications have been published for flood forecasting, ground water supply, stream 

flow depletion, changing land use impacts on hydrology and many others (Abbott et al., 

1986a). However, distributed models like SHE, when applied to large catchments, 

require many input parameters, and are therefore expensive to calibrate and can take 

considerable time to run (Abbott et al., 1986b).  

 

2.2.3 Empirical or black box models 
Empirical, black box and input-output models use historical data for flow, rainfall and 

other parameters to make forecasts without reference to physical parameters such as 

catchment characteristics (Wilby, 1997; ASCE, 2000a, Anderson and Burt, 1985; Wood 

and Connell, 1985). This family of models includes statistical approaches, and are 

generally straightforward to run once the data have been verified. Their processing 

speed makes them particularly useful for real time forecasting. However, the weakness 

of these models is their static nature. They cannot take account of dynamic changes in 

the catchment, such as land use changes or changing soil moisture patterns. However, 

Wood and Connell (1985) remarked that, while these models do not consider physical 

relationships, these models can all be updated when new data become available. An 

example application of this model is by Phien and Nda (2003) who succeeded in using 

this type of model to predict water level with 18 hour lead times, Rajurkar et al. (2004) 

who applied black box modelling to daily rainfall runoff and Vargas et al. (2003) who 

employed this approach for the development of a flood warning system.  

 

Neural network modelling is considered to be in the empirical or black box model family. 

The Upper River Ping, which is the focus for this study, is a large catchment with very 

limited long-term data records. Calibrating a physical or conceptual model for a 

catchment of this size is inherently very difficult; many parameters would have to be 
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estimated rather than known quantities within such a model. There are limited data 

available for stage at stations on the River Ping that can be used to drive a neural 

network model. The city of Chang Mai in the lower part of the catchment is subject to 

flooding, and would benefit from effective real-time flood warning. The black box neural 

network model approach offers the opportunity to create models that can be run in real-

time, and which can be updated relatively easily as new data become available each 

year.  

 

2.3 Neural Networks (NN) Models 
The human brain consists of billions of nerve cells or neurons interconnected in a large 

network (Murre and Sturdy, 1995). A neural network is very loosely based on this 

human brain architecture, using the concept of a neuron or node as a processing 

element and weights for connecting the neurons into a network as shown in Figure 2.1. 

The most common neural network arrangement is three layers: the input layer, where 

data are supplied to the model, a hidden layer, necessary for processing, and an output 

layer, where the forecast or prediction is produced. In addition there are bias nodes 

necessary for the calculations to work. The number of hidden layers and hidden layer 

nodes is determined by the operator. Some neural networks have more than one 

hidden layer although it has been shown that any continuous function can be 

approximated with this neural network structure using only one hidden layer (Hornik, 

1993). Using an input-output data set, the neural network operator runs the data 

through a ‘training process’ to learn the relationships in the data, adjusting the weights 

in an iterative process until a stopping condition is satisfied, i.e. the error between the 

observed and predicted values is minimised or a certain number of iterations have 

passed. This training process may involve a large number of runs or iterations. 

 
Figure 2.1: Classic neural network structure with one hidden layer. 

Input layer 

Hidden layer 

Output layer 

wi 

Bias 

wi 

wi 

wi 

wi 

wi 

wi 

wi 

Bias 

Neuron or 
Node 



 

 

11

 

There are two main classes of neural network architecture: feedforward and recurrent 

networks (Haykin, 1999). In a feedforward network, all the interconnections are in one 

direction, i.e. forward. The flow of information starts from the input layer of nodes, 

connects to the hidden layer and finally to the output layer, as illustrated in Figure 2.1, 

moving in a forward direction. More sophisticated recurrent networks process 

information in both directions. This allows model outputs to be looped back as new 

inputs to the model (see Figure 2.2). 

 
Figure 2.2: Recurrent neural network structure. 

 

There are two types of network training procedure: supervised and unsupervised. 

Unsupervised training will be discussed further in section 2.4 in relation to a type of 

neural network called a Self Organizing Map. Supervised training is used to learn the 

relationships between a set of input and output variables, which in the context of this 

research, would be generally comprised of historical data. An example of an input data 

set would be river stage data at upstream points and precipitation data and river stage 

data at the station for which the forecasts are made. For each input, there is a 

corresponding output, which in this research would be the river stage at a lead time in 

the future.  

 

There are a range of supervised training algorithms available, each of which has 

advantages and disadvantages. It is common for analysts to experiment with a number 

of different training algorithms to optimise their modelling results. The mostly commonly 

used supervised training algorithm is called backpropagation (Rumelhart et al., 1986). 

As shown in Figure 2.3, the algorithm starts with a ‘forward pass’ to produce an output 

prediction. The error between the output prediction and the known output is then 
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calculated, which is propagated backwards towards the input layer in a ‘backward pass’. 

During this backward pass, the weights connecting the neurons are updated. This 

process is repeated over many iterations until the relationships in the data are learned.  

 

One problem which can occur during training is overfitting. To minimise this problem, 

early stopping is the most commonly used method (Haykin, 1999). Early stopping 

involves the use of a validation data set. In general, the full data set available for 

modelling is typically divided into three sub-sets: training, validation and testing. The 

network is trained on the training dataset and simultaneously examined for 

performance on the validation data set. The error will generally keep decreasing on the 

training dataset but will begin to increase on the validation data set as overfitting occurs. 

Training is stopped at the point where the error in the validation data set increases.  

 
Figure 2.3: Summary of the backpropagation training process.  

Source: Taken from Maier and Dandy (1998, p.196) 

 

There are many types of backpropagation algorithm, which can be classified into two 

main groups. The first group is described as slow learning and uses batch gradient 

descent or simple gradient descent with momentum. The second, fast learning, group 

may employ conjugate gradient descent (CGD), quasi-Newtonian algorithms (which 

require more storage and computation for each iteration) and the Levenberg-Marquardt 

numerical optimization technique. The fast learning techniques can perform at 10 to 

100 times the speed of the slow learning processes. The difference between CGD and 

simple gradient descent is that it does not proceed along the direction of the error 

Examples of the desired input/output mapping are chosen (training set). 

The first example of the training set is presented at the input layer. 

The information flows through the network from the input layer to the output 
layer via the hidden layers. The output produced is a function of network 
geometry, the value of the connection weights and the transfer function. 

The error between the predicted and actual outputs is calculated using an 
error function. 

The weights are adjusted using a learning rule. The amount each connection 
weight is changed is a function of the learning rate, momentum value, epoch 

size, derivative of the transfer function and nodal output. 

The next example of the training set is presented at the input layer. 
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gradient but in a direction orthogonal to the one in the previous time step. The 

advantage for the modeller is a relatively fast training time. It has been used in 

hydrology for short and longer term stream flow forecasts (Kisi, 2007). Where the 

model has a very large number of hidden layer nodes, this process can be very 

efficient. However, where the input nodes and weights are small, there does not appear 

to be any advantage in using CGD over first order backpropagation methods. 

Levenberg-Marquardt is probably the most commonly employed algorithm (Demuth et 

al., 2009). Fun and Hagan (1996) compared the performance of three different 

algorithms including Levenberg-Marquardt and found that it produced the best 

performing result. 

 

Bayesian regularization (BR) is another type of training procedure that can be applied 

to Levenberg-Marquardt (Mackay, 1992; Forsee and Hagan, 1997) and essentially 

reduces the impact of the network weights. It simultaneously minimises the overall 

error function and the sum of the squared weights. A big advantage of the BR algorithm 

is that it does not require a validation data set, unlike in early stopping and therefore 

makes BR a potentially suitable algorithm where data are limited (Demuth et al., 2009). 

This means that more data are available for the training process. The BR algorithm has 

been used in a few recent hydrological modelling applications (Anctil and Lauzon, 

2004; Anctil et al., 2004a, b; Anctil et al., 2006; Zhang and Govindaraju, 2000). 

 

Another algorithm is Cascade Correlation (CC), which was developed by Fahlman and 

Lebiere (1990). Unlike the networks described above, this network starts with the input 

and output nodes only. As training progresses, hidden layer nodes are added so that 

the network grows during training. This potentially takes away some of the subjectivity 

regarding how many hidden nodes to use. Each time a hidden node is added into the 

network, the model is trained to minimise the output error. The advantages of this 

training process are fast training times, robust results and no need to specify the 

number of hidden nodes. However, experience suggests that while these models are 

good at fitting in training exercises, they are less good when faced with unseen data in 

forecasting mode (Dawson and Wilby, 2001; Kisi, 2007). 

 

In Chapter 5, backpropagation trained with Levenberg-Marquardt is used in the initial 

neural network experiments because it has been used successfully by previous 

hydrologists, suggesting that comparisons in quality of forecast may be possible. 

Experimentation with Bayesian Regularization is then evaluated because it does not 

require a validation dataset to avoid overfitting. This attribute is very attractive because 

there are limited data available for training and testing the neural network models for 
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the Upper Ping catchment. 

 

2.4 Types of Neural Network 
The most commonly used type of neural network is a Multi-layer Perceptron (MLP), 

where the structure was provided previously in Figure 2.1. Many researchers have 

applied MLPs to hydrological applications and generally found good or superior 

performance when the results were compared with other approaches. For example, 

Dawson et al. (2006a) employed an MLP to estimate flood frequencies at ungauaged 

catchments. Smith and Eli (1995) employed an MLP to predict peak discharge. Golob 

et al. (1998) used an MLP to predict natural water inflow 2, 4 and 6 hours ahead for the 

Soca River basin. Raman and Sunikumar (1995) applied an MLP and an 

autoregressive moving average model (ARMA) to predict monthly inflows to two study 

reservoirs. Lorrai and Sechi (1995) used an MLP to model rainfall-runoff using rainfall 

data and temperature for 30 years in the Araxisi catchment in Sardinia while Campolo 

et al. (1999) developed an MLP for the River Tagliamento in Italy. Dawson and Wilby 

(1998) used 15 min rainfall-runoff data to model runoff for a 6 hour lead time on the 

Rivers Amber and Mole in the UK. There are many other examples in the literature, 

many of which have been reviewed by Maier et al. (2010). Out of the 210 papers 

published between 1999 and 2007, Maier et al. (2010) found that 178 papers employed 

MLPs. 

 

Another type of neural network that was used along with MLPs but less frequently is a 

Radial Basis Function (RBF) network. They are similar in architecture to MLPs. The 

difference is that the hidden layer layers use radial basis functions (of a Gaussian form) 

in the neurons while the output neuron activation function is linear. There is a more 

detailed explanation given on activation functions in section 2.5. Training usually 

involves determining the parameters of the radial basis functions first followed by 

determination of the weights. It has been noted that RBF models can be particularly 

useful where there are large training datasets involved (Achela et al., 2009; 

Shamseldin, et al., 2007). Dawson and Wilby (1999; 2000) added RBF networks and 

linear regression to their modelling of the Rivers Amber and Mole. However, they 

concluded that the MLP was more accurate for flow forecasting than the other 

techniques employed. Sahoo and Ray (2006) employed both MLPs and RBFs, with 

similar findings to Dawson and Wilby (1999; 2000). According to Maier et al. (2010), 

RBF networks were not employed that frequently, i.e. less than 20 out of 210 papers 

over the period 1999 to 2007. 
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Another type of neural network that has been used in hydrological modelling but less 

frequently is a recurrent neural network, as illustrated previously in Figure 2.2. The 

difference between recurrent neural networks and MLPs is that there are feedbacks 

allowed between the layers in the network and different learning algorithms are 

required. Chang et al. (2002) applied recurrent neural networks to rainfall-runoff 

modelling in Taiwan. They compared the results with ARMA models and found very 

good performance for the recurrent neural networks. In a further study, Chang et al. 

(2004) extended the model to forecast two steps ahead and once again found very 

good performance when compared to an ARMA model. Another example is a study by 

Carcano et al. (2008) where a conceptual model and MLP were compared to a 

recurrent neural network to forecast daily streamflow in two small catchments. The 

results showed that when good input data were unavailable, then the data-driven 

methods outperformed the conceptual model with the recurrent network performing 

very well. In the review by Maier et al. (2010), recurrent neural networks were used 

less than 20 times over the period 1999 and 2007.  

 

Self Organizing Maps (SOMs) were first introduced by Kohonen (1984). As mentioned 

in section 2.3, SOMs are generally trained using unsupervised training where only an 

input dataset is necessary. This algorithm takes the input data and classifies it into 

groups with similar properties (ASCE, 2000a). This algorithm, can however, be used in 

forecasting or predictive mode. It efficiently deals with very large gridded datasets by 

reducing dimensional space through classification of data into groups. This method is 

very useful where the data are map-based and it is important to preserve the topology 

of the data (Haykin, 1999). It is an interesting approach but it is generally used for data 

pre-processing. For example, See and Openshaw (1999) used a SOM to classify river 

level data into events, e.g. low river levels, the rising limb of the hydrograph, the falling 

limb, etc. and they then trained individual MLPs to predict these events separately. Hsu 

et al. (2002) have developed the SOLO (Self-Organizing Linear Output) map which 

simultaneously classifies the input data and makes a prediction. The authors 

developed this model to predict daily streamflow for the Leaf River basin in Mississippi. 

The results were compared to ARMA, MLP, recurrent neural network and conceptual 

models and the SOLO model outperformed them all. Moradkhani et al. (2004) modified 

the SOLO architecture to add a radial basis function to the approach and showed that 

performance was further improved over the SOLO model, MLP and linear regression 

for daily streamflow forecasting. Chapter 6 of this thesis deals with inputs from radar 

data. It would be possible to use a SOM to classify the radar data by storm type, but as 

there was so little data available, this approach has not been used. The review by 

Maier et al. (2010) places SOMs into a category called stratified, unsupervised 
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methods for pre-processing of the data prior to use by another type of neural network. 

They found that SOMs were only used on about 10 occasions for this purpose during 

the period 1999 to 2007. 

 

In summary it should be noted that the MLP is the most commonly used type of neural 

network for hydrological modelling (Maier et al., 2010). There are several studies that 

have also used ARMA models (e.g. see Raman and Sunikumar, 1995; Abrahart and 

See, 2000; Chang et al. 2002; 2004, Wang et al., 2009). However, Tang et al. (1991) 

found that ARMA models were better suited for short term forecasting, while neural 

networks are more effective for long term forecasting. Therefore MLPs will be used in 

this research study. 

 

2.5 Internal Parameters 
There are a series of decisions that must be made about the neural network including 

the internal parameters that must be set. These decisions include: which input 

variables to choose; how many epochs or training cycles to use; which error function to 

use; initialisation of the weights; choice of parameters associated with the training 

algorithm (e.g. the learning rate and the momentum); which transfer or activation 

function to choose; how many hidden nodes and hidden layers to choose; and the 

range of normalisation of the data. A disadvantage of neural network modelling is how 

to determine the most effective combination of these internal parameters (Maier and 

Dandy, 1996). 

  

All input-output models depend on the quality of the data. Inappropriate selection of 

input variables will affect the quality of the output forecasts (ASCE, 2000a). If there are 

long term trends in any dataset, or the data record is not long enough to encapsulate 

the range of data to be expected, then model performances can be impaired. As the 

number of inputs in the neural network is increased, the size of the network increases, 

i.e. the number of nodes and weights expands and therefore the training time also 

increases. This can be very expensive computationally, possibly limiting opportunities 

for real time forecasting, which is relevant for the study catchment. This has led a 

number of hydrology researchers to focus on methods for determining the inputs to the 

neural network, with the aim of reducing training times without compromising the 

forecast quality (Dawson and Wilby, 2001; Bowden et al., 2005a, b). As this is a very 

important topic and one that even Maier et al. (2010) still recognise as needing further 

research, input determination techniques are a key area of experimentation in this 

thesis. Methods of input determination are reviewed separately in Chapter 4. 
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Moving onto the other decisions that need to be made regarding a neural network, 

there have been some studies that have focussed on internal parameter determination. 

In terms of the number of epochs or training cycles, Maier and Dandy (1998) found that 

there was no difference in using a larger or small epoch size for reaching the global 

minimum. They found that increasing the epoch size did not significantly affect model 

performance. However, a validation data set will be used for ‘stop training’ as is 

recommended in many neural network textbooks (e.g. Haykin, 1999). The research will 

also use Bayesian Regularization where no validation data set is required and the 

algorithm will converge on its own. 

 

The error function most commonly used is the sum of the error squared. There have 

been some studies looking at changing the objective function of the neural network (e.g. 

Abrahart et al., 2007; De Vos and Rientjes, 2007). However, this research will continue 

to use the most commonly used error function.  

 

For the initialisation of the network weights, Maier and Dandy (1998) used random 

weights between -0.1 and 0.1. They found no effect on the performance or 

generalization ability of the network. For this reason, a similar initialisation of weights 

has been adopted in this research. 

 

In terms of learning rate and momentum, different values have been used in the 

literature. Maier and Dandy (1998) note that the momentum must be less than 1.0 to 

achieve convergence and that there were little differences in overall performance if 

different momentum values were used. They did note, however, that increasing the 

momentum speeds up the learning time. In an earlier paper, Maier and Dandy (1996) 

used learning rates of 0.02, 0.05 and 0.1 and found that 0.02 gave the best model 

performance. Dawson and Wilby (1998) used a learning rate of 0.1 and suggested that 

if the training rate is too small then training could be trapped in a local minimum. 

However, if too large, training can move back and forth between one non-optimal set of 

weights to another. Raman and Sunikumar (1995) and Lorrai and Sechi (1995) set the 

learning rate at 0.5 and the momentum at 0.9 while Danh et al. (1999) set the learning 

rate and momentum at 0.5. Advice from a neural network software producer suggests 

that the learning rate should be close to zero for backpropagation (Neural Ware Inc, 

1991). Dawson et al. (2000) and Dawson and Wilby (1999) set the learning rate to vary 

between 0.1 to 0.01 and the momentum at 0.9. For this reason the learning rate was 

set to 0.01 and the momentum was set to 0.9. This follows the advice in the literature 

but these are also the recommended default settings provided by the Matlab software.  
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An activation function is a nonlinear transformation for converting the inputs to a given 

neuron into an output signal (Dawson and Wilby, 1999). There are many activation 

functions used in neural network forecasting, including logistic sigmoidal, linear, bipolar 

threshold, binary threshold, stochastic, Gaussian and hyperbolic tangent. The choice to 

a certain extent is based on trial and error. The following section reviews some of the 

options adopted in hydrological contexts. The most common activation function is 

sigmoidal although others include the logistic and hyperbolic tangent function (Maier 

and Dandy, 2000). There are a number of applications that have used the logistic 

sigmoidal activation function such as Lorrai and Sechi (1995), Campolo et al. (1999), 

Dawson and Wilby (1998; 1999), and Danh et al. (1999), while Crespo and Mora 

(1993) used the hyperbolic tangent function. Maier and Dandy (1998) used an MLP to 

forecast salinity 14 days ahead for the Murray River. They compared linear, logistic 

sigmoidal and hyperbolic tangent transfer functions. Training was fastest with the 

hyperbolic tangent function and slowest with the logistic sigmoidal. In terms of 

performance measures, the RMSE was best for the hyperbolic transfer function and 

worst for the linear. Therefore, they suggested that it was best to use a non-linear 

transfer function. Varoonchotikul (2003) investigated four different activation functions: 

linear, hyperbolic tangent, bipolar binary and logistic sigmoidal in four catchments. He 

found that both the linear and hyperbolic tangent functions outperformed the other 

functions. For this reason, the hyperpolic tangent function was used in the hidden layer 

and the linear transfer function was used in the output layer. 

 

The next two sections discuss the number of hidden nodes and hidden layers to 

choose and which normalisation scheme to adopt. These are two areas that have been 

explored in further detail in Chapter 7.  

 

2.5.1 Number of hidden nodes and hidden layers 
The number of nodes in the hidden layer and the number of hidden layers is generally 

determined by trial-and-error procedures (ASCE, 2000a). If there are too many nodes 

in the hidden layer, then the model will overfit the training data and be unable to 

generalise to data it has not seen before. Moreover, the model will not be very 

parsimonious. However, where there are too few nodes, the neural network may be 

unable to model the underlying function sufficiently (Dawson and Wilby, 1999). There 

have been a series of heuristics suggested in the literature regarding the choice of the 

number of hidden nodes. For example, Smith and Eli (1995) adapted the advice of 

Widrow (1989), who suggested that the training size should be 10 times the number of 

nodes in the input layer. Other heuristics include: the optimum number of hidden layer 

nodes should be smaller than the number of inputs (Maren et al., 1990 cited in Maier 
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and Dandy, 1998); the number of hidden nodes should be 75% of the number of input 

nodes (Lenard et al., 1995; Jain and Nag, 1995; Walczak and Cerpa, 1999); the 

number of hidden nodes should be twice the number of input nodes plus 1 (Caudill, 

1991; Fletcher and Goss, 1993; Patuwo et al., 1993; Walczak and Cerpa, 1999); and 

the number of nodes in the hidden layer should be half the number of nodes in the 

input layer (Minns and Hall, 1996; Walczak and Cerpa, 1999). An example of the latter 

heuristic was employed by Kerh and Lee (2006) who used 15 hidden nodes in a neural 

network with 30 inputs. They showed that increasing the number of nodes in the hidden 

layer from 10 to 15 improved the network performance. Danh et al. (1999) predicted 

daily river flow using neural networks in two different sized basins in Vietnam. Three 

models were used: case 1 (2-2-1), case 2 (3-2-1) and case 3 (7-4-1) where the 

numbers indicate the number of inputs, the number of neurons in the hidden layer and 

1 output node. The authors found the best model performance was for case 3 for both 

basins. This shows that using a ratio of 2:1 for inputs to hidden nodes produced the 

best result, in line with the findings of Minns and Halls (1996). 

 

There are, however, other examples of research in the literature on the impact of the 

number of hidden nodes, generally through experimentation. For example, Campolo et 

al. (1999) established a ratio of 8:1 between the input and hidden nodes through trial 

and error. Golob et al. (1998) found that using a large number of hidden nodes, i.e. 40, 

produced better results than a smaller number, i.e. 7, even though inaccuracies at high 

flow prediction were still evident. Dawson and Wilby (1999) investigated model 

performance using 5, 10, 20 and 30 hidden nodes for a neural network with 7 input 

nodes. They found that 20 hidden nodes was the best choice to predict river flow for 

the River Mole. Maier and Dandy (1996) also tried out a series of combinations and 

found the best performance was achieved using 45 nodes in the first hidden layer. 

Maier and Dandy (1998) investigated the ratio of the number of nodes between the first 

and second hidden layer using a range of combinations. Although the results did not 

point to a clear winner in terms of performance, 3:1 appeared to be the best choice. In 

addition, when using only one hidden layer, they found that using 30 nodes gave the 

best result. Lorrai and Sechi (1995) used various combinations of hidden nodes and 

numbers of hidden layers. However, their results were inconclusive. They did find, 

however, that increasing the length of the training period was more important in 

improving the model performance than adjusting these hidden node and layer 

parameters. 

 

This review clearly indicates that there is no single heuristic that can be applied to 

determine the number of hidden nodes or number of hidden layers. Many of these may 
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only be applicable to the catchments in which they were tried. However, as it has been 

proven that a single hidden layer can approximate any continuous function (Hornik, 

1993), only one hidden layer will be used in this research. This also simplifies the 

network structure and decreases the training time. The impact of the number of hidden 

layer nodes, however, will be explored for the Upper Ping River in Chapter 7. 

 

2.5.2 Normalisation of the input data 
Normalisation or standardisation transforms the input data to a common range, where 

[0, 1] and [-1, 1] are the most frequently employed ranges. For example, Allen and Le 

Marshall (1994), Dawson and Wilby (1998), Hsu et al. (1997) and Raman and 

Sunilkumar (1995) all used [0, 1] while Crespo and Mora (1993) and Sahoo and Ray 

(2006) used [-1, 1]. Other modellers such as Danh et al. (1999) and Sureerattanan and 

Phien (1997) have used [0.05, 0.95], Braddock et al. (1998) employed [-0.9, 0.9], 

Shamseldin (1997) used [0.1, 0.85], and [0.1, 0.9] was used by Campolo et al. (1999), 

Dawson et al. (2006b), Dawson and Wilby (1999), Hsu et al. (1995) and Smith and Eli 

(1995). Normalisation has also been shown to improve the model performance when 

the testing data exceeds the range of the training data (Shrestha et al., 2005) and 

where the training data was set in the range [0.8 Xmin, 1.2 Xmax]. An even tighter range 

of [0.3, 0.7] has been employed by Varoonchotikul (2003). In this research a broad 

range of [-1, 1], the most popular range of [0.1, 0.9] and the tightest range of [0.3, 0.7] 

will be employed.  

 

2.6 Use of Neural Networks in Hydrology and Water Resource Mangement 
The use of neural networks can be found throughout different areas of hydrology and 

water resource management. The ASCE (2000b) review into the use of neural 

networks in hydrology considered applications across a range of areas including 

rainfall-runoff modelling, modelling streamflows, water quality modelling, ground water 

applications, estimation of precipitation and miscellaneous areas such as reservoir 

operation and flood wave propagation. A more recent review by Abrahart et al. (2010) 

also considered applications across many water resource domains but this review was 

organised by methodological development rather than area. The review by Maier et al. 

(2010) looked at the steps that have been taken in developing neural networks in 

different water resource applications and then attempted to build a taxonomy so that 

trends in modelling can be understood and to highlight where further areas require 

more attention.  
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Table 2.1 shows the results of searching the Thomson Reuters ISI database using 

keywords that included the area and the expression ‘neural network’. The table clearly 

shows that there is a considerable body of literature in this area, particularly within 

international peer-reviewed journals. The year in which the maximum number of papers 

was published is also quite recent showing the gathering momentum. However, 

additional, more refined searches would probably yield a greater number of papers 

than listed in Table 2.1, and adding other data-driven methods to the search would 

increase the number of papers considerably.  

 
Table 2.1: The number of papers across different areas of water resource management that 
utilise neural networks.  

Area Conference 
Papers 

Journal 
Papers 

Review 
Papers Total Year of Max Number 

of Papers 
Groundwater 54 147 3 204 2009 

Irrigation 38 67 0 105 Tied for 2007, 2008, 
2009  

Rainfall-runoff 
modelling 54 197 2 253 2008 

Rainfall 
estimation 42 115 0 157 2009 

Water distribution 101 281 9 391 2009 
Water quality 213 392 16 621 2006 
Wastewater / 
Water treatment 64 185 4 253 2009 

Source: Thompson Reuters ISI database (2010). 

 

Several examples have already been provided in this literature review in previous 

sections that demonstrated the use of neural networks in rainfall-runoff modelling and 

flood forecasting (e.g. Campolo et al., 1999; Dawson et al., 2006a: Dawson et al., 

2006b; Hsu et al., 2002; Kerh and Lee, 2006; Minns and Hall, 1996; Sahoo and Ray, 

2006, etc). Almost all studies to date have shown that neural networks provide good 

model performance or superior performance over existing models.  

 

Another aspect of the studies in this area has focussed on finding ways of improving 

neural networks for rainfall-runoff and flood forecasting, either through the data used in 

the model or issues related to the neural network itself. For example, Anctil et al. 

(2006) used mean daily areal rainfall for improving one day ahead rainfall-runoff 

forecasting. Their experiment first involved randomly selecting the rain gauge samples 

and then applying a genetic algorithm for selecting the rain gauges that improved the 

forecasting performance. The result showed that twelve rain gauges were chosen out 

of a total of 23. They also remarked that this method would be useful for decreasing the 

size of the total rain gauge network. Sahoo et al. (2006) used an MLP for stream flow 

prediction. To improve the forecast, they concluded that air temperature, water 
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temperature, stream flow, stream stage, ocean tide height, evapotranspiration and 

rainfall are also required inputs. Karunanithi et al. (1994) applied a different type of 

training algorithm, i.e. cascade correlation, to select a suitable network architecture for 

forecasting flow for the River Huron. Cannas et al. (2006) experimented with different 

data pre-processing algorithms including wavelet analysis and SOMs prior to training 

with a neural network for the Tirso basin in Sardinia. They found that the best results 

were obtained with pre-processing via the SOM. Other researchers have applied hybrid 

techniques such as See and Openshaw (1999), who used a SOM to classify historical 

input data into five event types (low flat, medium, rising, peaks and falling). They then 

trained all event types with individual MLPs. The results showed much better 

performance when compared with a fuzzy logic model, an ARMA model and naive 

prediction. There are many other examples of hybrid modelling applied to rainfall-runoff 

and flood forecasting, e.g. neuro-fuzzy and neuro-evolutionary approaches (Dawson et 

al., 2006b; Mukerji et al., 2009; Pramanik and Panda, 2009; Remesan et al., 2009; 

Firat and Turan, 2010). According to the review by Maier et al. (2010), more than 80 

papers used some type of hybrid modelling in the papers published between 1999 and 

2007. This is clearly an area of increasing interest. However, before hybrid modelling 

techniques are used, it is necessary to establish whether simple neural networks will 

produce viable forecasting models for the catchment under study in this thesis.  

 

2.7 Hydrological Forecasting in the Ping Catchment 
There are also several hydrological applications in the Ping catchment using 

conceptual and physical hydrological models but most of these predict either monthly 

or daily discharge. For example, Schreider et al. (2002) used a physical model to 

predict monthly discharge while Vongtanaboon et al. (2008) used a data-based 

mechanistic approach for daily discharge forecasting. Another example of daily 

forecasting is the work by Taesombat and Sriwongsitanon (2006), who used MIKE11-

HD and NWS-FLDWAV. Mapiam and Sriwongsitanon (2009) applied both an URBS 

model and the Nedbor-Afstromings model for flood estimation but both models did not 

perform well in hydrograph prediction, most likely due to the inaccuracy of the daily 

rainfall data. Most recently, Taesombat and Sriwongsitanon (2010) investigated two 

models: IHACRES (rainfall-runoff model) and FLDWAV (a hydrodynamic model). 

However, the big disadvantage of these models is that they require a lot of data for 

their development, and they are generally not forecasting at an hourly level, which is 

needed for flood forecasting. 

 

The technique for flood forecasting used at present by the Hydrology and Water 
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Management Centre for the Upper Northern Region (2007b) on the Ping catchment is a 

derived relationship between the upper stage stations and the main station. The 

average travel time is 6-7 hours as shown in Figure 2.4.  

 
Figure 2.4: The relationship between water level and travel time between the P67 (upstream) 

and P1 (Chiang Mai) stations.  
Adapted from: Hydrology and Water Management Centre for Upper Northern Region (2007b). 

 

In addition to this approach, the CENDRU (Civil Engineering Department Chiang Mai 

University Natural Disasters Research Unit) uses a support vector machine and 

hydrodynamic model (called Infoworks RS) to predict stage 7 hrs ahead at Chiang Mai 

(P1 station) (Natural Disasters Research Unit, 2007b). The results are very good for 

this lead time. 

 

To date the use of neural network modelling using data from Thai rivers has been 

limited, but the data are available to run such models (Tingsanchali and Gautam, 2000; 

Patsinghasanee et al., 2004; Sukka, 2005; Thaisawasdi et al., 2007; Ninprom and 

Chumchean, 2009; Chidthong et al., 2009). In a catchment which is both large and 

lacking data for optimising TOPMODEL or SHE style modelling, data-driven 

approaches such as a neural network are theoretically promising. An early study by 

Tingsanchali and Gautam (2000) involved the development of a neural network model 

to predict floods 1 day ahead using the average daily rainfall of 10 stations, evaporation 

based on 4 meteorological stations and runoff data as the inputs. The model 

underestimated the peak which they claimed was due to the rainfall data not being 

representative of the actual values across the catchment. Sukka (2005) used a neural 

network trained with backpropagation to predict daily water inflows to a reservoir one 

and two days ahead using daily precipitation and discharge. He concluded that a 7-4-1 

neural network should be applied for one day forecasting, and a 4-3-1 structure for two 

day ahead predictions. However, the results were poor. The maximum recorded 

discharge is 5.94 (106 m3), whereas the best model predicted 2.47, i.e. an 
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underestimation of 3.47. The models by Thaisawasdi et al. (2007) were for flow 

forecasting one day ahead and Patsinghasanee et al. (2004) developed neural 

networks for a 12 hour lead time but the flood peaks were underestimated. However, a 

separate study by Patsinghasanee (2004) showed that the performance of the neural 

networks was better when compared with MIKE11. Ninprom and Chumchean (2009) 

built neural network models for a lead time of 72 hours. However, they did not show 

any graphical results or provide any information about the performance of the model in 

terms of peak prediction. The most relevant piece of research is the study by Chidtong 

et al. (2009), who built a series of hybrid forecasting models (i.e. neuro-fuzzy models 

optimised with a genetic algorithm) to predict the flood at Chiang Mai in 2005 using 

hourly river level data. The models were also applied to a large flood in Koriyama in 

Japan. However, for Chiang Mai, the authors used only daily rainfall as an input as 

hourly was not available. The results showed that the hybrid model outperformed other 

models to which it was compared (i.e. neuro-genetic and an ANFIS NN model), and 

that the hybrid system could produce a good forecast with a lead time of 12 hours.  

 
Although there have clearly been some applications of both physical/conceptual and 

neural network forecasting models to the Upper Ping catchment, they either forecast 

daily data, predict for short lead times or do not use hourly precipitation or radar data. 

This research attempts to determine what combination of inputs and what parameters 

are important in the development of neural network models that are most likely to 

generate forecasts that would be acceptable for real-time flood warning with a sufficient 

lead time.  

 
2.8 Conclusions 
This chapter has reviewed the key ideas and concepts in neural network modelling for 

hydrological forecasting. One of the strengths of neural networks is that they can 

determine the relationships between the input and output variables without any explicit 

physical consideration of the process. This can reduce subjective errors introduced by 

operator-determined parameters in other forms of modelling. They can also work well 

despite a certain amount of noise and errors in the training data set. Based on this 

review, it is clear that neural networks have the potential to develop forecasting models 

of river stage for the Upper Ping River catchment where the data are limited and the 

monsoon rainfall generates high flows. Neural network forecasting is relatively new in 

hydrology. The research so far has shown that there have been many applications of 

neural network modelling that have proved effective in different catchments. Clearly 

there is no one approach suggested in the literature which is appropriate for flood 
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forecasting on a large monsoon influenced river system. The focus of this research is 

therefore essentially experimental. The data available for the Upper Ping River will be 

subjected systematically to a series of modelling experiments to determine if viable 

neural network models can be produced. The next chapter outlines the study area, i.e. 

the Upper Ping catchment, and the data that are available for modelling.  
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Chapter 3 Study Area and Data 
 
3.1 Introduction 
From the previous chapter a literature review on hydrological modelling, neural 

networks (NNs) and the use of NNs in the Upper Ping catchment was provided. This 

chapter presents background information on the study catchment and the data used in 

this research. The catchment chosen is the Upper Ping River basin, located in northern 

Thailand (Figure 3.1). The Ping River is the main river in this catchment, which flows 

from North to South and passes through Chiang Mai city. Stage data have been 

obtained for a number of stations, as well as rain gauge data but few stations record 

hourly data. Radar images are also available. The Upper Ping is a large catchment 

subject to monsoon rainfall, causing out-of-bank flooding events in most years. The 

details of the big flood in 2005 are described. Moreover, the method used to calculate 

missing data in the records in the stage and rainfall records is detailed.  

 

3.2 The Upper Ping River Basin 
Monsoon rainfall in Thailand comes from northeast weather systems (November to 

February), which brings moisture from the South China Sea, and from the southwest 

monsoon (May to September), which brings rain from the direction of the Indian Ocean 

(Boochabun et al., 2004). The southwest monsoon brings the larger events causing the 

major flooding in the Ping basin.  

 

The Ping catchment is located in the Northern part of Thailand and covers 5 provinces: 

Chiang Mai, Lamphun, Kamphaengphet, Tak and Nakhonsawan. The annual average 

rainfall varies from 900 to 1,900 mm, with an annual average rainfall for the entire 

catchment of 1,125 mm (Rodratana and Piamsa-nga, 2008). More than half of the total 

area has an elevation range from 500 to 1500 m (Sharma et al., 2007). The Ping River 

is the main river in this catchment with a length of 740 km (Mapiam and Sriwongsitanon, 

2009). The Ping catchment is divided into two parts: the Upper and the Lower Ping. 

The entire Ping catchment covers approximately 33,898 km2 as shown in Figure 3.1. 

This catchment is mainly covered by forest at 46.5%, 31.2% by agriculture and 12.6% 

by paddy fields.   

 

The geology of Thailand is complex, due to its location at the junction of a number of 

active plate margins. The detailed geology has still to be mapped, but in general the 

underlying rocks in the Ping region are heavily faulted; sedimentary rock, igneous rock, 

metamorphic rock, semi-consolidated deposits and folded Precambrian, Palaeozoic, 

Mesozoic and Cainozoic with overlying Quaternary sediments. The rocks of the 
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Precambrian age such as gneiss, schist and calc silicate rock lay at the west of the 

Chiang Mai basin (Wongprayoun and Sangsrijang, 2005).  

 

Land use includes pasture and rice paddy agriculture, bamboo forest, dry dipterocarp 

forest, dry evergreen forest, hill evergreen forest, mixed deciduous forest, pine forest, 

grassland, savannah, secondary regrowth forest, settlement urban areas, water bodies, 

old clearings and plantations of eucalyptus, pine and teak (The World Bank, 2006). 

 

 
Figure 3.1: The Ping catchment. 

Source: Department of Water Resources (2007) 

 

The Upper Ping is a large complex river basin covering two provinces (17° 14′ 30′′ – 

19° 47′ 52′′ N, 98° 4′ 30′′ – 99° 22′ 30′′ E); Chiang Mai and Lam Phun (Mapiam and 

Sriwongsitanon, 2009). It has an area of approximately 23,600 km2 (Figure 3.2) with 15 

sub-catchments. The distance from the source of the river to Chiang Mai city is 190 km 

(Hydrology and Water Management Centre for Upper Northern Region, 2007b). The 

areas of each sub-catchment are shown in Table 3.1. It can be seen that Nam Mae 

Tun is the largest sub-catchment in the lower part of the catchment, followed by the 

Third Part of Mae Nam Ping. The smallest sub-catchments are Nam Mae Hat and Nam 

Mae Lao. 
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Table 3.1: 15 sub-catchment areas of The Upper Ping basin.  

Name of sub-catchment Area (km2) 
Upper Part of Nam Mae Chaem 1,912 

Upper Part of Mae Nam Ping 2,018 
Third Part of Mae Nam Ping 3,071 

Second Part of Mae Nam Ping 1,624 
Nam Mae Tun 3,143 
Nam Mae Rim 584 
Nam Mae Ngat 1,260 
Nam Mae Ngan 1,711 

Nam Mae Li 1,956 
Nam Mae Lao 535 

Nam Mae Kuang 1,165 
Nam Mae Klang 600 
Nam Mae Hat 535 

Mae Nam Mae Taeng 1,761 
Lower Part of Nam Mae Chaem 1,926 

Source: Hydrology and Water Management Centre for Upper Northern Region (2007a) 

 
Figure 3.2: The 15 sub-catchments of the Upper Ping basin.  

Source: Regional Centre of Geo-Informatics and Space Technology (2006) 

 

This study focuses on forecasting river stage at a station called P1 at Chiang Mai in the 

Second Part of the Mae Nam Ping sub catchment (shown in Figure 3.3). Stage data 

are available for P1 and three upstream water level stations; P67 located in the Second 

Part of Mae Nam Ping, P4a in the Mae Nam Mae Taeng and P75 in the Upper Part of 

Mae Nam Ping. Station P1 is located in the centre of Chiang Mai city. Chiang Mai is in 
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a catchment with a relatively steep terrain (approximately 80%) with elevation higher 

than 500 m above sea level (Rodratana and Piamsa-nga, 2008). The elevation of the 

Ping River basin ranges from 380 m to 2,275 m above sea level. 

 

 

 
Figure 3.3: Study area sub catchments. 

Source: Regional Centre of Geo-Informatics and Space Technology (2006) 

 

In the Upper Ping catchment the average regional temperature is approximately 25.4°C, 

the maximum is 41.4°C in May and the minimum is 3.7°C in January (Natural Disaster 

Research Unit, 2007c). Figure 3.4 presents the 30 year average rainfall by month in 

Thailand and clearly shows that the monsoon season is from May to October. The 

wettest month is August, which has an average rainfall of approximately 224.4 mm. 

The driest month is January with 7.7 mm. Moreover, the average annual rainfall is 

1,180 mm and the range of average annual rainfall is 900 to 1,900 mm (Hydrology and 

Water Management Centre for Upper Northern Region, 2007a). 
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Figure 3.4: Average rainfall at Chiang Mai 1971- 2000 (30 years).  

Source: Northern Meteorological Centre (2007)  

 

Figure 3.5 presents the changes to the River Ping crosssection at P67 and P1 stations 

from 1994 to 2007 and 1972 to 2006, respectively. At P1 there is not much change 

when compared to P67. 

 
Figure 3.5: Changes to the crosssectiona; shape at P67 and P1. 

Source: Eiamkarn, et al. (2009, p 1218)  

 

The changes to the river channel have influenced the conveyance factor, which has 

increased by approximately 7% and 3% at P67 and P1, respectively, according to a 

recent study by Eiamkarn, et al. (2009). As a result, the water stages at P67 and P1 for 

flood discharge have decreased by approximately 12 cm. and 1 cm. per year, 

respectively (Figure 3.6). In addition, the water stage has dramatically declined after 

2004 to 2007 because of the renovation of the Ping River channel. Flood defences 

were built after the big flood in 2005 and the government excavated the Ping River 

channel to increase the conveyance capacity.  
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Figure 3.6: The correlation between water discharge and water stage at P67 and P1. 

Source: Eiamkarn, et al., 2009, p 1220 (n is Meanning’n) 

 

3.3 Flooding at Chiang Mai 
The flooding in Chiang Mai at P1 station is recorded by the Hydrology and Water 

Management Centre for the Upper Northern Region. In addition to the main Ping River 

channel, there are seven minor rivers in the Chiang Mai area, two of which feed into 

the Ping above station P1, where the average annual discharge is 59.38 m3/s. The 

main causes of flooding in the city are water discharges of greater than 460 m3/s and 

water stage levels in the main channel exceeding 3.70 m above local datum (304.2 

msl) (Hydrology and Water Management Centre for Upper Northern Region, 2007a). 

Flooding in the city happens annually in response to monsoon rainfall. According to the 

flood records for the past 50 years in the Chiang Mai city area, the four highest 

monsoon flood events occurred in 1987, 1994, 1995 and 2005 with water levels of 4.53, 

4.43, 4.27 and 4.93 m, respectively as shown in Figure 3.7.  

 

The main causes of flooding in this catchment are considered to be meteorological, fed 

by monsoonal rainfall. However, Sophhonphattanakul et al. (2009) investigated the 

effect of changes in land use on stream flow in this catchment and they found that 

changing land use through urbanization, industrialization and deforestation have 

contributed to flooding in the Upper Ping catchment. Chatchawan (2005) states that 

Chiang Mai’s land use has changed rapidly in response to the National Economic and 

Social Development Plan volume 5 (1982-1986), which developed Chiang Mai city into 

a ‘Primate city’ (Chatchawan, 2005). As a result of development, there has been 

deforestation in the catchment and the building of infrastructure in the city and along 

the Ping River has increased. 
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Figure 3.7: Record of maximum flooding at P1 station from 1956-2007.  

Source: Chatchawan (2005) 

 

Engineering work on the Ping channel as part of flood control works has changed the 

datum flooding level. Prior to 2004 the flooding datum level at P1 was 3.40 m. After 

excavation in 2004 of the Ping River channel and the construction of permanent flood 

defences along the river, the out-of-bank flooding level changed to 3.70 m. Figure 3.7 

shows that the maximum flood events more recently have been higher when compared 

with previous decades.  

 

The current flood forecasting technique, which is operated by the Hydrology and Water 

Management Centre for the Upper Northern Region, requires only the water stage 

record at P67 and they operate on a maximum flood warning time of is 6-7 hrs (Figure 

2.4). However, it was clear after the big storm in 2005 that 6 hours is not enough time 

for preparation and evacuation from Chiang Mai. To improve the flood warning system 

in this area, real time acquisition and improved quality of the rainfall and water stage 

data are required. Consequently, more rain gauges, water stage stations and the online 

systems for the real time collection of the data were installed after 2005 (Natural 

Disaster Research Unit, 2007a). New rain gauges and float gauge stations were 

installed above and behind the Mea Taeng Weir, rain gauge and float gauge stations 

were added at P20, P21 and P1, a rain gauge and bubble gauge were added at P67, 

and a float gauge at P75. However, the extra information for flood forecasting such as 

the changing of conveyance capacity in the River Ping is also necessary. For example, 

a water discharge of 460 m3/s at P1 would cause flooding in 1972, 2004 and 2005 but 

this did not happen in 2002 and 2006 (Figure 3.6).  
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The most important information for flood warning is the accuracy of the timing of the 

flood, so that the government agency tasked with flood defence and the residents in 

the area would have more time to prepare, defend and evacuate the area in order to 

reduce loss of life and minimise the economic damage. Moreover, Chatchawan (2005) 

pointed out that apart from an effective flood forecasting system, the communication 

system between the government agency responsible for flood forecasting and defence 

and the people who live along the Ping River should be improved. During the 2005 

flood, the water stage at P67 reached 4.20 meter at 8.00 pm, which meant that the 

Chiang Mai city area (P1) would be flooded in the next 6-7 hours. However, only the 

government agency and some people recognised this. It was clear that 6 hours for 

flood warning and preparation in a city the size of Chiang Mai is insufficient time. If 

there had been a greater lead time for flood preparation and defence, this may have 

reduced the massive economic loss that resulted in 2005.  

 

The second important piece of information for a flood forecaster is the maximum height 

of the water stage at P1, so that they can predict the area that would be flooded based 

on the elevation of Chiang Mai city. They could then better prepare for the rescue and 

develop a mitigation plan. Figure 3.8 presents a detailed picture of the flooded area 

based on the seven sequences of water stage and water discharge, rising up by 

approximately 0.1 meter per sequence. Therefore, the error in forecasting the water 

stage at P1 that would be acceptable is less than 0.1 m. Moreover, Nemec (1986) 

recommended the desirable precision of the error between the actual and model 

predictions for river stage to be 0.01 m, however, this also depends on the sensitivity of 

the stage change and stage discharge. 
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Figure 3.8: Map of flood area in Chiang Mai city. 

Adapted from Hydrology and Water Management Centre for Upper Northern Region (2007a) 

 

Data records were available for modelling from year 2001 to 2007. In that time period 

there are 19 storm events: 2001 (2), 2002 (4), 2003 (1), 2004 (3), 2005 (5), 2006 (4) 

and 2007 (0), which are used in this research. Taking 2005 as a typical year and one 

which is used in this research, there were five significant events triggered by heavy and 

prolonged rainfall (see photo taken during the 2005 flood, Figure 3.9):  

- 12-17 August 2005: The tropical depression moved from the South China Sea 

and passed through the northern part of the catchment. There was heavy rain 

on 12 August, with an average of 128 mm in 24 hr in the north Chiang Mai 

region. It started to flood on 13 August with the river rising at a rate of 12-14 

cm/hr. The maximum water level at P1 was 4.90 m at 7.00 pm on 14th August, 

with a maximum water discharge of 747 m3s-1. This water level remained for 8 
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hours. As a result, the flood water covered a very wide area of the city for up to 

51 hours. This was the biggest flood event of 2005.  

- 12-13 September 2005: Heavy rain occurred on 9 September. The maximum 

water level rose to 3.79 m, causing 6 hours of flooding. The river rose at a rate 

of 1-2 cm/hr and the maximum water discharge was 488 m3s-1. 

- 20-22 September 2005: Tropical cyclone Vicente. The average rainfall over the 

catchment was 80.72 mm. The 24hr and maximum water discharge was 700 

m3s-1. The water rose to a maximum of 4.71 m on 21 September and this water 

level remained for 4 hours. This led to 57 hours of flooding across the city. 

- 29 September-2 October 2005: Typhoon Damrey moved in from the South 

China Sea causing heavy rainfall in the north of the Ping catchment on 27 

September. This time the highest water level reached 4.93 m, the maximum 

water discharge was 754 m3s-1 and the total flooding time was the longest 

experienced at 82 hours. This flood was exacerbated by the lack of storage in 

the catchment and high soil moisture levels from the late September weather. 

This meant that there was limited capacity to absorb further rainfall and greater 

runoff. 
- 1-3 November 2005: This event arose from Typhoon Kai Tak, another 

Northeast monsoon from the South China Sea. The maximum water level for 

this event was 3.79 m and the flooding time was 9 hours. 

 

 
Figure 3.9: Photographs of flooding at Chiang Mai during the 2005 storm. 

Source: Hydrology and Water Management Centre for Upper Northern Region (2007a) 
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Since the 29 September flood event in 2005 was the highest on record, this event was 

one of those selected for testing the neural network models in this study. However, the 

data records were not entirely complete and the data have been cleaned by SPSS 

software with linear interpolation (Section 3.). Therefore data from other events have 

also included in the testing process. Data from low flows in the period between 2001 

and 2007 were included in the modelling process.  

 

3.4 Data for the Upper Ping basin, Thailand 
Figure 3.10 presents a diagrammatic representation of the topography of the Upper 

Ping catchment. The red lines show the location of the stage gauge stations. In Figure 

3.11 the links between rainfall and water stage recorders in the basin are plotted. 

Rainfall stations are denoted by blue circles, and water level stations by triangles. 

Rainfall data are available at hourly and daily intervals. The rainfall station ‘Met1’ 

recorded at 3 hr intervals and the rainfall station ‘R1’ is recorded every 1 hr. Met1 was 

excluded from the study because the location of the two stations was so close that it 

did not offer useful additional information. Table 3.2 shows the data that are used in 

each chapter. 

 
Table 3.2: Available data. 

Data type Available Chapter 5 Chapter 6 Chapter 7 
Water level 
- P20 
- P56a 
- P75 
- P4a 
- P67 
- P21 
- P1 

 
1976-2004 (hr)/2005 (3hr) 
2001-05 (hr) 
1998-2007 (hr) 
1970-2007 (3hr) 
1996-2007 (hr) 
1989-2007 (3hr) 
1982-2007 (hr) 

 
- 
- 

2001-07 (hr) 
- 

2001-07 (hr) 
- 

2001-07 (hr) 

 
- 
- 

2003/05-06 (hr) 
2005-06 (hr) 

2003/05-06 (hr) 
2005-06 (hr) 

2003/05-06 (hr) 

 
- 
- 

2001-07 (hr) 
2005-06 (hr) 
2001-07 (hr) 
2005-06 (hr) 
2001-07 (hr) 

Rainfall 
- R1 
- Met1 

 
2001-2007 (hr) 
Aug-Oct 2001-06 (3hr) 

 
2001-07 (hr) 

- 

 
2003/05-06 (hr) 

- 

 
2005-06 (hr) 

- 
Radar image 2003/05-06 (15min – 1 hr) - 2003/05-06 (hr) 2005-06 (hr) 

 

The data used in the modelling experiments is taken from three water level gauging 

stations (P1, P75 and P67), one rainfall station (R1) and radar images at one hr 

intervals. In the first set of modelling experiments, water level and rainfall data are used 

to explore model types and variable selection processes (Chapter 5). The second 

phase of the research focused on the potential of radar images to enhance the input 

record and improve forecasts (Chapter 6) while the final phase considered 

experimentation with the parameters of a neural network (Chapter 7). 
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Figure 3.10: Landscape of Study area. 

Source: Hydrology and Water Management Centre for Upper Northern Region (2007b). 
 

Patsinghasanee (2004) investigated the correlation between the travel time between 

upstream stations and the station at P1 based on data between 1998 and 2001. 

However, the averages of the travel times, which are plotted from three big storm 

hydrographs in 2005 (S2, S4 and S5), are slightly different (see Table 3.3). This may 

be due to the channel physical condition changing or different storm patterns. 

 
Table 3.3: The correlation of travel time to P1 station and distance. 

Station Correlation (hr) 
(1998-2001) 

Correlation (hr) 
(2005) 

Channel distance (km) 

P20 25 33 103 
P4A 24 20 52 
P75 - 16 50 
P67 - 6 34 
P21 14 19 23 
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Figure 3.11: Schematic diagram of the rainfall and water level stations. 

Source: Hydrology and Water Management Centre for Upper Northern Region (2007a). 
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3.5 Radar Data 
The bureau of Royal Rainmaking and Agriculture Aviation operates 5 radar stations 

over Thailand (Figure 3.12). Radar images are the CAPPI (Constant Altitude Plan 

Position Indicator) type, which detect moisture in the cloud and radar reflectivity in units 

of dBZ. The spatial resolution of the radar image is one km, and the temporal resolution 

is between 15 minute and 1 hr with a ground coverage radius of 240 km. 

 

 
Figure 3.12: Location of five radar stations in Thailand. 

Source: Jankad (2007). 

 

The radar images from Chiang Mai station (Om Koi station) were obtained at a 

relatively late stage in the research, but are used in this study (Chapter 6 and 7). The 

Om Koi station operates S band (10 cm wavelength), 2.8 GHz. The minimum radius is 

25 km at the minimum height 10 km above ground and the maximum is 240 km with an 

altitude greater than 20 km above ground level (Figure 3.13). As the Chiang Mai station 

is located on the top of mountain it is not affected by ground clutter (Okumura et al., 

2003).  
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Figure 3.13: Location of the rain gauge station and the radius of Om Koi radar station. 

Source: Mapiam and Sriwongsitanon (2008). 

 

3.6 Handling Missing Data 
Missing data can occur as a result of instrument error, instrument malfunction and 

human error. As would be expected, there were missing values in the hourly rainfall 

and water level records, as well as missing radar images.  

 

To deal with the missing water level data, the “Linear interpolation” function of SPSS 

was used to calculate the missing values. For the missing rainfall at R1, the data were 

compared with the nearest rain gauge station that had daily records and averaged into 

1 hr intervals. The missing radar images were very difficult to interpolate. The best way 

to fill in the missing images was by using images from the same hour or the nearest 

hour. Fortunately during the storm events used in this study, there were very few 

missing images. The exception is for 2004 when the absence of radar data precluded 

modelling floods using the radar images. 

 

3.7 Conclusions 
The Upper Ping catchment presents an opportunity to explore the accuracy and 

potential of neural network forecasting opportunities in a large-scale monsoon 

catchment. There is limited hydrological data because of the lack of long-term records, 

but flooding is a serious problem in the region and more accurate forecasting will be 

beneficial for the region. Initially the data were limited to 2000-2005. Some of the 

earlier modelling concerns this shorter dataset, which was enhanced when the 2006 

and 2007 data were made available (Chapter 5, 6 and 7).  
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As with all hydrological data sets there are gaps in the record, and the timescales do 

not always match. However, careful examination of the records made it is possible to 

use algorithms to interpolate data when the gaps were small. The presence of hourly 

data at a number of sites was also particularly helpful for this process. In the next 

chapter, input determination methods are reviewed, which will help determine which 

inputs to use in the neural network modelling experiments. 
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Chapter 4 Input Variable Determination Techniques 
 

4.1 Introduction 
The literature review in Chapter 2 highlighted that there is little guidance on many 

aspects of neural network (NN) development, in particular on how to choose the input 

variables. This was further highlighted in the recent review of neural network modelling 

by Maier et al. (2010). This chapter examines the range of approaches available for 

input determination. These methods are applicable to NNs and any other type of data 

driven modelling method. The chapter starts with a review of the commonly used 

method of trial and error, and then progresses through an examination of statistical, 

neural network specific and data-driven approaches. These methods are evaluated 

together with the hydrological contexts in which they have been implemented, and then 

a final set is chosen for subsequent experimentation in this research. One of the main 

criteria for the choice of a method will be the ability to automate the variable selection 

process in order to remove the subjectivity around the choice of input variables. 

 

4.2 Trial and Error or an Ad Hoc Approach 
The trial and error, or ad hoc method, involves systematically presenting the neural 

network with different combinations of input variables that are thought to have a 

relationship with the output variable. For example, rainfall is accepted as being a 

physical driver of runoff, while upstream river levels are indicative of downstream levels 

at a later time. These two variables are therefore acceptable inputs for neural network 

rainfall-runoff models. The trial and error method has been employed in a number of 

hydrological applications involving the development of NNs. For example, an early 

paper by Shamseldin (1997) on applying NNs to rainfall-runoff modelling involved 

testing 4 scenarios, which differed in terms of the input variables chosen. In the recent 

review by Maier et al. (2010), this method is referred to as a ‘model based’ approach 

since different sets of inputs are chosen and then neural network models are 

developed to determine which yields the best combination of inputs. Their review 

showed that 37 of the 210 papers published between 1999 and 2007 employed this 

type of approach. Papers published since 2007 have continued to use this method. For 

example, Li et al. (2009) used this approach when developing a neural network model 

to forecast river discharge on the Huaihe River in China, while Partal (2009) 

systematically tried a range of 1 to 5 different input variables in order to develop 

different neural network river flow forecasting models.  

 

The main problem with this method is that many different combinations must be tried to 
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ensure that an acceptable set is found. Technically, optimized neural network models 

must also be developed for each case (Maier et al., 2010), which adds further 

experimentation to the process. A very thorough application of trial and error can be 

regarded as applying brute force and is likely to be a computationally infeasible 

approach, especially when the number of input variables is large. Therefore, although 

the evidence from the literature suggests it is a valued and much used methodology, it 

is appropriate to research alternative, automated input determination methodologies to 

avoid having to use trial and error. 

 

4.3 Sensitivity Analysis 
Sensitivity analysis is a method used to measure the effect on the outputs after making 

changes to the input variables (Breierova and Choudhari, 2001). The variables that 

have little or no effect on the output can then be eliminated. There are different ways to 

undertake sensitivity analysis, e.g. by calculating the slopes between the inputs and the 

output (Montano and Palmer, 2003) or based on visual interpretation by looking at the 

weights of the connecting nodes (Ozesmi and Ozesmi, 1999). Maier and Dandy (1996) 

employed sensitivity analysis to develop a NN and they reduced the number of 

potential inputs by 50%. Moreover, when they trained neural network models using the 

full input dataset compared to the neural network used with the smaller number of 

inputs, the resulting neural network models with the smaller input dataset performed 

better across a range of performance measures. An additional benefit was the 

reduction in the training time of the neural network. The review by Maier et al. (2010) 

indicated that 7 out of the 210 papers reviewed had used sensitivity analysis to reduce 

the number of input variables. The work by Sudheer (2005) provides a good example, 

where perturbation analysis was performed on a runoff model for the River Narmada in 

India. Sudheer (2005) used this type of sensitivity analysis to show how different inputs 

have a direct influence on producing the shape of the hydrograph. This type of analysis 

can inform the choice of which inputs are needed in further neural network model 

development. A more recent paper published by Kalra and Ahmad (2009) used 

sensitivity analysis to select inputs to a support vector machine application of stream 

flow forecasting.  

 

This method is not used in this thesis because it requires an element of trial and error 

while the approaches of interest in this research are those that can be automated to 

render the process as objective as possible. 
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4.4 Statistical Approaches to Input Determination 
Statistical approaches offer some potential methods of automation that can be used to 

determine the inputs, e.g. calculation of a correlation coefficient. Other techniques 

include stepwise linear regression and partial mutual information, which are reviewed in 

the sections that follow. 

 

4.4.1 Correlation Analysis 
The correlation between two variables indicates to what degree there is a linear 

relationship between them. The correlation coefficient ranges between -1 to + 1 where 

-1 denotes a perfect negative relationship between the variables while + 1 indicates a 

perfect positive relationship. Values approaching 0 indicate no strong relationship. 

Before running a neural network application, it is suggested that variables that have 

correlations close to zero are removed, a process known as prewhitening, in order that 

the true relationships are obtained (Chatfield, 2001; Wei, 2006; Maier and Dandy, 

1997). 

 

The correlation coefficient is easy to calculate in packages such as Excel or SPSS and 

this method has been used frequently to aid in the choice of input variables. According 

to the review by Maier et al. (2010), correlation was used in 60 out of 210 papers 

reviewed. An example includes the work by Dawson et al. (2006b), who calculated 

correlation coefficients between the discharge at various lead times and historical data 

from upstream discharge and rainfall stations to determine which ones to use in their 

genetically optimised neural network rainfall-runoff models. Given the large number of 

potential inputs, this method provided a way of drastically reducing the number of input 

variables. More recent examples include the work by Liu et al. (2009), who applied 

correlation to select variables for the development of neural network models of water 

pollution. Kim et al. (2009) used correlation in the development of two kinds of rainfall-

runoff model. Jia et al. (2009) used correlation in the development of an online rainfall-

runoff forecasting and real-time water resources assessment system, and Shevnina 

(2009) selected stream gauge inputs based on high correlations for a forecasting 

model of the spring floods with a lead time of 20-24 days in advance. 

 

Although this method is one of the most widely used (Huang et al., 2009; Maier et al., 

2010), it has some disadvantages. For example, it does not result in any physical 

understanding of the variables in the model (Bowden et al., 2005a). Moreover, it 

assumes the relationship between the variables is linear, which is not often the case in 

rainfall-runoff modelling. However, because it is widely used, it provides a good 
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benchmark method against which to compare the other approaches. Therefore, it will 

be used in this research. If a threshold for what is considered to be a good correlation 

is chosen, then the method is essentially automated. Selection of an acceptable 

correlation for an automated process is always a trade off between including too many 

variables, which makes the computational time very long, and too few, which risks 

finding a less than optimal solution. In this research the catchment is very large and the 

rainfall is monsoonal, so linear correlations are also unlikely to be strong. However the 

variables that will be used as the modelling inputs, i.e. stage and rainfall, are physical 

drivers and are related. There are almost no modelling papers where the authors state 

the correlation coefficients that they used in their studies that can be used to guide this 

research. Various experiments were undertaken to look at the correlations. Originally a 

correlation of 0.9 was used as a cutoff as this still left many input variables remaining. 

However, in later experiments when 0.9 produced no input variables, a lower value of 

0.7 was used.  

 

4.4.2 Multiple Regression 
Multiple regression attempts to quantify how one or more independent variables (x1 to 

xn) affect the dependent or response variable, y, in a linear way (Draper and Smith, 

1966). A multiple regression equation takes the following form:  

 ε+++++= nn xbxbxbay ...2211  (4.1) 

Where a is a constant, b1 to bn is a vector of coefficients and ε is an error term. Given 

the input and output vector, a least squares methodology is used to estimate the 

constant and the vector of coefficients. There are three main methods for building 

multiple linear regression models: forward, backward and stepwise (Brace et al., 2006). 

The forward method adds one variable to the model at a time while the backward 

method adds all variables to the model at the same time and then removes those with 

a low correlation. Stepwise regression is developed from the forward selection 

procedure (Draper and Smith, 1966). This method finds the best input first, and then 

adds successive inputs as they improve the performance of the model. Since the main 

interest is in determining the input variables with the most significance, stepwise linear 

regression is the method that is most appropriate for determining variables for neural 

network model development. This method is not explicitly mentioned in the review by 

Maier et al. (2010). They do refer to stepwise methods but mean something entirely 

different, e.g. pruning. There is little evidence of this approach being used in the 

literature. The work by May and Sivakumar (2009) is the only recent example found. 

The authors used stepwise linear regression to select the input variables to a neural 

network stormwater quality model for urban catchments in the US. However, when 
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compared with linear regression models developed on the same dataset, they found 

worse performance with the neural network models. It is possible that the modelling 

problem was simply linear in this situation and that the application of non-linear neural 

network models was unable to add anything useful to this modelling exercise. Thus the 

method of input variable determination in this example was not overly useful to the 

development of better performing neural network models. 

 

As this method is easy to implement in SPSS and also offers an automated approach, 

it will be used as one of the input determination methods in this research. 

 

4.4.3 Partial Mutual Information (PMI) 
Neural networks have the capacity to include a wide variety of variables, some of which 

may be highly correlated. Maier et al. (2010) highlight the potential problems 

associated with the inclusion of too many input variables, especially where there is 

redundant information due to correlation. The main problems include the potential for 

overfitting, since the number of inputs increases the ratio of training data to weights 

that need updating during neural network training, as well as the introduction of 

additional local minima, which makes it more difficult to find an optimal set of neural 

network weights. The Partial Mutual Information (PMI) method seeks to mitigate this 

issue by taking into account the interaction between variables. The PMI algorithm was 

first introduced by Sharma (2000) and Sharma et al. (2000) as an extension to the 

concept of mutual information, to find inputs for rainfall prediction at lead times of 3 

months to two years. Bowden et al. (2005a, b) then used PMI and other input 

determination methods for neural network modelling of salinity in the River Murray in 

South Australia. 

 

The PMI between two variables can be formulated as: 
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where ix′  and iy′  are the ith residuals in a sample data set of size n, )( iX xP ′′  and 

)( iY yP ′′ are the marginal probability distributions and ),(, iiYX yxP ′′′′  is the joint probability 

distribution. 

 

Application of the algorithm works as follows: 

1. The set of inputs xi (where i = 1 to n variables) and the output y is identified. 

Examples of xi for this research would be previous values of river levels at the 

gauging station of interest and upstream while the output would be the river 
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level in the future for a given lead time. 

2. The PMI between y and each xi variable is calculated using equation 4.2. 

3. The PMI values are ranked and the xi variable with the highest PMI is identified. 

4. The vector of xi is then randomly reshuffled to create a set of randomised inputs. 

5. The PMI values are calculated again and the 95th percentile PMI score is 

extracted. 

6. If the maximum PMI determined in step 3 is higher than the 95th percentile PMI 

score, then the variable is selected by the method as an input variable to the 

neural network model.  

7. This input is then removed from the set of inputs xi. Steps 2 to 6 are repeated 

until the condition in step 6 fails and no further inputs are selected. 

The resulting set contains those inputs that are most significant and independent of 

one another and which will be used in the neural network model development.  

 

In the recent review by Maier et al. (2010), a non-linear approach like PMI was used in 

only 7 out of the 210 papers reviewed. However, the method is now appearing with 

more frequency. More recent examples include the work of May et al. (2008a, b), 

Fernando et al. (2009), Hejazi and Cai (2009) and Corzo et al. (2009). May et al. 

(2008a) applied the PMI algorithm to the development of neural network models to 

forecast water quality within two water distribution systems. Compared to trial and 

error, the PMI approach produced much better performing and parsimonious neural 

network models. They also argued that the procedure could provide insights into the 

relationships that exist between variables in the system. Both papers by May et al. 

(2008b) and Fernando et al. (2009) address the computational efficiency and accuracy 

of the PMI algorithm whilst simultaneously showing the superiority of the PMI algorithm 

over other linear or ad hoc input determination methods. Hejazi and Cai (2009) used a 

variation of PMI to select from 121 potential variables in order to predict daily reservoir 

release on 22 reservoirs in California. The authors concluded that the model 

performance was improved when using this method to choose the input variable 

dataset to the neural network. Finally, Corzo et al. (2009) used PMI to select the input 

variables to a neural network used to replace both process-based models and the 

routing component for the River Meuse catchment. They did not evaluate other input 

determination methods but used this one alone based on recommendations in the 

literature. 

 

The advantage of PMI is that it takes variable dependency into account and is 

technically a non-linear approach, but it is a more complicated algorithm to implement 

and requires knowledge of programming or high level scripting. This has implications 



 

 

48

 

for its use in operational forecasting and neural network model development. However, 

once programmed, it is a highly automated approach so this method is used in this 

research.  

 

4.5 Neural Network Specific Input Determination Methods 
This section reviews methods that have been specifically developed for NNs, i.e. 

pruning algorithms and saliency analysis. 

 

4.5.1 Pruning Algorithm 
A pruning algorithm is a neural network technique that removes unimportant or weak 

connections between nodes as well as the nodes themselves. The concept behind this 

algorithm is to start with a fully connected network and to then remove the least 

significant connections between the inputs and outputs. Pruning algorithms fall within 

model-based stepwise approaches in the taxonomy of input variable determination 

methodologies devised by Maier et al. (2010). These approaches (of which pruning is 

only one) have been used in 12 out of 210 papers. One of the earliest neural network 

hydrological examples is the work by Abrahart et al. (1999), who tried two different 

types of pruning algorithms, i.e. magnitude-based pruning (eliminating unwanted links) 

and skeletonization (eliminating unwanted nodes). Rainfall-runoff models were built 

using seasonal information, rainfall, potential evapotranspiration and flow to predict 

flow one step ahead. The authors found that both types of pruning algorithm could 

reduce the total number of connections between 10% - 43% whilst retaining good 

model performance.  

 

A more recent example includes the work by Corani and Guariso (2005), who 

compared the performance of neural network flood forecasting models with and without 

pruning on two different catchments in Italy. Between 30 to 40% of the inputs were 

removed and the NNs trained on these smaller input datasets performed better on 

unseen data. More recently, Chen and Yu (2007) used pruning in a flood forecasting 

support vector machine application, which has some similarities to NNs. The authors 

showed that the pruned models resulted in a reduction of model complexity while still 

retaining good model performance.  

 

Although not frequently used in hydrological applications, there is a freeware pruning 

algorithm available for Matlab (Ravn, 2003). This means that the algorithm is easy to 

implement and it is also an automated approach. Pruning will therefore be tested in this 

research. 
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4.5.2 Saliency Analysis 
Saliency analysis is a method whereby a neural network is first trained and then one 

input variable is removed at a time by adding a weight of zero between the input and 

the hidden nodes. This operation is then repeated for each input variable and the 

output is analysed. Comparison of the performance when individual inputs are removed 

determines which inputs have had little effect on the overall result and which can 

therefore be removed. 

 

Saliency analysis does not appear as a method of input determination or neural 

network model construction in the review by Maier et al. (2010). In fact the only known 

neural network rainfall-runoff modelling example was that undertaken by Abrahart et al. 

(2001). The authors found that this method provided a useful tool to gain knowledge 

about the relationship between the inputs and the output, in particular between 

previous river flow inputs and current river flow levels, seasonal variation and individual 

catchment response. However, Bowden et al. (2005a) highlight a disadvantage of this 

method, which is that the network is not retrained after each input variable is removed. 

Given that this technique is not automated and requires an element of trial and error, it 

was not considered further in this research.  

 

4.6 Data-driven Input Determination Methods 
The final set of input determination approaches to be considered here come from the 

field of artificial intelligence. Self-organizing maps (SOMs) are a type of unsupervised 

neural network that can be used for input variable determination. Other approaches 

reviewed in this section include: genetic algorithms, M5 model trees and a data mining 

algorithm embedded in the WEKA software (Witten and Frank, 2005).  

 

4.6.1 Self-Organizing Map (SOM) 
The self-organizing map (SOM), developed by Kohonen (1984), was reviewed as a 

type of neural network in Chapter 2. However, it is also possible to use a SOM as a 

method for input determination. Maier et al. (2010) consider the SOM to be part of a 

clustering-based approach to input determination. Of the 210 papers reviewed, only 6 

papers used a clustering approach, of which the SOM is only one type. From a search 

of the literature, the only true example of a SOM being used to determine the input 

variables is the study by Bowden et al. (2005a). The SOM was used to cluster the 

inputs and then one input from each subsequent cluster was sampled reducing the 

overall number of variables. This reduced set was then fed to a hybrid genetic 
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algorithm / general regression neural network (GAGRNN), which was then used to 

determine the final set of input variables. The SOM-GAGRNN was compared with the 

PMI algorithm (Bowden et al. 2005b) and neural network models developed previously. 

The results showed that both methods produced better performing models than 

previous neural network models reported in the literature but that the PMI produced the 

most robust predictions on unseen data.  

 

There are other studies that use a SOM to reduce a large number of inputs but they do 

not produce a smaller subset for subsequent training with a supervised neural network. 

For example, Hsu et al. (2002) developed the Self-Organizing Linear Map (SOLO) 

approach in which a SOM classifies the input data and linear regression is then used to 

produce a forecast. It is possible to visualise the output of the SOM and see which of 

the variables are the most important. However, this feature is not used by Hsu et al. 

(2002) to further develop supervised neural network models. The same type of 

approach was taken by Chang et al. (2007), who developed a SOM forecasting model 

for the Da-Chia River in Taiwan. A reduced input set for use by supervised neural 

network models was not the purpose of the exercise. Rather the SOM implicitly 

reduces the inputs while outputting a flood forecast. 

 

Following the literature review of this technique, it was decided to exclude the SOM 

from this research because it is not an automated approach. There is an element of 

trial and error involved in choosing the size of the network, the network training 

parameters and the number of iterations to train the network, making it a relatively 

difficult approach compared to some of the others reviewed so far. Moreover, it is likely 

that a flood forecaster working in Chiang Mai would not find this a practical 

methodology. 

 

4.6.2 Genetic Algorithms (GA) 
A genetic algorithm (GA) is based on the concepts and language of biological evolution 

and natural selection, and was first developed by Holland (1975). The main difference 

between GAs and other optimisation methods is that a GA can search a population of 

possible solutions, whereas classical optimisation techniques work on a single solution 

(Goldberg, 2003). A GA can be broken down into a series of steps as follows (Pai, 

2006): 

1. Initialise a random population of chromosomes or solutions. These are 

generally strings that contain model parameters or settings. 

2. Evaluate the fitness of each chromosome using an objective function.  

3. Select the best performing chromosomes from the population for reproduction 
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and expose them to crossover and mutation operators to create new offspring. 

Crossover is the process whereby two parents swap genetic material at a 

randomly chosen crossover point and mutation is a random change at some 

point along the chromosome.  

4. Use a selection method to create the next generation.  

5. Repeat steps 2 to 4 until a stopping condition is reached where an optimal or 

acceptable solution is generated. 

There are several applications of GAs in hydrology. One of the main uses has been in 

the calibration of conceptual rainfall-runoff models, with the earliest work undertaken by 

Wang (1991) and Franchini (1996). Other studies have employed the shuffled complex 

evolution algorithm to calibrate a range of different conceptual models (Khu and 

Madsen, 2005; Sardinas and Pedreira, 2003). GAs have also been used to find the 

starting weights of a neural network rainfall-runoff model (Whiteley et al., 1990), for 

making updates to a trained neural network (Shamseldin and O’Connor, 2001), to 

actually train the neural network (Jain and Srinivasulu, 2004; Wu and Chau, 2006), and 

to determine a more representative training dataset for an neural network hydraulic 

model (Kamp and Savenije, 2006).  

 

The review by Maier et al. (2010) classed GAs under global input determination 

methods. Of the 210 papers reviewed, global methods have only been used 5 times for 

input determination, where a GA is only one type of global method. There are actually 

very few examples to report. As reviewed earlier in section 4.6.1 on SOMs, Bowden et 

al. (2005b) used a GA in combination with a GRNN and a SOM to determine the input 

variables to a neural network water quality model. Anctil et al. (2006) used a GA to 

determine which rainfall inputs to use for a neural network stream forecasting model 

from amongst a set of 23 rain gauges. Finally, Heo and Oh (2008) showed that a GA 

can be used to prune a neural network and reduce the size by 8-25%. The authors 

showed that the GA implementation led to good model performance when compared 

with other construction methods or pruning techniques.  

 

The WEKA software (Witten and Frank, 2005) contains a GA that can be used for input 

variable determination. Given the ease of use of the WEKA software and the 

automated nature of this approach, this method will be used in this thesis. 

 

4.6.3 M5 model trees 
M5 model trees were first developed by Quinlan (1992) as a data mining technique for 

classifying data. The first step in the M5 model tree is to partition the input space into 

local sub-spaces or smaller problems and then fit regression equations to each sub-
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space. There is no mention of M5 model trees as an input determination method in the 

review by Maier et al. (2010). This is most likely due to the fact that the use of M5 

model trees used in hydrological applications so far have been as standalone models 

rather than as input determination methods. For example, Solomatine and Xue (2004) 

built M5 model tree and neural network models for the Huai River in China. However, 

they used correlation analysis to select the inputs and then used the M5 model tree as 

a standalone model against which the neural network model was compared. A hybrid 

model was then built which used the M5 model tree to partition the solution space into 

smaller problems, for which individual neural network models were then trained. The 

hybrid model outperformed the M5 model tree and the NNs used on their own. 

Bhattacharya and Solomatine (2005) also applied M5 model trees and NNs as 

standalone discharge rating curve models but not as a method for input determination.  

 

Given that M5 model trees can be used for input determination but have not as yet 

been used in this way, they will be used in this research. Just as with the genetic 

algorithm, the WEKA software has an implementation of M5 model trees, which makes 

this method both easy to implement and highly automated.  

 

4.6.4 Data Mining Approach based on Hill Searching Methodology 
In addition to GAs, there are many different search and optimisation algorithms 

available. The WEKA software (Witten and Frank, 2005) has some in-built attribute 

selection procedures of which the GA is one. Another one of these is exhaustive 

search but this is not practical for the requirements of this research as the search time 

increases exponentially with the number of inputs. However, there is a greedy hill-

climbing search procedure in the WEKA software that provides a simple yet potentially 

powerful automated approach. Moreover, it has not been used for input determination 

in the context of neural network flood forecasting before. The search procedure starts 

by selecting a random subset to the solution. The algorithm then makes small changes 

through many iterations until no further improvements can be found. Given the 

automated nature of the approach and its simplicity to implement, this data mining 

search approach will be used in this research.  
 

4.7 Conclusions 
The review of input determination methods has shown that hydrological forecasters 

have adopted a range of approaches. However, the main criteria for use in this 

research are: (a) ease of implementation and (b) the automated nature of the approach. 

The Upper Ping catchment is large, the data are limited and real time forecasting is 
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required. The ease of implementation is an important consideration because there are 

already enough difficulties in neural network model development due to the lack of 

guidelines (ASCE 2000a, b; Dawson and Wilby, 2001). If the data input determination 

aspect of neural network modelling can be made easier, then there is a greater chance 

that hydrologists will use this technique, making NNs a potential operational choice by 

forecasters. The techniques chosen for experimentation include: correlation; stepwise 

regression; a genetic algorithm; M5 model trees, a data mining search algorithm; a 

pruning algorithm and PMI. In addition, it was decided to combine correlation and 

stepwise regression to see whether this hybrid approach would yield more 

parsimonious models.  

 

Building on this review and evaluation of data input determination options, the next 

chapter reports an initial set of neural network modelling experiments to forecast stage 

for the Upper Ping River at Chiang Mai. The effects of using different input 

determination techniques are evaluated. 
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Chapter 5 Exploring Effective Neural Network Forecasting Procedures for 
the Upper Ping River 
 

5.1 Introduction 
This chapter presents four case studies using a variety of input determination 

techniques in order to discuss the relative efficiency of different neural network (NN) 

approaches for flood forecasting at P1 on the Upper Ping River (Figure 3.11). These 

cases were selected for discussion in this chapter from amongst multiple experimental 

runs because they are either typical of the results obtained in this study, or provide 

potentially useful results for practical forecasting.  

 

The NNs in this research were developed using the Neural Network Toolbox in Matlab. 

This research focuses on comparing a number of different input determination 

techniques to better understand the relative effectiveness of these different approaches 

including: linear correlation, stepwise regression, a method combining correlation and 

stepwise regression, M5 model trees, a data mining algorithm from the WEKA software, 

a genetic algorithm, partial mutual information (PMI) and a neural network pruning 

algorithm, all of which were described in detail in chapter 4. The results from each 

model were then evaluated using the HydroTest website (Dawson et al., 2007) as 

outlined in the next section.  

 

5.2 Evaluation of the Model Results 
Methods for the evaluation of hydrographs and stage prediction have been developing 

since the 1970s. More recently, Dawson et al. (2007) classified evaluation metrics into 

three distinct categories. The first set provides statistical descriptors, e.g. the minimum, 

maximum, mean and standard deviation of the actual and predicted dataset. These 

measures can provide a general guide to the overall model performance, but they are 

less helpful to a flood forecaster who is interested in a small number of extreme and 

less frequent large events. The second category covers statistical goodness-of-fit 

measures that capture information about the residual errors between the actual and 

predicted values from a model. The units are normally expressed in the variable of 

interest, i.e. errors in river levels would be expressed in metres or centimetres. These 

measures are very helpful for comparing model results from a range of sites and time 

periods. Examples include the Root Mean Squared Error (RMSE) and the Mean 

Absolute Error (MAE), and model performance is generally best when these errors are 

minimised. The third category covers dimensionless coefficients such as the coefficient 

of determination or the Nash-Sutcliffe coefficient of efficiency (CE) (Nash and Sutcliffe, 
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1970). Values for these types of measures often range between 0 and 1 or -1 and 1 

where model performance is best at a value of 1.0. 

 

The methods that are used regularly in the literature should theoretically be the most 

helpful, although they may also represent a researcher’s need to provide an evaluation 

measure that can be compared to work at other sites and times. Karunanithi et al. 

(1994) drew attention to the most commonly employed error measurements: Mean 

Squared Error (MSE), Mean Squared Relative Error (MSRE), Coefficient of Efficiency 

(CE) and Coefficient of Determination (R2). Examples of NN hydrological research that 

have used these different measures include: 

• MSE (Karunanithi et al., 1994; Raman and Sunilkumar, 1995; Cigizoglu, 2005; 

Bowden et al., 2006; Dawson et al., 2006b; Kisi, 2006; Sahoo and Ray, 2006; 

Sahoo et al., 2006; Leahy et al., 2008; Ei-Shafie et al., 2009; Partal, 2009). 

• MSRE (Dawson and Wilby, 1998, 1999; Dawson et al., 2000, 2006a).  

• CE (Minns and Hall, 1996; Chang and Hwang, 1999; Dawson et al., 2006a; 

Kerh and Lee, 2006; Leahy et al., 2008; Lin and Chen, 2008; Yang and Chen, 

2009).  

• R2 (Lorrai and Sechi, 1995; Campolo et al., 1999; Dawson and Wilby, 1999; 

Corani and Guariso, 2005; Giustolisi and Laucelli, 2005; Kumar et al., 2005, 

Cannas et al., 2006; Dawson et al., 2006a, b; Kerh and Lee, 2006; Kisi, 2006; 

Hung et al., 2009; Kim and Ahn, 2009; Mukerji et al., 2009). 

In addition, other error measures have also been widely used, which include: 

• RMSE (Hsu et al., 1995; Smith and Eli, 1995; Maier and Dandy, 1996, 1998; 

Dawson and Wilby, 1998, 1999; Campolo et al., 1999, Danh et al., 1999; 

Dawson et al., 2000, 2006b, Bowden et al., 2005b, 2006; Corani and Guariso, 

2005; Kumar et al., 2005; Cannas et al., 2006; Kerh and Lee, 2006; Sahoo and 

Ray, 2006; Sahoo et al., 2006; Seidou and Ouarda, 2007; Chidthong et al., 

2009; Fernando et al., 2009; Hung et al., 2009; Hejazi and Cai, 2009; Kim and 

Ahn, 2009; Mapiam and Sriwongsitanon, 2009; Mukerji et al., 2009; Remesan 

et al., 2009; Wang et al., 2009).  

• MAE (Liong et al., 2000; Supharatid, 2003; Chang et al., 2004; Cannas et al., 

2006; Chen et al., 2006; Dawson et al., 2006b; Karunasinghe and Liong, 2006; 

Kisi, 2006). 

• Correlation Coefficient (R) (Kerh and Lee, 2006; Sahoo and Ray, 2006; Sahoo 

et al., 2006; Leahy et al., 2008; Mapiam and Sriwongsitanon, 2009; Partal, 

2009; Remesan et al., 2009; Wang et al., 2009).  
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• Error of Peak Discharge-EQp and Time to Peak-ETp (Chang and Hwang, 1999; 

Kerh and Lee, 2006; Lin and Chen, 2008). 

 

The HydroTest website (Dawson et al., 2007) allows a user to calculate a large number 

of performance measures from an uploaded dataset containing the actual and 

predicted values from any model. Although designed for hydrological models, the 

system could actually be applied to any model results supplied by a user. These 

measures all have different properties and uses, some of which are more or less 

relevant to flood forecasting, and therefore a decision must be made in terms of which 

measures provide the most effective evaluation of a model in forecasting terms. As a 

flood forecaster is most interested in the extreme values, measures such as RMSE, 

MAE and CE will be theoretically, and practically, the most powerful. After reviewing 

Dawson et al. (2007) and looking at other statistics employed in the literature, it was 

decided to use the following performance measures in this thesis:  

• Root Mean Squared Error (RMSE), where 0 indicates a perfect match. This 

process is used to evaluate the overall agreement between the actual and the 

predicted values. This measure gives more weight to larger errors, which are 

generally of more interest to flood forecasters. 

• Mean Absolute Error (MAE), where 0 indicates a perfect match. Stephenson 

(1979, cited in Dawson et al., 2007) recommends using MAE to compare single 

event models. Unfortunately, this measure does not provide information on the 

extent of under or over estimation. 

• Coefficient of Efficiency (CE), where 1 represents the best performing model. 

Originally presented in Nash and Sutcliffe (1970), this measure is widely used 

by hydrologists when reporting model performance. 

• Peak Difference (PDIFF), where 0 indicates a perfect result, a positive value 

indicates an underestimate, and a negative value indicates an overestimate in 

the peak value. This measure is not suitable for multiple flood events but works 

well on single events of the type found in this study where there are a limited 

number of monsoon-fed river stage peaks to analyse and forecast.  

The RMSE, MAE and PDIFF are all expressed in the units of stage while CE is a 

dimensionless coefficient. However, these statistical measures only have so much 

value, e.g. a good MAE may hide a consistent over or underestimation of the flood 

peak and the timing of the rising limb. Inspection of the hydrographs is therefore 

essential in conjunction with these statistical measures. 
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In this chapter the results are reported from trialling neural network models in a first 

pilot phase of the study. These experiments, which are organised into 4 case studies, 

explore a range of model inputs over different lead and travel times in order to 

determine which models provide useful forecasts.  

 

5.3 Case Study 1: Early Experiments Using an MLP (Multilayer Perceptron) 
with Limited Data for the Upper Ping Catchment 
This case study seeks to find the minimum number of input variables required to 

predict the water level at Chiang Mai with 6, 12, 18 and 24 hour lead times using 

station data at P1, P67 and P75 in the Upper Ping basin. The input data are hourly 

water levels for four years (2001-04). The forecasting model used in these experiments 

is a feedforward multilayer perceptron (MLP). The training algorithm is backpropagation 

implemented using a Levenberg-Marquardt (LM) approach, which is more efficient and 

faster than conventional backpropagation (Demuth et al., 2009). This type of training 

algorithm requires three datasets: one for training, one for validation in order to 

determine when to stop training, and one for independent testing to determine the real 

performance of the model. The 4 years of available data were then divided into 2 years 

for training, 1 year for validation and 1 year for testing. Figure 3.7 shows that flooding 

at P1 is the highest in 2001; therefore, 2001 was used in the testing dataset, 2002-

2003 were employed for training and 2004 was used for validation. The neural network 

structure was set to 20 nodes in the hidden layer (after Demuth et al., 2009). The 

output layer contained 1 node to predict the water level at 6, 12, 18 or 24 hours ahead, 

where a separate neural network was trained for each lead time. 

 

5.3.1 Input variables and input determination methodologies 
The following 36 input variables were assembled: P1t, P1t-3, P1t-6, P1t-12, P1t-15, 

P1t-18, P1t-21, P1t-24, P67t, P67t-3, P67t-6, P67t-12, P67t-15, P67t-18, P67t-21, 

P67t-24, P75t, P75t-3, P75t-6, P75t-12, P75t-15, P75t-18, P75t-21, P75t-24 and the 

moving averages at P1, P67 and P75 for 6, 12 and 24 hours (i.e. MAP1_6, MAP1_12 

and MAP1_24, etc.). Table 5.1 summarises the inputs chosen by the following six input 

determination techniques coded as: 

• A: inclusion of all inputs 
• C: inclusion of inputs if the correlation with the output is greater than 0.90 
• S: inclusion of inputs determined by stepwise regression 
• CS: inclusion of inputs when both the correlation is greater than 0.90 and the 

variables are selected by stepwise regression 
• M: inclusion of inputs selected by running an M5 model tree algorithm 
• D: inclusion of inputs selected by running a data mining algorithm 
• G: inclusion of inputs selected by running a genetic algorithm.  
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Input Determination Techniques and Lead Times Input 
1A 2A 3A 4A 1C 2C 3C 4C 1S 2S 3S 4S 1CS 2CS 3CS 4CS 1M 2M 3M 4M 1D 2D 3D 4D 1G 2G 3G 4G 

P75t-24 X X X X      X X X     X X X X         
P75t-21 X X X X             X X X X         
P75t-18 X X X X X            X X X X         
P75t-15 X X X X X            X X X X         
P75t-12 X X X X X X   X    X X   X X X X         
P75t-9 X X X X X X    X  X     X X  X         
P75t-6 X X X X X X X    X X  X X  X X X X      X  X 
P75t-3 X X X X X X X       X X  X X X X      X  X 
P75t X X X X X X X X X X X X X X X X X X X X   X X X  X X 
MAP75_6 X X X X X X X   X  X X    X X X X  X     X  
MAP75_12 X X X X X X X    X   X X  X X X  X      X  
MAP75_24 X X X X X X   X X  X X X   X X X          
P67t-24 X X X X     X X X X     X X X X         
P67t-21 X X X X     X X X X      X X X         
P67t-18 X X X X     X X X X     X X X X         
P67t-15 X X X X X            X X  X         
P67t-12 X X X X X        X    X  X X         
P67t-9 X X X X X X   X  X X X    X X  X         
P67t-6 X X X X X X    X X X  X   X X X X         
P67t-3 X X X X X X X          X X X X         
P67t X X X X X X X  X X X X X X X  X X X X X      X X 
MAP67_6 X X X X X X X   X X X  X X  X         X X X 
MAP67_12 X X X X X X X  X X   X X X  X            
MAP67_24 X X X X X X                   X    
P1t-24 X X X X X X   X X X X X X   X X X X        X 
P1t-21 X X X X X X   X X X  X X    X  X         
P1t-18 X X X X X X X   X X X  X   X X X X         
P1t-15 X X X X X X X          X  X X        X 
P1t-12 X X X X X X X X  X    X  X  X  X     X X   
P1t-9 X X X X X X X X         X X X      X X X  
P1t-6 X X X X X X X X X X X  X X X X X  X        X X 
P1t-3 X X X X X X X X         X       X   X X 
P1t X X X X X X X X X X X X X X X X X    X X X X X X X X 
MAP1_6 X X X X X X X X X X X X X X X X        X X X X X 
MAP1_12 X X X X X X X X                 X X X X 
MAP1_24 X X X X X X X X X    X   X X X         X  
#  of inputs 36 31 27 19 9 15 19 17 17 14 17 10 6 30 26 23 24 3 2 2 4 7 8 12 12 

Table 5.1: Input variables selected by each method as indicated by an X. 1 is t+6, 2 is t+12, 3 is t+18 and 4 is t+24.
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Models 1 to 4 in Table 5.1 relate to the 4 different lead times, i.e. 6, 12, 18 and 24 

hours, respectively. SPSS was used to calculate the correlations and implement the 

stepwise regression. The WEKA software (Witten and Frank, 2005) was used to run 

the M5 model tree, the data mining procedure and the genetic algorithm.  

 

Table 5.2 lists the total number of input variables selected by each input determination 

methodology. In these experiments, the data mining algorithm (1D to 4D) reduced the 

inputs the most heavily, with only 2 to 4 chosen for a given lead time. In contrast, the 

correlation (1C to 4C) and the M5 model tree technique (1M to 4M) retained the 

majority of the variables, making these potentially the least useful approaches as they 

did not produce very parsimonious models. 

 
Table 5.2: The number of inputs selected by each input determination method for each lead 
time. 

Model 1 (6hr) 2 (12hr) 3 (18hr) 4 (24hr) 
A (All inputs included) 36 36 36 36 
C (Correlation > 0.9) 31 27 19 9 
S (Stepwise regression) 15 19 17 17 
CS (Correlation > 0.9 and Stepwise) 14 17 10 6 
M (M5 model tree) 30 26 23 24 
D (Data mining) 3 2 2 4 
G (Genetic algorithm) 7 8 12 12 

 

5.3.2 Results 
The experimentation process involved training neural network models using inputs 

chosen by each input determination method and for each lead time. This section of the 

case study shows summary tables of the model performance measured using RMSE, 

MAE, CE and PDIFF as outlined previously. In terms of the number of input variables 

chosen, a more parsimonious model will be helpful to the modeller as it requires less 

data and permits shorter neural network training times. However, more inputs may give 

a better hydrograph forecast. Therefore, model evaluation requires a thoughtful 

balance between the model development times and the forecasting accuracy. Selected 

hydrographs illustrating the model results are presented in the sections that follow. 

However, all of the hydrographs can be found in Appendix A.  

 

6 hour lead time 

Table 5.3 is an extraction from Table 5.1 which shows the variables chosen by the 

different input determination methods for just a lead time of 6 hours. It clearly shows 

that all the techniques selected P1 at time t, which shows the importance of this 

variable. Virtually every neural network paper that has ever been published in this area 
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includes the level or flow at the station where the predictions are being made at time t, 

confirming this input choice. The variables that were selected by the S and CS model 

were similar although the evaluation measures discussed next indicate that CS was 

better overall. Although the different methods chose different numbers of input 

variables, they all selected variables at the upstream stations and some moving 

average variables. This is not surprising as there are no rainfall drivers so the model 

must rely on upstream information. 

 
Table 5.3: Input variables selected by each input determination technique (denoted by an X) for 
a 6 hour lead time. 

Input Determination Techniques Input Determination Techniques 
Inputs A C S CS M D G Inputs A C S CS M D G 

P75t-24 X    X   P67t-24 X X X  X   
P75t-21 X    X   P67t-21 X  X     
P75t-18 X    X   P67t-18 X  X  X   
P75t-15 X X   X   P67t-15 X X   X   
P75t-12 X X X X X   P67t-12 X X  X X   
P75t-9 X X   X   P67t-9 X X X X X   
P75t-6 X X   X   P67t-6 X X   X   
P75t-3 X X   X   P67t-3 X X   X   
P75t X X X X X  X P67t X X X X X X  
MAP75_6 X X  X X   MAP67_6 X X   X   
MAP75_12 X X   X X  MAP67_12 X X X X X   
MAP75_24 X X X X X   MAP67_24 X X     X 
P1t-24 X X X X X   
P1t-21 X X X X    
P1t-18 X X   X   
P1t-15 X X   X   
P1t-12 X X     X 
P1t-9 X X   X  X 
P1t-6 X X X X X   
P1t-3 X X   X   
P1t X X X X X X X 
MAP1_6 X X X X   X 
MAP1_12 X X     X 
MAP1_24 X X X X X   

 

From the hydrographs shown in Figure 5.1, it is clear that all the model forecasts have 

a delay and that they underestimate the peak stage. Both model S and CS, which 

selected fewer than 50% of the inputs, showed similar results to models A and C. In 

addition, model CS showed a better result than model C in terms of time to peak 

prediction (Table 5.4). Models A and M, in which almost all the inputs were selected, 

predicted peaks that lagged by only 1.5 hours compared to longer delays in peak 

prediction for the other methods (Table 5.4 and Figure 5.1). Model D predicted 

hydrographs with the greatest time delay (i.e. 6.5 hours) but this data mining method 

selected only 3 inputs: P67 at time t, a 12 hour moving average at P75 and P1 at time t 

(Table 5.3). However, it also produced an outstanding result at the peak as PDIFF was 

only 0.07 m, which is the smallest value when compared to the other models. At the 
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same time, this is the only model that had the highest overestimation on another storm 

event as shown in Figure A.1 in Appendix A.  
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Figure 5.1: Observed and predicted water level at P1 station (Chiang Mai) from 11-17 Aug 2001 

for a lead time of 6 hours. 
 

Referring to the statistical results, Table 5.4 shows that model G gave the best result 

overall as measured by the CE, the RMSE and the MAE, with approximately 80% of 

the input variables eliminated. For the peak stage, model G predicted very close to the 

actual height (PDIFF = 0.11), but it had the second highest time delay of 4.5 hours for 
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the peak prediction. The model used only 7 inputs: one from P67, one from P75 and 

five from P1 (Table 5.3). Model M had the worst performance based on the CE, the 

RMSE and the MAE. However, the peak prediction and the time delay of 1.5 hours 

were good when compared with the other models. 

 
Table 5.4: The number of inputs selected and the goodness of fit measures for a lead time of 6 
hours. 

Input Determination Technique Statistic 
A C S CS M D G 

Number of 
inputs 36 31 15 14 30 3 7 
PDIFF (m) 0.14 0.12 0.10 0.09 0.12 0.07 0.11 
MAE (m) 0.0310 0.0212 0.0207 0.0230 0.0391 0.0219 0.0163 
RMSE (m) 0.0452 0.0316 0.0343 0.0348 0.0577 0.0410 0.0290 
CE 0.9845 0.9924 0.9910 0.9908 0.9747 0.9872 0.9936 
Time delay (hr) 1.5 2.5 3 2 1.5 6.5 4.5 

(Numbers in bold indicate the best performing model) 

 

There are very small differences between the different input determination 

methodologies. The genetic algorithm (G) performed well according to most evaluation 

measures but the time delay is too large for such a lead time. Model CS appears to 

offer the best technique because the inputs are reduced by 50% whilst still retaining 

good model performance. This is similar to model S but the combination technique 

predicts both the time of the rising limb and the peak more effectively than the 

individual techniques alone. These initial runs also showed that input data from P67, 

P75 and P1 are required to produce the best model performance. However, different 

input determination methods produced different variable selections and there was no 

consistent pattern. It may be that this is a simple modelling problem that is virtually 

linear so the neural network is equally able to forecast 6 hours ahead based on a 

different combination of input variables. It is therefore concluded from these initial tests 

that the best performance for flood warning at a lead time of 6 hours was obtained by 

using the combined CS method to select the input variables.  

 

12 hour lead time 

The 12 hour ahead forecasts behaved in a similar manner to the 6 hour forecasts in 

terms of the number of variables chosen by the different input determination techniques. 

Once again, models S and CS reduced the number of inputs by approximately 50%, 

model D reduced the number of inputs by 90% and model G reduced the number of 

inputs by 80% as shown in Table 5.5. 
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Table 5.5: Input variables selected by each input determination technique (denoted by an X) for 
a 12 hour lead time. 

Input Determination Techniques Input Determination Techniques 
Inputs 

A C S CS M D G 
Inputs 

A C S CS M D G 
P75t-24 X  X  X   P67t-24 X  X  X   
P75t-21 X    X   P67t-21 X  X  X   
P75t-18 X    X   P67t-18 X  X  X   
P75t-15 X    X   P67t-15 X    X   
P75t-12 X   X X   P67t-12 X       
P75t-9 X X X  X   P67t-9 X X   X   
P75t-6 X X  X X  X P67t-6 X X X X X   
P75t-3 X X  X X  X P67t-3 X X   X   
P75t X X X X X   P67t X X X X X   
MAP75_6 X X X  X X  MAP67_6 X X X X   X 
MAP75_12 X X  X X   MAP67_12 X X X X    
MAP75_24 X X X X X   MAP67_24 X X      
P1t-24 X X X X X   
P1t-21 X X X X X   
P1t-18 X X X X X   
P1t-15 X X      
P1t-12 X X X X X  X 
P1t-9 X X   X  X 
P1t-6 X X X X    
P1t-3 X X     X 
P1t X X X X  X X 
MAP1_6 X X X X    
MAP1_12 X X     X 
MAP1_24 X X   X   

 

Models A and CS provided the best time to peak prediction with a 3 hour delay as 

shown in Figure 5.2 and Table 5.6. Model CS provided the best overall RMSE, CE and 

delay in the peak as shown in Table 5.6 with a reasonable performance according to 

the other measures. Model G predicted very close to the actual peak stage 

(PDIFF=0.05) but there was a 4 hour delay in predicting the peak. Model G selected 

more input variables from P75 than P67, suggesting that the travel time between P67 

to P1 is less than 12 hours. The 6 hour moving average at P67 was selected instead of 

P67 at time t. In addition, all of the models overestimated the lower peak event, and 

underestimated the highest peak as shown in Figure A.2 in Appendix A.  

 
Table 5.6: The number of inputs selected and the goodness of fit measures for a lead time of 12 
hours. 

Input Determination Technique Statistic 
A C S CS M D G 

Number of 
inputs 36 27 19 17 26 2 8 
PDIFF (m) 0.09 0.07 0.05 0.12 0.12 0.19 0.05 
MAE (m) 0.0272 0.0394 0.0254 0.0264 0.028 0.0685 0.0296 
RMSE (m) 0.0492 0.0659 0.0521 0.0489 0.0515 0.0966 0.0547 
CE 0.9817 0.9671 0.9794 0.9819 0.9798 0.9291 0.9773 
Time delay (hr) 3 8 3.5 3 3.5 11 4 

(Numbers in bold indicate the best performing model.) 
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Model M retained 26 variables (a 28% reduction) and give similar results to model C. 

Model CS was slimmed down to 17 variables (50%) with a predicted rising limb better 

than model C. It is clear that model D gave the worst performance (with an 11 hr time 

delay and the lowest peak stage prediction), probably because it is over-parsimonious 

in selecting just P1 at time t and the 12 hour moving average at P75 as shown in Table 

5.5. This does not provide enough information for the neural network to learn and 

predict the unseen flood events. In contrast model A retained all the variables but did 

not substantially improve on model CS.  
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Figure 5.2: Observed and predicted water level at P1 station (Chiang Mai) for 11-17 Aug 2001 

for a lead time of 12 hours. 
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While models G and S produced the most accurate peak forecast, model CS was still 

better in terms of most of the goodness-of-fit statistics and the time delay whilst 

eliminating approximately 50% of the variables. As with the previous 6 hour lead time, 

model CS provided the best input determination approach for neural network model 

development of flood prediction at a lead time of 12 hours. 

 

18 hour lead time 

At a lead time of 18 hours, the quality of the forecasts has clearly declined, as indicated 

by the hydrographs (Figure 5.3) and the statistics (Table 5.8). As before, model D was 

the most reductive approach, while model M was the least. This is the first experiment 

in which the input variable P75 at time t was selected by all 6 input determination 

techniques unlike in the models developed for 6 and 12 hour lead times (Table 5.7). 

Also model D selected only P1 and P75 at time t which might be a result of the travel 

time to P1 station from P75 being longer than from P67 (Patsinghasanee, 2004; 

Hydrology and Water Management Centre for Upper Northern Region, 2005).  

 
Table 5.7: Input variables selected by each input determination technique (denoted by an X) for 
an 18 hour lead time. 

 

The summary provided in Table 5.8 suggests that model G gives the best overall 

performance overall according to all the goodness-of-fit statistics and had the smallest 

Input Determination Technique Input Determination Technique 
Inputs 

A C S CS M D G 
Inputs 

A C S CS M D G 
P75t-24 X  X  X   P67t-24 X  X  X   
P75t-21 X    X   P67t-21 X  X  X   
P75t-18 X    X   P67t-18 X  X  X   
P75t-15 X    X   P67t-15 X       
P75t-12 X    X   P67t-12 X    X   
P75t-9 X       P67t-9 X  X     
P75t-6 X X X X X   P67t-6 X  X  X   
P75t-3 X X  X X   P67t-3 X X   X   
P75t X X X X X X X P67t X X X X X  X 
MAP75_6 X X   X  X MAP67_6 X X X X   X 
MAP75_12 X X X X X  X MAP67_12 X X  X    
MAP75_24 X    X   MAP67_24 X       
P1t-24 X  X  X   
P1t-21 X  X     
P1t-18 X X X  X   
P1t-15 X X   X   
P1t-12 X X      
P1t-9 X X   X  X 
P1t-6 X X X X X  X 
P1t-3 X X     X 
P1t X X X X  X X 
MAP1_6 X X X X   X 
MAP1_12 X X     X 
MAP1_24 X X     X 
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delay in peak prediction of 7.5 hours. Model D, on the other hand, was the worst 

performer with only 2 inputs selected. Models CS and S were not as good as previous 

lead times although both models and model G correctly predicted the height of the 

maximum peak stage. 

 
Table 5.8: The number of inputs selected and the goodness of fit measures for a lead time of 18 
hours. 

Input Determination Technique Statistic 
A C S CS M D G 

Number of 
inputs 36 19 17 10 23 2 12 
PDIFF (m) 0.09 0.03 0 0 0.2 0.34 0 
MAE (m) 0.0571 0.055 0.07 0.0474 0.0527 0.0722 0.0377 
RMSE (m) 0.091 0.1002 0.1853 0.0988 0.0916 0.1222 0.081 
CE 0.9371 0.9238 0.7392 0.9259 0.9363 0.8866 0.9502 
Time delay (hr) 8.5 17 14 14 9.5 14 7.5 

(Numbers in bold indicate the best performing model.) 

 

While these statistics are promising, visual inspection of the hydrograph shows that the 

model predictions are not useful in forecasting the sequence of events or mapping the 

time of rise (see Figure 5.3 and Appendix A, Figure A.3). Model G does get the peak 

stage correct but the shape of the hydrograph is not helpful. As expected, model D has 

the worst peak stage forecast, because of its minimal inputs, and possibly because this 

was the only model that did not select moving average variables. Model M also had 

poor peak prediction as only the moving averages at P75 were selected. Possibly the 

greater accuracy in forecasting the peak stage is allied to the inclusion of the moving 

average variables, a point that would benefit from further research but is outside the 

scope of this study. 

 

Regarding the hydrographs in Figure 5.3, especially models CS, C, S and G, the 

forecasts exhibit an unusual pattern. They all rise late and then drop dramatically 

before rising again. Some also showed other strange behaviour by remaining at a high 

level for more than 24 hr rather than capturing the flood recession. This may be a 

function of incorrect inputs being chosen or a modelling problem that is too difficult at 

this lead time. 
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Figure 5.3: Observed and predicted water level at P1 (Chiang Mai) 11 -17 Aug 2001 at a lead 

time of 18 hours. 
 

24 hour lead time 

As with an 24 hour lead time, the input variable P75 at time t was selected by all the 

models, and the variable P67 at time t was selected less often when compared to the 

models at other lead times (Table 5.9). Model C, for example, did not select any 

variables from station P67. It is potentially unrealistic to forecast stage at P1 at a lead 

time of 24 hours from just two upstream stations (P75 and P67) because the travel time 
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of the flood wave from P67 to P1 is known to be less than 24 hours. The model was 

run to see at what point forecasting becomes impractical with this minimal, three site, 

input dataset.  

 
Table 5.9: Input variables selected by each input determination technique (denoted by an X) for 
a 24 hour lead time. 

Input Determination Techniques Input Determination Techniques 
Inputs 

A C S CS M D G 
Inputs 

A C S CS M D G 
P75t-24 X  X  X   P67t-24 X  X  X   
P75t-21 X    X   P67t-21 X  X  X   
P75t-18 X    X   P67t-18 X  X  X   
P75t-15 X    X   P67t-15 X    X   
P75t-12 X    X   P67t-12 X    X   
P75t-9 X  X  X   P67t-9 X  X  X   
P75t-6 X  X  X  X P67t-6 X  X  X   
P75t-3 X    X  X P67t-3 X    X   
P75t X X X X X X X P67t X  X  X  X 
MAP75_6 X  X  X   MAP67_6 X  X    X 
MAP75_12 X       MAP67_12 X       
MAP75_24 X  X     MAP67_24 X       
P1t-24 X  X  X  X 
P1t-21 X    X   
P1t-18 X  X  X   
P1t-15 X    X  X 
P1t-12 X X  X X   
P1t-9 X X      
P1t-6 X X  X   X 
P1t-3 X X    X X 
P1t X X X X  X X 
MAP1_6 X X X X  X X 
MAP1_12 X X     X 
MAP1_24 X X  X    

 

The statistics are included here for consistency in Table 5.10 but the hydrographs show 

the futility of working with them in detail. Model A is the least accurate according to the 

goodness-of-fit statistics while model G was the best. Model S predicted the correct 

peak stage followed by model D. 

 
Table 5.10: The number of inputs selected and the goodness of fit measures for a lead time of 
24 hours. 

Input Determination Technique Statistic 
A C S CS M D G 

Number of 
inputs 36 9 17 6 24 4 12 
PDIFF (m) 0.24 0.03 0 0.23 0.06 0.01 0.13 
MAE (m) 0.1003 0.0583 0.0657 0.0773 0.0616 0.0643 0.0668 
RMSE (m) 0.1395 0.1196 0.1252 0.1334 0.1271 0.115 0.1118 
CE 0.8523 0.8914 0.881 0.865 0.8773 0.8995 0.9052 
Time delay (hr) 13 16.5 13 18 14 16 12.5 

(Numbers in bold indicate the best performing model.) 
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All the models generated hydrographs with noise, especially overestimations of the 

small peaks (see Figure 5.4 and Appendix A, Figure A.4). The same unusual dip in the 

rising limb can be seen in Model M as occurred at a lead time of 18 hours.  

 

All of these model results for a lead time of 24 hours are unsuitable for practical 

forecasting. It was however important to the research to define the point at which 

forecasting becomes impractical. The travel times are such that the input data from 

P75 and P67 are not able to provide enough information to give a reliable forecast at 

P1. For forecasts that can give a useful 24 hour flood warning, additional data will be 

required as discussed in more detail in Chapter 6.  
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Figure 5.4: Observed and predicted water level at P1 (Chiang Mai) for 11-17 Aug 2001 for a 

lead time of 24 hours. 
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5.3.3 Summary of case study 1 
Table 5.11 summarises the percentage of variables removed by each determination 

method for each lead time. From these initial pilot experiments it is concluded that the 

input determination methods of correlation and stepwise regression (CS), correlation 

greater than 0.90 (C) and the genetic algorithm (G) have value for this catchment and 

these particular conditions while the data mining technique (D) seems to produce the 

worst model for flood warning perhaps because it removes the majority of the variables. 

The CS and S methods remove more than half the variables whilst still maintaining 

good performance.  

 
Table 5.11: The percentage of variables removed by each input determination technique by 
lead time. 

Model Lead time of 6 
hours 

Lead time of 12 
hours 

Lead time of 18 
hours 

Lead time of 24 
hours 

C 13.8 25.0 47.2 75.0 
S 58.3 47.2 52.7 52.7 

CS 61.1 52.7 72.2 83.3 
M 16.6 27.7 36.1 33.3 
D 91.6 94.4 94.4 88.8 
G 80.5 77.7 66.6 66.6 

 

It can be seen that the model forecasting 24 hrs ahead give a time delay of more than 

10 hours. Therefore the overall model performance will only be evaluated for 6, 12 and 

18 hr lead times. Comparative performance and ranking are shown in Table 5.12 

based on the correct time to peak prediction. The top three scoring models are A, M, G 

and CS. For the peak stage prediction, model S seems to be the best choice followed 

by model G and C. In addition, based on CE, RMSE and MAE models G, CS, A, C and 

S are the top three scorers. In terms of the ability to reduce the number of inputs, the 

top three models are D, G and CS.  

 

Model G seems to be the best method as it scored in the top three in all categories (i.e. 

time to peak prediction, PDIFF, CE, MAE, RMSE and the ability to reduce the number 

of inputs). The CS technique reduced the inputs by half and produced a slightly better 

forecast than either the stepwise regression (S) or correlation alone (C) but model S is 

the best model to predict peak stage. In contrast, the model M retained more input 

variables than other models but does not predict better results. The model that retains 

all variables does not produce the best results at the peak stage either, indicating that 

giving too many variables to the neural network is also not the best approach. Although 

model C has a very low score in terms of reducing the number of inputs and the correct 
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time to peak prediction in Table 5.12, it is a classic method that is commonly used. 

Therefore, in case study 2, only 4 techniques (i.e. C, CS, S and G) will be employed. 

 

It should be noted that all 28 models over estimated the smaller peak and 

underestimated the higher stage in 2001 (Appendix A). This was most likely due to the 

fact that the neural network had not seen an event as large as that present in the 

testing data sets, i.e. these experiments were effectively forcing the network to 

extrapolate. Theoretically models perform better when they have events of a similar 

size in their training data sets. It is however a valuable hydrological test of a model to 

look at the accuracy of a forecast for an unobserved larger event because hydrologists 

seek to forecast extreme events. Later experiments will address different training data 

options and effects (Section 5.6). 

 
Table 5.12: Ranking of model performance based on score (21 is the maximum score and 1 is 
the minimum score). 

Statistic Lead time A C S CS M D G 

6 hours 
12 hours 
18 hours 

21 
18 
11 

19 
12 
7 

18 
17 
8 

20 
18 
8 

21 
17 
10 

14 
9 
8 

15 
16 
13 Predict flood time 

Total (Rank) 50 (1) 38 (6) 43 (5) 46 (3) 48 (2) 31 (7) 44 (4) 

6 hours 
12 hours 
18 hours 

12 
17 
17 

14 
18 
20 

16 
19 
21 

17 
13 
21 

14 
14 
10 

18 
11 
9 

15 
19 
21 PDIFF 

 

Total (Rank) 46 (5) 52 (3) 56 (1) 51 (4) 38 (6) 38 (6) 55 (2) 

6 hours 
12 hours 
18 hours 

16 
14 
7 

20 
9 
3 

19 
12 
1 

18 
15 
4 

10 
13 
6 

17 
5 
2 

21 
11 
8 CE 

Total (Rank) 37 (2) 32 (3) 32 (3) 37 (2) 29 (4) 24 (5) 40 (1) 

6 hours 
12 hours 
18 hours 

- 
4 
6 
9 

11 
9 
10 

12 
10 
14 

5 
7 
8 

17 
18 
18 

16 
15 
13 Reduce input 

 

Total (Rank) (7) 19 (6) 30 (4) 36 (3) 20 (5) 53 (1) 44 (2) 

 

From these experiments we can highlight the difficulty of forecasting 24 hours ahead, 

most likely because the travel time between station P67 and P1 is less than 24 hours. 

Models CS, C and D did not select any input variables from P67, and those chosen 

were not adequate to produce a valuable forecast. In practice this experiment, which 

was based on limited data, suggests that forecasting for P1 is possible with a maximum 

lead time of 18 hours. 
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5.4 Case Study 2: Forecasting with Bayesian Regularization (BR) for the 
Upper Ping Catchment 
During the course of this research, the effectiveness of Bayesian algorithms in flood 

forecasting emerged (Demuth et al., 2009). The power of Bayesian techniques to 

forecast effectively where data sets are limited is why this technique is worth exploring 

for the Upper Ping. There are 36 input variables as per case study 1 and the Bayesian 

Regularization (BR) and Levenberg-Marquardt (LM) algorithm were run 50 times, 

taking the average of the 50 runs as the model forecast after Anctil and Lauzon (2004). 

New data for the year 2005 became available and were used for testing because it 

contains the biggest event in the record. Once again, the neural network models are 

being forced to extrapolate. 

 

The input determination methods were applied to three different variations of the input 

dataset to determine if this affected the variables that were selected: 

• Dataset 1: Storm events in 2001-2004 were used to select the inputs 

• Dataset 2: Storm events in all the years (2001-2005) were used for selecting 

the inputs 

• Dataset 3: The entire historical record for the period 2001-2004 was used for 

selecting the inputs, which is the same data set as that used in case study 1 

(Table 5.1). 

Once the inputs were selected by the input determination methods, data from only the 

main monsoon season were then used to develop and test the neural network models, 

in particular these periods: 

• 2001, 2002, 2005 1/08 - 31/10  

• 2003   1/09 - 31/10 

• 2004   1/05 - 31/10 

As the 24 hour ahead forecasts were shown to be of limited value for practical 

forecasting purposes, this section will only report on the models developed at lead 

times of 6, 12 and 18 hours ahead. As mentioned at the end of case study 1, only the 

most useful methods which emerged are reported here, i.e. correlation > 0.90 (C), 

correlation > 0.90 + stepwise regression (CS), stepwise regression (S) and the genetic 

algorithm (G). 

 

Unlike the MLP trained with the Levenberg-Marquardt (LM) algorithm, the Bayesian 

Regularization (BR) algorithm does not require a validation dataset. Therefore the 

longer 2001-2004 dataset was used for training, and 2005 was used for testing. 
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However, training with LM requires a validation dataset so the training set was 

restricted to 2001 to 2003 and 2004 was used for validation. For these tests the 

number of hidden nodes was reduced from 20 to 10 because the initial experiments 

with 20 hidden nodes took a very long time to process, and the 20 node models 

showed no significant improvement in performance over the 10 node model results.  
 

5.4.1 Selecting the input variables 
Summary tables below show the input variables selected by the four different input 

determination methods for Dataset 1 (Table 5.13), Dataset 2 (Table 5.14) and Dataset 

3 (Table 5.15). 

 
Table 5.13: Input variables selected by each input determination technique (denoted by an X) 
for Dataset 1 (i.e. flood events in 2001-2004). 

Input Determination Techniques 
6 hour lead time 12 hour lead time 18 hour lead time Input 

variables 
C CS S G C CS S G C CS S G 

P67t-24           X  
P67t-21             
P67t-18             
P67t-15 X X X    X      
P67t-12 X            
P67t-9 X    X X X      
P67t-6 X    X X      X 
P67t-3 X    X    X    
P67t X X X X X X X X X X X X 
MAP67_6 X    X X X  X X X X 
MAP67_12 X X X X X    X   X 
MAP67_24 X    X        
P75t-24   X        X  
P75t-21       X      
P75t-18             
P75t-15             
P75t-12   X          
P75t-9           X  
P75t-6             
P75t-3   X     X    X 
P75t   X X   X X   X X 
MAP75_6       X    X X 
MAP75_12 X X           
MAP75_24             
P1t-24    X   X    X  
P1t-21 X          X  
P1t-18 X       X    X 
P1t-15 X    X        
P1t-12 X   X X        
P1t-9 X    X   X X   X 
P1t-6 X X X X X X  X X   X 
P1t-3 X   X X   X X   X 
P1t X X X X X X X X X X X X 
MAP1_6 X X X X X X X X X X X X 
MAP1_12 X  X X X  X  X  X X 
MAP1_24 X    X    X X   
Total (36) 21 7 11 10 16 7 11 9 11 5 12 14
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As can be seen from Table 5.13, it is clear that for Dataset 1 (i.e. taking only flood 

events 2001-2004), model C and CS did not select variables at P75 except for the 

moving average variable selected by model C at a lead time of 6 hours.  

 
Table 5.14: Input variables selected by each input determination technique (denoted by an X) 
for Dataset 2 (i.e. flood events in 2001-2005). 

Input Determination Techniques 
6 hour lead time 12 hour lead time 18 hour lead time Input 

variables 
C CS S G C CS S G C CS S G 

P67t-24             
P67t-21             
P67t-18             
P67t-15 X            
P67t-12 X X X          
P67t-9 X    X        
P67t-6 X    X X     X  
P67t-3 X    X    X    
P67t X X X X X X X X X X X X 
MAP67_6 X X X  X X X X X X X  
MAP67_12 X    X       X 
MAP67_24 X            
P75t-24   X    X    X  
P75t-21             
P75t-18             
P75t-15   X    X    X  
P75t-12 X  X          
P75t-9 X   X         
P75t-6 X    X X X    X  
P75t-3 X   X X   X    X 
P75t X X X X X X X X X X X X 
MAP75_6 X X X X X  X    X  
MAP75_12 X    X X X    X  
MAP75_24 X       X     
P1t-24             
P1t-21    X         
P1t-18 X          X  
P1t-15 X          X  
P1t-12 X    X   X     
P1t-9 X    X       X 
P1t-6 X X X X X X X X X X  X 
P1t-3 X   X X    X X X X 
P1t X X X X X X X X X X X X 
MAP1_6 X X X X X X X X X    
MAP1_12 X X X X X   X X X   
MAP1_24 X   X X      X  
Total (36) 27 9 12 12 19 9 11 10 9 7 14 8 

 

In contrast, variables from P75 were selected by all the techniques for Datasets 2 and 

3 (see Tables 5.14 and 5.15). The variable P1 at time t remains the important variable 

for all three datasets as it is selected by all the models. Moreover, all models selected 

P67 at time t for both Datasets 1 and 2 while this was only true of P75 at time t for 

Dataset 2. In the case of Dataset 1, only models S and G selected it. To disentangle 

this issue requires more information about the location of rainfall across the catchment. 
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It may be because there was rainfall in the P75 drainage basin in 2005, and limited or 

no rainfall over the P75 station over the storm period between 2001 and 2004. 

However, this is speculation at this stage. 

 
Table 5.15: Input variables selected by each input determination technique (denoted by an X) 
for Dataset 3 (i.e. all historical level data in 2001-2004). 

Input Determination Techniques 
6 hour lead time 12 hour lead time 18 hour lead time Input 

variables 
C CS S G C CS S G C CS S G 

P67t-24   X    X    X  
P67t-21   X    X    X  
P67t-18   X    X    X  
P67t-15 X            
P67t-12 X X           
P67t-9 X X X  X      X  
P67t-6 X    X X X    X  
P67t-3 X    X    X    
P67t X X X  X X X  X X X X 
MAP67_6 X    X X X X X X X X 
MAP67_12 X X X  X X X  X X   
MAP67_24 X   X X        
P75t-24       X    X  
P75t-21             
P75t-18 X            
P75t-15 X            
P75t-12 X X X  X X       
P75t-9 X    X  X      
P75t-6 X    X X  X X X X  
P75t-3 X    X X  X X X   
P75t X X X X X X X  X X X X 
MAP75_6 X X   X  X  X   X 
MAP75_12 X    X X   X X X X 
MAP75_24 X X X  X X X      
P1t-24 X X X  X X X    X  
P1t-21 X X X  X X X    X  
P1t-18 X    X X X  X  X  
P1t-15 X    X    X    
P1t-12 X   X X X X X X    
P1t-9 X   X X   X X   X 
P1t-6 X X X  X X X  X X X X 
P1t-3 X    X   X X   X 
P1t X X X X X X X X X X X X 
MAP1_6 X X X X X X X  X X X X 
MAP1_12 X   X X   X X   X 
MAP1_24 X X X  X    X   X 
Total (36) 31 14 15 7 27 17 19 8 19 10 17 12 

 
5.4.2 Comparison of the LM and BR training algorithms 
The first item for discussion in this case study is a comparison of the results when 

using the training algorithm from case study 1 (i.e. Levenberg-Marquardt – LM) 

compared with the Bayesian Regularization algorithm (BR) at the three different lead 

times. 
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6 hour lead time 

Figure 5.5 contains the plots of actual and predicted stage for three storm events in 

2005 (artificially linked together) and Table 5.16 provides the evaluation measures. 

These results clearly show that the overall performance of the BR algorithm was better 

than NNs trained with LM as the MAE, RMSE and CE are all better. Visual inspection 

of the hydrographs shows that models developed with the BR algorithm all have more 

accurate peak stage and rising time results (see also Appendix B for the full range).  
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Figure 5.5: Comparison of the BR and LM algorithms all three peaks (1 Aug -10 Oct 2005), t+6 

hr. 
 
Table 5.16: Goodness of fit statistics for all models at a lead time of 6 hours 

C CS S G 
Dataset Dataset Dataset Dataset Stat Alg 

1 2 3 1 2 3 1 2 3 1 2 3 

MAE BR 
LM 

0.042 
0.061 

0.038 
0.079 

0.038 
0.091 

0.036 
0.075 

0.035 
0.053 

0.039 
0.047 

0.035 
0.086 

0.038 
0.051 

0.047 
0.045 

0.036 
0.080 

0.036 
0.084 

0.038 
0.064 

RMSE BR 
LM 

0.091 
0.094 

0.081 
0.119 

0.080 
0.135 

0.074 
0.115 

0.070 
0.087 

0.081 
0.087 

0.072 
0.139 

0.086 
0.083 

0.093 
0.081 

0.076 
0.135 

0.072 
0.123 

0.073 
0.101 

CE BR 
LM 

0.989 
0.988 

0.991 
0.981 

0.992 
0.975 

0.992 
0.982 

0.993 
0.990 

0.991 
0.990 

0.993 
0.974 

0.990 
0.991 

0.988 
0.991 

0.992 
0.975 

0.993 
0.980 

0.993 
0.986 
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12 hour lead time 

The evaluation measures are listed in Table 5.17 and the hydrographs are displayed in 

Figure 5.6. Visual inspection shows that the BR algorithm performs better than the LM 

algorithm as with the previous lead time, and the statistical measures once again 

demonstrate the superiority of the BR algorithm over LM.  
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Figure 5.6: Comparison of the BR and LM algorithms all three peaks (1 Aug -10 Oct 2005), t+12 

hr. 
 
Table 5.17: Goodness of fit statistics for all models at a lead time of 12 hours. 

C CS S G 
Dataset Dataset Dataset Dataset Stat Alg 

1 2 3 1 2 3 1 2 3 1 2 3 

MAE BR 
LM 

0.089 
0.112 

0.063 
0.097 

0.073 
0.100 

0.081 
0.067 

0.065 
0.173 

0.069 
0.119 

0.071 
0.176 

0.070 
0.103 

0.079 
0.100 

0.079 
0.119 

0.066 
0.109 

0.086 
0.119 

RMSE BR 
LM 

0.214 
0.191 

0.125 
0.173 

0.141 
0.179 

0.186 
0.136 

0.126 
0.246 

0.131 
0.190 

0.140 
0.142 

0.142 
0.170 

0.151 
0.166 

0.151 
0.195 

0.137 
0.181 

0.166 
0.199 

CE BR 
LM 

0.937 
0.950 

0.979 
0.959 

0.973 
0.956 

0.952 
0.975 

0.978 
0.917 

0.976 
0.951 

0.973 
0.972 

0.972 
0.961 

0.969 
0.962 

0.969 
0.948 

0.974 
0.955 

0.962 
0.946 
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18 hour lead time 

At a lead time of 18 hours, the outcome of these model tests is less clear cut and the 

model is reaching its limits. In summary, the models trained with BR generally 

overpredict the peaks, while the models trained with LM underestimate the peaks for all 

three datasets (Figure 5.7 and Appendix B). Table 5.18 indicates that the models 

trained with LM for Dataset 1 gave the best forecasts for a lead time of 18 hours, 

followed by Datasets 2 and 3. However, the models trained with BR still gave good 

results with Datasets 2 and 3. 
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Figure 5.7: Comparison of the BR and LM algorithms all three peaks (1 Aug -10 Oct 2005), t+18 

hr. 
Table 5.18: Goodness of fit statistics for all models at a lead time of 18 hours. 

C CS S G 
Dataset Dataset Dataset Dataset Stat Alg 

1 2 3 1 2 3 1 2 3 1 2 3 

MAE BR 
LM 

0.127 
0.113 

0.120 
0.137 

0.105 
0.136 

0.123 
0.116 

0.122 
0.137 

0.272 
0.264 

0.125 
0.140 

0.109 
0.115 

0.125 
0.125 

0.109 
0.119 

0.120 
0.142 

0.108 
0.139 

RMSE BR 
LM 

0.247 
0.228 

0.235 
0.264 

0.203 
0.250 

0.237 
0.222 

0.231 
0.257 

0.489 
0.486 

0.226 
0.256 

0.203 
0.225 

0.227 
0.239 

0.205 
0.227 

0.217 
0.258 

0.202 
0.252 

CE BR 
LM 

0.917 
0.930 

0.925 
0.905 

0.943 
0.914 

0.923 
0.932 

0.927 
0.910 

0.674 
0.677 

0.930 
0.910 

0.944 
0.931 

0.930 
0.922 

0.942 
0.930 

0.936 
0.910 

0.944 
0.913 
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The outcome of this work suggests that at each forecast lead time, the BR algorithm is 

more accurate at forecasting the stage at P1 compared to using the LM algorithm. The 

BR algorithm will therefore be used in future neural network model development.  

 

5.4.3 Comparing model performance of the BR algorithm with different input 
datasets for different lead times 
Having concluded that the BR algorithm produces a better performing model for the 

Upper Ping River compared to the LM algorithm, this section examines the effect of 

using only individual storm events to select the inputs (Datasets 1 and 2) versus input 

selection using data from a complete year (Dataset 3). Only results for the BR 

algorithm are reported. 

 

6 hour lead time 

Figure 5.8 provides hydrographs for the models developed using the BR algorithm for 

three flood events in the testing dataset. Appendix B provides the full set. Table 5.19 

provides the evaluation measures for each dataset and input determination method. 

According to the hydrographs in Figure 5.8, all the models make reasonable forecasts 

of the actual peak stage in the three large flood events. As might be anticipated, there 

are small overestimations in the peak and time delays in some models.  
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Figure 5.8: Comparison of the BR algorithms with different models of three datasets at t+6 hr, 

three peaks (13 Aug - 2 Oct 2005). 
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Table 5.19: Statistical comparison of the all three datasets with all methodologies for a lead time 
of 6 hours. 

Dataset 1 Dataset 2 Dataset 3 Statistic C CS S G C CS S G C CS S G 
MAE 0.042 0.036 0.035 0.036 0.038 0.035 0.038 0.036 0.038 0.039 0.047 0.038 
RMSE 0.091 0.074 0.072 0.076 0.081 0.070 0.086 0.072 0.080 0.081 0.093 0.073 
CE 0.989 0.992 0.993 0.992 0.991 0.993 0.990 0.993 0.992 0.991 0.988 0.993 
(Bold indicates the best statistic value) 

 

The goodness-of-fit statistics in Table 5.19 indicate that selecting inputs using Dataset 

1 seems to produce better results than Dataset 3. Therefore, selecting input variables 

using information from storm events seems to produce better results than using data 

from the whole year. However, using Dataset 2 produces the lowest RMSE and MAE 

and better hydrograph predictions (as shown in Figure 5.8). Unfortunately, Dataset 2 

includes data from the year 2005, which is also in the testing data set. Normally this 

would not be a permissible modelling operation but it was undertaken to examine the 

effect of including the largest storms on record in the determination of the inputs. It is 

clear that inclusion does improve the performance of the resulting neural network 

models.  

 

The goodness of fit statistics and hydrographs between the three datasets show that 

model S produced the best result for Dataset 1, model CS produced the best model 

overall for Dataset 2 while model G gave the best result for Dataset 3, in particular for 

the first and third peak (Table 5.19 and Figure 5.8).  

 

12 hour lead time 

Figure 5.9 provides the hydrographs for three of the four storm events in 2005 and 

Table 5.21 lists the goodness-of-fit measures. The full set of hydrographs can be found 

in Appendix B. As can be seen from the hydrographs in Figure 5.9 (and Appendix B), 

the models where inputs were selected from Dataset 1 tend to give the most delayed 

forecasts, particularly for the third storm event. All models in all three datasets 

overestimated the first peak but underestimated the third and fourth peak. There is no 

correlation greater than 0.90 between the output and variables at P75 in Dataset 1. As 

a result, model C and CS did not select all the P75 variables (Table 5.13). This may be 

because no rain fell over P75 during the storm events between 2001 and 2004. 

Moreover, the hydrographs in Figure 5.9 show that model C and CS predicted the 

fourth storm similarly to other models but was very poor at predicting the first and third 

storm events, with a delay of approximately 12 and 18 hr respectively. Perhaps rain fell 

only over P75 during the first and third storm in 2005.  
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Model G seems to be able to predict the onset of the flood early on Datasets 1 and 3. 

However, it is also the most delayed in terms of peak prediction for the third and fourth 

storm but only for Dataset 3. This may be due to the fact that model G did not select 

P67 and P75 at time t while model G for Datasets 1 and 2 did. There may simply be a 

lack of information needed to predict the time of rise of the hydrograph. The same is 

true of model C and CS, which did not select P75 at time t for Dataset 1 and predicted 

a late time to rise. Therefore, the variables P67 and P75 at time t appear to be crucial 

input variables that influence the model performance.  
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Figure 5.9: Comparison of the BR algorithms with different models of three datasets at t+12 hr, 

three peaks (13 Aug - 2 Oct 2005). 
 
Table 5.20: Statistical comparison of the all three datasets with all methodologies for a lead time 
of 12 hours. 

Dataset 1 Dataset 2 Dataset 3 Statistic C CS S G C CS S G C CS S G 
MAE 0.089 0.081 0.071 0.079 0.063 0.065 0.070 0.066 0.073 0.069 0.079 0.086 
RMSE 0.214 0.186 0.140 0.151 0.125 0.126 0.142 0.137 0.141 0.131 0.151 0.166 
CE 0.937 0.952 0.973 0.969 0.979 0.978 0.972 0.974 0.973 0.976 0.969 0.962 
(Bold indicates the best statistic value) 

 

According to Table 5.20, model S gave the best results using Dataset 1 similar to the 6 

hour lead time while model C gave the best performance for Dataset 2. Model CS gave 

the best result for Dataset 3. Once again models developed using Dataset 2 and model 

C were the best overall but this was followed by Dataset 3 and Dataset 1. This time the 
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use of the full year of data for selecting the inputs did appear to improve the results 

although they are generally quite similar between Datasets 1 and 3. 

 

18 hour lead time 

As might be anticipated from the experiments reported previously, the hydrograph 

predictions show more noise than at previous, shorter lead times as shown in Figure 

5.10. There is greater overprediction of the first peaks than with the shorter forecasting 

times for all three storm events. The first storm on the far left of Figure 5.10 shows a 

late prediction of the rising limb followed by a drop before rising again. This pattern was 

seen in case study 1 at this lead time. However, this pattern does not appear as 

strongly in the next two storms. This may be due to the condition of the catchment, i.e. 

it may be much wetter once the later storms arrived. All models over predicted the first 

and third peak when developed using Dataset 1 except for model S, which selected 

input variables at P75 (t-9 and t-24) and P1 (t-24). In addition, only model C and CS 

selected a 24 hour moving average from P1 for Dataset 1. 
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Figure 5.10: Comparison of the BR algorithms with different models of three datasets at t+18 hr 

for three different storm events (from 13 Aug - 2 Oct 2005). 
 

Table 5.21 contains the goodness-of-fit statistics and suggests that the best model 

performance for a lead time of 18 hours for Datasets 1 and 3 is model G while for 

Dataset 2 it is model S. Models C and G provide good results when selecting input 
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variables from Dataset 3. Models CS and S gave the best result for Dataset 2. 

Stepwise regression always produces the best result when selecting input variables 

from Dataset 1 for a lead time of 6 and 12 hours but performs the best for Dataset 2 

and a lead time of 18 hours. Statistically Dataset 3 seems to be the best dataset for 

selecting inputs to predict at a lead time of 18 hours as the goodness of fit measures 

are the highest. 

 
Table 5.21: Statistical comparison of the all three datasets with all methodologies for a lead time 
of 18 hours. 

Dataset 1 Dataset 2 Dataset 3 Statistic C CS S G C CS S G C CS S G 
MAE 0.127 0.123 0.125 0.109 0.120 0.122 0.109 0.120 0.105 0.272 0.125 0.108 
RMSE 0.247 0.237 0.226 0.205 0.235 0.231 0.203 0.217 0.203 0.489 0.227 0.202 
CE 0.917 0.923 0.930 0.942 0.925 0.927 0.944 0.936 0.943 0.674 0.930 0.944 
(Bold indicates the best statistic value) 

 

5.4.4 Summary of case study 2 
The Bayesian regularization (BR) algorithm clearly proved to have an overall 

advantage over the Levenberg-Marquardt (LM) algorithm on its own in terms of 

forecasting accuracy. When the modelling was based on events rather than annual 

data, the model performance was generally better or was not much different in terms of 

goodness-of-fit. Therefore, using the smaller storm event data set is recommended 

because it reduces the size of the dataset, reduces the number of low stage data 

points and decreases the time to train the neural network. Table 5.22 shows the 

percentage of variables removed by the different input determination techniques, which 

is similar to that found in case study 1.  

 
Table 5.22: The percentage of variables removed by the input determination techniques. 

Dataset 1 Dataset 2 Dataset 3 Model t+6 t+12 t+18 t+6 t+12 t+18 t+6 t+12 t+18 
C 41.6 55.5 69.4 25.0 47.2 75.0 13.8 25.0 47.2 

CS 80.5 80.5 86.1 75.0 75.0 80.5 61.1 52.7 72.2 
S 69.4 69.4 66.6 66.6 69.4 61.1 58.3 47.2 52.7 
G 72.2 75.0 61.1 66.6 72.2 77.0 80.5 77.7 66.6 

 

It can be seen in Table 5.23 that overall there is no difference between selecting inputs 

from the entire year or using data from only storm events. However, models developed 

using correlation as the input determination technique did better when presented with 

data from a full year. The stepwise regression technique produced the best model 

when selecting input variables from only the storm events. However, model 

performance was improved by including the 2005 data or including the testing data for 

selecting the input variables. Normally this would not be good practice but it does 
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illustrate that having the largest event on record in the dataset used for input 

determination would improve the model results. 

 
Table 5.23: Summary of best BR model performance for Datasets 1, 2 and 3. 

Comparing all three datasets Comparing only dataset 1 and 3 Models C CS S G C CS S G 
t+6 
     CE 
     RMSE (m) 

 
3 
3 

 
2 
2 

 
1 
1 

 
2, 3 

2 

 
3 
3 

 
1 
1 

 
1 
1 

 
3 
3 

t+12 
     CE 
     RMSE (m) 

 
2 
2 

 
2 
2 

 
1 
1 

 
2 
2 

 
3 
3 

 
3 
3 

 
1 
1 

 
1 
1 

t+18 
     CE 
     RMSE (m) 

 
3 
3 

 
2 
2 

 
2 
2 

 
3 
3 

 
3 
3 

 
1 
1 

 
3 
3 

 
3 
3 

(Number 1, 2 and 3 denote as dataset 1, 2 and 3 respectively.) 

 

Table 5.24 represents a ranking of model performance based on only RMSE, MAE, CE 

and the ability to reduce the number of inputs because PDIFF is not available when 

more than one peak is present in the testing data. Stepwise regression is the best 

method for selecting inputs from Dataset 1, correlation and stepwise regression is the 

best for Dataset 2, while model G is the best input determination method. Moreover, 

model C seems to be the best method for selecting inputs from Dataset 3. It can also 

be concluded that model S is a suitable method for selecting inputs from storm event 

data. 

 
Table 5.24: Ranking of model performance (1 is the best and 4 is the worst). 

Dataset 1 Dataset 2 Dataset 3 
Statistic Lead 

time C CS S G C CS S G C CS S G 

6 hours 
12 hours 
18 hours 

9 
4 
1 

11 
6 
2 

12 
8 
3 

10 
7 
5 

10 
8 
1 

12 
7 
2 

9 
5 
4 

11 
6 
3 

11 
7 
3 

10 
8 
1 

9 
6 
2 

12 
5 
4 

RMSE 

Total 
(Rank) 

14 
(4) 

19 
(3) 

23 
(1) 

22 
(2) 

19 
(3) 

21 
(1) 

18 
(4) 

20 
(2) 

21 
(1) 

19 
(2) 

17 
(3) 

21 
(1) 

6 hours 
12 hours 
18 hours 

10 
6 
2 

11 
7 
4 

12 
9 
3 

11 
8 
5 

10 
9 
4 

12 
8 
3 

10 
6 
5 

11 
7 
4 

12 
8 
5 

11 
9 
2 

10 
7 
3 

12 
6 
4 MAE 

 
Total 

(Rank) 
18 
(3) 

22 
(2) 

24 
(1) 

24 
(1) 

23 
(1) 

23 
(1) 

21 
(3) 

22 
(2) 

25 
(1) 

22 
(2) 

20 
(3) 

22 
(2) 

6 hours 
12 hours 
18 hours 

10 
5 
2 

11 
7 
3 

12 
9 
4 

11 
8 
6 

11 
9 
2 

12 
8 
3 

10 
6 
5 

12 
7 
4 

11 
6 
2 

10 
8 
7 

9 
5 
1 

12 
4 
3 

CE 

Total 
(Rank) 

17 
(4) 

21 
(3) 

25 
(1) 

24 
(2) 

22 
(2) 

23 
(1) 

21 
(3) 

23 
(1) 

19 
(2) 

25 
(1) 

15 
(3) 

19 
(2) 
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6 hours 
12 hours 
18 hours 

3 
4 
8 

11 
11 
12 

8 
7 
6 

9 
10 
5 

4 
5 

10 

10 
10 
12 

7 
8 
6 

7 
9 

11 

3 
4 
5 

8 
6 

10 

7 
5 
6 

12 
11 
9 Reduce 

input 
 

Total 
(Rank) 

15 
(4) 

34 
(1) 

21 
(3) 

24 
(2) 

19 
(4) 

32 
(1) 

21 
(3) 

27 
(2) 

12 
(4) 

24 
(2) 

18 
(3) 

32 
(1) 

 

In the next section pruning algorithms are investigated to see whether this method 

performs better as an input determination method than the other simple ones tried out 

so far.  

 

5.5 Case study 3: Inclusion of a Pruning Algorithm 
In this set of experiments the opportunity is taken to evaluate a neural network pruning 

algorithm to see how this compares with the previous approaches. These experiments 

focus on testing the quality of the stage forecasts when there are different numbers of 

nodes in the hidden layer. Six experiments were undertaken as follows to select the 

input variables: 

1. Pruning with 5 hidden nodes, with all remaining inputs (5A) 

2. Pruning with 5 hidden nodes, where the remaining inputs have more than one 

connections to the hidden node (5B) 

3. Pruning with 10 hidden nodes, with all remaining inputs (10A) 

4. Pruning with 10 hidden nodes, where the remaining inputs have more than one 

connections to the hidden node (10B) 

5. Pruning with 15 hidden nodes, with all remaining inputs (15A) 

6. Pruning with 15 hidden nodes where the remaining inputs have more than one 

connections to the hidden node (15B) 

 

The testing and training datasets used in this case study are the same as for case 

study 2, i.e. training on 2001 to 2004 and testing on 2005. Only storm events were 

used in both input determination and model development using the same input 

variables as in the previous two case studies.  

 

Table 5.25 shows the input variables that remain after pruning with 5, 10 and 15 hidden 

nodes. Pruning with 5 hidden nodes for a lead time of 6 and 12 hours removed 

approximately 80% of the variables while for a lead time of 18 hours ahead, only 8% 

were removed. A much larger number of variables remained when pruning with 10 and 

15 hidden nodes for all three lead times.  
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Table 5.25: Input variable selected by Pruning algorithms. 

Lead time of 6 hours Lead time of 12 hours Lead time of 18 hours Input 
Variable 5

A 
5
B 

10
A 

10
B 

15
A 

15
B 

5
A 

5
B 

10
A 

10
B 

15
A 

15
B 

5
A 

5
B 

10
A 

10
B 

15
A 

15
B 

P67t-24     X    X X   X X X  X X 
P67t-21     X X   X  X X X X   X X 
P67t-18   X        X  X X X    
P67t-15 X  X X X X     X X X  X X X X 
P67t-12     X X X X X X X  X X X X X X 
P67t-9   X X X X X X X X X  X X   X X 
P67t-6     X X X X X X X X X X X X   
P67t-3   X X X X   X X X X X X   X X 
P67t   X X X    X X X    X X X  

MAP67_6     X X   X X X X X X X  X X 
MAP67_1

2 
X X X X X X X X X X X X X  X X X  

MAP67_2
4 

    X X   X X X  X X X X X  

P75t-24     X X   X X X  X X X    
P75t-21         X X X X X X X X X  
P75t-18         X X X X X X X X X  
P75t-15   X X X    X X X  X X X X X X 
P75t-12     X X   X X   X X X X X X 
P75t-9   X X X    X X X X X X X X   
P75t-6     X X X  X        X X 
P75t-3     X X   X X X X X X X X X  
P75t     X X   X X   X  X X X X 

MAP75_6     X X   X X X X X X X X X  
MAP75_1

2 
  X X X X   X X X X X  X X X X 

MAP75_2
4 

X  X  X X X X X X X  X X X  X  

P1t-24   X  X    X X   X X     
P1t-21   X  X X X X X X X X X  X X X  
P1t-18 X    X X X X X X X X X X X X X X 
P1t-15     X X   X X X    X  X X 
P1t-12 X  X X X    X X X X X X X X X  
P1t-9   X  X X   X X X X X X X X X X 
P1t-6   X X     X X X X X  X X X  
P1t-3   X X X X   X    X X     

MAP1_6   X  X X   X X X  X X   X X 
MAP1_12   X  X X X X X X X X X  X X X  
MAP1_24   X X X X   X X X X X X X X   

P1t X  X X X X   X X X X X X X X X  
Total (36) 6 1 20 13 32 20 9 8 34 31 30 20 33 26 29 23 29 16 

(X indicates the variables selected for the model after pruning with 5, 10 and 15 hidden nodes) 
 

Neural network models were then developed for the three lead times using the input 

variables from the six pruning operations using the BR algorithm and 50 runs averaged 

as before. 

 

5.5.1 Results 
6 hour lead time 

Figure 5.11 shows the results of the neural network models developed using the inputs 

selected by the six pruning methods. The complete set of hydrographs is provided in 

Appendix C. The hydrographs suggest that forecasts with a lead time of 6 hours are 

best produced with model 5A. The worst result is for model 5B so allowing multiple 

input connections to the hidden nodes is not a good feature. Also it retained only one 

input variable, which would be insufficient information to predict the correct output. 

More variables were also removed with 5 hidden nodes compared to 10 and 15. Thus, 
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increasing the number of hidden nodes results in a higher number of variables retained 

by this method. In contrast, model 10B showed better performance than model 10A, i.e. 

the peak was underestimated less and there was less delay in the rising limb. Table 

5.26 provides goodness-of-fit measures that confirm this result. Models 15A and B 

predicted similar hydrographs but the statistical measures indicate that model 15A is 

better than 15B. 
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Figure 5.11: Results of the six pruning experiments for three storm events from 13 Aug-1 Oct 

2005 for a 6 hour lead time. 
 
Table 5.26: Goodness-of-fit statistics for the six pruning models at a lead time of 6 hours. 

5 hidden nodes 10 hidden nodes 15 hidden nodes Statistic A B A B A B 
MAE (m) 0.0431 0.223 0.0465 0.038 0.0425 0.0453 
RMSE (m) 0.083 0.3393 0.1122 0.0903 0.0833 0.0915 
CE 0.9905 0.8415 0.9827 0.9888 0.9904 0.9885 
 

Six inputs were selected by model 5A. These same six inputs were also selected for 

models 10A and 15A but the results (in terms of hydrographs and goodness-of-fit 

statistics) are not as good. It seems likely that both models 10A and 15A selected too 

many input variables, which could have reduced the overall performance. In addition, 

model 5A selected the moving average variables at P67 and P75, which was also the 

case with the best model produced in case study 2 for a 6 hour lead time, confirming 

the importance of these variables. 
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12 hour lead time 

The hydrograph results for the six pruning experiments are shown in Figure 5.12. All 

six models show similar patterns, i.e. underestimation of the peak and a delay in the 

time of rise. Table 5.27 contains the goodness-of-fit statistics. Examining the statistics 

shows that model 15B seems to be the best model, followed by models 15A and 10A. 

Therefore, allowing inputs to have more than one link to a hidden node may improve 

the overall results. Model 5B shows an overestimation of the peak for the first storm 

event in Figure 5.12. Model 5B, in contrast to model 5A, did not select any variables 

from P75, which may explain this observed result.  
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Figure 5.12: Results of the six pruning experiments for three storm events from 13 Aug-1 Oct 

2005 for a 12 hour lead time. 
 
Table 5.27: Goodness-of-fit statistics for the six pruning models at a lead time of 12 hours. 

5 hidden nodes 10 hidden nodes 15 hidden nodes Statistic A B A B A B 
MAE (m) 0.098 0.0977 0.0839 0.0878 0.081 0.0764 
RMSE (m) 0.1986 0.2034 0.1637 0.1648 0.1584 0.1506 
CE 0.9458 0.9431 0.9632 0.9626 0.9655 0.9688 
 

18 hour lead time 

Figure 5.13 contains the model predictions for an 18 hour lead time while Table 5.28 

contains the goodness-of-fit statistics. Figure 5.13 shows that all the models predict the 

rising limb late with a large overestimation of the first storm event. From the 

hydrographs it appears as if model 15B once again produces the best results although 

the statistics in Table 5.28 indicate that model 10B is slightly better.  
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Figure 5.13: Results of the six pruning experiments for three storm events from 13 Aug-1 Oct 

2005 for an 18 hour lead time. 
 
Table 5.28: Goodness-of-fit statistics for the six pruning models at a lead time of 18 hours. 

5 hidden nodes 10 hidden nodes 15 hidden nodes Statistic A B A B A B 
MAE (m) 0.1256 0.1377 0.1257 0.1163 0.122 0.1256 
RMSE (m) 0.2376 0.2528 0.2311 0.2169 0.2268 0.237 
CE 0.9227 0.9124 0.9268 0.9355 0.9295 0.923 
 

5.5.2 Summary of case study 3 
This case study has experimented with pruning algorithms to select the input variables. 

Table 5.29 shows the percentage of variables removed by the different experiments. 

Using 5 hidden nodes in the pruning increases the number of variables selected as the 

lead time increases, which may simply be a reflection of increasing complexity in the 

modelling problem. However, using 15 hidden nodes shows the opposite result while a 

10 hidden node model shows a less clear pattern as the lead time increases.  

 
Table 5.29: The percentage of variables removed by the three numbers of different hidden 
nodes (Model A). 

Number of hidden nodes t+6 t+12 t+18 
5 83.3 75.0 8.0 
10 44.4 5.5 19.4 
15 11.1 16.6 19.4 

 

Different results were also obtained depending on whether option A or B was used. 

These experiments suggest that future forecasting models could be more effectively 

and efficiently performed by pruning with 5 hidden nodes at a lead time of 6 hours and 
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15 hidden nodes at longer lead times. In the next case study, pruning algorithms will be 

used with a 15 node model.  

 

5.6 Case Study 4: Adding Rainfall Data to the Models of the Ping 
Catchment 
This case study continues to examine the efficiency of the forecasting techniques 

explored in case studies 1 to 3 by adding in data from one rain gauge located at 

Chiang Mai, which was obtained relatively late in the research process. This gauge is 

adjacent to P1 and cannot be considered as representative of such a large catchment, 

but its relative value was thought worthy of exploration. At this time the 2006 and 2007 

stage data also became available.  

 

In the following experiments, input determination methods C and S are used. Method C 

is retained as it is commonly used by many other studies while model S showed the 

best performance for Dataset 1. The pruning method was used, referred to as model Pr, 

as well as another more complicated method called partial mutual information (PMI), 

referred to as model P in this case study. The case study was trained and tested with 

the BR algorithm and run 50 times for each experiment to predict 6, 9, 12, 15 and 18 

hours ahead. As previously, the 50 runs were averaged to produce a final forecast.  

 

As with the previous case study, only data from the monsoon periods were used for 

both input variable determination and neural network model development. The length 

of each data set and the start dates were determined by the monsoon onset dates, 

which change between seasons: 

• 2001, 2004, 2007    2/08 – 31/10 

• 2002      2/08 – 9/11 

• 2003      1/09 – 31/10 

• 2005      2/08 – 4/11 

• 2006      2/07 – 31/10 

The training dataset included the years 2001 to 2005 while 2006 and 2007 were used 

for testing.  

 

5.6.1 Input variables 
The modelling undertaken in this section employed data from the three water level 

stations (P1, P67 and P75) and 1 rain gauge station, giving 54 input variables in total. 

As this case study uses more data than Case Study 3, pruning with 15 hidden nodes 
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was originally implemented. However, this took an incredibly large amount of time to 

complete, making this an infeasible solution, which is a serious issue in practical 

forecasting. As 10 hidden nodes still produced a satisfactory performance in Case 

Study 3, this number was used in this case study instead of 15.  
Table 5.30: Input variables selected by each input determination technique (denoted by an X) 
for various lead times. 

Input Determination Techniques 
Lead time of 6 

hours 
Lead time of 9 

hours 
Lead time of 

12 hours 
Lead time of 

15 hours 
Lead time of 

18 hours 
Input 

Variables 
C S P Pr C S P Pr C S P Pr C S P Pr C S P Pr 

P75L-24    X    X    X  X      X 
P75L-21    X    X  X  X  X  X    X 
P75L-18        X             
P75L-15  X  X    X      X       
P75L-12 X X      X      X       
P75L-9 X    X   X  X    X    X   
P75L-6 X   X X   X X            
P75L-3 X X   X X  X X X   X X    X  X 
P75L X X   X X  X X X  X X X  X X X  X 
MV6P75    X  X  X  X  X    X    X 
MV12P75        X             
MV18P75  X      X             
MV24P75    X  X  X      X       
MV30P75                    X 
MV36P75      X  X      X  X    X 
P67L-24    X  X  X            X 
P67L-21                  X  X 
P67L-18        X        X  X  X 
P67L-15 X X    X  X            X 
P67L-12 X    X X  X  X          X 
P67L-9 X    X   X X X    X    X   
P67L-6 X X   X X  X X X   X X  X  X   
P67L-3 X X  X X X  X X X   X X   X X  X 
P67L X X  X X X  X X X   X X  X X X  X 
MV6P67 X   X X   X X X    X    X  X 
MV12P67 X X  X X X  X            X 
MV18P67 X   X    X    X      X   
MV24P67            X        X 
P1L-24        X    X         
P1L-21        X             
P1L-18                X    X 
P1L-15 X  X X    X    X        X 
P1L-12 X  X X X  X X            X 
P1L-9 X  X  X  X X X           X 
P1L-6 X X X  X X X X X X X X X X    X  X 
P1L-3 X  X  X  X X X  X X X  X X X  X  
P1L X X X X X X X X X X X  X X X  X X X  
MV6P1 X X X X X X X X X X X X X X X  X X X X 
MV12P1 X X X  X X X X X  X  X  X  X   X 
MV18P1 X  X  X  X X X    X        
MV24P1 X  X  X  X X X           X 
RP1-24                X     
RP1-21    X    X            X 
RP1-18  X    X  X  X    X    X  X 
RP1-15    X            X    X 
RP1-12        X    X        X 
RP1-9        X        X    X 
RP1-6  X    X      X        X 
RP1-3        X        X    X 
RP1    X  X  X  X    X    X  X 
MV3RP1                X    X 
MV6RP1  X  X  X  X  X  X  X    X  X 
MV12RP1    X    X        X    X 
MV24RP1  X    X    X  X  X  X  X  X 
Total (54) 24 18 10 21 20 21 9 45 16 18 5 15 11 21 4 16 7 18 3 37
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Models were developed at finer lead times of 6, 9, 12, 15 and 18 hours, which 

permitted exploration of the maximum warning time that can be anticipated. As can be 

seen in Table 5.30, model P selected input variables only from P1 and nothing from the 

upper gauging stations or the rain gauge. The only input determination techniques that 

included rain gauge data were models S and Pr. There was no correlation greater than 

0.90 between the rain gauge and the P1 station. The S and Pr models reduced the 

input variables by between 60%-73% for the 9 and 18 hour lead times. Model Pr 

reduced the number of input variables by between 17% and 35% overall.  

 

All input variables from P1 had correlations with the predicted levels of less than 0.90. 

Compared to Case Studies 1 and 2, the input data for selection were slightly narrower, 

i.e. 2/09 – 31/10/03 and 2/08 – 31/10/04.  

 

5.6.2 Results 
As with previous case studies, the model results are presented in terms of goodness-

of-fit statistics and visual inspection of the hydrographs for each lead time. The full 

range of hydrographs can be found in Appendix D. 

 
6 hour lead time 

As can be seen in Figure 5.14, it is interesting that model P seems to be the best 

model for a 6 hour prediction at the peak and in terms of timing because model P 

selected only the input variables from P1 (removing 81% of the variables). However, 

this would not be acceptable in hydrological forecasting, i.e. the best method for 

selecting inputs should use information from the upper stations rather than the station 

itself. Model Pr (pruning algorithm) predicted a good rising time with only a 30 minute 

delay (Figure 5.14 and Table 5.31).  

 
Table 5.31: The number of inputs selected and the goodness of fit measures for a lead time of 6 
hours. 

Input Determination Techniques Input Variables C S P Pr 
Number of inputs 24 18 10 21 
PDIFF (m) 0.205 0.084 -0.265 0.120 
MAE (m) 0.022 0.0206 0.0208 0.0208 
RMSE (m) 0.042 0.037 0.042 0.041 
CE 0.991 0.993 0.992 0.992 
Time delay (hr) 3.5 1.5 -1 0.5 
 

Model S selected inputs from each stage gauging station and the rainfall data, 

removing 66% of the total variables and giving a good forecasting performance overall, 

but it underpredicted the stage by 8 cm. For practical forecasting the model is telling 
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the forecasters when the River Ping will rise above bank stage, but where the 

forecasters want to warn about the extent of flooding, improving on the maximum stage 

predictions would be helpful. Model C, on the other hand, was the worst performing 

model similar to Case Studies 1 and 2. 
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Figure 5.14: Comparison of the hydrographs for 4 models at t+6 hours (31 Jul – 4 Aug 2006). 

 

9 hour lead time 

As with the 6 hour forecast, model P is the best model for predicting the peak stage 

and time to peak (Figure 5.15). However, the goodness of fit statistics (Table 5.32) 

show that model Pr has the best performance at the peak. Moreover, model Pr selects 

almost all of the input variables and removes only 16%, while other models remove 

between 63% and 83%.  
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Table 5.32: The number of inputs selected and the goodness of fit measures for a lead time of 9 
hours. 

Input Determination Techniques Input Variables C S P Pr 
Number of Inputs 20 21 9 45 
PDIFF (m) 0.277 0.215 -0.334 0.209 
MAE (m) 0.032 0.031 0.033 0.030 
RMSE (m) 0.063 0.057 0.065 0.056 
CE 0.980 0.984 0.979 0.985 
Time delay (hr) 6 2.5 -0.5 0 
 

Once again, model C is the worst model at a 9 hour lead time, i.e. it has the highest 

delay in predicting the rising limb (6 hr) and a lower estimated peak of approximately 

27 cm. Model P selects variables from only P1. The results suggest that the model Pr 

predicts the best results at this lead time.  
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Figure 5.15: Comparison of the hydrographs for 4 models at t+9 hours (31 Jul – 4 Aug 2006). 
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12 hour lead time 

Model P predicted the peak closer to the actual one and had the best rising limb 

prediction compared to other models, while model P only selected five variables from 

P1. As can be seen from Figure 5.16 for Model P, there are several points where the 

predicted and actual hydrographs cross each other. Only models C and S 

underestimate the peak stage, whereas model Pr and P have overestimated the peaks.  
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Figure 5.16: Comparison of the hydrographs for 4 models at t+12 hours (31 Jul – 4 Aug 2006). 

 

Model S and model Pr are better than the other two models. Moreover, model Pr 

predicts the peak only 4 hours behind the actual time (Table 5.33). Model C is the 

worst performing model as it predicts with the most delay and the peak prediction is 

poor.  
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Table 5.33: The number of inputs selected and the goodness of fit measures for a lead time of 
12 hours. 

Input Determination Techniques Input Variables C S P Pr 
Number of Inputs 16 18 5 15 
PDIFF (m) 0.325 0.137 -0.384 -0.121 
MAE (m) 0.043 0.041 0.047 0.046 
RMSE (m) 0.083 0.076 0.091 0.084 
CE 0.966 0.972 0.959 0.965 
Time delay (hr) 7.5 7 3 4 
 

15 hour lead time 

The forecast at this point was included to see whether this was more helpful than 

forecasts at lead times of 12 and 18 hours, as it is in the right travel time frame for the 

flood wave, and to see whether the causes of the noise on the forecasts could be 

identified. 

 

The forecast stage hydrographs at t+15 hours ahead all show noise in the output as do 

t+12 and t+18. The best model for predicting the time to peak is model Pr followed by 

model P, C and S. At the highest point the model Pr is likely to be the best model as 

the predicted stage is the same as the actual line (Figure 5.17) but the statistics show 

that model S is better than other models as the CE is 0.957 and the RMSE is 0.093 

(Table 5.34). This reconfirms the need to inspect the hydrographs and not to rely on 

the statistical tests alone. 

 
Table 5.34: The number of inputs selected and the goodness of fit measures for a lead time of 
15 hours. 

Input Determination Techniques Input Variables C S P Pr 
Number of Inputs 11 21 4 16 
PDIFF (m) 0.226 0.222 -0.391 0.111 
MAE (m) 0.054 0.051 0.062 0.057 
RMSE (m) 0.103 0.093 0.117 0.102 
CE 0.948 0.957 0.932 0.949 
Time delay (hr) 7.5 9 4.5 2.5 
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Figure 5.17: Comparison of the hydrographs for 4 models at t+15 hours (31 Jul – 4 Aug 2006). 

 

18 hour lead time 

Model P selects less input variables. It is the only model that selects variables from P1 

only and overestimates the peak (Figure 5.18). There are also large errors of 1.5 m at 

the small peak (Figure D.5). Table 5.35 shows model S gave the best performance as 

it has the highest CE, although the model forecast underestimated the peak stage. 

 
Table 5.35: The number of inputs selected and the goodness of fit measures for a lead time of 
18 hours. 

Input Determination Techniques Input Variables C S P Pr 
Number of Inputs 7 18 3 37 
PDIFF (m) 0.074 0.233 -0.380 0.130 
MAE (m) 0.068 0.061 0.075 0.063 
RMSE (m) 0.126 0.111 0.141 0.113 
CE 0.922 0.939 0.903 0.937 
Time delay (hr) 3.5 3 1 4 
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Model C had poorer results at all previous lead times but is improved at a lead time of 

18 hours. The model performance seems to be better at predicting the peak when 

compared with model S. However, model S has the best performance overall although 

P has the shortest time delay. 
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Figure 5.18: Comparison of the hydrographs for 4 models at t+18 hours (31 Jul – 4 Aug 2006). 

 

5.6.3 Summary of case study 4 
As discussed in Chapter 3, there is a scarcity of rainfall data for modelling, and the data 

from the Chiang Mai rain gauging station (R1) was made available relatively late in the 

research programme. In theory, the addition of a precipitation record should be helpful, 

but in a catchment that is this large, an individual station can never be representative of 

the whole catchment, and this station is very near to P1. There are other rain gauges 

available but they only record daily data. The Hydrology and Water Management 

Centre for Upper Northern Region, Thailand has now established more hourly rain 

gauge stations but they were only begun to be put in place after the large flood in 2005.  
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Table 5.36 provides a summary of the percentage of variables that were removed by 

each input determination method for the different lead times. The stepwise regression 

technique consistently removes the same number of input variables compared to Case 

Studies 1 and 2. PMI was introduced in this case study and removed 80-90% of the 

variables. 

 
Table 5.36: The percentage of variables removed by the different input determination methods 
by lead time. 

Lead time Model 
6 hours 9 hours 12 hours 15 hours 18 hours 

C 55.5 62.9 88.8 79.6 87.0 
S 66.6 61.1 66.6 61.6 66.6 
P 81.4 83.3 90.7 92.5 94.4 
Pr 61.0 16.6 72.2 70.3 31.4 

 

Table 5.37 ranks the performance of different input determination methods. Based on 

the CE, RMSE and MAE, model S proved to be the best fit model and ranked second 

rank in terms of peak stage prediction, while model Pr was the best at peak stage 

prediction and ranked second in terms of time to peak prediction. Model P selected 

only P1 variables and was the best model to predict flood time and reduce the number 

of inputs. In contrast, the overall performance was the worst. The performance of 

model C did not show any significant results except that it ranked second in terms of 

removing the number of inputs. 

 
Table 5.37: Ranking of model performance (1 is the best and 4 is the worst). 

Statistic Lead time C S P Pr Statistic C S P Pr 

6 hours 
9 hours 

12 hours 
15 hours 
18 hours 

12 
9 
7 
7 

12 

15 
14 
8 
6 
13 

20 
19 
13 
10 
16 

17 
18 
11 
14 
11 

13 
6 
5 
9 
20 

19 
11 
14 
10 
8 

7 
4 
2 
1 
3 

17 
12 
16 
18 
15 

Predict flood 
time 

Total 
(Rank) 

47 
(4) 

56 
(3) 

78 
(1) 

22 
(2) 

PDIFF 

53 
(3) 

62 
(2) 

17 
(4) 

78 
(1) 

6 hours 
9 hours 

12 hours 
15 hours 
18 hours 

18 
15 
12 
7 
3 

20 
16 
13 
9 
6 

19 
14 
10 
4 
2 

19 
17 
11 
8 
5 

18 
15 
12 
7 
3 

20 
16 
13 
9 
6 

18 
14 
10 
4 
2 

19 
17 
11 
8 
5 

CE 
 

Total 
(Rank) 

55 
(3) 

64 
(1) 

49 
(4) 

60 
(2) 

RMSE 

55 
(3) 

64 
(1) 

25 
(4) 

60 
(2) 

6 hours 
9 hours 

12 hours 
15 hours 
18 hours 

18 
15 
12 
8 
3 

20 
16 
13 
9 
6 

19 
14 
11 
5 
2 

19 
17 
10 
7 
4 

8 
10 
12 
14 
16 

11 
9 
11 
9 
11 

15 
17 
18 
19 
20 

9 
6 
13 
12 
7 MAE 

Total 
(Rank) 

56 
(3) 

64 
(1) 

51 
(4) 

57 
(2) 

Reduce 
input 

 
60 
(2) 

51 
(3) 

89 
(1) 

47 
(4) 
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In conclusion, using rainfall data improved the forecasting performance for models S 

and Pr. It also confirmed that using data from P1 as an input variable is essential to 

predict water level at P1. For example, model P selected only P1 data for forecasting 

yet it predicted close to the actual water level. In contrast, model C, which did not 

select data from the rain gauge, was the least good forecasting model. Inspecting the 

hydrographs showed that model P gave the best performance at lead times of 12 and 

18 hours, whereas model Pr was the most accurate for 9 hours ahead.  

 

5.7 Conclusions 
Eight input determination techniques were tested including: correlation > 0.90 (C), 

stepwise regression (S), correlation > 0.90 + stepwise regression (CS), M5 model tree 

(M), data mining (D), genetic algorithm (G), partial mutual information (P) and a pruning 

algorithm (Pr) across 4 case studies. Neural network models were developed on these 

inputs to predict river levels for the Upper Ping River at various lead times from 6 to 24 

hours ahead.  

 

The first case study used a standard feedforward network trained with the Levenberg-

Marquardt (LM) algorithm. The results showed that neural network models could be 

developed for lead times of 6 and 12 hours but by 18 hours, the forecasts had declined 

in performance. Most of the input determination methods performed similarly although 

the CS and G methods generally had better performance statistics.  

 

In Case Study 2, a Bayesian Regularization (BR) algorithm for neural network training 

was introduced that outperformed the LM algorithm. Inspection of the hydrographs and 

statistics showed that overall stepwise regression used with BR produced good results 

and reduced the large number of variables in the input datasets by approximately 60%, 

which is economical in computational terms for neural network development. Other 

research has suggested that Bayesian Regularization models work well in catchments 

with limited data (Ali et al., 2010; Chaipimonplin et al., 2008a, 2008b; Kunikazu et al., 

2009; Youhang et al., 2008; Chaohong et al., 2008; van Hinsbergen et al., 2008). This 

research suggests that this is also true for the Upper Ping catchment. Bayesian 

Regularization does not require validation data, which is very helpful when data are 

limited. In this chapter each model was run 50 times for each experiment and the 

average forecast is presented after Anctil (2007). Chapter 7 examines the effect of this 

averaging and the variation across the model runs.  
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In Case Study 3, the number of hidden nodes in the pruning algorithm influences the 

processing time and model performance. A Neural network model with more hidden 

nodes requires more time to train and predicts a better result then a model with less 

hidden nodes for the complex catchment. 

 

In Case Study 4, all 4 models at a lead time of 18 hrs produced predictions with an 

approximate 3 hr delay time in the peak and a 20 cm error at the peak. Moreover, it 

appears that training a model with a big storm in 2005 as well as using rainfall can 

improve the model performance when testing on smaller storms. 

 

In terms of input determination methods, it was found that model M does not remove 

many variables while models D and P remove many input variables. However, model D 

gives a poor result on the rising limb. Model P never selected any input variables from 

the upper water level stations, which indicates it is not the best method. Model C and 

CS are not much different in terms of performance. However, the most significant 

finding is that the neural network model performance at lead times of 6 to 24 hours is 

simply not consistent. For example, model D has the highest CE at a 6 hour lead time 

but the lowest at 12 and 18 hours. Model G is best at lead times of 12 and 18 hours but 

had much poorer performances at lead times of 6 and 24 hours. In contract, model S 

and CS gave the most stable results even though model S does not remove that many 

input variables compared to model D or CS. In summary, the percentage of input 

variables removed by each technique is 90-95% for model D, 80-90% for model P, 70-

80% for model CS, 60-70% for models Pr, G, C and S, and 30% for model M. Model 

CS and S predicted values with approximately a 3-4 hour time delay in the peak for an 

18 hour lead time. Therefore, the best input determination technique emerging from 

these experiments is the combination between correlation and stepwise regression. 

 

The results here suggest that the best forecast model so far is based on data from 

three water level stations and one rain gauge station. The travel times between P67 

and P1 dictate that forecasting 18 hours ahead is practical. Including the rain gauge 

data made some small improvements but the geographical position of the gauge and 

the very large size of the catchment make this a limited step forward for the forecaster 

faced with a monsoonal storm event in real time. The research from this chapter is 

developed further in Chapter 6 with the inclusion radar data as a surrogate for rainfall 

data across the catchment. Radar data were used to enhance the data sets discussed 

here in further water stage forecasting experiments in order to see whether the lead 

time of the forecasts can be extended beyond 18 hours. 
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Chapter 6 Extending the Neural Network Forecast Lead Time with Radar 
Data 
 

6.1 Introduction 
Information from radar can be an important input to hydrological forecasting, whether 

through visualization of incoming storm events or to estimate rainfall. Radar data are 

generally calibrated using point rain gauge measurements. However, this is 

problematic in areas where sparse rain gauge networks exist, in particular in the Upper 

Ping catchment where there is only 1 hourly rain gauge near P1. Right now the 

maximum lead time for the neural network to forecast the water stage at P1 using 2 

water stage stations in the upper catchment is approximately 18 hours (as shown in 

Chapter 5). An alternative approach explored in this chapter uses data from the raw 

radar image as an input to the neural network for extending the lead time. Moreover, 

this has not been tried before, since it is bound to be less useful than radar estimated 

precipitation values, but in this context it appears to be an option worth investigating.  

 

The purpose of this chapter is to investigate whether the addition of radar data can 

improve these neural network hydrological models, and in particular to extend the lead 

time of the forecast. A brief overview of the use of radar data in hydrology is provided, 

followed by information on the radar configuration relevant to the Ping catchment in 

Thailand. A description is then provided of what radar data are available for the 

modelling experiments and how the radar data have been extracted and used as inputs 

to the neural network models. An initial set of experiments is undertaken whereby raw 

radar reflectivity values are added as intputs to neural network models for lead times of 

6 to 24 hours. The focus of the chapter then shifts to developing models of much longer 

lead times, i.e. those beyond 24 hours. The radar reflectivity values are correlated with 

water levels at P1 to reveal that lead times as high as 48 hours are possible. 

Experiments with building neural network models of lead times between 24 and 48 

hours are then presented. These experiments begin with using radar data only and 

then add rainfall and water level data to determine whether the model results can be 

further enchanced. A detailed schematic of the experiments is provided in section 6.6 

to aid the reader in understanding the sequence of model development. 

 

6.2 Radar Concepts 
This section presents an overview of Doppler radar and how this is related to rainfall. 

Doppler radar transmits electromagnetic radiation through the atmosphere and the 
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receiver then detects the radiation scattered back from the target, measured in decibels. 

The radar reflectivity factor (Z) is correlated with the size and density of the 

precipitation, as shown in equation 6.1 and 6.2, so a high value of Z or dBZ represents 

a high density or potentially large amounts of precipitation (Collier, 1996, p 17):  

 ∑=
cV cV
DZ

6

 (6.1) 

 







= −

−

36

36

10 1
log10

mmm
mZmmdBZ  (6.2) 

where D is the drop diameter, Vc is the pulse volume and Z is the accumulated rain per 

unit volume of the diameter of the water drop. For the same pulse volume, precipitation 

of 64 units with raindrops of a 1 mm diameter would have the same value of Z with 1 

unit of precipitation and raindrops with a 2 mm diameter (i.e. 26 = 64). 

 

To estimate the rainfall from the radar reflectivity, the radar values must be calibrated 

with data from rain gauges using a Z-R relationship (equation 6.3) 

 Z = aRb  (6.3) 

where a and b are dependent on the type of precipitation and R is the precipitation 

intensity (mm h-1) (Collier, 1996). Jones (1956) has suggested suitable Z-R 

relationships for different types of precipitation. Other examples in the literature include 

Rosenfeld et al. (1993) applied Z = 230R1.25 for the monsoon, Kalinga and Gan (2007), 

used Z = 250R1.2 for a tropical regime and Chumchean et al. (2008) used Z = 103R1.5 

for convective clouds. Moreover, Joss et al. (1970) cited in Collier (1987) 

recommended the following values of a and b for thunder showers (Z = 486R1.37), rain 

showers (Z = 380R1.24), continuous rain (Z = 313R1.25) and thunderstorms (Z = 500R1.5). 

 

There are several issues with using radar in this type of relationship. The first is ground 

clutter, which is defined as strong echoes from the terrain that could be misinterpreted 

as high amounts of rainfall (Figure 6.1). To minimize this problem, the radar site should 

be located on the top of a mountain. Error due to ground clutter can also be corrected 

by subtracting the signal received on days in which no rain fell from those in which it 

does (Hill and Robertson, 1987). 



 

 

104

 
 

 
Figure 6.1: Ground clutter. 

Taken from Collier (1996), p 43. 

 

Another potential source of error is meteorological. In Figure 6.2, there are 6 possible 

errors in the radar measurement of surface rainfall intensity (Browning, 1987). The first 

error occurs at long ranges where the radar will overshoot the low level rainfall. The 

second and third errors in Figure 6.2 present examples where the radar is unable to 

detect low level rainfall. A fourth potential error may occur when ice or water melts, 

which increase the reflectivity and may lead to an overestimation of rainfall. On the 

other hand, underestimation of the rainfall intensity may occur when the radar beam 

does not sense the areas of large amounts of rainfall, as the fifth error, while a strong 

hydrolapse can bend the radar beam (sixth error). 

 
Figure 6.2: Meteorological errors. 
Source: Browning (1987), p 242. 

 

The final issue with the use of radar is selection of the wavelength. Figure 6.3 provides 

information aboutwavelength absorption, where a wavelength of 1.35 cm is highly 

absorbed by water, and for longer wavelengths, there is less attenuation by the 

atmosphere. To detect precipitation, a suitable wavelength of greater than 3 cm should 

be chosen.  



 

 

105

 
 

 
Figure 6.3: Atmospheric absorption by the 1.35 cm line of water vapour for a mean absolute 

humidity of 7.72g/m3, and by the 0.5 cm line of oxygen at a temperature of 20 C and 
pressure of 1 atm. 

Source: Battan (1973) citied in Collier (1996) p 19. 

 

Consequently, there are 3 different wavelengths: X band (λ= 3 cm); S band (λ = 10 cm) 

and C band (λ = 5 cm). The radar reflectivity from precipitation at a wavelength of 5 cm 

is 12 dB stronger than at a wavelength of 10 cm (Ulaby et al., 1981 cited in Collier, 

1996). However, there is a great chance of ground clutter at the larger wavelength of 

10 cm (Harrold, 1984 cited in Collier, 1996).  

 

6.3 The Use of Radar in Hydrology 
Doppler radar has been used for detecting rain drops, cloud precipitation, cloud 

movement or velocity (Lee et al., 2006). The advantage of radar is the high temporal 

and spatial resolution, i.e. images are recorded at every 5 to 15 minutes at a resolution 

of 1 km2. Moreover, cloud indexing methods are used for integrating a satellite image’s 

visible and infrared band. Cloud indexing can be used with both polar orbiting and 

geostationary satellites. This technique evaluates the cloud brightness from the visible 

and infrared bands, and it is best for convective clouds (Collier, 1996; Wardah et al., 

2008):  

 
dt
dA

aAaR c
cov 1+=  (6.4) 

Where vR is the volumetric rain rate, cA is the area of the cloud, dtdAc /  is the rate of 

change in cloud area and 1,aao are empirical coefficients. Collier (1996) also noted that 

cloud indexing provides the best accuracy for estimating rainfall from satellites when 
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compared with other techniques such as area averaging, life history, passive 

microwave and active microwave.  

 

To predict downstream flow, rainfall and upstream flow are normally used. Moore 

(1987) suggested considering lateral inflow from the rainfall; however, lateral flow from 

rain gauges leads to errors in rainfall estimation due to the sparsity of rain gauge 

networks and low spatial variability. As a result, the rainfall estimated from radar would 

be an alternative way to add a higher spatial variability and provide better lateral flow 

information than data from a single point such as a rain gauge (Wilson et al., 1979 cited 

in Collier, 1996). Collier (1987) investigated monthly average hourly rainfall data for 1 

year from 4 different rain gauges situated at different distances away from the radar in 

the summer and winter in the UK. He found that to estimate rainfall from radar during 

the summer when the rainfall is produced by convective activity, the accuracy was high 

at all 4 stations. However, for the lower level winter rainfall, the values were 

underestimated at the far range and overestimated at the near range. 

 

Using different rainfall data sources as the input to a flood forecasting model will 

influence the model results. To estimate the average rainfall over the catchment from 

an infinite number of points has less variance than estimation from a single point rain 

gauge (Moore, 1987). Moreover, radar data have been applied in hydrological 

modelling. Troutman (1983) found that calibrating the rainfall average from radar data 

with a rainfall runoff model for flood forecasting produced a model that under predicted 

heavy storms and over predicted small storms. In contrast, when calibrating the same 

model with rainfall from rain gauges, the heavy storms were over predicted and the 

small storms were under predicted. Moore (1987) applied an exponential density to 

estimate the average rainfall from the average of the pixel values of the radar image 

and he suggested that it would be sufficient to use a simple exponential density 

function to estimate the average rainfall. Borga (2002) found that a conceptual 

streamflow model performance improved by 30% when adjusted radar data with mean 

field bias were used. Smith et al. (2007) used a Z-R relationship to forecast flash floods. 

Cole and Moore (2008) investigated three different types of rainfall estimators as inputs 

to a lumped conceptual rainfall-runoff model, i.e. the rain gauge only; rainfall from the 

Z-R relationship, and rain gauges adjusted with radar data. Interestingly, the model 

performed best when using only rain gauge data as inputs to the model. In contrast, 

Filho and Santos (2006) succeeded in improving a neural network flood forecasting 

model by 40% when they supplemented stage with rainfall estimated using a Z-R 
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relationship. Chiang et al. (2007) applied neural networks to forecast precipitation from 

the Z-R relationship. 

 

To deal with a large catchment, i.e. greater than 1000 km2, Knowles (1987) divided the 

catchment into 3 areas: one covering the main river and the other two covering the 

tributaries. Each area was 260-460 km2. He then calibrated the radar data and 

developed rainfall-runoff models for each area. In another study Morris (1980) 

subdivided the catchment and applied a lumped rainfall-runoff model to each sub-

catchment with average rainfall from a 2 km radar grid.  

 

6.4 Radar in Thailand 
Radar in Thailand detects precipitation using the CAPPI (Constant Altitude Plan 

Position Indicator) technique. The CAPPI was developed from the PPI (Plan Position 

Indicator), which transmits electromagnetic radiation in only one angle, but the CAPPI 

can transmit in several angles. Therefore, with this technique, volume can be simulated. 

As Thailand is a tropical country, the precipitation is predominantly from the southwest 

and northeast monsoon (Okumura et al., 2003), with the majority of rainfall from 

convective clouds. As mentioned in Section 6.2, different areas or types of storm apply 

different Z-R relationships. Therefore, many researchers have investigated rainfall 

estimation from radar images in Thailand. For example, Rachaneewan (2006b) 

investigated a suitable Z-R relationship Z=300R1.4 for the northern part of the Thailand 

catchment, Chumchean (2007) recommended Z=128R1.5 for the Bangkok area, 

Mapiam and Sriwongsitanon (2008) investigated rainfall estimation from radar using a 

climatological Z-R relationship and Dejyothin (2008) developed an automatic value 

adjustment system for the Z-R relationship by rain gauge. 

 

6.5 Analysis of Radar Data  
After having reviewed the basics of radar data and their use in hydrology, this section 

will now outline how the data have actually been used in this research, in particular 

how the data have been extracted from the radar images for use as inputs to the neural 

network model to predict water stage at the station referred to as P1.  

 

Radar images are only available for 2003, 2005 and 2006 (Table 3.2). Figure 6.4 

presents all eight storms that occurred during this period: 

• in 2003, labelled as  

o S1: 6-23 Sep, flood: 12-14 Sep, max level: 3.70 m;  
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• in 2005, labelled as 

o S2: 2-24 Aug, flood: 14-16 Aug, max level: 4.90 m;  

o S3: 25 Aug-17 Sep, flood: 12-13 Sep, max level: 3.79 m;  

o S4: 18-23 Sep, flood: 20-22 Sep, max level: 4.71 m;  

o S5: 28 Sep-11 Oct, flood: 29 Sep-2 Oct, max level: 4.93 m;  

o S6: 26 Oct-5 Nov, flood 1-2 Nov, max level: 3.79m; 

• in 2006, labelled as  

o S7: 18-26 Sep, no flood, max level: 3.29 m; and 

o S8: 9-17 Oct, no flood, max level 3.53m. 

Note that there are missing radar images for the first two storms in 2006 so these are 

not labelled in Figure 6.4. 
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Figure 6.4: The storms that occurred in 2003, 2005 and 2006. 

 

The radar images in Figure 6.5 illustrate that when the study area is covered with a big 

storm of more than 11 hr, this could lead to flooding in the area. For example, the first 

big storm 2005 (S2) passed the study area on 12 August and covered this area for 17 

hours. Storm S4 approached on 18 September and covered the area for 11hr, storm, 
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S5 approached on 28 September and covered the area for 13 hr and storm S6 covered 

the area for 16 hr. 

 
Figure 6.5: Example of radar images covering the study area during the S2 storm event. 

 

The first step in working with the data was to extract a 30 x 50 km square north of 

Chiang Mai from each of the radar images, which are available at hourly intervals. As 

shown in Figure 6.6, this provides sufficient coverage of the river on both sides and 

also covers the P75, P67 and P1 water stage stations. The image was sampled at 12 

points or pixels in a 4x3 matrix with a distance of 10 km between the points. The points 

are labelled as Z11, Z12, etc. to reflect the row and column position in the data matrix.  

 
Figure 6.6: Twelve sample points extracted from a 30 x 50 km radar image covering the study 

area. 
 

There are different methods of extracting the radar reflectivity at the sample points. In 

calibration of rainfall at rain gauges, normally the eight pixels surrounding the rain 

gauge point are used (Fisher et al., 2000; Georgrakakos et al., 2000). For this reason, 

P1
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the surrounding 3x3 neighbours (9 values) were extracted from each of the 12 sample 

points and combined using four different methods as follows: 

 

• Sum Step: sums all 9 pixel values at 6 hour intervals, e.g. t, t-6, t-12 up to t-24;  

• Aver Step: same as Sum Step except the values are averaged instead of 

summed; 

• Sum Accum: same as Sum Step except that cumulative values are calculated, 

e.g. the sum of t to t-5, t-6 to t-11, etc. up to t-24 

• Aver Accum: same as Sum Accum except that the initial nine pixels are first 

averaged and then a cumulative value over a 6 hour interval is calculated. 

 

The NN used in this section is the same as the model used in Case Study 4 (Section 

5.6), which was trained with Bayesian Regularization and run 50 times. The first big 

storm in 2005 (S2) was used in the testing data set while the other 7 storms comprised 

the training data. The total number of input variables was 60 (12 sample points * 5 

previous time steps at 6 hour intervals as explained in the previous paragraph). Models 

were developed to forecast water stage at 6, 12, 18 and 24 hours ahead. 

 

Figure 6.7 presents the results for all four lead times using storm S2 in the testing data 

set. The first thing to note is that the results are very similar for ‘Sum Step’ and the 

‘Aver Step’ and likewise for ‘Sum Accum’ and ‘Aver Accum’ at all lead times so it 

appears to make little difference as to whether a sum or average is used. The next 

observation is that the hydrographs appear to fluctuate more for the Accum methods 

compared to the Step methods. However, both Accum methods underpredicted the 

peak although this improved as the lead time increased to 24 hours (Figure 6.8).  
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Figure 6.7: The results on storm S2 (12-20 Aug 2005) of applying four different methods of 

radar data extraction at lead times of 6, 12, 18 and 24 hours. 
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Figure 6.8: The results on storm S2 (12-20 Aug 2005) of applying one average method of radar 

data extraction at various lead times from 6 to 30 hours. 
 

The best results appear to be achieved by averaging the nine radar reflectivity values 

and using cumulative values (i.e. the Aver Accum method). This method will, therefore, 

be applied in all experiments in this chapter. Figure 6.9 provides a schematic overview 

of how the rest of the chapter is organised in terms of different experiments using the 

extracted radar data. The first set of experiments are described in the next section (6.6) 

where the extracted radar data described in this section is used to develop NN models 

at lead times of 6 to 24 hours. 
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Figure 6.9: Flow diagram of the series of experiments in Chapter 6 
 

6.6 Adding Radar Data to the Neural Network Models for Lead Times of 6 
to 24 hours 
This section provides the first set of initial experiments that use radar data as inputs to 

a neural network model for lead times of 6 to 24 hours. At this stage the point was not 

to extend the lead time but to simply determine if the addition of radar data had any 

positive effects on the resulting NN performance. From section 6.5, it was clear that the 

‘Aver Accum’ method produced underestimations of the peaks at t+6 and t+12 hrs but 

improved at longer lead times. Therefore, this section will extend the cumulative 

interval to 12 hrs (instead of 6) and go beyond 24 hours up to t-168 hr. As a result the 

total number of input variables used in this set of experiments is 180 variables (12 

samples*15). From Chapter 5 it was found that stepwise regression, the genetic 

Section 6.6 
Increase the cumulative time from 6 hours to longer and apply input determination 

techniques 

Section 6.7 
To select input variable based on correlations in time  

Section 6.8 
Adding rainfall from rain gauge station to the model in Section 6.7 

Section 6.9 
Extending the study area and adding more sample points to the model in Section 

6.8 

Section 6.10 
Adding water stage to the model in Section 6.9 

Section 6.11 
Further investigation of models in Section 6.10 adding more water stage stations 

Section 6.12 
Comparison of models in Sections 6.10 and 6.11; examining the effect of the 

training dataset 
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algorithm, correlation and the pruning algorithm were the best input determination 

methods for predicting the peak stage. However, the pruning algorithm was the worst 

method in terms of removing the number of inputs when compared with the other three 

methods. In addition, the genetic algorithm, correlation and the stepwise regression 

methods were the best in terms of overall performance based on RMSE, CE and MAE. 

The data mining and PMI methods were the best in terms of removing the most input 

variables. However, the PMI selected only the P1 variable, which did not make 

hydrological sense. Therefore, the input determination techniques used in this section 

are correlation (C), stepwise regression (S), data mining (D) and the genetic algorithm 

(G). All hydrographs, statistics and inputs selected can be found in Appendix E. 

 

The experiments outlined in this section use different storms in the testing data sets to 

determine the model performance when using different training and testing data sets. 

As mentioned previously, there are 8 storms for which radar images are available. 

These 8 storms are divided for use in the test data set in 4 different experiments: 

  

• Experiment 1 with S2 in the testing data set.  

• Experiment 2 with S1 and S2 in the testing data set. 

• Experiment 3 with S5 in the testing data set. 

• Experiment 4 with S1 and S5 in the testing data set.  

 

6.6.1 Results for Experiment 1 (Testing storm S2) 
Since the main concern in flood forecasting is the time to peak and the peak prediction, 

only these two statistics are provided in Table 6.1. It is obvious that model D and C 

predicted the peak early as indicated by the negative values where both model D 

followed by model C chose the least number of inputs. Model C also provided the best 

performance in terms of peak prediction, i.e. less than a 5 cm error at lead times of 21 

and 24 hours. Model S and G gave the worst model performance in this experiment, i.e. 

in terms of removing only 60 to 70% of input variables predicting a delay in the time of 

flooding.  

 
Table 6.1: The PDIFF and flood time delay of four input determination methods, experiment 1. 

Input Determination Techniques Model Statistic C S G D 
PDIFF (m) 0.4997 0.2716 0.6707 0.5156 t+6 Time delay (hr) -13 8 10 -12 
PDIFF (m) 0.1042 0.5500 0.3725 0.3799 t+9 Time delay (hr) -10 11 11 -9 

t+12 PDIFF (m) -0.223 0.3294 -0.1592 0.4858 
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Time delay (hr) -7.5 3 2 -6 
PDIFF (m) -0.1058 0.0521 0.3874 0.4212 t+15 

Time delay (hr) -4.5 7 11 -4 
PDIFF (m) 0.1279 0.4658 0.0414 -0.0661 t+18 

Time delay (hr) -1 24 2.5 -2 
PDIFF (m) -0.0141 0.3426 0.0603 0.0895 t+21 

Time delay (hr) 1.5 11 14 0 
PDIFF (m) -0.0324 0.5367 0.4740 -0.3966 t+24 

Time delay (hr) 4 6 20 1 
 

Another observation as to why only models D and C predicted the flood early is that 

inputs Z22 and Z42 were the most frequently selected, while variables from row Z1 

were not selected and very few were selected from Z3. Models S and G, on the other 

hand, selected all 4 rows. All the inputs retained by the methods, the goodness of fit 

measures and the hydrographs on the test data can be found in Appendix E (Table E.1, 

E.2, E.3, Figure E.1 and E.2). 
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Figure 6.10: The timing error in the flood prediction on storm S2 (12-20 Aug 2005) for all four 

models for lead times of 6 to 24 hours, Experiment 1. 
 

When plotting the time delay in flooding against the lead time of prediction in Figure 

6.10, one can see that the error is reduced as the lead time increases. For Models C 

and D, this decrease in the error looks to be almost linear. Figure 6.11 shows that 

models C and D predict the rising limb early for lead times up to 12 hours. Both models 

also predicted similar patterns at the peak, which was a flat line underestimating the 

peak, except for model C at a lead time of 12 hours where an overestimation can be 

seen.  

 

In summary, models D and C were the best input determination methods at maximum 

lead times of 21 and 19 hours respectively.  
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Figure 6.11: The results on storm S2 (12-20 Aug 2005) for lead times of 6 to 24 hours. 
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6.6.2 Results for Experiment 2 (Testing storms S1 and S2) 
This second experiment considers the results on two storms in the test data set: S1 in 

2003 and S2 in 2005. All models predicted an early time to rise. In particular, for the S1 

storm, all models predicted values almost 24 hours early (Figure 6.12). Both models C 

and D predicted similar patterns and the best model for predicting storm S2 is model D, 

which had the best PDIFF of less than 5 cm at 12, 15 and 21 hour lead times (Table 

6.2).  

 

Figure 6.13 shows the same linear relationship when plotting the error in the time of 

prediction against the lead time. The model performance was improved when 

compared with Experiment 1, i.e. in terms of the time to peak prediction, the CE, RMSE 

and MAE (Table E.3 and E.6). The difference between Experiment 2 and 1 is that the 

2003 storm was not included in the training dataset, which has clearly had some effect 

on the results.  

 
Table 6.2: The PDIFF and flood time delay of four input determination methods, experiment 2. 

Input Determination Techniques 
S1 S2 Model Statistic 

C S G D C S G D 
PDIFF (m) -0.4659 -0.2741 0.1164 -0.2116 0.1031 -0.4892 -0.5872 -0.1607 t+6 
Delay (hr) / / / / -14.5 -1 -8 -14.5 
PDIFF (m) -0.4790 -0.2648 -0.4809 -0.2815 0.0847 -0.4981 -0.5497 0.0723 t+9 
Delay (hr) / / / / -13.5 -3 -7 -13 
PDIFF (m) -0.4868 -0.0562 -0.5403 -0.5557 0.0957 -0.4309 -0.6133 0.002 t+12 
Delay (hr) / / / / -10.5 -6 -10.5 -10.5 
PDIFF (m) -0.6731 -0.3422 -0.9349 -0.3698 0.1738 -0.7740 -0.9291 0.0133 t+15 
Delay (hr) / / / / -8.5 -3.5 4 -8.5 
PDIFF (m) -0.7268 -0.7041 -0.8693 -0.8578 0.1809 -0.6016 -0.7213 -0.1147 t+18 
Delay (hr) / / / / -6 -3.5 -2 -6 
PDIFF (m) -0.6724 -0.2842 -0.6856 -0.9272 0.0993 -0.2462 -1.7652 -0.0169 t+21 
Delay (hr) / / / / -4 -3 -1 -4 
PDIFF (m) -0.7555 -0.2458 -0.6123 -1.1116 0.1155 -0.3401 -1.2584 -0.2702 t+24 
Delay (hr) / / / / -2 -2.5 -2.5 -2 

 

The amount of inputs removed was similar to Experiment 1, i.e. model D and C 

selected less input variables. However, models D and C selected more variables at Z1 

and less at Z2 when compared with Experiment 1. All input variables retained by the 

models and the hydrographs can be found in Appendix E (Table E.4, E.5, Figure E.3 

and E.4).  
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Figure 6.12: The results on storm S1 (10-15 Sep 2003) and S2 (12-20 Aug 2005) for lead times 

of 6 to 24 hours. 
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Figure 6.13: The timing error in the flood prediction of storm S2 (12-20 Aug 2005) for all four 

models for lead times of 6 to 24 hours, Experiment 2. 
 

Overall it is clear that training without the 2003 storm improves the model performance 

when testing on the 2005 storm. The reasons could be that (1) the relationship (or 

rating curve) between water discharge and water stage at P1 station changed between 

2003 and 2005 (Figure 3.6); (2) the flood level changed from 3.4 to 3.7 m in 2005 due 

to engineering works along the river; (3) the difference in moisture conditions in the 

catchment between the two storms. Unfortunately a NN is not able to capture the 

changing conditions in the catchment in the way that it has been set up here. Therefore, 

the neural network user could improve the model performance by selecting the right 

training data. This is, of course, a whole other area where research is needed, as set 

out in the recommendations by Maier et al. (2010).  

 

6.6.3 Results for Experiment 3 (Testing storm S5) 
The second largest storm in 2005 is tested in this experiment. All models were late in 

predicting the rising limb (Figure 6.14), while some models predicted an early rising 

limb for the first largest storm in 2005 (S2) in Experiment 1. This may be because, 

during storm S5, the Mae Ngat Dam (Figure 3.11) reached its maximum water capacity, 

so the water gate was opened and it increased the water stage and discharge in the 

river (Chatchawan, 2005). Another reason might be that storm S2 was the first storm of 

the year, so the catchment was still dry and could therefore absorb more water. In 

contrast, S5 is the fourth storm in that year and the catchment was mostly likely 

saturated, so the travel time of the water from the upper station to the lower station 

would be faster than in a dry catchment (S2 event). As a result, all models in 

Experiment 3 were late in predicting the actual rising limb. 
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Figure 6.14: The results on storm S5 (28 Sep-4 Oct 2005) for lead times of 6 to 24 hours. 
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In addition, model G gave an outstanding performance in terms of predicting the rising 

limb while all other models performed worse (Table 6.3 and Figures 6.15). Model G 

had the best overall performance for PDIFF, CE, RMSE and MAE (Table E.9). Once 

again, when the training data included the 2003 storm, models C and D had similar 

patterns of variable selection similar to Experiment 1, i.e. no Z1 variables were selected 

and model D selected a few from Z3 (Table E.1, E.2, E.7 and E.8). All input variables 

retained by the models and hydrographs can be found in Appendix E (Table E.7, E.8, 

Figure E.5 and E.6). 

 
Table 6.3: The PDIFF and flood time delay of four input determination methods, experiment 3. 

Input Determination Techniques Model Statistic C S G D 
PDIFF (m) -2.1807 0.6316 0.1062 -0.5285 t+6 

Time delay (hr) 13 14 14 16 
PDIFF (m) -0.0814 0.5494 0.9419 -0.9162 t+9 

Time delay (hr) 18 19 19 18.5 
PDIFF (m) -0.6631 0.8142 0.1553 -0.4316 t+12 

Time delay (hr) 21 22 5 21.5 
PDIFF (m) -0.3179 0.1946 0.6263 0.4525 t+15 

Time delay (hr) 24 24 3 24 
PDIFF (m) 0.1836 0.3134 0.1349 0.7101 t+18 

Time delay (hr) 27.5 28.5 2 28 
PDIFF (m) 0.4521 0.4983 0.2096 0.0697 t+21 

Time delay (hr) 12 19 5 12 
PDIFF (m) 0.6759 0.4947 0.6222 -0.1299 t+24 

Time delay (hr) 33 11 6 7 
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Figure 6.15: The tim timing error in the flood prediction on storm S2 (12-20 Aug 2005) for all four 

models for lead times of 6 to 24 hours, Experiment 3. 
 

In summary, the catchment condition and the extra amount of water from the dam had 

an effect on the model performance as the model predicted a delay in the rising limb of 

the hydrograph. Therefore, to forecast water level in the Upper Ping catchment, the 
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opening times of the water gate of the dam need to be considered as part of the 

modelling. 

 

6.6.4 Results for Experiment 4 (Testing storms S1 and S5) 
Table 6.4 provides the performance measures when predicting the S1 and S5 storms. 

All models predicted the rising limb early and overestimated the peak of the S1 storm, 

while predicting a delay in the rising limb of the S5 storm. The inputs retained by 

models C and D were similar to all three previous experiments. 

 
Table 6.4: The PDIFF and flood time delay of four input determination methods, experiment 4. 

Input Determination Techniques 
S1 S5 Model Statistic 

C S G D C S G D 
PDIFF (m) -0.4713 -0.2113 -0.0052 -0.0961 -1.8859 0.4232 0.8615 -1.2742 t+6 

Time delay (hr) / / / / 19 8 14 14.5 
PDIFF (m) 0.0564 -0.0312 -0.2589 -0.2693 -0.4528 0.6108 0.8077 -1.3528 t+9 

Time delay (hr) / / / / 24 3 7 24 
PDIFF (m) -0.1589 0.0348 -0.1823 -0.1397 0.4181 0.4789 0.2306 -0.0617 t+12 

Time delay (hr) / / / / 24 18 15 18 
PDIFF (m) -0.3278 -0.4969 -0.3295 -0.1471 0.6775 0.1734 0.4148 -0.2939 t+15 

Time delay (hr) / / / / 28 5 5 24 
PDIFF (m) -1.0656 -0.5283 0.0634 -0.5216 0.9394 0.1798 0.3887 -0.1226 t+18 

Time delay (hr) / / / / 4 4 4 28 
PDIFF (m) -0.7841 -0.3706 -0.0824 -0.5634 -0.1486 0.6263 -0.1157 0.1512 t+21 

Time delay (hr) / / / / 6 15 4 6 
PDIFF (m) -0.9861 0.128 -0.1944 -0.3879 -0.2157 -0.3681 0.7968 0.3342 t+24 

Time delay (hr) / / / / 8 -1 9 8.5 
 

The timing errors in the rising limb are shown in Figure 6.16. There are no linear 

relationships like that found in the three previous experiments. However, model G and 

S gave the best performance especially in terms of the time to peak prediction (Table 

E.12). Therefore, models G and S are suitable for use in predicting floods in a wet 

catchment. 
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Figure 6.16: The timing error in the flood prediction on storm S2 (12-20 Aug 2005) for all four 

models for lead times of 6 to 24 hours, Experiment 4. 
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Figure 6.17: The results on storms S1 (11–16 Sep 2003) and S5 (28 Sep-4 Oct 2005) for lead 

times of 6 to 24 hours. 
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To compare the model performance in predicting the storm S1 (Experiments 2 and 4), 

all models predicted the rising limb while the overall performance, based on the 

goodness of fitness measures, was improved when training with the first storm of 2005 

(S2) (Table E.6 and E.12). In contrast, when comparing the model performance when 

predicting storm S5 between Experiments 3 and 4, there was no significant change and 

all the models predicted a delay in the rising limb (Figures 6.17). The reasons were 

described in Experiment 3 (Section 6.6.3). All selected inputs, statistical results and 

hydrographs can be found Appendix E (Table E.10, E.11, E.12, Figure E.7 and E.8). 

 

In summary, this section indicates that neural networks can employ raw radar 

reflectivity extracted from the radar images to predict the water level at P1 station. The 

maximum lead time of the forecast seems to be about 19-21 hours. However, the 

physical changes in the river, water from the dam and the wet/dry catchment condition 

influence the model performance. For example, to predict the first storm on a dry 

catchment, the model tends to predict the rising limb early, while the model predicts it 

late on a wet catchment. As different storms in the training dataset influence the model 

performance, the training dataset will be fixed with the same set of storms in the next 

section. 

 

6.7 Extending the Lead Time of the Neural Network Forecasts 
The previous section showed that radar reflectivity can be a useful input to the neural 

network to predict water level. However, the focus was on the development of models 

with lead times of between 6 and 24 hours. In this section and for the rest of the 

chapter, the focus shifts to developing models for longer lead times, i.e. beyond 24 

hours. To do this, cumulative radar reflectivity going back longer in time was correlated 

with water level at P1. The next section describes how this was undertaken. 

  

6.7.1 Calculating correlations between cumulative radar data and water level at 
P1 
To find the correlation between the radar data and the water level at different lead 

times for station P1, the correlation between the time lag and the radar reflectivity 

values were calculated for each individual storm. The y-axis is the cumulative radar 

reflectivity value backwards in time and the x-axis is the time lag between the row (Z) 

and the P1 station at time t. Three days before and after each storm event were 

considered, and the correlation was examined for all 12 points. For a given row, the 

maximum correlation in that row was subsequently extracted, with the highest 

correlations occurring at the points in the middle of Figure 6.6, i.e. Z12, Z22, Z32 and 
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Z42. The lag time at which the maximum correlation occurs for storm S1 in 2003 can 

be found in Figure 6.18. For example at time t, the maximum correlation between the 

radar reflectivity and P1 occurred at 54 hours backwards in time for three of the points 

and 84 hours backwards in time for Z12. Thus the potential for extending the lead time 

of the forecast is clearly evident from this graph. The graph also shows a linear 

relationship between the time lag and the cumulative radar reflectivity value. 
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Figure 6.18: Time of maximum correlation between radar reflectivity and water level at P1 

station and storm S1 in 2003. 
 

The distance between sample points on the radar image to P1 station also influences 

when the maximum correlation occurs and also the magnitude of the correlation.  

Figure 6.19 provides the maximum time of correlation for the other storms. Storms S2, 

S4, S5 and S6 also appear to show the same linear relationship except for storm S3, 

which has a slightly longer lead time at Z12 but which is slightly shorter at Z22, Z32 

and Z42 when compared with other storms.  
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Figure 6.19: Time of maximum correlation between the radar reflectivity and the water level at 

Chiang Mai for storms S2 to S6 in 2005. 
 

It is also clear from Figure 6.18 that the storm in 2003 shows different correlations to 

the storms in 2005 (Figure 6.19). This may be due to the fact that there were physical 

changes to the river (as described in Chapter 3) or that only one storm occurred in this 

year. The travel time of point Z12 is approximately 90 hours to P1, which may be a 
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result of very dry antecedent conditions. The P1 station is located at the bottom of the 

image so the travel time from row Z1 to P1 is the longest. 

 

For storms in 2006, the maximum correlations occurred at points Z13, Z23, Z33 and 

Z43, so these are used to plot the correlations between the time lag at P1 and the 

cumulative radar reflectivity values. As can be seen from Figure 6.20, the year 2006 is 

again different than 2005. It seems that at P1 station, time t has a high correlation with 

24 to 42 hours cumulative radar reflectivity values. Moreover, the correlations are not 

linear, which might be related to shorter, less intense storms covering the area.  
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Figure 6.20: Time of maximum correlation between radar reflectivity and water level at Chiang 

Mai for storms S7 and S8 in 2006. 
 

However, the results so far indicate that a 42 hr lead time could potentially be achieved 

with inputting radar data into a neural network, especially for the large storms in 2005. 

Moreover, the radar reflectivity values at all 12 points have similar correlations with 

water level at P1. Figure 6.19 also shows that the cumulative radar reflectivity of the 

radar image at 42 and 48 hr has a linear correlation with water level at time t at P1. 

Therefore, it should be possible to extend the forecast lead time of the neural network 

to 36 to 42 hours at P1 using the 6 hr cumulative radar values. The next section 

describes how these correlations are used to determine which data to extract, which 

are then used in the development of the neural network models. 

 

6.7.2 Development of Neural Network Models based on the Correlated Inputs 
In section 6.6 it was found that the use of different training datasets influences the 

model performance. Thus to avoid this effect, the training dataset was fixed from 25 

August to 9 November 2005 (4 storms; S3-S6) for all models. The testing dataset 

comprised the following storms: the first large storm in 2005 (2 to 24 August 2005, S2), 
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the only storm in 2003 (6 to 23 September 2003, S1) and two small storms in 2006 (18 

September to 20 October 2006, S7 and S8). In addition, the the correlations in Section 

6.7.1 show that the neural network has the potential to predict the water stage at P1 at 

a lead time of greater than 24 hours. In this set of experiments, therefore, the lead 

times are extended to 24, 30, 36, 42 and 48 hours.  

 

The input selection is based on the highest correlations between P1 and the radar 

reflectivity values at the 12 sample points. From Section 6.7.1, it was shown that P1 

correlates with cumulative data from 24 to 72 hours for all 3 years of storms.  

Moreover, the points at Z11, Z12 and Z13 are less consistent so they are no longer 

used, leaving only 9 out of 12 points to be used as input variables. For each lead time, 

there were high correlations at different time periods in the past. For example, high 

correlations exist between cumulative radar 6 hours in the past and the level at P1 24 

hours ahead. However, to simplify the modelling, only points at one time period in the 

past were used to develop the models. Thus for each lead time, multiple models were 

developed (where the 9 points were used at each time in the past to develop one 

model). Otherwise there would have been too many inputs to include for each model, 

many of which may have been redundant and therefore effectively have reduced the 

performance of the network. The list below shows each of these models by lead time: 

 

Lead Time Different time periods with a high correlation between the 
cumulative radar data and P1 

24 hours T-6 hours 
T-12 hours 
T-18 hours 
T-24 hours 

30 hours At time t 
T-6 hours 

T-12 hours 
T-18 hours 

36 hours At time t 
T-6 hours 

T-12 hours 
T-18 hours 

42 hours At time t 
T-6 hours 

T-12 hours 
T-18 hours 

48 hours At time t 
T-6 hours 

T-12 hours 
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The sub-sections that follow describe the modelling results on each of the storms in the 

testing data set.  

 

6.7.2.1 Testing Storm S2 
Figure 6.21 shows the results of testing storm S2 in 2005 for lead times of 24 to 48 

hours based on correlations with different time periods. It is clear that the neural 

network model predicted the rising limb very accurately at lead times of 24 and 30 

hours using inputs at time t or t-6. Predictions of the peak were one hour early and 

peak predictions were only 0.1 cm above the actual peak (for a 24 hour lead time) 

(Table E.13). However, when data from further back in time are used, the performance 

decreases and the hydrograph is effectively shifted, producing late predictions (the full 

range of hydrographs is given in Figure E.9).  
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Figure 6.21:Comparison of the hydrograph predictions for different time correlations at lead 

times of 24 to 48 hours, testing on storm S2 (12 – 20 Aug 2005). 
 

Figure 6.22 provides the hydrographs when using different input variables and training 

datasets. Some additional notation is added here to aid the reader in understanding the 

figures. Train 01 (which was the model developed in Section 6.7.2) used 9 input 

variables as this was based on the correlations at one time step only. The models 
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referred to as Train 02 and Train 03 selected input variables that were based on input 

determination techniques (which are related to Experiments 1 and 2, Section 6.6). 

Model Train 01 is the only model that predicted very close to the actual peak but did 

not perform well on the falling limb of the hydrograph. This is because the model 

referred to as Train 01 in this section is based on cumulative radar reflectivity for only 6 

hours while the other models use cumulative values up to 168 hours (Table E.1, E.2, 

E.4 and E.5). 

 

The bottom graph in Figure 6.22 shows more details at the peak with different training 

datasets and it is clear that all models trained without the 2003 storm (Train 01 and 02) 

predicted the rising limb much earlier than the actual time of occurrence (see Figure 

E.11 for the full range of hydrographs). 
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Figure 6.22: Compare of the hydrographs of different training data at 24 hour lead time, test S2 

(12 – 20 Aug 2005). 
Note: Train 01 (S3 – S6), train 02 (S1, S3 – S8) and train 03 (S3 - S8) 

 

In summary, the neural network that predicted the best result at the peak and the rising 

limb was that using 9 input variables at t-6. In this case, other input determination 

techniques were not needed and the training time for the neural network was reduced.  
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6.7.2.2 Testing Storm S1 
Figure 6.23 shows the hydrograph results of testing on storm S1. All the models 

predicted two peaks before and after the actual peak. However, the best model 

appears to be the one predicting at a lead time of 48 hours. Moreover, all models in this 

section and Section 6.6, which used only radar data as inputs could predict the water 

stage more than 24 hrs in advance while models using only water stage could not 

predict more than 24 hrs ahead. However, using radar data only as inputs meant that 

no models were able to produce good hydrograph shapes (see Figure E.10 for the full 

range of hydrographs).  
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Figure 6.23: The results on storm S1 (9–18 Sep 2003) of different time correspondences at lead 

time of 24, 30, 36, 42 and 48 hours. 
 

Figure 6.24 provides a comparison of the hydrographs between the three experiments; 

Train 01 is in this section, while Train 02 and 03 are Experiments 2 and 3 in Section 6.6. 

All models predicted the rising limb too early at a lead time of 24 hours. (See Figure 

E.12 for the full range of hydrographs). 
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Figure 6.24: Compare of the hydrographs of different training data at 24 hour lead time, test S1 

(2003), top compare train 01 and train 02, bottom compare train 01 and train 03. 
Note: Train 01 (S3 – S6), train 02 (S3 - S8) and train 03 (S2 - S4, S6 – S8) 

 

In summary, when testing with the storm in 2003, the models predicted the rising limb 

too early, similar to previous experiments in Section 6.6. However, this section uses 

only 9 input variables based on simple correlations at time t and does not apply input 

determination techniques so the approach has advantages of simplicity. 

 

6.7.2.3 Testing Storms S7 and S8 
The results of testing two small storms in 2006 are shown in Figure 6.25. It seems that 

the model is unable to predict any peaks in the small storm. All the models were poor 

as they only predicted very small peaks. It may be that the radar image showed no 

rainfall during these events or over the sample points. However, there was heavy rain 

near Z4 and next to P1. This may point to one of the main disadvantages of predicting 

water level from radar images. Alternatively, the storm pattern may have been different, 

i.e. the storm may have come from a southwesterly direction instead of the more 

predominant one.  
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Figure 6.25: The results on storm S7 and S8 (19 Sep-20 Oct 2006) of different time 

correspondences at lead time of 24, 30, 36, 42 and 48 hours. 
 

Since the neural network would not have learned a storm pattern like that seen in 2006, 

it might simply not have been able to predict such an unseen event before. For this 

reason, one of the storms in 2006 was provided to the neural network in the training 

dataset. Figure 6.26 shows that adding one 2006 storm resulted in some increases in 

level prediction but the performance is still poor.  
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Figure 6.26: The results on storm S7 (19 Sep–2 Oct 2006) of different time correspondences at 

lead time of 24 and 30 hours. 
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The pattern of the storm movements and the location of the sample points may have 

an effect on model performance. However, the model performance might be improved 

if the storm movement pattern could be included in the training dataset. Also more 

sample points could be added (which is investigated later in Section 6.9).  

 

In summary, the neural network can predict the water level at P1 by using only 

cumulative radar reflectivity over the study area with 9 spatially distributed input 

variables across the image. These examples used only simple correlation as the 

method for choosing the best inputs as many different combinations of inputs were 

tested. The maximum lead time for prediction is 48, 30 and 24 hours for storms in 2003, 

2005 and 2006 storm, respectively. In addition, the model produces reasonable 

predictions if the storm type in the training and testing dataset are similar and if rain fell 

over the sample points (which would therefore have been picked up in the radar 

images). Otherwise the model performance was poor. The next section investigates the 

effect of adding rainfall data in addition to the radar data to the neural network models. 

 

6.8 Adding Radar and Rainfall Data to the Neural Network Models 
At this stage, only radar data have been used in developing the neural network models. 

This section considers whether the addition of rainfall data to the neural network 

models developed in Section 6.7 might improve the model performance. Neural 

network models were developed with nine radar inputs and data from one rain gauging 

station.  

 

The results shown in Figure 6.27 for storm S2 indicate that adding rainfall to the 

models from the rain gauge near P1 did not improve the model performance, either 

from the hydrographs or through examination of the performance statistics (Table E.16). 

If the rain gauge was located higher up in the catchment, this input may potentially 

have had an effect. This once again draws attention to the sparse network of rainfall 

data in the catchment.  
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Figure 6.27: The results on storm S2 (12–20 Aug 2005) training with and without rainfall for lead 

times of 24 and 36 hours. 
 

The next section considers what happens when the sample area is extended and if 

more sample points are added. 

 

6.9 Extending the Sample Area and the Number of Sample Points  
The initial experiments in Section 6.7 were based on sampling the radar image at a 

limited number of points. This is potentially helpful in limiting calculation times but may 

also limit accuracy. In this section the area of the radar image was expanded and a 

greater number of sample points was added, i.e. 25 as shown in Figure 6.28. However, 

the correlations between P1 and all 5 points in the first row (i.e. Z10 to Z14) are low, so 

these have not been used in any further experiments. This is probably because any 

rainfall here would be drained out of the river and the land use type at row Z1 is 

mountainous (Figure 3.10). 

 
Figure 6.28: Extended area on the radar images with extra sample points. 

 

The inputs to the neural network were rainfall from rain gauge R1 and 20 values 

extracted from the radar image. The results of the model are shown in Figure 6.29 for 
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storm S2. It is clear that the prediction of the time of the rising limb for a lead time of 24 

hours has improved by 4 hours; the CE has also increased from 0.6409 to 0.6446.  

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

12/08/05 14/08/05 16/08/05 18/08/05

Le
ve

l [
m

]

Model t+24, 30 hr
Observation
20 points
9 points

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

13/08/05 19:00 14/08/05 07:00 14/08/05 19:00

Le
ve

l [
m

]
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

12/08/05 14/08/05 16/08/05 18/08/05

Le
ve

l [
m

]

Model t+24, 36 hr

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

13/08/05 17:00 14/08/05 05:00 14/08/05 17:00

Le
ve

l [
m

]

 
Figure 6.29: The results on storm S2 (12–20 Aug 2005) for 9 and 20 sample points at a lead 

time of 24 hours. 
 

In summary, the addition of extra sample points has increased the model performance 

so this extra information has been used by the neural network for further 

experimentation in this chapter. The next section considers the effect of adding water 

level data from additional upstream stations in the catchment. 

 

6.10 Addition of Water Stage from More Upstream Gauging Stations 
The results so far show that adding radar data accumulated over a period of time in the 

past at points spatially distributed around the area of the river can improve the lead 

time of the neural network (Chaipimonplin et al., 2010). Due to physical changes in the 

channel in 2004 (Chatchawan, 2005), further experiments in this section will not use 

data before this period. Instead, a total of seven storms (2005; S2 – S6 and 2006; S7 – 

S8) will be used in different combinations of training and testing. Adding rainfall did not 

improve the model performance as shown in Section 6.8 but this section will further 

investigate the effect of adding both rainfall data and water level data to see whether 

these together improve the model performance. Two further water level stations (P21 

and P4a) from the upper part of the catchment will be added. This section will, 

therefore, investigate the effect of adding more data to the neural network. Moreover, 

stepwise regression will also be used to select the most suitable input variables.  
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This section consists of three experiments. The first experiment uses data from the 

radar image, the rain gauge R1 and three main flow stations (P75, P67 and P1). The 

total number of inputs is 35: 20 radar points, 3 variables from 1 rain gauge (cumulative 

rainfall in 6 hour windows from time t) and 12 variables from 3 water level stations (t, t-

6, t-12 and t-18). The second experiment is similar to the first experiment but 2 more 

water level stations (P21 and P4a) were added, increasing the total number of inputs to 

41. In the third experiment, stepwise regression was used to select the input variables 

from the first experiment (Table 6.5). 
 
Table 6.5: Input variables selected by Stepwise regression (denoted by x) for 18, 24 and 30 
hour lead time. 
Leadtime

Storm S2 S3 S4 S5 S6 S7 S8 S2 S3 S4 S5 S6 S7 S8 S2 S3 S4 S5 S6 S7 S8
P1t x x x x x x x P1t x x x x x x x P1t x x x x x x x

P1t-6 x x x x x x x P1t-6 x x x x x x P1t-6 x x x x x x x
P1t-12 x x x x x x x P1t-12 x x P1t-12 x x x
P1t-18 x x x P1t-18 x P1t-18 x
P75t x x x x x x x P75t x x x x x x x P75t x x x x x x x

P75t-6 x x x x x x x P75t-6 x x x x x x x P75t-6 x x x x x x x
P75t-12 x x x x x P75t-12 x x x x x x P75t-12 x x x x
P67t-18 x x P67t-18 x x x P67t-18 x

P67t x x x x x x x P67t x x x x x x x P67t x x x x x x
P67t-6 x x x x x x x P67t-6 x x x x x x x P67t-6 x x x x x x

P67t-12 x x x x x x x P67t-12 x x x x x x P67t-12 x x
P67t-18 x x x x x x P67t-18 x x x x P67t-18
12Z20 6Z20 x x x x x Z20 x x x x x x
12Z21 x x x x x x 6Z21 x x Z21 x x x x x x x
12Z22 x x x 6Z22 x x x x x x Z22 x x x x x x
12Z23 x x x x x x 6Z23 x x x x x x Z23 x x x x x x
12Z24 x x x x x x x 6Z24 x x x x x Z24 x x x x x x
12Z30 x x x x x x x 6Z30 x x x x Z30 x x x x x x x
12Z31 x x 6Z31 x x Z31 x x x x x x x
12Z32 x x x x 6Z32 x x x x x Z32 x x x x x x
12Z33 x x 6Z33 x Z33 x x x x x
12Z34 x x x x x x 6Z34 x Z34 x x x x x x
12Z40 x x x 6Z40 x x Z40 x x x x x
12Z41 6Z41 x x x x x x Z41 x x x x
12Z42 6Z42 x x Z42 x x x x
12Z43 x x x x 6Z43 x x x x Z43 x x x x x x x
12Z44 x x x 6Z44 x Z44 x x x x x x
12Z50 x x 6Z50 x x x x x Z50 x x x x x x
12Z51 x x x 6Z51 x Z51 x
12Z52 x x x x x x 6Z52 x x x x x x Z52 x x x x x x x
12Z53 x x x x x x x 6Z53 x x x x x x x Z53 x x x x x x x
12Z54 x x x 6Z54 x x x x x x Z54 x x x x x x x

R1 x x x x x x x R1 x x x x x x x R1 x
6R1 x x x x x x x 6R1 x x x x x 6R1 x x x x x x x

12R1 x x x 12R1 x x x x x x 12R1 x x x x x x x
Total (35) 25 23 23 25 23 22 22 22 20 24 19 23 24 26 28 25 24 25 23 29 28

3018 24

 
 

6.10.1 Testing Storm S2 
The results of testing the first storm 2005 (S2) are shown in Figure 6.30. It is clear that 

adding more water level stations improved the overall performance especially in the 

falling limb of the hydrograph. For example, when compared with the model using only 

radar (Section 6.7.2) at lead times of 24 and 30 hours, CE increased from 0.1543 to 
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0.7573 and 0.1775 to 0.5332, respectively (Table E.13 and E.17). However, the 

predicted lead time was reduced from 30 to 17 hours (Figure 6.21). The reasons for 

this could be the limitation of travel time from the upper water level stations to P1. In 

addition, combining water level with radar data improves the prediction compared to 

using only water level alone (see Case Study 2, Chapter 5).  
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Figure 6.30: The results for storm S2 (10–23 Aug 2005) when using differing numbers of water 

stage stations as inputs for lead times of 18, 24 and 30 hour lead times. 
 

It can also be seen that the models appear to predict the events quite well when 

compared with using only radar data as inputs to the model. The results show that all 

three experiments predicted similar times to peak but only the model in the second 

experiment predicted higher than the actual peak at lead times of 18 and 24 hours, 

which might be the effect from the two extra water level stations. In addition, the 

prediction at a lead time of 18 hours was the most accurate with less than a 50 cm 

error in the peak prediction and a 1 to 3 hr delay in the timing. The third experiment 

(where the input variables were selected with stepwise regression) also gave the best 

accuracy in terms of the timing of the peak although there was still some delay. The 

error in peak prediction and the performance statistics are provided in Table E.17.  

 

By the standards for forecasting in European rivers with many stage gauges and good 

rainfall data, these results are bad. However, in the Upper Ping the data are very 
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limited and improvements in forecasting are relative. Using the radar image data alone 

gives a better lead time prediction for a large event but the falling limb was poorly 

predicted. In contrast, using only water level gives a better falling limb but a reduced 

lead time. Moreover, integrating water level and radar data gave a better result at t+18 

than using water level alone but at a longer lead time, the results for predicting the 

rising limb were worse. However, adding in stage data for two more water level stations, 

which are not located on the main river, did not to improve the model performance.  

 

6.10.2 Testing Storms S3 and S6 
S3 and S6 are the small storms in 2005 and all the models showed similar patterns, 

including some noisy predictions, and early and over predictions at the peaks (Figure 

6.31, 6.32). This may be due to the fact that there were clouds over the sample points 

but these did not result in precipitation that fell to the ground.  

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

29/08/05 02/09/05 06/09/05 10/09/05 14/09/05

Le
ve

l [
m

]

Model t+18 Observation
Ex1
Ex2
Ex3

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

11/09/05 22:00 12/09/05 22:00

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

30/08/05 03/09/05 07/09/05 11/09/05 15/09/05

Le
ve

l [
m

]

Model t+24

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

11/09/05 23:00 12/09/05 23:00

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

30/08/05 03/09/05 07/09/05 11/09/05 15/09/05

Le
ve

l [
m

]

Model t+30

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

11/09/05 16:00 12/09/05 16:00  
Figure 6.31: The results for storm S3 (29 Aug–19 Sep 2005) of using differing numbers of water 

stage stations as inputs for lead times of 18, 24 and 30 hour lead times. 
 

However, according to the goodness of fit statistics for testing storm S3 in Table E.17, 

it can be said that the second experiment showed the worst results at lead times of 18, 

24 and 30 hours in terms of peak prediction while the best performance was for the 

third experiment. Again, it shows that adding two extra water level stations does not 

improve the model performance, but using stepwise regression to reduce the number 
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of input variables could improve the performance. The goodness of fit statistics are 

provided in Table E.19. 

 

In addition, Experiment 2 testing S3 and S6 showed a higher overestimation than the 

other two experiments. This might be an effect of adding stations P21 or P4a. However, 

when training without P21 and P4a, the first and third experiment predicted very similar 

overpredictions at lead times of 24 and 30 hours.  
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Figure 6.32: The results for storm S6 (24 Oct–11 Nov 2005) of using differing numbers of water 

stage stations as inputs for lead times of 18, 24 and 30 hour lead times. 
 

6.10.3 Testing Storms S4 and S5 
The first and third experiments (testing S4 and S5) predicted similar patterns again 

using similar inputs. However, the models in the second experiment underestimated 

the peak and had a large delay in the time to rise (Figure 6.33, 6.34). The goodness of 

fit statistics are provided in Table E.18. The results from the second experiment 

showed an overprediction at the peak on a small storm and an underprediction of the 

peak for a big storm. This may be a result of the difference in the input variables, which 

is the addition of the data from P21 and P4a.  

 

It is clear that all models predicted a delay of approximately 10-15 hours because the 

catchment was wet. As storms S4 and S5 happened when the entire catchment was 
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saturated, it produced more runoff than a dry catchment. This may be a disadvantage 

of the use of radar data to predict water level as it appears to work better in terms of 

the rising limb when the catchment is not fully saturated.  
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Figure 6.33: The results on storm S4 (17–27 Sept 2005) of using differing numbers of water 
stage stations as inputs for lead times of 18, 24 and 30 hour lead times. 
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Figure 6.34: The results for storm S5 (26–9 Oct 2005) of using differing numbers of water stage 

stations as inputs for lead times of 18, 24 and 30 hour lead times. 
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6.10.4 Testing Storms S7 and S8 
The hydrographs of testing the storm in 2006 by learning a storm in 2005 produced 

similar results but once again the second experiment predicted a different pattern than 

other two experiments, and still overpredicted at a lead time of 24 hours. Moreover, 

feeding the neural network model with radar and water level data does improve the 

results (Table E.19).  
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Figure 6.35: The results for storms S7 and S8 (18 Sep–17 Oct 2005) of using differing numbers 

of water stage stations as inputs for lead times of 18, 24 and 30 hour lead times. 
 

In summary, all the models predicted good performance at a lead time of 18 hours. For 

a lead time of 24 hours, there were delays in the hydrographs. However, the use of 

stepwise linear regression to select the input variables had little effect on the results. 

The majority of the results for the rising time to peak were similar for the three 

experiments but adding P21 and P4a as inputs to the model does influence the peak 

prediction. It is unclear whether the peak overprediction is caused by the addition of 

P21 and P4a, and as a result, the effect of additional water stage stations will be 

investigated. 
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6.11 Experiments with Additional Stage Stations 
In the previous section, it was clear that using water stage from different stations 

influenced model performance particularly at the peak, i.e. P21 and P4a. Therefore, in 

this section further experiments will explore the effect of adding P21 and P4a data. 

Moreover, Figure 6.36 shows the hydrograph of all 5 stations for 7 storms (S2-S8). It 

can be pointed out that the water level at P21 is the lowest when compared to the other 

four stations especially for the S5 storm (28/9-11/10). As a result, when testing S5, the 

second experiment underpredicted the peak (Figure 6.34). This may be a result of 

water released from the Mae Ngat Dam or that no heavy rainfall occurred over the P21 

station. 
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Figure 6.36: The hydrographs of storms in 2005 and 2006 with 5 water stage stations. 

 

Therefore, three experiments are undertaken using different numbers of water stage 

stations. The first uses five stations (P21, P4a, P75, P67 and P1), the second 4 

stations (P4a, P75, P67 and P1) and the third uses 3 (P75, P67 and P1). This section 

uses only 2005 data for training and testing. 

 

6.11.1 Testing Storm S2 
Based on Figure 6.37, it is clear that to predict 18 and 30 hours ahead for storm S2, the 

best model for predicting the rising limb is the one with four stations although the peak 

is overestimated. Models with three and five stations predicted the same rising time 

towards the peak. According to the performance statistics in Table E.20, the model with 

four stations is the best model at lead times of 24 and 30 hours and three stations at a 

lead time of 18 hours. The model with five stations gave the worst performance for all 

three lead times.  
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Figure 6.37: The results on storm S2 (10–24 Aug 2005) of using differing numbers of water 

stage stations as inputs for lead times of 18, 24 and 30 hour lead times. 
 

Therefore, including the water stage from P21 reduces the model performance while 

adding data from P4a improved the model performance, i.e. the timing on the rising 

limb. 

 

6.11.2 Testing storms S3 and S6 
The hydrographs for two small storms are shown in Figures 6.38 and 6.39. All models 

predicted an early rising time. However, the model with five stations produced the 

highest error in the peak compared with the other models, while the model with three 

and four stations predicted similar levels. This could be due to the addition of data from 

P21. However, the use of three, four or five stations produced similar results. The 

goodness of fit statistics are provided in Table E.20 and E.21. From this it is possible to 

conclude that model performance in testing S3 is the same as for S2 and that the 

model with four stations gave the best performance at lead times of 24 and 30 hours. 
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Figure 6.38: The results for storm S3 (29 Aug-18 Sep 2005) of using differing numbers of water 

stage stations as inputs for lead times of 18, 24 and 30 hour lead times. 
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Figure 6.39: The results for storm S6 (24 Oct-11 Nov 2005) of using differing numbers of water 

stage stations as inputs for lead times of 18, 24 and 30 hour lead times. 
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6.11.3 Testing storms S4 and S5 
The model with five stations produced the worst performance in terms of 

underestimation of the peak and a delay in the rising limb. However, the model with 

three and four stations predicted similar results in terms of the rising limb but different 

results for the peak prediction (Figure 6.40, 6.41). In addition, the model with three flow 

stations seemed to be the best model at all lead times for both storms S4 and S5 

except for predicting at storm S4 for an 18 hour lead time. Overall the model with four 

stations gave the best performance (Table E.22). 
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Figure 6.40: The results for storm S4 (17–27 Sep 2005) of using differing numbers of water 
stage stations as inputs for lead times of 18, 24 and 30 hour lead times. 
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Figure 6.41: The results for storm S5 (26 Sep–9 Oct 2005) of using differing numbers of water 

stage stations as inputs for lead times of 18, 24 and 30 hour lead times. 
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In summary, for most of the storms in 2005, there are some relationships with P4a, 

P21, P75, P67 and P1. Using three, four or five flow stations does not result in 

significant differences in model performance under normal storm conditions. In 

contrast, the water level from the P21 station might have no effect as a result of the 

water released from the Mae Ngat Dam, while the other 3 stations had a direct effect. 

This may be due to the fact that P21 is not located on the main river and there might 

not be much rainfall over the P21 area (from the radar images). Therefore, the 

recommended stage stations for flood forecasting at P1 would be P1, P75 and P67. 

The final section of this chapter considers the effect of different storm patterns on the 

performance of the neural network models. 

 

6.12 Experiments with Events from Different Rainfall Patterns 
As mentioned previously, the pattern of storms in 2005 differs to that of 2006, i.e. one 

storm track moves from the northeast and one from the southwest. Therefore, this 

section will compare models with different training data sets. The first model was 

trained with storms in both 2005 and 2006 (S3-S8, Experiment 1 in Section 6.10), while 

the second model (3 stations) was trained with storms in 2005 only (S3-S6, model with 

3 water stage stations in Section 6.11). Both models will be tested with the storm in 

2005 (S2). This experiment would ideally be completed with more historical data, but 

the storm data are sparse and the issue is worth addressing in practice.  

 

6.12.1 Results 
Figure 6.42 shows the results for both neural network models, which produced similar 

results on the timing of the rising limb for a lead time of 24 hours. Based on the overall 

performance in Table 6.6, the performance statistics show that the model trained with 

only storms in 2005 gave a better result than the model trained with storms in both 

2005 and 2006. For the other testing storms such as S3, S4, S5 and S6, all the 

hydrographs and the performance results can be found in Figure E.13 – E.16 and 

Table E.23, E.24. Overall, the model trained using both 2005 and 2006 gave the best 

results based on the errors in the rising limb, PDIFF, CE, RMSE and MAE. 
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Figure 6.42: The results on storm S2 (10-23 Aug 2005) of applying different training data sets 

for lead times of 18, 24 and 30 hour lead times. 
 
Table 6.6: Goodness of fit statistics testing S2 for the two experiments 

Model Statistic Trained with 
2005 and 2006 

Trained with only 
2005 

PDIFF (m) -0.0300 -0.8977 
MAE (m) 0.2014 0.1678 

RMSE (m) 0.2669 0.2607 
CE 0.9106 0.9147 

t+18 

Time delay (hr) 2 1 
PDIFF (m) 0.1400 -0.4634 
MAE (m) 0.3387 0.2765 

RMSE (m) 0.4399 0.4203 
CE 0.7573 0.7785 

t+24 

Time delay (hr) 6.2 6 
PDIFF (m) -0.2300 -0.0943 
MAE (m) 0.4644 0.3157 

RMSE (m) 0.6104 0.5362 
CE 0.5332 0.6399 

t+30 

Time delay (hr) 11.5 11.5 
 

In summary, training the model with water stage and radar data that includes storms 

with different directions did appear to improve the results. The best model performance 

is still achieved when training with only radar data when considering long lead times 
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(Figure 6.26). However, including water stage data can reduce the error when storms 

of different patterns are included.  

 

6.13 Conclusions 
The results of the experiments in this chapter show that using only radar information as 

the inputs to a neural network can successfully predict the rising limb of the hydrograph 

for an extended lead time. Raw radar reflectivity was extracted from sample points 

across the image to create a series of input variables. Four input determination 

techniques from Chapter 5 (correlation, stepwise regression, data mining and a genetic 

algorithm) were chosen to select input variables from the radar data. The best model 

for testing the first large storm in 2005 was model D with an error of 8.95 cm at the 

peak and a 21 hr lead time. However, selecting inputs based on the correlation 

between cumulative radar reflectivity and the water level at P1 resulted in neural 

networks that could forecast at improved lead times of 24 to 30 hrs with an error in the 

peak stage of only 0.1-4.4 cm. However, the performance on the falling limb was poor. 

In addition, when water stage data were added to the radar data, the performance in 

predicting the falling limb improved but this reduced the maximum lead time to 18 hrs 

with a 2 hr delay and a 3 cm error at the peak. Compared with using only water level 

data in the neural network modesl (testing storm S2 in Case Study 2, Chapter 5), the 

maximum lead time was also 18 hrs with a 3.5 hr delay and 1.9 cm error at the peak.  

 

There were also problems when the sample points were not in the storm tracks, which 

then led to a flood event, or if the storms were of quite different types. The best results 

were achieved when combining radar with stage data and can result in models capable 

of predicting 18 hours ahead. However, using different upper stage stations leads to 

different model performance and the major influence is the upper stage stations of P75 

and P67. Therefore, the results from this chapter show that (1) selecting input variables 

based on simple correlation produces the best results with the very large storm from a 

northeastern monsoon and (2) for small storms or a wet catchment, the neural network 

model may require water stage data and radar data for the best timing of the rising limb 

or only water stage data (Chapter 5) for the best peak stage predictions. 

 

As there are two main directions in which a storm can move, these limited results show 

that providing the neural network with data from similar storm tracks can improve the 

results. While further research is needed with many more events, it tentatively suggests 

that, in this catchment, a neural network could be trained on both types of storm where 

the rainfall may come from two distinct directions, i.e. two different neural networks 
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would need to be trained. It is clear from an examination of the hydrograph that rainfall 

adds little to improve the neural network model. If a greater network of gauging stations 

was available, this might have improved the model results further. However, the results 

show the potential of using raw radar data to improve the lead time of neural network 

forecasts, especially when rainfall gauging stations are not available for calibration. In 

the next chapter experiments with neural network parameters and architecture will be 

undertaken. 
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Chapter 7 Further Experimentation to Explore Neural Network Parameters 
and Performance 
 

7.1 Introduction 
Chapter 5 presented some initial experiments with the development of neural networks 

in order to predict the flood level at station P1 near Chiang Mai. In particular, the focus 

was on input determination techniques, as this is one area where there is little 

guidance in the literature. Chapter 6 then went on to experiment with the idea of adding 

radar information as a direct input to the neural network, which showed that it is 

possible to improve the lead time of the forecast with this additional input. This chapter 

experiments with other issues related to neural network development where guidance 

is lacking, or if present, appears in the form of heuristics and empirical evidence in the 

literature. The problem with such heuristics is that they may be related specifically to 

the catchment on which the model was developed rather than generalisable patterns 

that are applicable to all neural network hydrological models. Three areas will be 

investigated: (i) the application of the BR algorithm, in particular the use of 50 runs to 

produce an average forecast; (ii) the number of hidden nodes in the neural network; 

and (iii) the effect of the pre-processing or normalization of the input data before 

training the neural network. 

 

7.2 Experiments with the Bayesian Regularization (BR) Algorithm 
The Bayesian regularization algorithm (BR) used in previous modelling experiments 

has resulted in the development of good performing models as demonstrated in 

Chapters 5 and 6. However, there are only a few examples of studies in which the BR 

algorithm has been used within the water domain. For example, Coulibaly et al. (2001) 

used BR to train neural networks where the inputs had been selected using a peak and 

low flow criterion in order to find a tradeoff model that could predict both peak and low 

flows adequately. Anctil and Lauzon (2004) compared BR with four other generalisation 

approaches; stop training, stacking, bagging and boosting and found that all 

approaches provide improvement compared to neural networks that do not use these 

techniques, while Anctil et al. (2004a) used the BR algorithm to develop neural network 

models of rainfall-runoff using additional inputs including potential evapotranspiration, 

the antecedent precipitation index and a soil moisture index. The results of the latter 

study showed that only the addition of the soil moisture index resulted in better model 

performance. Aqil et al. (2007) examined the performance of neural networks trained 

with LM and BR as well as a neuro-fuzzy model, where the latter outperformed the 
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other neural networks. Rai and Mathur (2008) developed neural networks with the BR 

algorithm for sediment modelling. Compared to a linear transfer function, the neural 

networks performed better in terms of both computation of runoff hydrographs and 

sedimentographs for the two catchments compared. Krishna et al. (2008) compared 

BR to LM and an RBF network for the modelling of groundwater levels in India. They 

found that models developed using the LM algorithm were better than those developed 

with the BR algorithm, in contrast to the findings in this research, although all models 

performed well in terms of the overall performance statistics. More recently, Yonaba et 

al. (2010) used neural networks trained with BR to examine the effect of different 

transfer functions on network performance for stream flow forecasting. The authors 

found that the tangent sigmoid was the best performing function. No other algorithms 

were used for neural network development. 

 

In utilizing this algorithm in previous modelling experiments, 50 neural network models 

were developed and the results were averaged. This was based on a heuristic supplied 

by Anctil (2007), who suggested this approach in order to smooth out the variations 

caused by different initializations of the network. The examples of research provided 

above do not refer to the use of multiple runs nor do they mention any variations that 

could result from different initialisations of the network. However, it was noticed from 

the experiments run in previous chapters than when the 50 individual runs were plotted 

for a storm in the testing data set, there was a wide variation in the predictions of the 

different runs. Figure 7.1 illustrates this point clearly where just 5 runs have been 

randomly selected and plotted against the actual values as well as the average of the 

50 runs. The results clearly show that the model runs vary quite significantly between 

one another, especially on the prediction of the peak. Some models under predict the 

peak, others over predict the peak and yet others are late in peak prediction. However, 

after averaging all the individual runs, the result is improved. This section will 

investigate the behaviour of the model performance based on the number of runs used 

in the model prediction. This has implications computationally as each additional 

training run takes time to complete. 
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Figure 7.1: Illustration of the variation between runs for a storm event and lead time of t+18. 

 

7.2.1 Models Used in this Experiment 
Eight models were selected for further experimentation in this section of the thesis. 

These models are listed in Table 7.1. The best performing models were selected for 

lead times of 12 and 18 hours when using only 3 water level stations and rainfall data. 

Two models were chosen for a lead time of 24 hours using only radar data. Choosing a 

range of different models allows us to determine if the choice of the number of runs to 

average is different between lead times and models built with different inputs. Model 1 

– 6 test 2006-2007 storms and train 2001-2005 storms (taken from Case study 4, 

Chapter 5). While model 7 and 8 test S2 and train S1, S3 – S8 (taken from Section 

6.7.2, Chapter 6). All results of selected input variables can be seen in Table F.1.  

 
Table 7.1: Models used in this experiment. 

Model 
Lead 
Time 

(hours) 
Inputs Input Determination 

Method 
Number of 

Model Inputs 

1 12 Water level + rainfall Stepwise 18 
2 12 Water level + rainfall Correlation + Stepwise 10 
3 12 Water level + rainfall Pruning 15 
4 18 Water level + rainfall Stepwise 18 
5 18 Water level + rainfall Correlation + Stepwise 6 
6 18 Water level + rainfall Pruning 37 

7 24 Radar data 
Chosen based on 30 hr 

time correspondence with 
P1 (Section 6.7) 

9 

8 24 Radar data Stepwise 3 
 

The 50 runs for each model were first processed using Hydrotest (Dawson et al., 2007) 

to calculate the RMSE, CE and MAE. These performance measures were then used to 
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rank the runs from best to worst performance based on the aforementioned three 

measures. The runs with the 5 highest values of each performance statistic were then 

averaged to produce a forecast. This was repeated for the 10 highest values, 15 

highest values and so on at intervals of 5 runs until 50 runs was reached. Performance 

statistics for each of these forecasts were then calculated and are reported in the next 

section along with hydrographs taken from the testing data set. 

 
7.2.2 Results 
Tables 7.2 and 7.3 contain the goodness of fit statistics for the results when selecting 

different numbers of model runs for RMSE/CE (which resulted in no difference in their 

ranking of model runs) and MAE for Models 1 to 8. The bold figures shaded in the 

tables indicate the number of runs that produced the best values for each model. It is 

clear that when examining the MAE, RMSE and CE, the best results are produced by 

taking all 50 runs into the average. Model 8 is the only exception where 45 runs 

produced the best overall results for runs chosen based on best CE/RMSE while 5 runs 

was the best based on MAE.  

 
Table 7.2: Goodness of fit statistics for numbers of runs selected using the best CE/RMSE for 
Models 1 to 8. 

Number of runs selected and averaged Model Goodness 
of fit 5 10 15 20 25 30 35 40 45 50 

PDIFF 0.0226 0.1159 0.0982 0.1401 0.1417 0.1655 0.1749 0.1821 0.1809 0.1722 
MAE 0.0514 0.0500 0.0491 0.0490 0.0490 0.0490 0.0488 0.0488 0.0486 0.0485 

RMSE 0.0971 0.0939 0.0915 0.0911 0.0910 0.0913 0.0910 0.0911 0.0906 0.0902 
1 

CE 0.9667 0.9688 0.9705 0.9707 0.9708 0.9705 0.9707 0.9707 0.9710 0.9713 
PDIFF 0.0022 0.1728 0.2025 0.2834 0.2738 0.3060 0.3044 0.2922 0.2850 0.2722 
MAE 0.0540 0.0544 0.0544 0.0541 0.0535 0.0534 0.0529 0.0524 0.0519 0.0512 

RMSE 0.1137 0.1109 0.1112 0.1099 0.1071 0.1068 0.1051 0.1033 0.1015 0.0995 
2 

CE 0.9543 0.9566 0.9564 0.9573 0.9595 0.9597 0.9610 0.9623 0.9636 0.9650 
PDIFF -0.3922 -0.2986 -0.2518 -0.2479 -0.2505 -0.2230 -0.1921 -0.1688 -0.1487 -0.1331 
MAE 0.0603 0.0606 0.0596 0.0596 0.0592 0.0587 0.0578 0.0576 0.0571 0.0565 

RMSE 0.1095 0.1103 0.1082 0.1084 0.1070 0.1060 0.1045 0.1041 0.1033 0.1021 
3 

CE 0.9577 0.9570 0.9587 0.9585 0.9596 0.9603 0.9614 0.9618 0.9624 0.9632 
PDIFF 0.2059 0.0517 0.0876 0.1532 0.1897 0.2153 0.2420 0.2392 0.2351 0.2442 
MAE 0.0785 0.0779 0.0769 0.0762 0.0758 0.0755 0.0752 0.0751 0.0749 0.0745 

RMSE 0.1446 0.1396 0.1390 0.1364 0.1361 0.1361 0.1361 0.1360 0.1357 0.1352 
4 

CE 0.9260 0.9311 0.9316 0.9342 0.9345 0.9345 0.9345 0.9346 0.9348 0.9353 
PDIFF -0.2822 -0.0696 -0.0590 -0.1193 -0.0599 -0.0547 -0.0469 -0.0357 -0.0300 -0.0288 
MAE 0.0878 0.0895 0.0888 0.0887 0.0886 0.0882 0.0875 0.0867 0.0859 0.0851 

RMSE 0.1732 0.1782 0.1696 0.1664 0.1660 0.1634 0.1609 0.1587 0.1569 0.1553 
5 

CE 0.8938 0.8877 0.8982 0.9020 0.9025 0.9056 0.9085 0.9109 0.9130 0.9146 
PDIFF -0.2354 -0.0056 0.0180 0.0485 0.0549 0.0752 0.0768 0.1110 0.1254 0.1353 
MAE 0.0790 0.0773 0.0770 0.0776 0.0777 0.0773 0.0771 0.0766 0.0765 0.0749 

RMSE 0.1426 0.1388 0.1382 0.1398 0.1405 0.1394 0.1392 0.1386 0.1385 0.1356 6 

CE 0.9281 0.9318 0.9324 0.9308 0.9302 0.9312 0.9314 0.9320 0.9321 0.9350 
PDIFF -0.5284 -0.2151 -0.0458 -0.0724 -0.0889 -0.1094 -0.1286 -0.1072 -0.0924 -0.0837 
MAE 0.7040 0.6864 0.6717 0.6683 0.6688 0.6695 0.6691 0.6673 0.6661 0.6652 

RMSE 0.8795 0.8579 0.8404 0.8338 0.8313 0.8305 0.8287 0.8262 0.8241 0.8225 7 

CE 0.0300 0.0771 0.1145 0.1282 0.1334 0.1351 0.1389 0.1441 0.1484 0.1516 
PDIFF 0.1656 0.0586 -0.0233 -0.0496 -0.0204 -0.0344 -0.0302 0.0035 0.0367 0.0403 
MAE 0.6670 0.6667 0.6660 0.6655 0.6653 0.6645 0.6630 0.6627 0.6626 0.6630 

RMSE 0.8148 0.8155 0.8151 0.8149 0.8146 0.8140 0.8130 0.8128 0.8125 0.8127 
8 

CE 0.1676 0.1661 0.1668 0.1673 0.1680 0.1692 0.1711 0.1716 0.1723 0.1719 
Note that PDIFF is based on the first storm. 
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However, if PDIFF is the main measure of concern, then the pattern is much less clear 

cut. For this error measure, using a smaller number of runs generally produced a better 

result. For example, Models 1 and 2 for runs selected by CE/RMSE and Model 2 

selected by MAE produced the best PDIFF when averaging over only 5 runs. Other 

models produced the best PDIFF when averaging over 10, 15, 20, 30 and 40 runs. As 

there is no pattern regarding the best PDIFF, it seems clear that using 50 model runs 

generally gives the best overall model results regardless of lead time or input 

determination method. 

 
Table 7.3: Goodness of fit statistics for numbers of runs selected using the best MAE for Models 
1 to 8. 

Number of runs selected and averaged Model Goodness 
of fit 5 10 15 20 25 30 35 40 45 50 

PDIFF 0.2054 0.1445 0.1384 0.1295 0.1482 0.1681 0.1749 0.1867 0.1809 0.1722 
MAE 0.0501 0.0498 0.0498 0.0494 0.0492 0.0489 0.0488 0.0487 0.0486 0.0485 

RMSE 0.0945 0.0955 0.0938 0.0921 0.0920 0.0912 0.0910 0.0909 0.0906 0.0902 
1 

CE 0.9685 0.9678 0.9689 0.9700 0.9701 0.9706 0.9707 0.9708 0.9710 0.9713 
PDIFF -0.0219 0.1083 0.2025 0.2525 0.2883 0.2896 0.3017 0.2903 0.2868 0.2722 
MAE 0.0534 0.0539 0.0546 0.0541 0.0536 0.0533 0.0530 0.0525 0.0519 0.0512 

RMSE 0.1079 0.1095 0.1115 0.1104 0.1085 0.1070 0.1054 0.1033 0.1014 0.0995 
2 

CE 0.9589 0.9577 0.9561 0.9570 0.9585 0.9596 0.9607 0.9623 0.9637 0.9650 
PDIFF -0.3559 -0.2274 -0.2598 -0.2479 -0.2290 -0.1903 -0.1922 -0.1744 -0.1487 -0.1331 
MAE 0.0599 0.0585 0.0596 0.0596 0.0591 0.0584 0.0580 0.0576 0.0571 0.0565 

RMSE 0.1087 0.1061 0.1084 0.1084 0.1070 0.1056 0.1050 0.1042 0.1033 0.1021 3 

CE 0.9583 0.9602 0.9585 0.9585 0.9596 0.9606 0.9611 0.9616 0.9624 0.9632 
PDIFF 0.2958 0.1969 0.1747 0.2138 0.2009 0.2209 0.2342 0.2310 0.2374 0.2442 
MAE 0.0798 0.0774 0.0770 0.0762 0.0757 0.0754 0.0753 0.0751 0.0749 0.0745 

RMSE 0.1459 0.1386 0.1386 0.1374 0.1362 0.1362 0.1362 0.1360 0.1357 0.1352 
4 

CE 0.9247 0.932 0.9321 0.9333 0.9344 0.9344 0.9344 0.9346 0.9348 0.9353 
PDIFF -0.4265 0.0266 -0.0331 -0.0110 -0.0592 -0.0499 -0.0507 -0.0378 -0.0285 -0.0288 
MAE 0.0911 0.0902 0.0898 0.0890 0.0883 0.0881 0.0876 0.0869 0.0860 0.0851 

RMSE 0.1979 0.1756 0.1726 0.1696 0.1655 0.1631 0.1608 0.1589 0.1570 0.1553 
5 

CE 0.8615 0.8910 0.8947 0.8982 0.9031 0.9058 0.9085 0.9107 0.9129 0.9146 
PDIFF -0.3256 -0.0002 0.0170 0.0474 0.0472 0.0728 0.0894 0.112 0.1172 0.1353 
MAE 0.0789 0.0777 0.0775 0.0774 0.0776 0.0776 0.0772 0.0767 0.0765 0.0749 

RMSE 0.1423 0.1400 0.1399 0.1397 0.1404 0.1404 0.1395 0.1385 0.1384 0.1356 6 

CE 0.9284 0.9307 0.9308 0.9310 0.9303 0.9303 0.9311 0.9321 0.9322 0.9350 
PDIFF -0.5284 -0.2231 -0.0346 -0.0325 -0.0830 -0.0963 -0.1097 -0.1159 -0.1025 -0.0837 
MAE 0.7040 0.6803 0.6696 0.6662 0.6669 0.6672 0.6675 0.6668 0.6653 0.6652 

RMSE 0.8795 0.8554 0.8400 0.8331 0.8303 0.8287 0.8273 0.8257 0.8235 0.8225 7 

CE 0.0300 0.0824 0.1152 0.1297 0.1354 0.1388 0.1417 0.1450 0.1497 0.1516 
PDIFF 0.1561 0.1280 0.1066 0.0633 0.0490 0.0096 -0.0155 0.0164 0.0419 0.0403 
MAE 0.6447 0.6536 0.6562 0.6578 0.6596 0.6602 0.6616 0.6625 0.6625 0.6630 

RMSE 0.8016 0.8065 0.8084 0.8096 0.8106 0.8110 0.8122 0.8125 0.8124 0.8127 
8 

CE 0.1943 0.1844 0.1805 0.1781 0.176 0.1752 0.1728 0.1722 0.1725 0.1719 
Note that PDIFF is based on the first storm. 

 

Figures 7.2 and 7.3 show the results for a hydrograph in the testing dataset for Models 

3 and 6. The dashed red line is the forecast after averaging over 5 runs and it is clearly 

higher than the forecasts from averaging a higher number of runs. This explains why 

using a smaller number of runs often produces the best PDIFF value.  

 

Models 3 and 6 are for different lead times so the results are similar regardless of lead 

time. The graphs for Models 1, 2, 4 and 5 showed similar patterns and are therefore 

not included here (see Appendix F).  
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Figure 7.2: Results for a storm in 2006 for increasing numbers of runs averaged together, 

chosen by ranking CE/RMSE and MAE for Model 3. 
 

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

31/07/06 19:00 01/08/06 19:00 02/08/06 19:00

Le
ve

l [
m

]

CE

5 10
15 20
25 30
35 40
45 50

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

01/08/06 00:00 01/08/06 06:00 01/08/06 12:00

Le
ve

l [
m

]

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

31/07/06 19:00 01/08/06 19:00 02/08/06 19:00

Le
ve

l [
m

]

MAE

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

01/08/06 00:00 01/08/06 06:00 01/08/06 12:00

Le
ve

l [
m

]

 
Figure 7.3: Results for a storm in 2006 for increasing numbers of runs averaged together, 

chosen by ranking CE/RMSE and MAE for Model 6. 
 

Figures 7.4 and 7.5 are for Models 7 and 8 using radar data as inputs. The same 

patterns can again be seen for these models although Model 8 shows very little 
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difference when using different numbers of model runs. This may explain the differing 

result in Table 7.3. 
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Figure 7.4: Results for a storm in 2005 for increasing numbers of runs averaged together, 

chosen by ranking CE/RMSE and MAE for Model 7 
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Figure 7.5: Results for a storm in 2005 for increasing numbers of runs averaged together, 

chosen by ranking CE/RMSE and MAE for Model 8. 
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One further experiment was added based on the results found here. Since 50 runs 

seemed to generally produce the best result overall, the models were rerun with 100 

runs to see whether the results would keep improving as more runs were added. Table 

7.4 shows the results in terms of goodness of fit statistics. The first thing to note is that 

there is very little difference in the statistics between 50 and 100 runs. For the majority 

of models, 50 runs provides the best results. However, even when models with 100 

runs provide better results, the difference is very small. Therefore, the use of 50 runs 

seems to be a good number when using the BR algorithm (Figure F.5, F.6, F.7).  

 
Table 7.4: Goodness of fit statistics for 50 and 100 runs averaged for Models 1 to 8. 

Model 1 Model 2 Model 3 Goodness of fit 50 runs 100 runs 50 runs 100 runs 50 runs 100 runs 
PDIFF 0.1722 0.1938 0.2722 0.2917 -0.1331 -0.1195 
MAE 0.0485 0.0485 0.0512 0.0507 0.0565 0.0568 

RMSE 0.0902 0.0904 0.0995 0.0995 0.1021 0.1027 
CE 0.9713 0.9712 0.9650 0.9651 0.9632 0.9628 

Model 4 Model 5 Model 6 Goodness of fit 50 runs 100 runs 50 runs 100 runs 50 runs 100 runs 
PDIFF 0.2442 0.2136 -0.0288 0.0858 0.1353 0.1701 
MAE 0.0745 0.0742 0.0851 0.0835 0.0749 0.0772 

RMSE 0.1352 0.1352 0.1553 0.1527 0.1356 0.1397 
CE 0.9353 0.9354 0.9146 0.9175 0.9350 0.9309 

Model 7 Model 8 Goodness of fit 50 runs 100 runs 50 runs 100 runs 
PDIFF -0.0837 -0.0929 0.0403 0.0417 
MAE 0.1256 0.1259 0.1252 0.1255 

RMSE 0.3574 0.3574 0.3532 0.3536 
CE 0.8526 0.8527 0.8561 0.8558 

 

7.3 Varying the Number of Hidden Nodes 
Experiments in Chapters 5 and 6 used hidden nodes of 10 and 20 in the development 

of the neural networks. The number 20 was originally chosen based on a heuristic 

supplied by Dawson and Wilby (1999) and Demuth et al. (2009). Further 

experimentation used 10 nodes as this did not appear to affect the performance too 

much while reducing the computational time considerably so was adopted for 

subsequent experiments. However, the optimal number of hidden nodes to use 

remains an area where little guidance is provided in the literature. Many studies have 

approached this problem using a trial and error procedure. Based on the literature 

review in Chapter 2, three different heuristics will be used: the number of nodes in the 

hidden layer should be half the number of nodes in the input layer (Minns and Hall, 

1996); the number of hidden nodes should be 75% of the number of input nodes 

(Lenard et al., 1995; Jain and Nag, 1995; Walczak and Cerpa, 1999); and the number 

of hidden nodes should be twice the number of input nodes plus 1 (Patuwo et al., 1993; 

Caudill, 1991). The 8 models used in the previous experiments are used again here in 
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this experiment. Table 7.5 lists the models and the number of hidden nodes used 

based on the three heuristics above. 

 
Table 7.5: The number of hidden nodes used in each model experiment based on the three 
heuristics. 

Number of hidden nodes Models Number of input nodes 50% 75% 2*input nodes + 1 
1 
2 
3 

18 
10 
15 

9 
5 
7 

13 
7 

11 

37 
21 
31 

4 
5 
6 

18 
6 
37 

9 
3 

18 

13 
4 

27 

37 
13 
75 

7 
8 

9 
3 

3 
1 

6 
2 

19 
7 

 

7.3.1 Results t+12 hr 
Table 7.6 provides the goodness of fit statistics for Models 1 to 3 for differing numbers 

of hidden nodes. The shaded, bold numbers denote the best performance overall. The 

best performers in this case are the most parsimonious models, with no example of 

where the heuristic 2n +1 produces the best result. The PDIFF and MAE were best 

when half of the input nodes were chosen as the number of hidden nodes while RMSE 

and CE were best when 75% were chosen. Thus there is no conclusive result, other 

than that the hidden nodes should be less than the number of input nodes. 

 
Table 7.6: Goodness of fit statistics for different numbers of hidden nodes for Models 1 to 3. The 
best results overall are shaded and in bold. 

Model 1 Model 2 Model 3 
Goodness 

of fit 50% 75% 2n+1 50% 75% 2n+1 50% 75% 2n+1 

PDIFF 0.1629 0.1618 0.1105 0.2532 0.2112 0.1437
-

0.0637 
-

0.1674
-

0.2839
MAE 0.0482 0.0484 0.0489 0.0490 0.0489 0.0530 0.0561 0.0580 0.0588

RMSE 0.0901 0.0895 0.0897 0.0933 0.0932 0.1022 0.1024 0.1048 0.1074
CE 0.9713 0.9717 0.9716 0.9693 0.9693 0.9631 0.9630 0.9612 0.9593
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Figure 7.6: Results for a storm in 2006 at 12 hour lead time for (a) Model 1; (b) Model 2; and (c) 

Model 3 with different numbers of hidden nodes. 
 

Figure 7.6 shows the model performance visually for a hydrograph in 2006 in the 

testing data set. There is very little difference for Model 1. However, both Models 2 and 

3 show some differences for the model with 2n+1 hidden nodes. For Model 2, there is 

strange decrease in river level during the rising limb of the hydrograph. For Model 3, 

the overestimation of the peak is higher. Both of these results would suggest that 

taking a smaller number of hidden nodes than input nodes is a good strategy. Figure 

7.7 shows a more detailed view of the hydrograph around the peak. These behaviours 

discussed above can be seen even more clearly. 
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Figure 7.7: Results for a storm in 2006 at 12 hour lead time for (a) Model 1; (b) Model 2; and (c) 

Model 3 with different numbers of hidden nodes. 
 

7.3.2 Results t+18 hr 
Table 7.7 shows the goodness of fit statistics for Models 4 to 6 where the difference 

between these and the previous results is a longer lead time. For RMSE and CE, 

Model 4 produced the best results when taking 75% of the number of input nodes as 

hidden nodes. However, both PDIFF and MAE are better when using 2n+1. A lead time 

of 18 hours is more difficult to predict than 12 hours so this more complex problem may 

need more hidden nodes to learn the function properly. 

 
Table 7.7: Goodness of fit statistics for different numbers of hidden nodes for Models 4 to 6. The 
best results overall are shaded and in bold. 

Model 4 Model 5 Model 6 
Goodness 

of fit 50% 75% 2n+1 50% 75% 2n+1 50% 75% 2n+1 

PDIFF 0.3396 0.2592 0.3245 0.1507 0.1875
-

0.0185 0.0269 0.0180
-

0.0086
MAE 0.2155 0.2041 0.2230 0.2097 0.2161 0.2300 0.2134 0.2075 0.2028

RMSE 0.3607 0.3417 0.3635 0.3768 0.3774 0.3887 0.3620 0.3563 0.3465
CE 0.8085 0.8280 0.8054 0.7909 0.7903 0.7775 0.8071 0.8131 0.8232



 

 

163

 
 

 

Figures 7.8 and 7.9 provide visual examination of the model performance. This time 

there is very little difference to note between Models 4 and 6 when using stepwise 

linear regression and pruning to select the inputs. Only in Model 5, where stepwise 

regression and correlation together were used to choose the inputs, is there any 

noticeable difference, i.e. the peak is predicted better while the falling limb is poorly 

predicted. Since there is actually little difference in general between the models, the 

most parsimonious one should always be chosen. 
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Figure 7.8: Results for one storm in 2006 at 18 hour lead time for (a) Model 4; (b) Model 5; and 

(c) Model 6 with different numbers of hidden nodes. 
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Figure 7.9: Results for a storm in 2006 at 18 hour lead time for (a) Model 4; (b) Model 5; and (c) 

Model 6 with different numbers of hidden nodes. 
 

7.3.3 Results t+24 hr 
Table 7.8 contains the goodness of fit statistics for Models 7 and 8 for different 

numbers of hidden nodes based on the three heuristics. The best performing model 

overall for each statistic is shaded and in bold. The result clearly shows that Model 8 

(which uses stepwise regression to reduce the number of input variables) with 75% of 

the input variables as the number of hidden nodes, produces the best results overall. 

This is very parsimonious model, with only 3 inputs and 2 hidden nodes. 

 
Table 7.8: Goodness of fit statistics for different numbers of hidden nodes for Models 7 and 8. 
The best results overall are shaded and in bold. 

Model 7 Model 8 Goodness of 
fit 50% 75% 2n+1 50% 75% 2n+1 

PDIFF 0.0625 -0.2522 0.5223 0.4610 0.0450 0.0625 
MAE 0.6668 0.6741 0.6691 0.6681 0.6622 0.6668 

RMSE 0.8248 0.8283 0.8194 0.8150 0.8120 0.8248 
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CE 0.1470 0.1397 0.1582 0.1670 0.1732 0.1470 
 

Figure 7.10 shows the results visually for a storm in 2005 in the testing data set for 

Models 7 and 8 while Figure 7.11 shows the same storm but in more detail. The figures 

show that all three models predict the majority of the rising limb well. However, the 

model that uses 2n+1 hidden nodes, i.e. the least parsimonious model, is closer to 

predicting the peak than the other two models, especially in the detailed view of Model 

8. 

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5

03/08/05 00:00 10/08/05 00:00 17/08/05 00:00 24/08/05 00:00

Le
ve

l [
m

]

a
50% 75% 2n+1

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5

03/08/05 00:00 10/08/05 00:00 17/08/05 00:00 24/08/05 00:00

Le
ve

l [
m

]

b
50% 75% 2n+1

 
Figure 7.10: Results for a storm in 2005 at 24 hour lead time for (a) Model 7 and (b) Model 8 

with different numbers of hidden nodes. 
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Figure 7.11: More detailed results for a storm in 2005 at 24 hour lead time for (a) Model 7 and 
(b) Model 8 with different numbers of hidden nodes. 

 

In summary, there is no conclusive evidence to suggest that choosing one of the 

heuristics over the other produces the best result. Examination of the goodness of fit 

statistics and hydrographs suggests similarities between them, in which case it would 

be prudent to suggest that the most parsimonious models should always be chosen, 

i.e. select models with hidden nodes that are half the number of input variables. 

However, on occasion, choosing 2n+1 produced a better peak prediction. It also, 

however, produced poorer behaviour in other places. It would seem logical that as the 

complexity of the problem increases, so too should the number of hidden nodes. 

However, until better guidance is provided as to the choice of the number of hidden 

nodes, it is suggested that trial and error continues to be the best method available. 

 

7.4 Experimenting with Normalisation of the Input Data 
As mentioned in section 2.5.2, the data are normalized prior to being input to the neural 

network. However, there is no consensus over what range the data should be 

normalized or what effect this might have on the performance of the model. For 

example, Dawson and Wilby (1998) used [0, 1], Braddock et al. (1998) used [-0.9, 0.9], 

Shamseldin (1997) and Dawson et al. (2006a) used [0.1, 0.9] while Dawson et al. 

(2006b) used [0.2, 0.8]. Therefore, this section explores the use of different ranges of 

normalization of the input data prior to training. Three ranges of normalization were 

investigated including two of the most commonly used ranges, i.e. [-1 to 1] and [0.1 to 

0.9] as well as a more narrow range [0.3, 0.7] after Varoonchotikul (2003). 
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Models 1 and 8 were used in the experiments so that models using different inputs 

could be compared. The minimum and maximum were calculated from the training 

dataset and the training and testing data were then normalized using the three ranges 

listed above. The minimum and maximum values for Model 1 are listed in Table 7.9. 

 
Table 7.9: The minimum and maximum values in the training and testing datasets for Model 1 
and across all historical records. 

Minimum Maximum 
Input 

variables Training Testing
Across all 
historical 
records 

Training Testing 
Across all 
historical 
records 

R 0 0 0 122.8 96 122.8 
P75 0.59 0.90 0.59 5.19 3.90 5.19 
P67 0.43 0.18 0.18 6.28 3.90 6.28 
P1 1.66 1.32 1.46 4.93 4.33 4.93 

 

The maximum value in the training data set at P1 is 4.93 m, which is slightly higher 

than the maximum in the testing data set of 4.33 m. The model is therefore not required 

to extrapolate. A second normalization was also applied. This time the minimum and 

maximum values were calculated across the entire historical record. These are listed in 

the final columns of Table 7.9. The training and testing data were then normalized 

using these minimum and maximum values leading to six different combinations: 

 

• Normalized using min/max from training data set over range [-1, 1] 

• Normalized using min/max from training data set over range [0.1, 0.9] 

• Normalized using min/max from training data set over range [0.3, 0.7] 

• Normalized using min/max from entire historical data set over range [-1, 1] 

• Normalized using min/max from entire historical data set over range [0.1, 0.9] 

• Normalized using min/max from entire historical data set over range [0.3, 0.7] 

 

7.4.1 Results 
Table 7.10 shows the performance statistics for Model 1 for these six combinations 

listed above. The bold, shaded numbers are the best results overall. The first 

observation is that using the minimum and maximum values across the entire historical 

record is better than choosing the values from the training dataset. The exception is for 

PDIFF which is better when normalizing using values from just the training dataset. The 

second observation is that the range [-1, 1] provides the best result overall although 

there are very small differences between the three ranges of normalization. 
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Table 7.10: Goodness of fit statistics for Model 1 using the min/max from the training dataset for 
normalization compared to using values across the entire historical record. 

Normalization using min/max from 
the training dataset (Norm1) 

Normalization using min/max from the 
entire historical record (Norm2) 

Goodness 
of fit 

[-1, 1] [0.1, 0.9] [0.3, 0.7] [-1, 1] [0.1, 0.9] [0.3, 0.7] 
PDIFF 0.1116 0.0856 0.075 0.1022 0.1649 0.1209 
MAE 0.2914 0.2913 0.2913 0.1380 0.1394 0.1393 

RMSE 0.3018 0.3016 0.3016 0.1513 0.1527 0.1526 
CE 0.6783 0.6788 0.6788 0.9192 0.9177 0.9178 

(Bold and shading denotes the best performer.) 

 

Figure 7.12 provides a detailed look at the top of a hydrograph for a storm in 2006 in 

the testing data set. The predictions are similar although it is clear that when 

normalizing across a wider range, the peak predictions, although later, are better. The 

figure also shows a slightly better performance when normalizing using minimum and 

maximum values from the entire historical record. This may be due to the fact that the 

testing data has lower minimum values than the training data set.  
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Figure 7.12: Results for a storm in 2006 comparing different ranges of normalization for Model 1. 
 

Table 7.11 shows the minimum and maximum values for Model 8. This time, instead of 

taking all values across the historical data record, an artificial maximum above the real 

maximum has been used. This is to allow more room at the top end of the prediction 

since it was clear that normalizing using the actual minimum and maximum resulted in 

an under prediction of the peak.  
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Table 7.11: The minimum and maximum values in the training and testing datasets for Model 8 
including an artificial maximum. 

Minimum Maximum 
Input 

variables Training Testing 
Across all 
historical 
records 

Artificial Training Testing 
Across all 
historical 
records 

Artificial 

Z2 0 0 0 0 186.00 196.22  196.22  250 
Z3 0 0 0 0 178.44 185.56  185.56  250 
Z4 0 0 0 0 171.56 205.78  205.78  250 
P1 1.66 1.46 1.66 1.46 4.93 4.90 4.93 6.00 

 

Table 7.12 provides performance statistics using the different normalization ranges and 

the artificial maximum value when normalized between [-1 and 1]. Once again the best 

results are obtained using the minimum and maximum across the entire historical 

record for a narrower range [0.1, 0.9] although, as before, there are little differences in 

the performance measures between the models.  

 
Table 7.12: Goodness of fit statistics for Model 8 using the min/max from the training dataset for 
normalization compared to using artificial maximum values. 

Normalization using min/max 
from the training dataset 

(Norm1) 

Normalization using min/max 
from across the entire 

historical record (Norm2) 

Using 
artificial 
values 

(Norm3) 

Goodness 
of fit 

[-1, 1] [0.1, 0.9] [0.3, 0.7] [-1, 1] [0.1, 0.9] [0.3, 0.7] [-1, 1] 
PDIFF 0.0082 -0.0555 0.0611 0.1272 0.1136 0.183 0.0171 
MAE 0.6622 0.6661 0.6641 0.5776 0.5746 0.5774 0.5764 

RMSE 0.8129 0.8145 0.8135 0.7734 0.7728 0.7735 0.7738 
CE 0.1715 0.1681 0.1701 0.2499 0.2512 0.2498 0.2491 

(Bold and shading denotes the best performer.) 

 

Figure 7.13 provides a detailed look at a storm event in 2005 in the testing data set. 

The results show little difference between using the minimum and maximum from 

training or an artificial maximum although slight overestimations in peak predictions can 

be observed.  
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Figure 7.13: Results for a storm in 2005 comparing normalization using the maximum in the 

training dataset vs normalization using an artificial maximum value for Model 8. 
 

In summary, when using the minimum and maximum from the entire historical record 

for normalization, the MAE, RMSE and CE are better than taking either the minimum 

and maximum from the training dataset or using an artificial maximum. Regardless of 

which normalization range was used, the error measures were quite similar to one 

another. The range of normalization therefore appears to have less effect than the 

values of the minimum and maximum used for normalization. This is clearly an area 

that still requires further experimentation. 

 

7.5 Conclusions 
This chapter investigated three aspects of neural network modelling: the number of 

runs needed in the BR algorithm; the number of hidden nodes to choose; and what 

range of normalization to select. The best models were selected from the previous 

chapters for further experimentation. Different numbers of runs were used in the 

averaging process from 5 to 50 at intervals of 5. The results clearly showed that 50 

runs is the best number to choose. It is also evident that a sufficient number of runs is 

needed to average out the variation between individual runs, which is a function of 

weight initialization. However, this is rarely reported in the literature. Most papers 
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appear to use a single run and are unaware of the consequences of the effect of weight 

initialization and ultimately the uncertainty in the model predictions.  

 

The experimentation with hidden nodes was generally inconclusive. Using less hidden 

nodes than the number of inputs (whether 50% or 75%) generally produced better 

performance statistics. However, as the lead time of the model increased, there were 

situations where 2n+1 hidden nodes produced a better result. Inspection of the 

hydrographs showed that the least parsimonious model sometimes produced a better 

peak prediction but with other consequences, i.e. poorer behaviour on other parts of 

the hydrograph. Therefore trial and error remains the best method for determining the 

number of hidden nodes until further guidance appears in the literature. 

 

Experiments with normalization of the data provided no conclusive evidence regarding 

which range to choose, i.e. a wide range such as [-1, 1] or a narrower one such as [0.3, 

0.7]. However, it did show that choosing a larger minimum and maximum (either from 

the entire historical record or using an artificial maximum higher than the maximum in 

the training data set) was better than choosing the minimum and the maximum from 

the training data set, which is common practice, especially if prediction of the peak is 

the main concern.  
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Chapter 8 Conclusions 
 

8.1 Introduction 
This chapter summarizes the research findings of this study in terms of the original 

aims and objectives to demonstrate how these have been achieved and to highlight 

what the main findings of the research are. This is followed by a discussion of the main 

limitations encountered during the research. This final section forms a set of 

recommendations for future work that should be carried out by researchers in the area 

of neural network flood forecasting.  

 

8.2 Summary of the Research Findings 
The thesis has made several significant contributions to the knowledge of neural 

network flood forecasting. These contributions will be highlighted in this section. The 

overall aim of this thesis was to determine the most effective neural network approach 

to forecasting stage in a large monsoon-fed river system through multiple experiments 

with different inputs and neural network parameterisations. The main findings of the 

research are placed within the context of the original objectives of the research (as 

listed in Chapter 1) to demonstrate how these objectives have been achieved and the 

significance of the research findings. 

 

Objective 1: To review the relevant literature on neural network modelling in 
hydrology 
A comprehensive review of the literature on neural network modelling was undertaken 

in Chapter 2. Neural networks were first placed within the general framework of 

approaches to hydrological modelling. An overview of neural networks was then 

provided along with different applications in hydrological modelling that have appeared 

in the literature over the last two decades. During this review, some important issues 

regarding the lack of guidance on neural network model development were raised. One 

of these issues was regarding how to choose the inputs to the model. A more detailed 

review of this issue was undertaken as part of Objective 2 and was the subject of 

subsequent experimentation in Objective 3. In addition to input determination, the lack 

of guidance with respect to other model development decisions was also highlighted, 

including how to choose the number of hidden nodes and the range of normalization. 

Further experimentation with these issues was undertaken as part of Objective 5. 
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The literature review then summarised the use of neural networks in hydrology and 

water resource management through the use of a search engine. It was clear from this 

exercise that neural networks are being used with increasing momentum in this field. 

Finally, hydrological modelling (both physical/conceptual and data-driven) was 

reviewed for the study area. Although some applications do exist, many are not 

relevant in terms of the temporal resolution of the forecasts or the results were not 

presented in sufficient detail to make any reasonable conclusions about model 

performance. Moreover, the lead times of these models were generally short, i.e. 12 

hours or less. Attempts at extending the lead time of the forecasts using radar data has 

been tackled further in Objective 4.  

 

Objective 2: To review and critically evaluate existing input determination 
techniques 
A critical evaluation of input determination techniques was undertaken and the results 

were presented in Chapter 4. Of the different methods available, a subset was chosen 

for subsequent experimentation (i.e. Objective 3) based on two criteria: the ability to 

automate the method and ease of implementation. The final techniques chosen for 

experimentation included: correlation; stepwise regression; a combination of correlation 

and stepwise regression, a genetic algorithm; M5 model trees, a data mining search 

algorithm; a pruning algorithm and PMI (partial mutual information). No such 

comprehensive review has yet been published apart from the section on input 

determination methods by Maier et al. (2010). Thus, this chapter could be turned into a 

valuable review paper for researchers to build upon. 

 

Objective 3: To experiment with a range of different input determination 
techniques  
Building on the review undertaken in Objective 2, the eight methods were evaluated in 

a series of different experiments involving the development of neural networks for the 

Upper Ping catchment. The results of the neural network models were evaluated using 

a series of commonly employed goodness-of-fit statistics and visual inspection of the 

hydrographs. The set up and results of these experiments were provided in Chapter 5.  

 

Using all the inputs did not produce the best model so it is clear that some form of input 

determination technique is required. The use of stepwise regression, genetic 

algorithms and pruning algorithms resulted in a reduction of input variables by 60-70%, 

while the combination correlation and stepwise regression reduced input variable of 

approximately 70-80%. Other input determination methods such as the data mining 
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search method and PMI reduced the number of inputs by approximately 80-90%. The 

M5 model tree resulted in a reduction of approximately 30%. The PMI method did not 

produce a satisfactory set of variables since only P1 was selected, there were no 

upstream stations. The data mining search method produced the best peak prediction 

but had the greatest delay in the rising limb of the hydrograph. In contrast, the genetic 

algorithm and stepwise regression predicted a reasonable peak and a better rising time 

than the data mining search method although the performance of the stepwise 

regression method was better than that of the genetic algorithm. In contrast, the 

combination of correlation and stepwise regression showed the strongest performance 

on the rising limb of the hydrograph, and produced a better overall performance than 

either correlation or stepwise regression used on their own. Therefore, the most 

successful technique emerging from this study is the combination of correlation and 

stepwise regression. This method has not appeared before in the literature and 

represents a simple yet innovative approach to input determination. Moreover, such a 

comprehensive experimentation with input determination methods has not been 

published and therefore represents a potential contribution to the scientific literature. 

 

In addition, the overall neural network performance in predicting water stage at P1 

station using three water stage stations as input variables can forecast at a maximum 

lead time of approximately 18 hrs with a 3-8 hr delay in the rising limb and a 0.1-10 cm 

error in peak prediction. However, the model performance depends on the wet/dry 

conditions in the catchment and physical changes in the river. 

 

Objective 4: To experiment with radar data as an input to the neural network 
models as a way of improving the model accuracy and extending the lead time of 
the forecasts 
This objective was achieved by adding raw radar reflectivity data to the neural network 

models in a series of different experiments. The setup of these experiments and the 

results were presented in Chapter 6. The results clearly showed that it is possible to 

increase the lead time of the forecast by a considerable amount, i.e. 24-30 hr lead time 

with 0.1 cm error at the peak but unfortunately, the model could not predict the full 

hydrograph, especially the falling limb. Using both radar and three water stage stations 

as input variables does improve the falling limb but the lead time of prediction drops 

back to 18 hours with a 3 cm error in pea prediction. Therefore separate NN models 

should be used for different lead times. 
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In addition, increasing the number of sample points across the catchment resulted in a 

slight improvement in the model performance. It was shown that the pattern of storm 

movement affects the model performance with the best results achieved for the large 

storm in 2005. Unfortunately, the model performance was degraded for storms in other 

years, i.e. 2003 and 2006.  

 

It was hypothesised that storm movement patterns and wet/dry conditions in the 

catchment will influence the ability of the neural networks to accurately predict the flood 

using radar data. The results here can only be considered to be indicative. With such a 

small number of storm events for training and testing, and missing radar data for the 

first two storms in 2006, the model could not be calibrated separately for different 

rainfall patterns with enough confidence to draw conclusions. It was not possible to 

make vast improvements to the forecasts for these years. However, the potential of 

using radar reflectivity data in this way was clearly demonstrated. Moreover, radar data 

have not been used in this way before in NN flood forecasting and therefore represents 

a significant scientific contribution. This has already been proven through the recent 

publication by Chaipimonplin et al. (2010).  

 

Objective 5: To investigate model improvements through experimentation with 
the training algorithm and internal neural network parameters.  
This objective was tackled through a series of experiments with the BR training 

algorithm, the number of hidden nodes and the range of normalisation of the input data. 

It was shown in Chapter 5 that Bayesian Regularization performed better than using 

the Levenberg-Marquardt algorithm on its own. However, the neural network must be 

trained many times and the results averaged to produce a good result in order to 

average out the variation between individual runs. Experiments showed that 50 runs 

was a good number to use in creating an average prediction and it confirms the 

number used by Anctil (2007).  

 

Experiments were undertaken whereby the number of hidden nodes was set based on 

taking 50% of the number of inputs, 75% of the number of inputs and 2n+1 hidden 

nodes where n is the number of inputs. Using less hidden nodes than the number of 

inputs (whether 50% or 75%) generally produced better performance statistics. 

However, as the lead time of the model increased, there were situations where 2n+1 

hidden nodes produced a better result, perhaps because the modelling problem at 

longer lead times becomes more complex. Inspection of the hydrographs showed that 

the least parsimonious model sometimes produced a better peak prediction but with 



 

 

176

 
 

other consequences, i.e. poorer behaviour on other parts of the hydrograph. Therefore 

trial and error remains the best method for determining the number of hidden nodes 

until further guidance appears in the literature. 

 

Experiments were also undertaken with different ranges of normalization ([-1, 1], [0.1, 

0.9] and [0.3, 0.7]) using the minimum and maximum from (a) the training data set (the 

most common practice); (b) across the entire historical record; and (c) using an artificial 

maximum value. The hydrographs revealed that there is not much different between 

the three ranges. However, it did show that choosing a larger minimum and maximum 

(either from the entire historical record or using an artificial maximum higher than the 

maximum in the training data set) was better than choosing the minimum and the 

maximum from the training data set itself.  

 

The research undertaken as part of this objective has added a scientific contribution to 

the growing literature on what parameters and architecture to use.  

 

Objective 6: To highlight the limitations of the study and to make 
recommendations for areas for further research.  
The limitations and recommendations for further research are outlined in the next 

section, which comprises a short research agenda for the future. This section also 

concludes the thesis.  

 

Overall the results have therefore shown that, despite all the data limitations, neural 

networks can be applied for effective flood prediction in the Upper Ping, which 

suggests that they should also be considered for use in similar large monsoon-fed 

catchments. The most viable results were achieved for a lead time of approximately 15 

hours with a 1.9 cm error at the peak. However, when data from radar images was 

added, this lead time could be increased to 24 to 30 hours in the future with only 0.1 

cm error at the peak (Table 8.1). This is very helpful when defence and evacuation 

plans have to be put into operation in a large and complex city like Chiang Mai. 
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Table 8.1: Summary the best model by PDIFF and error in the time of the rising limb at t+18 hr. 

Section 2001 S1 S2 S4 S5 2006 
5.3     Time (hr) 
          PDIFF (m) 

7.5 
0 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

5.4     Time (hr) 
          PDIFF (m) 

/ 
/ 

/ 
/ 

3.5 
-0.019 

9 
-0.011 

5.5 
0.083 

/ 
/ 

5.5     Time (hr) 
          PDIFF (m) 

/ 
/ 

/ 
/ 

3 
-0.447 

8.5 
0.0788 

6 
-0.018 

/ 
/ 

5.6     Time (hr) 
          PDIFF (m) 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

3.5 
0.074 

6.6     Time (hr) 
          PDIFF (m) 

/ 
/ 

-24 
-0.063 

-2 
-0.066 

/ 
/ 

2 
0.134 

/ 
/ 

6.7*   Time (hr) 
          PDIFF (m) 

/ 
/ 

-17 
-0.610 

-1 
-0.001 

/ 
/ 

/ 
/ 

/ 
/ 

6.10  Time (hr) 
          PDIFF (m) 

/ 
/ 

/ 
/ 

2 
-0.030 

10 
-0.360 

9 
-0.353 

/ 
/ 

*At t+24 hr 
 

Although some modelling (both conceptual/physical and data-driven) has been 

undertaken in the Upper Ping catchment (as detailed in Chapter 2), it is difficult to 

compare the results found here directly with any of these studies. However, an attempt 

to compile the results is shown below in Table 8.2. 

 
Table 8.2: Comparison of results from this research and previous studies. 

Testing 2005 at t+12 hr Test 2006 
Goodness of 

fit 

This 
research 
(1 Aug-4 

Nov) 

Chidthong et al. 
(2009) 

(1-31Aug/1-30 
Sep) 

This research 
t+18 hr (2 Aug-

31Oct) 

Ninprom and 
Chumchean (2009) 

t+24 hr (29 Aug-20 Sep) 

RMSE (m) 0.125 0.100/0.137 0.111 0.52 
 

The study by Chidthong et al. (2009) produces results that are comparable to those 

found here although the period of testing (and therefore the period over which the 

statistics were calculated) is different. The study by Ninprom and Chumchean (2009) 

was undertaken for a longer lead time and a shorter testing period so the higher RMSE 

may be partly artificial. This table also illustrates the lack of previous work in this area 

using hourly data. 

 

8.3 Limitations of the Research 
The first major limitation of this study is the amount of data available for the Upper Ping 

catchment. There was only one hourly rain gauge available and that was very close to 

Chiang Mai so coverage of this large catchment was not good. Therefore, more hourly 

rain gauges are needed higher up in the catchment. Moreover, there were only three 

water stage stations available that recorded hourly stage data, i.e. P75, P67 and P1, 



 

 

178

 
 

where the travel time between P1 and P75 is less than 24 hours. Adding water level 

stations higher up in the catchment may improve the model performance. There were 

no hourly data available from station P20, which is further up in the catchment, and has 

been used in previous forecasting daily models (Patsinghasanee et al., 2004; 

Chidthong and Supharatid, 2007; Chidthong et al., 2009). This fact also limited the 

opportunity to compare the performance of these models with the previous studies. 

Further attempts should be made to obtain data for this station in the future. Secondly, 

there are problems with the locations of other water stage stations, i.e. P21, P4a and 

P75. For example, P21 is not located on the main river and P75 is located downstream 

of a dam, so the water stage at P75 is affected by releases from the dam. Future 

models could potentially be improved if the timing records of water release from the 

dam could be obtained and integrated. Finally, as the Ping catchment is a large and 

complex catchment, increasing the number of hidden layers from one to two might 

improve the model performance (Bodri and Cermak, 2000).  

 

The second limitation involves the use of radar image data and information about the 

direction in which the storm is moving. Clearly the reflectivity imagery data used here 

are a limited surrogate for precipitation data. In theory the easiest floods to predict will 

be for those events where storms move across the catchment from the north-east, 

covering the upstream stations and then P1. When the storms come from a 

southwesterly direction, the storm will hit the lower catchment first and then move north. 

As a consequence, the neural network model may fail to predict the floods at P1 in this 

situation. More data are needed, in particular more radar data (capturing a greater 

variety of storm types) as data representative of all situations should be included in the 

training data (Maier et al., 2010). The study was limited by the amount radar data that 

was available, i.e. only images from 2005 and 2006. More images will be obtained in 

the future in order to try to pick out storm patterns, possibly training different neural 

networks to handle different types of storms.  

 

8.4 Recommendations for Futher Research 
Maier et al. (2010) make a series of six recommendations for future work in the area of 

NN modelling in hydrology. The research undertaken in this thesis specifically 

addresses three of these recommendations, which clearly shows the relevance of the 

research questions and the subsequent findings. These recommendations and their 

relationship to this research are summarised below: 
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1. Work should continue on the development of hybrid models – although hybrid 

models are generally considered to be the integration of more than one model, e.g. 

ensemble NNs or neuro-fuzzy, the research in this thesis has paved the way for 

hybrid modelling research in the future, in particular with respect to capturing 

different storm patterns. The research has clearly shown that some storms were 

predicted better than others, where it was hypothesised that this may be a result of 

different monsoonal storm patterns. A recommendation for further research is 

therefore to build different NN models to capture different storm patterns and to 

then integrate these individual NN models into a single hybrid solution.  

 

2. More work should be undertaken on investigating methods of input determination – 

a huge portion of this research has dealt with exactly this recommendation as it was 

recognised by the author as an important area of work. This research represents 

the first systematic attempt at testing a range of automated methods for NN 

modelling. The results showed that simple methods such as correlation or stepwise 

linear regression and correlation together (which is something tried out in this 

research for the first time) represent good methods. However, when the problem 

becomes more complex, then other methods such as PMI, a genetic algorithm and 

data mining may produce better solutions. It is clear, however, that much work 

needs to continue in this area to see whether patterns or guidelines emerge that 

can help NN modellers make the best choice of input determination method. 

 

3. More work should continue on determining the optimal NN structure and 

architecture – Chapter 7 dealt with the recommendation by undertaking a series of 

experiments with varying model parameters. It may well be that no optimal solution 

actually exists but that there are many good possible solutions. The findings in 

chapter 7 showed that modellers using Bayesian Regularisation should never use a 

single model instance but develop several and then integrate the results either 

through averaging or some other ensemble method. Here is definitely an area 

where further research could be undertaken in terms of how to best develop a NN 

using the BR algorithm. In terms of the number of hidden nodes, the research 

showed that trial and error may still be the best way to determine this parameter 

until some type of more automated selection process appears. Finally, in terms of 

the ranges of normalisation, the significant finding here was that the range should 

be wider than the actual range of the training data set. Thus the research has 

added valuable knowledge to this area of determining an optimal NN structure and 
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architecture but it is clear that much more work of the type that was undertaken in 

Chapter 7 is recommended for further research. 

 

Another absolutely crucial area for further investigation is the use of radar data in 

neural network modelling. The potential for using raw reflectivitiy data as an input to NN 

models for flood forecasting represents one of the biggest innovations of this research. 

Further experiments should be undertaken to assess how useful the data could be in 

other catchments and other types of river systems. More specifically, further research 

should involve increasing the number of sample points over the upper catchment and 

increasing the area of sampling to see what effect this has on the accuracy of the 

forecasts. The problem with the prediction of the falling limb of the hydrograph also 

needs to be resolved. Chumchean (2007) investigated the Z-R relationship in Thailand 

and she suggested that the radar reflectivity less than 15 dBZ and greater than 53 dBZ 

should be ignored to prevent errors due to noise or from hail. Thus, the input data 

should be preprocessed to remove these values before they are input to the NN. This 

may already lead to a better performance at lower water levels where the predictions 

are currently poor when using radar data alone. This is clearly an area of great 

potential where many new research questions can be asked in the future. 
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Appendix A: Hydrographs of Case Study 1 
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Figure A.1: Observed and predicted water level at P1 station, 1 May – 30 Sep 2001 (testing 

data) for lead time of 6 hours. 
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Figure A.2: Observed and predicted water level at P1 station, 1 May – 30 Sep 2001 (testing 

data) for lead time of 12 hours. 
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Figure A.3: Observed and predicted water level at P1 station, 1 May – 30 Sep 2001 (testing 

data) for lead time of 18 hours. 
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Figure A.4: Observed and predicted water level at P1 station, 1 May – 30 Sep 2001 (testing 

data) for lead time of 24 hours. 
 

Note 
 
A: All input, C: Correlation > 0.9, S: Stepwise regression, CS: Correlation > 0.9 + Stepwise 
regression, M: M5 model tree, D: Data mining, G: Genetic algorithms 
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Appendix B: Hydrographs of Case Study 2  
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Figure B.1: Dataset one, compare of the BR and LM model at P1 station, 1 Aug – 31 Oct 2005 

(testing data) for lead time of 6 hours. 



 

 

203

 
 

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

01/08/05 15/08/05 29/08/05 12/09/05 26/09/05 10/10/05 24/10/05

Le
ve

l [
m

]

Observed
BR C
LM C

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

01/08/05 15/08/05 29/08/05 12/09/05 26/09/05 10/10/05 24/10/05

Le
ve

l [
m

]

Observed
BR CS
LM CS

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

01/08/05 15/08/05 29/08/05 12/09/05 26/09/05 10/10/05 24/10/05

Le
ve

l [
m

]

Observed
BR S
LM S

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

01/08/05 15/08/05 29/08/05 12/09/05 26/09/05 10/10/05 24/10/05

Le
ve

l [
m

]

Observed
BR G
LM G

 
Figure B.2: Dataset one, compare of the BR and LM model at P1 station, 1 Aug – 31 Oct 2005 

(testing data) for lead time of 12 hours. 
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Figure B.3: Dataset one, compare of the BR and LM model at P1 station, 1 Aug – 31 Oct 2005 

(testing data) for lead time of 18 hours. 
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Figure B.4: Dataset two, compare of the BR and LM model at P1 station, 1 Aug – 31 Oct 2005 

(testing data) for lead time of 6 hours. 
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Figure B.5: Dataset two, compare of the BR and LM model at P1 station, 1 Aug – 31 Oct 2005 

(testing data) for lead time of 12 hours. 
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Figure B.6: Dataset two, compare of the BR and LM model at P1 station, 1 Aug – 31 Oct 2005 

(testing data) for lead time of 18 hours. 
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Figure B.7: Dataset three, compare of the BR and LM model at P1 station, 1 Aug – 31 Oct 2005 

(testing data) for lead time of 6 hours. 
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Figure B.8: Dataset three, compare of the BR and LM model at P1 station, 1 Aug – 31 Oct 2005 

(testing data) for lead time of 12 hours. 
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Figure B.9: Dataset three, compare of the BR and LM model at P1 station, 1 Aug – 31 Oct 2005 

(testing data) for lead time of 18 hours. 
Note 
 
C: Correlation > 0.9, S: Stepwise regression, CS: Correlation > 0.9 + Stepwise regression, G: 

Genetic algorithms 
BR: Bayesian regularization, LM: Levenberg-Marquardt 
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Appendix C: Hydrographs of Case Study 3 
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Figure C.1: Observed and predicted water level at P1 station, 1 Aug – 31 Oct 2005 (testing 

data) for lead time of 6 hours. 
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Figure C.2: Observed and predicted water level at P1 station, 1 Aug – 31 Oct 2005 (testing 

data) for lead time of 12 hours. 
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Figure C.3: Observed and predicted water level at P1 station, 1 Aug – 31 Oct 2005 (testing 

data) for lead time of 18 hours. 
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Appendix D: Hydrographs of Case Study 4 
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Figure D.1: Observed and predicted water level at P1 station, 2 Jul – 31 Oct 2006 and 2 Aug – 

31 Oct 2007 (testing data) for lead time of 6 hours. 
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Figure D.2: Observed and predicted water level at P1 station, 2 Jul – 31 Oct 2006 and 2 Aug – 

31 Oct 2007 (testing data) for lead time of 9 hours. 
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Figure D.3: Observed and predicted water level at P1 station, 2 Jul – 31 Oct 2006 and 2 Aug – 

31 Oct 2007 (testing data) for lead time of 12 hours. 
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Figure D.4: Observed and predicted water level at P1 station, 2 Jul – 31 Oct 2006 and 2 Aug – 

31 Oct 2007 (testing data) for lead time of 15 hours. 
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Figure D.5: Observed and predicted water level at P1 station, 2 Jul – 31 Oct 2006 and 2 Aug – 

31 Oct 2007 (testing data) for lead time of 18 hours. 
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Appendix E 
 
Table E.1: Input variables selected by four input determination techniques (denoted by x) for 6, 
9, 12, 15, 18, 21 and 24 hour lead time of Experiment 1. 

E1
6 9 12 15 18 21 24 6 9 12 15 18 21 24 6 9 12 15 18 21 24 6 9 12 15 18 21 24

Z11 x x x
Z12 x x
Z13 x x x x x

12Z11 x x x x
12Z12 x
12Z13 x x x x x x
24Z11 x x x x
24Z12 x x
24Z13 x x x x x x
36Z11 x x x x x x
36Z12 x x
36Z13 x x x
48Z11 x x x x
48Z12 x x
48Z13 x x
60Z11 x
60Z12 x x x x x
60Z13 x x x x
72Z11 x x x x
72Z12 x x x
72Z13 x x x
84Z11 x x x x
84Z12 x x x x x x
84Z13 x x x x x x x x x
96Z11 x
96Z12 x x x x x x
96Z13

108Z11 x x x x x
108Z12 x x x
108Z13 x x x
120Z11 x x
120Z12 x
120Z13 x
132Z11 x x x
132Z12 x x x x x x
132Z13 x x x x
144Z11 x x x
144Z12 x x x x
144Z13 x x x x x x
156Z11 x x x x x x x
156Z12 x x
156Z13 x x
168Z11 x
168Z12 x x
168Z13 x x x x x

Z21 x x
Z22 x x x x x x
Z23 x x x x x

12Z21 x x x x x x
12Z22 x x x x x
12Z23 x x x x
24Z21 x x x x x x x
24Z22 x x x x x x x x
24Z23 x x x
36Z21 x x x x
36Z22 x x x x x x x x x x
36Z23 x
48Z21 x x x x x x x x x x x
48Z22 x x x x x x x x x x x
48Z23 x x x x x x x x x x
60Z21 x x x x x x
60Z22 x x x x x x x x x x x x x x
60Z23 x x x x
72Z21 x x x x
72Z22 x x x x x x x x x x x x x
72Z23 x x x
84Z21 x x x x
84Z22 x x x x x x x
84Z23 x x x x x x x x
96Z21 x x x x x x x
96Z22 x x x x x x x x x x x x
96Z23 x x x x x

108Z21 x x x x x
108Z22 x x x x x x x x
108Z23 x x x x x
120Z21 x x x x x x x
120Z22 x x
120Z23 x x x x
132Z21 x x x x x x x
132Z22 x x x x x
132Z23 x x x x
144Z21 x x x x x x x
144Z22 x x x x x
144Z23 x x
156Z21 x x x x x x x
156Z22 x x x x x x x x x
156Z23 x x x x x x x
168Z21 x x x x x x x x x x x x
168Z22 x x x x x x x x x
168Z23 x x x x x x x x x x
Total 2 2 1 1 4 2 3 23 21 18 22 24 24 21 1 2 2 3 4 6 5 25 40 39 40 42 37 39

Correlation Stepwise Regression Data Mining Genetic Algorithm
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Table E.2: Input variables selected by four input determination techniques (denoted by x) for 6, 
9, 12, 15, 18, 21 and 24 hour lead time of Experiment 1 (continue). 

E1
6 9 12 15 18 21 24 6 9 12 15 18 21 24 6 9 12 15 18 21 24 6 9 12 15 18 21 24

Z31 x x x x x x
Z32 x x x
Z33 x x x x x x

12Z31 x x x x x x x
12Z32 x x x
12Z33 x x x x
24Z31 x x x x x x x x
24Z32 x x x
24Z33 x
36Z31 x x x x
36Z32 x x
36Z33 x x x x x x x
48Z31 x x x x x x x x
48Z32 x x x x x x
48Z33 x x x x x
60Z31 x x x x x x
60Z32 x x x x x x x x
60Z33 x x x x x
72Z31 x x x
72Z32 x x x x x x
72Z33 x x x
84Z31 x x x x
84Z32 x x x x x x
84Z33 x x x
96Z31 x x x
96Z32 x x x x x x
96Z33 x x x x

108Z31
108Z32 x x x x x
108Z33 x x x x x
120Z31 x
120Z32 x x x
120Z33 x x x x
132Z31 x
132Z32 x x
132Z33
144Z31 x x x
144Z32 x x
144Z33 x x
156Z31 x
156Z32 x x x
156Z33 x x x x
168Z31 x x x x x x x x x x
168Z32 x x x x x x x x x
168Z33 x x x x x x x x x

Z41 x x x x
Z42 x
Z43 x x x x

12Z41 x x x x x
12Z42 x x x x x x x x
12Z43 x x
24Z41 x x x x x x
24Z42 x x x x
24Z43 x x
36Z41 x x x
36Z42 x x x x
36Z43 x
48Z41 x x x x x
48Z42 x x x x x x x
48Z43 x x x x
60Z41 x x x x x
60Z42 x x x x x x x x
60Z43 x x x x x x
72Z41 x x x x x x
72Z42 x x x x x x
72Z43 x x x x x x
84Z41 x x x
84Z42 x x x x x x x x x x x x x x x x x x
84Z43 x x x x x
96Z41 x x x x x
96Z42 x x x x x x x x x x x x x x x x x x x x
96Z43 x x

108Z41 x x x x x
108Z42 x x x x x x x x x x x x x x
108Z43 x x x x x
120Z41 x x
120Z42 x x x x x x x x x x x x x x x x
120Z43 x x x x
132Z41 x x x x
132Z42 x x x x x x x x
132Z43 x
144Z41 x x x x x x
144Z42 x x x x x x x x x x x x x
144Z43 x x x x
156Z41 x x x
156Z42 x x x x x x x x x x x x x x
156Z43 x x x x x x x
168Z41 x x x x x x x x x x x x x
168Z42 x x x x x x x x x x x x x x x x x x x x
168Z43 x x x x x x x x
Total 6 6 5 5 7 5 6 24 23 22 19 25 25 31 2 3 3 3 4 6 6 28 30 45 37 38 39 38

Correlation Stepwise Regression Data Mining Genetic Algorithm
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Table E.3: The goodness of fit measures for a lead time 6, 9, 12, 15, 18, 21 and 24 hours of 
Experiment 1. 

Input Determination Techniques Model Statistic C S G D 
Reduce input 8 (95.5%) 47 (73.8%) 53 (70.5%) 3 (98.3%) 

PDIFF (m) 0.4997 0.2716 0.6707 0.5156 
MAE (m) 0.3782 0.2550 0.3034 0.4191 

RMSE (m) 0.4869 0.3748 0.3937 0.5209 
CE 0.7026 0.8238 0.8056 0.6597 

t+6 

Time delay (hr) -13 8 10 -12 
Reduce input 8 (95.5%) 44 (75.5%) 70 (61.1%) 5 (97.2%) 

PDIFF (m) 0.1042 0.5500 0.3725 0.3799 
MAE (m) 0.3753 0.3062 0.2721 0.3569 

RMSE (m) 0.5021 0.4106 0.3640 0.4810 
CE 0.6837 0.7885 0.8337 0.7097 

t+9 

Time delay (hr) -10 11 11 -9 
Reduce input 6 (96.6%) 40 (77.7%) 84 (53.3%) 5 (97.2%) 

PDIFF (m) -0.223 0.3294 -0.1592 0.4858 
MAE (m) 0.3692 0.3395 0.2608 0.3426 

RMSE (m) 0.4758 0.4141 0.3214 0.4735 
CE 0.7159 0.7848 0.8704 0.7187 

t+12 

Time delay (hr) -7.5 3 2 -6 
Reduce input 6 (96.6%) 41 (77.2%) 77 (57.2%) 6 (96.9%) 

PDIFF (m) -0.1058 0.0521 0.3874 0.4212 
MAE (m) 0.3706 0.2913 0.3560 0.3198 

RMSE (m) 0.4763 0.3775 0.4741 0.4145 
CE 0.7152 0.8212 0.7179 0.7844 

t+15 

Time delay (hr) -4.5 7 11 -4 
Reduce input 11 (93.8%) 49 (72.7%) 80 (55.5%) 8 (95.5%) 

PDIFF (m) 0.1279 0.4658 0.0414 -0.0661 
MAE (m) 0.3713 0.3902 0.2989 0.3045 

RMSE (m) 0.4519 0.4946 0.3613 0.3941 
CE 0.7437 0.6930 0.8362 0.8051 

t+18 

Time delay (hr) -1 24 2.5 -2 
Reduce input 7 (96.1%) 49 (72.7%) 76 (57.7%) 12 (93.3%) 

PDIFF (m) -0.0141 0.3426 0.0603 0.0895 
MAE (m) 0.4015 0.3401 0.3063 0.3051 

RMSE (m) 0.5175 0.4607 0.4075 0.3881 
CE 0.6641 0.7337 0.7917 0.8110 

t+21 

Time delay (hr) 1.5 11 14 0 
Reduce input 9 (95%) 52 (71.1%) 77 (57.2%) 11 (93.8%) 

PDIFF (m) -0.0324 0.5367 0.4740 -0.3966 
MAE (m) 0.3992 0.3584 0.3956 0.2885 

RMSE (m) 0.5255 0.4710 0.5271 0.3847 
CE 0.6537 0.7219 0.6516 0.8145 

t+24 

Time delay (hr) 4 6 20 1 
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Figure E.1: Comparison of the hydrographs for 4 models at 6, 9 and 12 hour lead time, testing 

S2 (2 – 24 Aug 2005) of Experiment 1. 
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Figure E.2: Comparison of the hydrographs for 4 models at 15, 18, 21 and 24 hour lead time, 

testing S2 (2 – 24 Aug 2005) of Experiment 1. 
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Table E.4: Input variables selected by four input determination techniques (denoted by x) for 6, 
9, 12, 15, 18, 21 and 24 hour lead time of Experiment 2. 

E2
6 9 12 15 18 21 24 6 9 12 15 18 21 24 6 9 12 15 18 21 24 6 9 12 15 18 21 24

Z11 x x x x x x x x x x x x x
Z12 x x x x x x
Z13 x x x

12Z11 x x x x x
12Z12 x x x x x x x
12Z13 x x x x x x x x x x x x
24Z11 x x x x x x x
24Z12 x x
24Z13 x x x x x x x x x x x
36Z11 x x x x
36Z12 x x x x x x x x x
36Z13 x x x x x x x x x
48Z11 x x x x x x x x x x
48Z12 x x x x x x x x
48Z13 x x x x x x x
60Z11 x x x x
60Z12 x x x x x x x x x x
60Z13 x x x x x x x
72Z11 x x x x
72Z12 x x x x x x x x x x x
72Z13 x x x x
84Z11 x x x x x x x x x
84Z12 x x x x x x x x x x x x x x
84Z13 x x x
96Z11 x x x x x x x
96Z12 x x x x x x
96Z13 x x

108Z11 x x x x x x
108Z12 x x x
108Z13 x x x
120Z11 x x x x x x x
120Z12 x x x x
120Z13 x x x
132Z11 x x x x x x x x
132Z12 x x x x x x x x x
132Z13 x x x x x x
144Z11 x
144Z12 x x x
144Z13 x x
156Z11 x x x x
156Z12 x x
156Z13 x x x x x x x
168Z11 x x x x x x x
168Z12 x x x x x x x x x x x x x
168Z13 x x x x x x x x x x x x

Z21 x x
Z22 x x x x x x x
Z23 x x x

12Z21 x x x
12Z22 x x x x x
12Z23 x x x x x x x x x x
24Z21 x x x x
24Z22 x x x x x x x x x x x x
24Z23 x x x
36Z21 x x x x x x x
36Z22 x x x x x x x
36Z23 x x x x x x
48Z21 x x x x x x x x x
48Z22 x x x x x x x x x x x x
48Z23 x x x x x x x x x
60Z21 x x x x x
60Z22 x x x x x x
60Z23 x x x x x x
72Z21 x x x x x x x x
72Z22 x x x x x x
72Z23 x x x
84Z21 x x x x x x x x x x
84Z22 x x x x x x x
84Z23 x x x x x x x x x
96Z21 x x x x x x x x x x
96Z22 x x x x x x x x
96Z23 x x x x x x x x

108Z21 x x x x
108Z22 x x x x x x x x x x
108Z23 x x x x x x x x
120Z21 x x x x
120Z22 x x x x x x x x x
120Z23 x x x x x x x x x x
132Z21 x x x x x x
132Z22 x x x x
132Z23 x x x
144Z21 x x x x x x x x x x x x x x
144Z22 x x x x x x x
144Z23 x x x
156Z21 x x x x x x x
156Z22 x x x x x x x x x x x x
156Z23 x x x x x
168Z21 x x x x x x x x x x x x
168Z22 x x x x x x x x x x x x
168Z23 x x x x x x x x x x
Total 2 3 3 3 3 4 3 39 42 40 41 38 43 47 3 2 3 2 4 6 10 29 47 38 43 41 38 42

Data MiningCorrelation Stepwise Regression Genetic Algorithm
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Table E.5: Input variables selected by four input determination techniques (denoted by x) for 6, 
9, 12, 15, 18, 21 and 24 hour lead time of Experiment 2 (continue). 

E2
6 9 12 15 18 21 24 6 9 12 15 18 21 24 6 9 12 15 18 21 24 6 9 12 15 18 21 24

Z31 x x x
Z32
Z33 x x x x

12Z31 x x x x
12Z32 x x x
12Z33 x x
24Z31 x x x x x x
24Z32 x x x x x x
24Z33 x x x x x x x
36Z31 x x x x x x
36Z32 x x x x x x x x
36Z33 x x x x x x
48Z31 x x x x x x x
48Z32 x x x
48Z33 x x x x x x
60Z31 x x x x x
60Z32 x x x
60Z33 x x x x
72Z31 x x x x
72Z32 x x x x
72Z33 x x x x x x
84Z31 x x
84Z32 x x
84Z33 x x x
96Z31
96Z32 x x x x x
96Z33 x x

108Z31
108Z32 x x
108Z33 x x
120Z31 x x x x
120Z32 x x x x
120Z33 x x
132Z31 x x
132Z32
132Z33 x x
144Z31 x x x x x x x
144Z32 x x
144Z33 x x x
156Z31 x x
156Z32 x x x x
156Z33 x x x x x x
168Z31 x x x x
168Z32 x x x x x x x
168Z33 x x x x x x x

Z41 x x x x x x
Z42 x
Z43 x x x x x x

12Z41 x x x x x x
12Z42 x x x x x x x
12Z43 x x x x x
24Z41 x x x x
24Z42 x x x
24Z43 x x x
36Z41 x x x x x x x x x
36Z42 x x x x x x x x x
36Z43 x x x x x x x
48Z41 x x x x x x x x
48Z42 x x x x x x x x x x x x x x
48Z43 x x x x x x x x x x x x x x
60Z41 x x x x x x x x x x
60Z42 x x x x x x x
60Z43 x
72Z41 x x x x x x x x x x
72Z42 x x x x x x
72Z43 x x x x x
84Z41 x x x x x x
84Z42 x x x x x x x x x x x x
84Z43 x x x
96Z41 x x x x x
96Z42 x x x x x x x x
96Z43 x

108Z41 x
108Z42 x x x x x x
108Z43 x x
120Z41 x x
120Z42 x x x x x x x x x
120Z43 x x x
132Z41 x x x x
132Z42 x x x x x x x x
132Z43 x x x x x x
144Z41 x
144Z42 x x x x x x x x x x
144Z43 x
156Z41 x x x x x
156Z42 x x x x x x x x
156Z43 x x
168Z41 x x x x x x x x x x
168Z42 x x x x x x x x x x x
168Z43 x x
Total 1 1 2 1 - - - 35 39 33 35 37 32 36 2 1 1 1 1 2 5 30 30 30 14 18 23 28

Stepwise RegressionCorrelation Genetic AlgorithmData Mining
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Table E.6: The goodness of fit measures for a lead time 6, 9, 12, 15, 18, 21 and 24 hours of 
Experiment 2. 

Input Determination Techniques 
S1 S2 Model Statistic 

C S G D C S G D 
Reduce inputs 3  74  59  5  (98.3%) (58.8%) (67.2%) (97.2%) 

PDIFF (m) -0.4659 -0.2741 0.1164 -0.2116 0.1031 -0.4892 -0.5872 -0.1607 
MAE (m) 0.4611 0.4370 0.4370 0.3629 0.3438 0.2722 0.3122 0.3327 

RMSE (m) 0.5380 0.5086 0.5155 0.4438 0.5685 0.4058 0.4664 0.5334 
CE 0.3220 0.3941 0.3775 0.5387 0.7979 0.8970 0.8639 0.8220 

t+6 

Time delay (hr) / / / / -14.5 -1 -8 -14.5 
Reduce inputs 4  81  77  3  (97.7%) (55.0%) (57.2%) (98.3%) 

PDIFF (m) -0.4790 -0.2648 -0.4809 -0.2815 0.0847 -0.4981 -0.5497 0.0723 
MAE (m) 0.4634 0.4929 0.3577 0.3722 0.3346 0.3404 0.3136 0.3631 

RMSE (m) 0.5564 0.5789 0.4661 0.4515 0.5658 0.5038 0.4776 0.5535 
CE 0.2748 0.2149 0.4910 0.5225 0.7998 0.8412 0.8573 0.8083 

t+9 

Time delay (hr) / / / / -13.5 -3 -7 -13 
Reduce inputs 5  73  68  4  (97.2%) (59.4%) (62.2%) (97.7%) 

PDIFF (m) -0.4868 -0.0562 -0.5403 -0.5557 0.0957 -0.4309 -0.6133 0.002 
MAE (m) 0.4506 0.4402 0.4813 0.3510 0.3260 0.2758 0.3295 0.3681 

RMSE (m) 0.5397 0.5006 0.5850 0.4378 0.5373 0.4153 0.4999 0.5700 
CE 0.3176 0.4129 0.1982 0.5510 0.8194 0.8921 0.8437 0.7968 

t+12 

Time delay (hr) / / / / -10.5 -6 -10.5 -10.5 
Reduce inputs 4  76  61  3  (97.7%) (57.7%) (66.1%) (98.3%) 

PDIFF (m) -0.6731 -0.3422 -0.9349 -0.3698 0.1738 -0.7740 -0.9291 0.0133 
MAE (m) 0.4558 0.5184 0.3674 0.3592 0.3175 0.2835 0.3101 0.3309 

RMSE (m) 0.5528 0.5793 0.4665 0.4566 0.5140 0.4236 0.4900 0.5507 
CE 0.2837 0.2135 0.4900 0.5115 0.8348 0.8878 0.8498 0.8103 

t+15 

Time delay (hr) / / / / -8.5 -3.5 4 -8.5 
Reduce inputs 3  75  59  5  (98.3%) (58.3%) (67.2%) (97.2%) 

PDIFF (m) -0.7268 -0.7041 -0.8693 -0.8578 0.1809 -0.6016 -0.7213 -0.1147 
MAE (m) 0.4927 0.5120 0.4905 0.3730 0.3423 0.302 0.3018 0.3417 

RMSE (m) 0.5670 0.5998 0.5919 0.4714 0.607 0.4461 0.5105 0.5509 
CE 0.2463 0.1565 0.1787 0.479 0.7696 0.8755 0.8370 0.8102 

t+18 

Time delay (hr) / / / / -6 -3.5 -2 -6 
Reduce inputs 4  75  61  8  (97.7%) (58.3%) (66.1%) (95.5%) 

PDIFF (m) -0.6724 -0.2842 -0.6856 -0.9272 0.0993 -0.2462 -1.7652 -0.0169 
MAE (m) 0.4794 0.6200 0.3146 0.3887 0.3367 0.3256 0.3727 0.3488 

RMSE (m) 0.5529 0.6896 0.4057 0.4962 0.6024 0.5034 0.5724 0.5702 
CE 0.2832 -0.1153 0.6140 0.4227 0.7730 0.8415 0.7950 0.7966 

t+21 

Time delay (hr) / / / / -4 -3 -1 -4 
Reduce inputs 3  83  70  15  (98.3%) (53.8%) (61.1%) (91.6%) 

PDIFF (m) -0.7555 -0.2458 -0.6123 -1.1116 0.1155 -0.3401 -1.2584 -0.2702 
MAE (m) 0.5065 0.6449 0.3640 0.3728 0.3306 0.4045 0.4239 0.3084 

RMSE (m) 0.5850 0.7286 0.4690 0.4593 0.5975 0.6350 0.6355 0.4819 
CE 0.1972 -0.2454 0.4841 0.5052 0.7767 0.7477 0.7474 0.8547 

t+24 

Time delay (hr) / / / / -2 -2.5 -2.5 -2 
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Figure E.3: Comparison of the hydrographs for 4 models at 6, 9 and 12 hour lead time, testing 

S1 and S2 (2 Aug – 31 Oct 2003 and 2 – 24 Aug 2005) of Experiment 2. 
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Figure E.4: Comparison of the hydrographs for 4 models at 15, 18, 21 and 24 hour lead time, 

testing S1 and S2 (2 Aug – 31 Oct 2003 and 2 – 24 Aug 2005) of Experiment 2. 
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Table E.7: Input variables selected by four input determination techniques (denoted by x) for 6, 
9, 12, 15, 18, 21 and 24 hour lead time of Experiment 3. 

E3
6 9 12 15 18 21 24 6 9 12 15 18 21 24 6 9 12 15 18 21 24 6 9 12 15 18 21 24

Z11 x x
Z12 x x x x
Z13

12Z11 x x
12Z12 x x x
12Z13
24Z11 x x x x
24Z12 x
24Z13 x
36Z11 x x x
36Z12 x x
36Z13 x x x
48Z11 x x
48Z12 x x x
48Z13
60Z11 x x x x
60Z12 x x x x x x
60Z13 x x x x
72Z11 x x x
72Z12 x x
72Z13 x x x
84Z11 x x x x
84Z12 x x x x x x x
84Z13 x x x x x x x
96Z11
96Z12 x x x x x x
96Z13 x x x x x

108Z11 x x x x
108Z12 x x x
108Z13 x
120Z11 x x x x x x x x
120Z12 x x
120Z13 x x
132Z11 x x x
132Z12 x x x
132Z13 x x x
144Z11 x x
144Z12 x x x
144Z13 x x
156Z11 x x x
156Z12 x x x x
156Z13
168Z11 x x
168Z12 x x x x x x x
168Z13 x x x x x

Z21 x x x
Z22 x x x x
Z23 x x x x x

12Z21 x x x x x x x x x
12Z22 x x x x
12Z23 x x x x x
24Z21 x x x
24Z22 x x x x
24Z23 x x x
36Z21 x x x x
36Z22 x x x x
36Z23 x
48Z21 x x x x x x x x
48Z22 x x x x x x
48Z23 x x x x
60Z21 x x x x x x x x x x x x x
60Z22 x x x x x x x x x x
60Z23 x x x x x x
72Z21 x x x x x x x x x x x x x x
72Z22 x x x x x x x x x
72Z23 x x x x x
75Z21 x x x x x x x x x x x x
75Z22 x x
75Z23 x
78Z21 x x x x x x x x x x x x x x x
78Z22 x x x x x x
78Z23 x x
84Z21 x x x x x x x x x x x x
84Z22 x x x
84Z23 x x x x x x x
96Z21 x x x x x x x x x x x x x x x x
96Z22 x x x x x x
96Z23 x x x x x x x x x x x

108Z21 x x x x x x x x x x x x x x x
108Z22 x x x x x
108Z23 x x x x
120Z21 x x x x x x x x x x x x x x x
120Z22 x x x
120Z23 x x
132Z21 x x x x
132Z22 x x x
132Z23 x x x x
144Z21 x x x x x
144Z22 x x x x x x
144Z23 x x
156Z21 x x x x x
156Z22 x x x
156Z23 x x x x x
168Z21 x x x x x x x x x x x
168Z22 x x x x x x
168Z23 x x x x x
Total 2 4 3 4 4 5 4 26 23 23 19 16 19 20 4 4 3 1 4 5 10 26 27 28 35 28 30 43

Genetic AlgorithmCorrelation Stepwise Regression Data Mining
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Table E.8: Input variables selected by four input determination techniques (denoted by x) for 6, 
9, 12, 15, 18, 21 and 24 hour lead time of Experiment 3 (continue). 

E3
6 9 12 15 18 21 24 6 9 12 15 18 21 24 6 9 12 15 18 21 24 6 9 12 15 18 21 24

Z31 x x x x x x x
Z32 x x x
Z33 x x

12Z31 x x
12Z32 x x
12Z33
24Z31 x
24Z32 x x
24Z33 x
36Z31 x x x x x
36Z32 x x x
36Z33
48Z31 x x
48Z32 x x x x x x x x x x x x
48Z33 x x x x
60Z31 x x x x x x x
60Z32 x x x x x x x x
60Z33 x x x x x
72Z31 x x x
72Z32 x x
72Z33 x x x x x x x x
84Z31 x x x x x x x
84Z32 x x x x x
84Z33 x x x
96Z31 x x x x
96Z32 x x x x x
96Z33 x x x x x x x

108Z31 x x x
108Z32 x x x
108Z33 x x x
120Z31 x x
120Z32 x x x
120Z33 x x x x x x
132Z31 x x
132Z32 x x
132Z33 x x x x
144Z31 x
144Z32 x x x
144Z33 x x x x
156Z31 x x
156Z32 x x x
156Z33 x x x x
168Z31 x x x x x x x x x
168Z32 x x x x x x x x x
168Z33 x x x x x x x x

Z41 x x x x x x
Z42 x x x x x
Z43 x x x x x

12Z41 x x x x x x x
12Z42 x x x x x x x
12Z43 x x x x x x
24Z41 x x x x x
24Z42 x x x x x
24Z43 x x
36Z41 x x x x
36Z42 x x x
36Z43 x x
48Z41 x x x x x
48Z42 x x x x x x x x x
48Z43 x x x
60Z41 x x x x x x x x x x
60Z42 x x x x x x
60Z43 x x
72Z41 x x x x x x
72Z42 x x x x x x x x x x
72Z43 x x x
75Z41 x x x x
75Z42 x x x x x x x x x x x
75Z43 x x
78Z41 x x x x
78Z42 x x x x x x x x x x x x x x
78Z43 x x
84Z41 x x x x x x x x x x x x
84Z42 x x x x x x x x x x x x x x x x x
84Z43 x
96Z41 x x x x
96Z42 x x x x x x x x x x x x x x x
96Z43 x x x

108Z41 x x x x x x x
108Z42 x x x x x x x x x
108Z43 x x x
120Z41 x x x x x
120Z42 x x x x x x x x x x x
120Z43 x x x x x x
132Z41 x x x x x x
132Z42 x x x
132Z43 x x x x
144Z41 x x x x x x x x
144Z42 x x x x x x x
144Z43 x x x
156Z41 x x x x x
156Z42 x x x x x x x x x
156Z43 x x x
168Z41 x x x x x x
168Z42 x x x x x x x x x x x x
168Z43 x
Total 3 5 3 3 3 3 3 23 23 23 21 19 18 24 5 6 4 2 4 5 9 34 33 36 44 33 27 36

Genetic AlgorithmStepwise Regression Data MiningCorrelation
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Table E.9: The goodness of fit measures for a lead time 6, 9, 12, 15, 18, 21 and 24 hours of 
Experiment 3. 

Input Determination Techniques Model Statistic C S G D 
Reduce input 5 (97.2%) 49 (72.7%) 60 (66.6%) 9 (95%) 

PDIFF (m) -2.1807 0.6316 0.1062 -0.5285 
MAE (m) 0.1228 0.0876 0.071 0.0807 

RMSE (m) 0.4152 0.2677 0.2309 0.2829 
CE 0.8567 0.9405 0.9557 0.9335 

t+6 

Time delay (hr) 13 14 14 16 
Reduce input 9 (95%) 46 (74.4%) 60 (66.6%) 10 (94.4%) 

PDIFF (m) -0.0814 0.5494 0.9419 -0.9162 
MAE (m) 0.0728 0.0895 0.0852 0.0822 

RMSE (m) 0.2456 0.2804 0.2791 0.2689 
CE 0.9497 0.9344 0.9351 0.9397 

t+9 

Time delay (hr) 18 19 19 18.5 
Reduce input 6 (96.6%) 46 (74.4%) 64 (64.4%) 7 (96.1%) 

PDIFF (m) -0.6631 0.8142 0.1553 -0.4316 
MAE (m) 0.0901 0.0784 0.0575 0.0790 

RMSE (m) 0.2852 0.2601 0.1882 0.2759 
CE 0.9320 0.9434 0.9704 0.9363 

t+12 

Time delay (hr) 21 22 5 21.5 
Reduce input 7 (96.1%) 40 (77.7%) 3 (98.3%) 79 (56.1%) 

PDIFF (m) -0.3179 0.1946 0.6263 0.4525 
MAE (m) 0.0866 0.0903 0.0767 0.0974 

RMSE (m) 0.2854 0.2842 0.2297 0.3206 
CE 0.9316 0.9322 0.9557 0.9137 

t+15 

Time delay (hr) 24 24 3 24 
Reduce input 7 (96.1%) 35 (80.5%) 8 (95.5%) 61 (66.1%) 

PDIFF (m) 0.1836 0.3134 0.1349 0.7101 
MAE (m) 0.0858 0.0914 0.0760 0.1004 

RMSE (m) 0.3015 0.2891 0.2406 0.3451 
CE 0.9234 0.9296 0.9512 0.8997 

t+18 

Time delay (hr) 27.5 28.5 2 28 
Reduce input 8 (95.5%) 37 (79.4%) 10 (94.4%) 57 (68.3%) 

PDIFF (m) 0.4521 0.4983 0.2096 0.0697 
MAE (m) 0.1054 0.0782 0.0831 0.0828 

RMSE (m) 0.3379 0.2527 0.2502 0.2988 
CE 0.9034 0.9460 0.9471 0.9244 

t+21 

Time delay (hr) 12 19 5 12 
Reduce input 7 (96.1%) 44 (75.5%) 19 (89.4%) 79 (56.1%) 

PDIFF (m) 0.6759 0.4947 0.6222 -0.1299 
MAE (m) 0.1075 0.0706 0.0935 0.0788 

RMSE (m) 0.3741 0.2307 0.2903 0.2616 
CE 0.8808 0.9547 0.9282 0.9418 

t+24 

Time delay (hr) 33 11 6 7 
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Figure E.5: Comparison of the hydrographs for 4 models at 6, 9 and 12 hour lead time, testing 

S5 (28 Sep – 11 Oct 2005) of Experiment 3. 
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Figure E.6: Comparison of the hydrographs for 4 models at 15, 18, 21 and 24 hour lead time, 

testing S5 (28 Sep – 11 Oct 2005) of Experiment 3. 
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Table E.10: Input variables selected by four input determination techniques (denoted by x) for 6, 
9, 12, 15, 18, 21 and 24 hour lead time of Experiment 4. 

E4
6 9 12 15 18 21 24 6 9 12 15 18 21 24 6 9 12 15 18 21 24 6 9 12 15 18 21 24

Z11 x x x x x
Z12 x x x x
Z13 x

12Z11 x x x x x
12Z12 x x
12Z13 x x x
24Z11 x x x x x x x
24Z12 x x x x x
24Z13 x x x x x x x x x x
36Z11 x x x x x x x x
36Z12 x x x x x x x x x x
36Z13 x x x x x x x
48Z11 x x
48Z12 x x x x x
48Z13 x x x x x x x x x
60Z11 x x x x x x x x x x
60Z12 x x x x x
60Z13 x x x x
72Z11 x x
72Z12 x x x x x x x x
72Z13 x x x x x x x x x
84Z11 x x x x x x x x x
84Z12 x x
84Z13 x x
96Z11 x x x x x x x x x
96Z12 x
96Z13 x x x

108Z11 x x x x x x x x x x
108Z12 x x x x x x x x
108Z13 x x x x
120Z11
120Z12 x x x
120Z13 x x x x
132Z11
132Z12 x x x x x x x
132Z13 x x x x
144Z11 x x x
144Z12 x x x x
144Z13 x x x
156Z11
156Z12 x x x x x
156Z13 x x x x
168Z11 x x x x x x x
168Z12 x x x x
168Z13 x x x x

Z21 x x x x x
Z22 x x x x
Z23 x x x

12Z21 x x x
12Z22 x x x
12Z23 x x x x x x x x
24Z21 x x x
24Z22 x x x x x x x x x
24Z23 x x
36Z21 x x x x x x x x x x x
36Z22 x x x x
36Z23 x x x x
48Z21 x x x x x x x x x x x
48Z22 x x x x x x x x x x
48Z23 x x x x x
60Z21 x x x x x x x x x x x
60Z22 x x x x x x x x x x x
60Z23 x x x x x
72Z21 x x x x x x x x x
72Z22 x x x x x x x x
72Z23 x x x
75Z21 x x x x x x x x x x x
75Z22 x x x x x x
75Z23 x
78Z21 x x x x x x x x x x x x x
78Z22 x
78Z23 x
84Z21 x x x x x x
84Z22 x x x x x x
84Z23 x x x x x x x x x x x x
96Z21 x x x x x
96Z22 x x
96Z23 x x x x x x x

108Z21 x x x x x x x x x
108Z22 x x x
108Z23 x x x x x
120Z21 x x x x x
120Z22 x x x x
120Z23 x x
132Z21 x x x
132Z22 x x x x x
132Z23 x x x
144Z21 x x x x x x x x
144Z22 x x x x x x
144Z23 x x
156Z21 x x x x x x x
156Z22 x x
156Z23 x x x x x x x
168Z21 x x x x x x
168Z22 x x x x x x x x
168Z23
Total - 1 1 1 2 3 4 40 33 39 35 27 36 39 1 2 1 1 3 3 4 35 27 36 18 33 32 19

Correlation Stepwise Regression Data Mining Genetic Algorithm
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Table E.11: Input variables selected by four input determination techniques (denoted by x) for 6, 
9, 12, 15, 18, 21 and 24 hour lead time of Experiment 4. 

E4
6 9 12 15 18 21 24 6 9 12 15 18 21 24 6 9 12 15 18 21 24 6 9 12 15 18 21 24

Z31 x x
Z32 x
Z33 x x

12Z31 x x x x x x
12Z32 x x x x
12Z33 x x x x x x x x x
24Z31 x x x x
24Z32 x
24Z33 x x
36Z31 x x x x x x
36Z32 x x x
36Z33 x x x x x x x x x x
48Z31 x x x
48Z32 x
48Z33 x x x x x x x x
60Z31 x x x x x
60Z32 x x x
60Z33 x x x x
72Z31 x x x x x x x x
72Z32 x x x x x x
72Z33 x x x x x x x x x
84Z31 x x x
84Z32 x x x x
84Z33 x x x x x x x x x x x x x
96Z31 x x x x x
96Z32 x
96Z33 x x x x

108Z31 x x
108Z32 x x x
108Z33 x x x
120Z31 x x
120Z32 x x
120Z33 x x x x x
132Z31 x x x x
132Z32 x x x
132Z33 x x
144Z31 x x x x x
144Z32 x x
144Z33 x x x x x x
156Z31 x
156Z32 x x x
156Z33 x x x x
168Z31 x x x x x x x
168Z32 x x x x x x x
168Z33 x x x x x x x

Z41 x x x x x x x x
Z42 x
Z43 x x x x x x

12Z41 x x x
12Z42 x x x x x x
12Z43 x x x
24Z41 x x x x
24Z42 x x x x x x x
24Z43 x x x
36Z41 x x x x x x
36Z42 x x x x x x x x x x x
36Z43 x
48Z41 x x x x x x x x x x x x x x
48Z42 x x x x x x x x x x
48Z43 x x x x x x x
60Z41 x x x x x x x x x x x x x x x
60Z42 x x x x x x x x x x
60Z43 x x x x x x x x
72Z41 x x x x x x x x x x x x x x x x x x x
72Z42 x x x x x x x x x x x x x x
72Z43 x x x
75Z41 x x x x x x x x x x
75Z42 x x x x x x x x x x x x
75Z43 x x x
78Z41 x x x x x x x x x x
78Z42 x x x x x x x x x x x x
78Z43 x x x x x
84Z41 x x x x x x x x x
84Z42 x x x x x x x x x x x
84Z43 x x x x x x x
96Z41 x x x x x x
96Z42 x x x x x x x x x x x x
96Z43 x x x

108Z41 x x x x x x x x x
108Z42 x x x x x x x x x x
108Z43 x x x x
120Z41 x x x x
120Z42 x x x
120Z43 x x x x x x x x
132Z41 x
132Z42 x x x
132Z43
144Z41 x x x
144Z42 x x x x x x x x
144Z43
156Z41 x x
156Z42 x x x x x
156Z43 x x x x x
168Z41 x x x x x x x x x
168Z42 x x x x x x x x x
168Z43 x x x
Total 6 4 4 4 4 4 4 33 32 35 35 33 39 36 4 4 4 3 4 5 4 32 27 24 25 28 29 22

Correlation Stepwise Regression Genetic AlgorithmData Mining
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Table E.12: The goodness of fit measures for a lead time 6, 9, 12, 15, 18, 21 and 24 hours of 
Experiment 4. 

Input Determination Techniques 
S1 S5 Model Statistic 

C S G D C S G D 
Reduce inputs 6 73 67 5 (96.6%) (59.4%) (46.1%) (97.2%) 

PDIFF (m) -0.4713 -0.2113 -0.0052 -0.0961 -1.8859 0.4232 0.8615 -1.2742 
MAE (m) 0.4448 0.3045 0.3961 0.4553 0.2377 0.1824 0.2586 0.2373 

RMSE (m) 0.5872 0.3937 0.4645 0.6105 0.5061 0.3363 0.5116 0.4665 
CE 0.1923 0.6369 0.4946 0.1271 0.8969 0.9545 0.8946 0.9124 

t+6 

Time delay (hr) / / / / 19 8 14 14.5 
Reduce inputs 5  65  54  6  (97.2%) (63.8%) (70%) (96.6%) 

PDIFF (m) 0.0564 -0.0312 -0.2589 -0.2693 -0.4528 0.6108 0.8077 -1.3528 
MAE (m) 0.4298 0.2900 0.3571 0.4758 0.1983 0.2048 0.2136 0.2222 

RMSE (m) 0.5725 0.3811 0.4222 0.6077 0.4019 0.3851 0.4222 0.4531 
CE 0.2323 0.6598 0.5825 0.1349 0.9348 0.9401 0.928 0.9171 

t+9 

Time delay (hr) / / / / 24 3 7 24 
Reduce inputs 51  74  60  5  (71.6%) (58.8%) (66.6%) (97.2%) 

PDIFF (m) -0.1589 0.0348 -0.1823 -0.1397 0.4181 0.4789 0.2306 -0.0617 
MAE (m) 0.4123 0.3423 0.2643 0.4564 0.2146 0.2182 0.1567 0.1920 

RMSE (m) 0.5512 0.4312 0.3352 0.6073 0.4270 0.4189 0.3035 0.3977 
CE 0.2881 0.5644 0.7368 0.1357 0.9264 0.9292 0.9628 0.9362 

t+12 

Time delay (hr) / / / / 24 18 15 18 
Reduce inputs 5  70  43  4  (97.2%) (61.1%) (76.1%) (97.7%) 

PDIFF (m) -0.3278 -0.4969 -0.3295 -0.1471 0.6775 0.1734 0.4148 -0.2939 
MAE (m) 0.4199 0.3472 0.3088 0.3956 0.222 0.1689 0.2024 0.1987 

RMSE (m) 0.5406 0.4976 0.3798 0.5244 0.4401 0.3271 0.3981 0.4001 
CE 0.3151 0.4197 0.6620 0.3554 0.9214 0.9566 0.9357 0.9350 

t+15 

Time delay (hr) / / / / 28 5 5 24 
Reduce inputs 6  60  61  7  (96.6%) (66.6%) (66.1%) (96.1%) 

PDIFF (m) -1.0656 -0.5283 0.0634 -0.5216 0.9394 0.1798 0.3887 -0.1226 
MAE (m) 0.4509 0.4193 0.3205 0.4065 0.2269 0.1449 0.2743 0.1896 

RMSE (m) 0.5548 0.5557 0.3973 0.5654 0.4551 0.2869 0.5619 0.4376 
CE 0.2785 0.2761 0.6300 0.2506 0.9157 0.9665 0.8714 0.9220 

t+18 

Time delay (hr) / / / / 4 4 4 28 
Reduce inputs 7  75  61  8  (96.1%) (58.3%) (66.1%) (95.5%) 

PDIFF (m) -0.7841 -0.3706 -0.0824 -0.5634 -0.1486 0.6263 -0.1157 0.1512 
MAE (m) 0.3383 0.4114 0.4524 0.3732 0.2032 0.2247 0.1177 0.1758 

RMSE (m) 0.4414 0.5399 0.5470 0.4717 0.4086 0.4313 0.2411 0.3702 
CE 0.5431 0.3165 0.2983 0.4783 0.9317 0.9239 0.9762 0.944 

t+21 

Time delay (hr) / / / / 6 15 4 6 
Reduce inputs 8  75  41  8  (95.5%) (58.3%) (77.2%) (95.5%) 

PDIFF (m) -0.9861 0.128 -0.1944 -0.3879 -0.2157 -0.3681 0.7968 0.3342 
MAE (m) 0.3688 0.3402 0.3132 0.3725 0.1973 0.2009 0.2167 0.1573 

RMSE (m) 0.4841 0.4245 0.3950 0.4362 0.3971 0.4096 0.4913 0.3084 
CE 0.4502 0.5774 0.6341 0.5537 0.9351 0.9310 0.9007 0.9609 

t+24 

Time delay (hr) / / / / 8 -1 9 8.5 
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Figure E.7: Comparison of the hydrographs for 4 models at 6, 9 and 12 hour lead time, testing 

S1 and S5 (2 Aug – 31 Oct 2003 and 28 Sep – 11 Oct 2005) of Experiment 4. 
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Figure E.8: Comparison of the hydrographs for 4 models at 15, 18, 21 and 24 hour lead time, 

testing S1 and S5 (2 Aug – 31 Oct 2003 and 28 Sep – 11 Oct 2005) of Experiment 4. 
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Table E.13: The goodness of fit measures for a lead time 24, 30, 36, 42 and 48 hours of 
different time correspondences, test S2. 

Time Correspondences (hr) 
Model Statistic 

30  36 42 48 54 60 

PDIFF (m) -0.0010 -0.3980 -0.4170 -0.4239 / / 
MAE (m) 0.6653 0.6707 0.6853 0.6874 / / 

RMSE (m) 0.8212 0.8113 0.8221 0.8257 / / 
CE 0.1543 0.1747 0.1526 0.1451 / / 

t+24 

Time delay (hr) -1 5 10 16 / / 

PDIFF (m) -0.0444 -0.3397 -0.4992 -0.3956 / / 
MAE (m) 0.6556 0.6555 0.6683 0.6843 / / 

RMSE (m) 0.8104 0.7848 0.7965 0.8218 / / 
CE 0.1775 0.2285 0.2053 0.1540 / / 

t+30 

Time delay (hr) -1 5 10.5 16.5 / / 

PDIFF (m) / -0.4610 -0.4520 -0.4020 -0.3560 / 
MAE (m) / 0.6523 0.6515 0.6701 0.7005 / 

RMSE (m) / 0.7819 0.7699 0.8009 0.8415 / 
CE / 0.2346 0.2580 0.1971 0.1136 / 

t+36 

Time delay (hr) / 5 10.5 16.5 23 / 

PDIFF (m) / / -0.4370 -0.4740 -0.2200 -0.0852 
MAE (m) / / 0.6486 0.6575 0.6841 0.7080 

RMSE (m) / / 0.7663 0.7803 0.8227 0.8594 
CE / / 0.2651 0.2381 0.153 0.0757 

t+42 

Time delay (hr) / / 10.5 16.5 23 29.5 

PDIFF (m) / / / -0.5290 -0.337 -0.3009 
MAE (m) / / / 0.6495 0.6697 0.6955 

RMSE (m) / / / 0.7687 0.7983 0.8433 
CE / / / 0.2602 0.2022 0.1098 

t+48 

Time delay (hr) / / / 16.5 23 29.5 
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Figure E.9: Compare of the hydrographs of different training data at 24, 30, 36, 42 and 48 hour 

lead time, test S2 (3 – 27 Aug 2005). 



 

 

241

 
 

Table E.14: The goodness of fit measures for a lead time 24, 30, 36, 42 and 48 hours of 
different time correspondences, test S1. 

Time Correspondences (hr) 
Model Statistic 

30  36 42 48 54 60 

PDIFF (m) -0.6100 -0.7240 -0.6430 -0.4930 / / 
MAE (m) 0.4403 0.4233 0.4051 0.3876 / / 

RMSE (m) 0.5834 0.5622 0.5432 0.5214 / / 
CE 0.7304 0.7496 0.7662 0.7847 / / 

t+24 

Time delay (hr) -17 -11 -5 0.5 / / 

PDIFF (m) -0.6320 -0.686 -0.5640 -0.3640 / / 
MAE (m) 0.4420 0.4310 0.4105 0.3878 / / 

RMSE (m) 0.5843 0.5736 0.5474 0.5206 / / 
CE 0.7295 0.7394 0.7627 0.7853 / / 

t+30 

Time delay (hr) -17 -10 -5 0.5 / / 

PDIFF (m) / -0.6600 -0.7650 -0.5460 -0.3470 / 
MAE (m) / 0.4369 0.4205 0.402 0.3924 / 

RMSE (m) / 0.5772 0.5595 0.5339 0.5216 / 
CE / 0.7361 0.7521 0.7742 0.7846 / 

t+36 

Time delay (hr) / -10 -5 0 7 / 

PDIFF (m) / / -0.7720 -0.2540 -0.3090 -0.2009 
MAE (m) / / 0.4228 0.4024 0.3971 0.3956 

RMSE (m) / / 0.5600 0.5357 0.5254 0.5251 
CE / / 0.7516 0.7727 0.7814 0.7816 

t+42 

Time delay (hr) / / -4 1 6.5 12.5 

PDIFF (m) / / / -0.3570 -0.2750 -0.2918 
MAE (m) / / / 0.4052 0.4012 0.4008 

RMSE (m) / / / 0.5418 0.5335 0.5301 
CE / / / 0.7675 0.7746 0.7775 

t+48 

Time delay (hr) / / / 1 7 12 
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Figure E.10: Compare of the hydrographs of different training data at 24, 30, 36, 42 and 48 hour 

lead time, test S1 (6 – 23 Sep 2003). 
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Figure E.11: Compare of the hydrographs of different training data at 24 hour lead time, test S2 

(12 – 20 Aug 2005) Note: Train 01 (S1, S3 – S8), train 02 (S3 – S8) and train 03 (S3-S5). 
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Figure E.12: Compare of the hydrographs of different training data at 24 hour lead time, test S1 

(2003) Note: Train 01 (S3 – S8), train 02 (S2 - S4, S6 – S8) and train 03 (S3-S5). 
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Table E.15: The goodness of fit measures for a lead time 24, 30, 36, 42 and 48 hours of 
different time correspondences, test S7 and S8. 

Time Correspondences (hr) 
Model Statistic 

30  36 42 48 54 60 

PDIFF (m) 0.8905 0.8665 0.8343 0.8435 / / 
MAE (m) 0.3928 0.3835 0.3771 0.3779 / / 

RMSE (m) 0.4691 0.4671 0.4650 0.4639 / / 
t+24 

CE 0.0206 0.0289 0.0373 0.0423 / / 

PDIFF (m) 0.9305 0.8911 0.8924 0.8408 / / 
MAE (m) 0.3953 0.3854 0.3804 0.3793 / / 

RMSE (m) 0.4689 0.4668 0.4645 0.4614 / / 
t+30 

CE 0.0167 0.0256 0.0353 0.0482 / / 

PDIFF (m) / 0.8858 0.8899 0.8795 0.8675 / 
MAE (m) / 0.3886 0.3823 0.3811 0.3803 / 

RMSE (m) / 0.4679 0.4655 0.4620 0.4604 / 
t+36 

CE / 0.0198 0.0298 0.0444 0.0510 / 

PDIFF (m) / / 0.8893 0.9019 0.9087 0.9356 
MAE (m) / / 0.3844 0.3835 0.3844 0.3891 

RMSE (m) / / 0.4660 0.4642 0.4621 0.4638 
t+42 

CE / / 0.0306 0.038 0.0470 0.0397 
PDIFF (m) / / / 0.9323 0.9292 0.8830 
MAE (m) / / / 0.3899 0.3879 0.3870 

RMSE (m) / / / 0.4662 0.4646 0.4616 
t+48 

CE / / / 0.0347 0.0416 0.0536 

 
Table E.16: The goodness of fit measures for a lead time 24 and 36 hours with radar only and 
radar and rain gauging station, test S2. 

30 hr 36 hr 42 hr 
Model Statistic 

No rain Rain No rain Rain No rain Rain 

PDIFF (m) -0.0014 -0.0734 -0.3981 -0.3619 / / 
MAE (m) 0.5115 0.5159 0.5156 0.5226 / / 

RMSE (m) 0.7201 0.7202 0.7113 0.7186 / / 
t+24 

CE 0.6410 0.6409 0.6497 0.6425 / / 

PDIFF (m) / / -0.4607 -0.6024 -0.4519 -0.6342 
MAE (m) / / 0.5015 0.5085 0.5009 0.5152 

RMSE (m) / / 0.6856 0.6865 0.6751 0.6872 
t+36 

CE / / 0.6745 0.6737 0.6845 0.6730 

 



 

 

245

 
 

Table E.17: The goodness of fit measures for a lead time 18, 24 and 30 hours with three 
experiments, test S2 and S3. 

S2 S3 
Model Statistic 

Ex1 Ex2 Ex3 Ex1 Ex2 Ex3 

PDIFF (m) -0.0300 -0.9760 -0.1030 -0.4490 -0.5240 -0.400 
MAE (m) 0.2014 0.1911 0.2001 0.1058 0.1372 0.100 

RMSE (m) 0.2669 0.3128 0.2522 0.1708 0.2119 0.1700 
CE 0.9106 0.8772 0.9202 0.8947 0.8379 0.900 

t+18 

Time delay (hr) 2 1 1 -17 -16 -16 

PDIFF (m) 0.1400 -0.6880 0.0365 -1.049 -0.7360 -0.2740 
MAE (m) 0.3387 0.2833 0.2709 0.1694 0.1944 0.1290 

RMSE (m) 0.4399 0.4503 0.3600 0.2776 0.3079 0.1960 
CE 0.7573 0.7457 0.8375 0.7187 0.6540 0.8590 

t+24 

Time delay (hr) 6.2 6 6.3 -14.5 -14 -12 

PDIFF (m) -0.2300 0.1613 -0.5892 -1.102 -1.396 -1.1127 
MAE (m) 0.4644 0.3714 0.4354 0.2256 0.2420 0.2279 

RMSE (m) 0.6104 0.5981 0.5788 0.3519 0.3960 0.3505 
CE 0.5332 0.5519 0.5804 0.5429 0.4214 0.5467 

t+30 

Time delay (hr) 11.5 12 11 -13 -15 -14.5 

 
Table E.18: The goodness of fit measures for a lead time 18, 24 and 30 hours with three 
experiments, test S4 and S5. 

S4 S5 
Model Statistic 

Ex1 Ex2 Ex3 Ex1 Ex2 Ex3 

PDIFF (m) -0.5310 -0.3600 -0.400 -0.3530 1.0728 -0.100 
MAE (m) 0.0917 0.0832 0.0900 0.1161 0.3074 0.1200 

RMSE (m) 0.2163 0.2199 0.2200 0.2501 0.5611 0.2800 
CE 0.9829 0.9824 0.9800 0.9277 0.6362 0.9100 

t+18 

Time delay (hr) 9.5 10 9 9 21 13 

PDIFF (m) -1.092 0.0429 -1.000 -0.4510 1.0731 -0.0490 
MAE (m) 0.1335 0.1182 0.1309 0.1764 0.3414 0.1475 

RMSE (m) 0.2986 0.3108 0.2946 0.4305 0.6100 0.3381 
CE 0.9678 0.9651 0.9687 0.7874 0.5731 0.8688 

t+24 

Time delay (hr) 13 14 13 17 24 15 

PDIFF (m) -0.3450 -0.067 -0.4833 -0.4370 0.7581 0.1452 
MAE (m) 0.1606 0.1727 0.1555 0.2175 0.3749 0.1804 

RMSE (m) 0.3670 0.4079 0.3429 0.4758 0.7098 0.4149 
CE 0.9518 0.9405 0.9579 0.7421 0.4261 0.8039 

t+30 

Time delay (hr) 18.5 22 18 18.5 33 18 
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Table E.19: The goodness of fit measures for a lead time 18, 24 and 30 hours with three 
experiments, test S6 and S7, S8. 

S6 S7, S8 
Model Statistic 

Ex1 Ex2 Ex3 Ex1 Ex2 Ex3 

PDIFF (m) -0.1700 -0.2880 -0.200 -0.0290 -0.1450 -0.200 
MAE (m) 0.0776 0.0772 0.0800 0.0740 0.0827 0.0700 

RMSE (m) 0.1282 0.1336 0.1300 0.0985 0.1206 0.1000 
CE 0.9756 0.9735 0.9800 0.9571 0.9356 0.9600 

t+18 

Time delay (hr) -3 -1 -3 - - - 

PDIFF (m) -0.477 -0.5014 -0.608 -0.052 -0.4550 -0.1200 
MAE (m) 0.1261 0.1252 0.1274 0.1092 0.0956 0.1041 

RMSE (m) 0.2136 0.2332 0.2231 0.1472 0.1462 0.1412 
CE 0.9323 0.9193 0.9261 0.9035 0.9049 0.9113 

t+24 

Time delay (hr) -10.5 -19 -10 - - - 

PDIFF (m) -0.6520 -1.031 -0.6208 0.1110 0.1331 -0.1319 
MAE (m) 0.1594 0.1525 0.1639 0.1486 0.1555 0.1534 

RMSE (m) 0.2778 0.2733 0.2911 0.2093 0.2470 0.2206 
CE 0.8856 0.8893 0.8744 0.8042 0.7272 0.7824 

t+30 

Time delay (hr) -10 -12 -10 - - - 

 
Note 
Experiment 1: using radar, three flow stations (P1, P67 and P75) and rain gauging station 
Experiment 2: using radar, five flow stations (P1, P67, P75, P21 and P4a) and rain gauging 

station 
Experiment 3: using same input as experiment 1 but selected with Stepwise regression 
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Table E.20: The goodness of fit measures for a lead time 18, 24 and 30 hours with different 
number of flow stations, test S2 and S3. 

S2 S3 
Model Statistic 

5  4 3 5 4 3 

PDIFF (m) -1.3953 -0.9297 -0.8977 -0.3211 -0.7278 -0.5990 
MAE (m) 0.2122 0.1773 0.1678 0.1383 0.1261 0.1160 

RMSE (m) 0.3041 0.2671 0.2607 0.2136 0.2086 0.1937 
CE 0.8839 0.9105 0.9147 0.8353 0.8430 0.8646 

t+18 

Time delay (hr) 1 0 1 -17 -18 -17 

PDIFF (m) -0.9252 -0.367 -0.4634 -0.4247 -0.8097 -0.9151 
MAE (m) 0.2619 0.2558 0.2765 0.2257 0.1761 0.1888 

RMSE (m) 0.4545 0.3877 0.4203 0.3467 0.2799 0.3093 
CE 0.7410 0.8115 0.7785 0.5611 0.7139 0.6507 

t+24 

Time delay (hr) 4 7 6 -12 -12 -15 

PDIFF (m) -0.2652 -0.6505 -0.0943 -0.8363 -0.9710 -1.2312 
MAE (m) 0.3568 0.3014 0.3157 0.2414 0.2259 0.2415 

RMSE (m) 0.5937 0.4891 0.5362 0.3948 0.3738 0.3966 
CE 0.5585 0.7003 0.6399 0.4248 0.4843 0.4196 

t+30 

Time delay (hr) 11.5 10 11.5 -15.5 -16 -16 

 
Table E.21: The goodness of fit measures for a lead time 18, 24 and 30 hours with different 
number of flow stations, test S6. 

S6 
Model Statistic 

5  4 3 

PDIFF (m) -0.2321 -0.3829 -0.2615 
MAE (m) 0.0861 0.0844 0.0873 

RMSE (m) 0.1450 0.1297 0.1356 
CE 0.9687 0.9750 0.9727 

t+18 

Time delay (hr) -1 -1 5 

PDIFF (m) -0.4945 -0.7896 -0.5976 
MAE (m) 0.1465 0.1329 0.1314 

RMSE (m) 0.2478 0.2241 0.2197 
CE 0.9089 0.9254 0.9283 

t+24 

Time delay (hr) -20 -9 -9 

PDIFF (m) -0.7614 -0.6547 -0.4991 
MAE (m) 0.1706 0.1696 0.1688 

RMSE (m) 0.2920 0.2803 0.2696 
CE 0.8736 0.8835 0.8922 

t+30 

Time delay (hr) -10.5 -10 -10 
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Table E.22: The goodness of fit measures for a lead time 18, 24 and 30 hours with different 
number of flow stations, test S4 and S5. 

S4 S5 
Model Statistic 

5  4 3 5 4 3 

PDIFF (m) 1.2743 1.2624 1.2851 0.9533 -0.4952 -0.4294 
MAE (m) 0.1193 -0.2872 -0.3153 0.3318 0.1896 0.1405 

RMSE (m) 0.2641 0.2328 0.2363 0.5607 0.3095 0.2753 
CE 0.9746 0.9802 0.9796 0.6366 0.8893 0.9124 

t+18 

Time delay (hr) 13 11 10 19 6 10 

PDIFF (m) 1.8620 1.7719 1.7313 0.9483 -0.2637 -0.1430 
MAE (m) 0.7087 0.1548 -0.5462 0.3929 0.2459 0.1832 

RMSE (m) 0.4361 0.3290 0.3282 0.6660 0.4329 0.3918 
CE 0.9313 0.9609 0.9611 0.4911 0.7849 0.8239 

t+24 

Time delay (hr) 19 14 13.5 22 18 14 

PDIFF (m) 2.0978 1.984 1.9224 0.5132 -0.6447 -0.3749 
MAE (m) 0.6014 0.4215 -0.2955 0.3827 0.2515 0.1995 

RMSE (m) 0.4578 0.3865 0.3785 0.6837 0.4640 0.4286 
CE 0.9250 0.9466 0.9488 0.4674 0.7547 0.7907 

t+30 

Time delay (hr) 22 20 19 28 20 19 

 
Note 
5: using radar, rain gauging station and five flow stations (P1, P67, P75, P4a and P21) 
4: using radar, rain gauging station and four flow stations (P1, P67, P75 and P4a) 
3: using radar, rain gauging station and three flow stations (P1, P67 and P75) 
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Figure E.13: Compare of the hydrographs of different training data (only 2005 and 2005-06) at 

18, 24 and 30 hour lead time, test S3 (29 Aug – 18 Sep 2005). 
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Figure E.14: Compare of the hydrographs of different training data (only 2005 and 2005-06) at 
18, 24 and 30 hour lead time, test S4 (17 – 27 Sep 2005). 
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Figure E.15: Compare of the hydrographs of different training data (only 2005 and 2005-06) at 

18, 24 and 30 hour lead time, test S5 (26 Sep – 10 Oct 2005). 
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Figure E.16: Compare of the hydrographs of different training data (only 2005 and 2005-06) at 

18, 24 and 30 hour lead time, test S6 (26 Sep – 10 Oct 2005). 
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Table E.23: The goodness of fit statistics testing S3 and S4 for Ex1 and 3 stations at a lead time 
18, 24 and 30 hours. 

S3 S4 
Model Statistic 

Ex1  3 stations Ex1 3 stations 

PDIFF (m) -0.4490 -0.5990 -0.5310 1.2851 
MAE (m) 0.1058 0.1160 0.0917 -0.3153 

RMSE (m) 0.1708 0.1937 0.2163 0.2363 
CE 0.8947 0.8646 0.9829 0.9796 

t+18 

Time delay (hr) -17 -17 9.5 10 

PDIFF (m) -1.049 -0.9151 -1.092 1.7313 
MAE (m) 0.1694 0.1888 0.1335 -0.5462 

RMSE (m) 0.2776 0.3093 0.2986 0.3282 
CE 0.7187 0.6507 0.9678 0.9611 

t+24 

Time delay (hr) -14.5 -15 13 13.5 

PDIFF (m) -1.102 -1.2312 -0.3450 1.9224 
MAE (m) 0.2256 0.2415 0.1606 -0.2955 

RMSE (m) 0.3519 0.3966 0.3670 0.3785 
CE 0.5429 0.4196 0.9518 0.9488 

t+30 

Time delay (hr) -13 -16 18.5 19 

 
Table E.23: The goodness of fit statistics testing S5 and S6 for Ex1 and 3 stations at a lead time 
18, 24 and 30 hours. 

S5 S6 
Model Statistic 

Ex1  3 stations Ex1 3 stations 

PDIFF (m) -0.3530 -0.4294 -0.1700 -0.2615 
MAE (m) 0.1161 0.1405 0.0776 0.0873 

RMSE (m) 0.2501 0.2753 0.1282 0.1356 
CE 0.9277 0.9124 0.9756 0.9727 

t+18 

Time delay (hr) 9 10 -3 5 

PDIFF (m) -0.4510 -0.1430 -0.477 -0.5976 
MAE (m) 0.1764 0.1832 0.1261 0.1314 

RMSE (m) 0.4305 0.3918 0.2136 0.2197 
CE 0.7874 0.8239 0.9323 0.9283 

t+24 

Time delay (hr) 17 14 -10.5 -9 

PDIFF (m) -0.4370 -0.3749 -0.6520 -0.4991 
MAE (m) 0.2175 0.1995 0.1594 0.1688 

RMSE (m) 0.4758 0.4286 0.2778 0.2696 
CE 0.7421 0.7907 0.8856 0.8922 

t+30 

Time delay (hr) 18.5 19 -10 -10 
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Appendix F 
Table F.1: Input variables selected by different input determination techniques (denote by an X) 
for a 12, 18 and 24 hour lead time. 

Models Input Variables 1 2 3 4 5 6 7 8 Input Variables 

P75L-24   X   X X  6Z21 
P75L-21 X  X   X X X 6Z22 
P75L-18       X  6Z23 
P75L-15       X X 6Z31 
P75L-12       X  6Z32 
P75L-9 X   X   X  6Z33 
P75L-6  X     X  6Z41 
P75L-3 X X  X  X X X 6Z42 
P75L X X X X X X X  6Z43 

MV6P75 X  X   X   / 
MV12P75         / 
MV18P75         / 
MV24P75         / 
MV30P75      X   / 
MV36P75      X   / 
P67L-24      X   / 
P67L-21    X  X   / 
P67L-18    X  X   / 
P67L-15      X   / 
P67L-12 X     X   / 
P67L-9 X X  X     / 
P67L-6 X   X     / 
P67L-3 X X  X X X   / 
P67L X X  X X X   / 

MV6P67 X X  X  X   / 
MV12P67      X   / 
MV18P67   X X     / 
MV24P67   X   X   / 

P1L-24   X      / 
P1L-21         / 
P1L-18      X   / 
P1L-15   X   X   / 
P1L-12      X   / 
P1L-9      X   / 
P1L-6 X X X X  X   / 
P1L-3   X      / 
P1L X X  X X    / 

MV6P1 X X X X X X   / 
MV12P1     X X   / 
MV18P1         / 
MV24P1      X   / 
RP1-24         / 
RP1-21      X   / 
RP1-18 X   X  X   / 
RP1-15      X   / 
RP1-12   X   X   / 
RP1-9      X   / 
RP1-6   X   X   / 
RP1-3      X   / 
RP1 X   X  X   / 

MV3RP1      X   / 
MV6RP1 X  X X  X   / 

MV12RP1      X   / 
MV24RP1 X  X X  X   / 
Total (54) 18 10 15 18 6 37 9 3 9 
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Figure F.1: Results for a storm in 2006 for increasing numbers of runs averaged together, 

chosen by ranking CE/RMSE and MAE for Model 1. 
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Figure F.2: Results for a storm in 2006 for increasing numbers of runs averaged together, 

chosen by ranking CE/RMSE and MAE for Model 2. 
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Figure F.3: Results for a storm in 2006 for increasing numbers of runs averaged together, 

chosen by ranking CE/RMSE and MAE for Model 4. 
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Figure F.4: Results for a storm in 2006 for increasing numbers of runs averaged together, 

chosen by ranking CE/RMSE and MAE for Model 5. 
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Figure F.5: Compare of the hydrographs between average 50 and 100 runs at 12 hour lead time, 

test 2006 
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Figure F.6: Compare of the hydrographs between average 50 and 100 runs at 18 hour lead time, 

test 2006, 
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Figure F.7: Compare of the hydrographs between average 50 and 100 runs at 24 hour lead time, 

test S2, 2005 


