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ABSTRACT

Artificial intelligence (AI) models have been successfully applied in modeling engineering problems, 
including civil, water resources, electrical, and structure. The originality of the presented chapter is to 
investigate a non-tuned machine learning algorithm, called self-adaptive evolutionary extreme learning 
machine (SaE-ELM), to formulate an expert prediction model. The targeted application of the SaE-ELM 
is the prediction of river water level. Developing such water level prediction and monitoring models 
are crucial optimization tasks in water resources management and flood prediction. The aims of this 
chapter are (1) to conduct a comprehensive survey for AI models in water level modeling, (2) to apply 
a relatively new ML algorithm (i.e., SaE-ELM) for modeling water level, (3) to examine two different 
time scales (e.g., daily and monthly), and (4) to compare the inspected model with the extreme learning 
machine (ELM) model for validation. In conclusion, the contribution of the current chapter produced 
an expert and highly optimized predictive model that can yield a high-performance accuracy.
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1. INTRODUCTION

In this chapter, we develop highly novel machine learning (ML) models as optimal tools for water 
resource forecasting. ML approaches have been broadly researched using soft computing engineering 
principles (Coppin, 2004; Ford, 1987; Gevarter, 1987; Noureldin, El-Shafie, & Bayoumi, 2011; Russell 
& Norvig, 2010). The most common ML models are designed by artificial intelligence (AI) techniques 
identify the nonlinear, dynamic, nonstationary relationships min predictor data for both regression and 
classification problems (Nourani, Hosseini Baghanam, Adamowski, & Kisi, 2014; Yaseen, El-shafie, 
Jaafar, Afan, & Sayl, 2015). Advantageous mechanism of soft computing-based AI techniques have 
led to several applications of science and engineering optimization problems (e.g., sediment transport, 
evaporation rate, stream-flow, river water quality, ground water and etc.) (Nourani, Hosseini Baghanam, 
Adamowski, & Kisi, 2014; Yaseen, El-shafie, Jaafar, Afan, & Sayl, 2015). Generally, machine learning 
utilizing data-driven methodologies are designed with artificial neural network, fuzzy set, evolutionary 
computing to solve complex computational problems in science and engineering. In 1994, Zadeh coined 
the term soft computing and defined it as:

collection of methodologies that aim to exploit the tolerance for imprecision and uncertainty to achieve 
tractability, robustness, and low solution cost. 

Based on Zadeh’s opinion, that we live in a pervasively imprecise and uncertain world and that pre-
cision and certainty carry a cost. Therefore, soft computing should be seen as a partnership of distinct 
optimization methods, rather than as a homogeneous body of concepts and techniques.

The water level sector has been explored by several AI techniques (Alvisi & Franchini, 2011; F. J. 
Chang & Chang, 2006; Elhatip & Kömür, 2008; Fallah-Mehdipour, Bozorg Haddad, & Mariño, 2013; 
Wei, 2012). Its history for water level modeling back to 1998 with the earliest research accomplished in 
water level forecasting (Thirumalaiah & Deo, 1998), who conducted real-time streamflow stage using 
artificial neural network. The results showed that modelling low flow superior the high value of fore-
casting. Campolo et al. (1999) studied river flood forecasting based on rainfall and water level variables 
using ANN model. The main goal of their research was to build a predictive model by including clima-
tological information. The modelling of hourly basis showed remarkable results of accuracies. Liong et 
al. (2000) demonstrated the application of ANN in forecasting water level stage at Dhaka, Bangladesh. 
The input variables were investigated up to seven days’ lead time to forecast on step ahead water level. 
The authors revealed that the results made a desirable advanced warning forecasting tool. In 2002, the 
application of Support Vector Machines have been implemented for forecasting flood stage by (S. Y. 
Liong & Sivapragasam, 2002). The results of SVM were compared with that of ANN based on the 
antecedent records of water level “one-lead day to seven-lead day forecasting”. The improvements in 
maximum predicted water level errors by SVM over ANN for four-lead day to seven-lead day are 9.6 cm, 
22.6 cm, 4.9 cm and 15.7 cm, respectively. Clearly, these studies showed the relevance of AI techniques 
for optimization of forecasting methodologies in area of water resources.

Since the span time scale of water resource variables is significantly important for modelling, the input 
data often reflect stochastic nature which tends to complicate the regression problem. Addressing this 
issue with optimisation techniques, short-term time scale water level prediction have been researched by 
(Bazartseren, Hildebrandt, & Holz, 2003). They have optimized their models with the neuro-fuzzy (NF) 
system model and compared its proficiency with an ANN model. The outcome indicated the possibil-



123

Hybrid Data Intelligent Models and Applications for Water Level Prediction
﻿

ity to predict water level at a certain location for a short time span with an adequate accuracy using NF 
model. Solomatine and Xue (2004) investigated the proficiency of M5 trees model in modelling flood 
forecasting problem. The modelling results was compared with ANN model. It was observed that M5 
trees model being similar to the linear functions model, in which have a certain advantage compared to 
ANN. They are more transparent and hence acceptable by decision makers, are very fast in training and 
always converge. In addition, the improved accuracy of predicting high floods was achieved by building 
a mixture of models.

Further optimisation of forecasted results were undertaken by other researchers, such as Chang and 
Chang (2006). They proposed a forecasting model known as the adaptive network-based fuzzy inference 
system (ANFIS) based on fuzzy set theory (Zadeh, 1994). The application was made to data sets in the 
Shihmen reservoir, Taiwan to forecast 1-3 hours-ahead water level for the purpose of optimisation of 
reservoir safety and minimizing the damage resulting from a natural disaster. The ANFIS model pro-
vided accurate and reliable water level prediction for next three-time steps. Their study found that the 
construction of ANFIS model, through the subtractive fuzzy clustering, can efficiently deal with vast 
and complex input-output patterns, and has a great ability to learn and build up a neuro-fuzzy inference 
system for prediction. Another research based on integrating the ANN model with add-in optimization 
algorithm (i.e., particle swarm optimization (PSO)) (Chau, 2006) found improved forecasted results 
attained by the use of the optimization algorithm.

In 2007, Han and his contributors conducted a flood forecasting application using SVM model using 
linear and nonlinear kernel functions (i.e. radial basis function) This study showed an SVM response to 
different rainfall inputs was good, where lighter rainfalls would generate very different responses than 
heavier ones, and this would a very useful way to reveal the behaviour and shortcomings of n SVM. In 
a study that investigated how effective the steepness coefficient for the sigmoid function of ANN was, 
researchers found good accuracy of the 1-day forecasts of water level (Sulaiman, El-Shafie, Karim, & 
Basri, 2011). In 2012, researchers attempted to improve the water level forecasting using SVM and 
wavelet decomposition approach (W-SVM) (Wei, 2012). The research was conducted using short time 
scale water level (i.e., hourly time horizon). What make the case study extra ordinary, the catchment river 
was influenced by a strong precipitation events and affected by tidal effects during typhoons. Here, the 
wavelet is a function with many dimensions was able to approximate the functions that were arbitrarily 
nonlinear, and showed that the prediction of the optimized wavelet SVM models were more accurate 
than those of the Gaussian SVM models.

Furquim et al. (2014) used wireless sensor network to collect the natural behaviour of water in riv-
ers in Brazil to create a prediction flood model using artificial neural network. The established flood 
prediction model was a convinced methodology to forecast flood events. In developing countries, a lack 
of adequate and good quality data for hydrological modelling for flood forecasting poses a significant 
challenge. Thus, it is important to explore machine learning optimizer algorithm. For instance, Mwale 
et al. (2014) integrated the self-organizing maps (SOM) with the multi-layer perceptron artificial neural 
networks (MLP-ANN) to forecast flow and water level in Malawi. A very satisfactory forecasted result 
were obtained with the latter for up to 2-day lead time. However, when SOM features were used, the lead 
time for very satisfactory forecasts increased to 5 days, due to the more comprehensive information of the 
time series data was extracted, revealing the important role of optimizer algorithms for better accuracy.

Chang et al. (2014) developed two neural networks including static and dynamic. In the first stage of 
the study, the historical hydrologic data are fully explored by statistical techniques to identify the time 
span of rainfall affecting the rise of the water level in the flood water storage pond (FSP) at the gauging 
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station. In the second stage, an effective factor (i.e., rainfall stations) that significantly affect the FSP 
water level were extracted by the Gamma test (GT). At the final stage, the prediction models constructed 
a multi-step-ahead FSP water level forecast models through two scenarios, in which scenario I adopted 
rainfall and FSP water level data as model inputs while scenario II adopted only rainfall data as model 
inputs. The results demonstrated that the GT can efficiently identify the effective rainfall stations as 
important inputs to the static and dynamic neural network. The yielded results showed a positive high 
accuracy belonging to the dynamic network in comparison with the static network.

Ouyang (2016) developed a forecasting model of water level during typhoons events. The author 
anticipated a forecasting model for river water level real time using online data base. The mathemati-
cal model was built using autoregressive moving average with exogenous model. The modelling inputs 
were used in this research including rainfall and water level from the target and nearby stations. Here 
the analysis of the cumulative rainfall in addition to the water level were obtained to approximate the 
possibility of the cumulative rainfall duration and lag times associated with each gaging station. The 
results demonstrate the perfect model can yield a significant time shifting.

Water level prediction model has been conducted through integrating ANN model with evolutionary 
optimization algorithm (i.e., firefly algorithm (FFA)) by Soleymani et al., (2016). The research was con-
ducted in in tropical environment, Malaysia. The main contribution of this research is to determine the 
internal parameter of the radial basis function via the features of FFA. The results of the hybrid model 
exhibited very excellent performance over the ANN-based model.

Comprehending the complexity phenomena of hydrology cycle, researchers are passionate to solve 
this scientific problem using sophistication of standalone AI models and their optimized versions. 
Throughout the narrative two decades studies, water level modelling has received a massive attention. 
This is due to the fact that, the global climate changes have been influenced the hydrologic cycle that 
caused numerous of flood and drought events. According to the literature, water level modelling has 
been undertaken based on two main methodologies, physical based models and conceptual based models 
“i.e., AI model”. Physical models usually required more effort and various hydrological variables to 
simulate the elemental physical processes of the watershed (Yaseen, Kisi, & Demir, 2016). Whereas, 
soft computing approaches have shown the capability to capture the non-linearity relationship between 
the predictors and predicted without advance knowledge with less inputs hydrological parameters (Afan, 
El-Shafie, Yaseen, Hameed, Wan Mohtar, & Hussain, 2014; Deo & Şahin, 2015; Deo, Samui, & Kim, 
2015; Fahimi, Yaseen, & El-shafie, 2016).

In optimisation problems, the ANN model has been the predominant AI method where the algorithms 
include radial basis function, multi-layer perceptron, Back propagation neural network and generalized 
regression neural network. However, an ANN model can have issues such as slow convergence rate, in-
ability to attain a global solution, iterative tuning o model parameters and lower accuracy compared to 
the more advanced versions of neural networks. Most recently, a new AI model called extreme learning 
machine was proposed by (G.-B. Huang, Zhu, & Siew, 2006). The merit of this model is required no 
tuning during the training processes of the constructed predictive model (I Ebtehaj & Bonakdari, 2016; 
G. Huang, Huang, Song, & You, 2015). A basic version of ELM model had been modified through the 
utilization of evolutionary optimization algorithm and produce new version called self-adaptive evolu-
tionary extreme learning machine (SaE-ELM) as a new evolutionary case of ELM (Cao, Lin, Huang, 
& Bin, 2012).

In this chapter, we propose to utilize the SaE-ELM algorithm as an optimized model in a problem of 
water resources modelling, following its diverse range of applications. Sa-E-ELM has been used due to 
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its high-performance and innovative design features (i.e., random generation of the parameters of hidden 
nodes without the need for iteratively tuning the algorithm, determining the output weights analytically 
by solving a least squares problem and yielding significantly faster solutions compared to traditional 
neural network models (e.g. FFBP-ANN)) (Azimi, Bonakdari, & Ebtehaj, 2017; Isa Ebtehaj, Sattar, 
Bonakdari, & Zaji, 2017). In addition, the SaE-ELM can be automatically updated as new data arrive, 
either with a single datum or a chunk of data. Hence and for the best knowledge of the authors, SaE-ELM 
is developed to forecast river water level application. The modeling conducted over two-time horizons 
daily and monthly time scales. The input variables were initiated based on the antecedent values “i.e., 
correlated lag times”. The implemented evolved version of SaE-ELM is validated against the ELM model.

2. DATA DESCRIPTION

The investigated case study located in tropical environment which is Linggi River located in Negeri 
Sembilan state in peninsular Malaysia (see Figure 1). The selected case study experiences a tropical 
environment characteristic with high humidity and uniform temperature almost all along the year. The 
streams of the catchment influenced highly by the monsoon rainfall starting November to March with 
total annual rainfall records range between 2100 to 2250 mm per year (Tan, Ibrahim, Yusop, Chua, & 
Chan, 2017). The drainage area of Linggi River is 1320 km2. The collected metrological information 
belongs to 1965-2015-time period. Those data were collected from the Department of Irrigation and 
Drainage organization. These data modeled based on univariate problem which is called forecasting 
(only river water stage is included). It is even significant to mention, the selection of this case study due 
to it’s potential location and efficient supplement to the water treatment plant as well as the it natural 
river system.

3. THEORETICAL OVERVIEW

In this section, the theory useful in in the development of the SaE-ELM to forecast water level is pro-
vided. Firstly, the extreme learning machine (ELM) approach is presented, differential evolution (DE) 
method is described and finally the SaE-ELM mathematical principle is defined.

3.1. Extreme Learning Machine (ELM)

Extreme learning machine (ELM) is a single layer feed-forward neural network (SLFFNN) which is 
originally introduced by Huang et al. (2006a). This technique overcomes the shortcomings of traditional 
backpropagation (BP) algorithm which is used gradient descent-based learning algorithm. The main 
problems in BP algorithm are trapping in local minima and specifying weight or bias by tuning which 
is lead to the reduction of learning speed (Faruk Ertuğrul & Kaya, 2014).

One of two main concerns in designing a learning algorithm is learning speed and generalization 
ability. Training a single layer feed-forward neural network (SLFFNN) with a completely differentiable 
activation function by ELM algorithm that hidden biases and weights randomly tuned and the learning 
speed is extremely fast results in good generalization performance and have the ability to achieve global 
minima. Moreover, the theoretical results of Huang et al. (2006b) represent the universal estimation 
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aptitude of SLFFNN trained with ELM for continuous activation functions. Thus, meticulous results 
of ELM performance on universal estimation potency firmly support real-large and artificial applica-
tions of SLFFNN. A basic structure of ELM which has three layers; input, hidden and output, has been 
presented in Figure 2.

Consider N samples of a training data set as
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, ,...,  are the weight vector linking ith hidden node 
with inputs and output (respectively) nodes. Also, the threshold of ith hidden node is considered as bi. 

Figure 1. Map displayed the located on the investigated river water level, Sembilan state, Malaysia
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The main objective of SLFFNN is the approximation of all samples with least errors as far as possible. 
Thus, the equation (1) is rewritten as following matrix form:

H Tβ = 	 (2)

where H is the output matrix of the hidden layer. The β, T and H are defined as follows:
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The results of Huang et al. (2006a) indicate that the number of training samples is larger than the 
number of hidden nodes i e M N. . ≤( )  if the activation function is infinitely differentiable such as sig-

moid. Also, Randomly assigned of bi (i=1, 2, …, M) and ωi to find a least-square solution (β*) which is 
mathematically formulated as follows is done during SLFFNN training procedure:

Figure 2. The basic structure of ELM network
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H T H Tβ β
β

* min− = − 	 (6)

The β* is calculated in following from due to definition of Moore-Penrose generalized inverse (MPGI) 
(Huang, Zhu, & Siew, 2006):

β* = +H T 	 (7)

where H+ is the MPGI of H.
The use of active ELM as training algorithm does not require additional parameters such as stopping 

criterion and learning rate. This method optimizes hidden biases nodes and input weights of the network 
and is able to obtain output weights of the network rapidly. In a SLFFNN with random hidden nodes, at 
first the input dataset and real actual output of the model X Y( ) ( )



,  is determined. Subsequently, the 

number of hidden nodes [M] and the type of activation function [g(x)], is determined. Then, its weight 
and bias values are presented in random order [(W), (b)]. Then, hidden layers’ matrix [H] is determined 
and then the weight of output as analytic is calculated [β].

3.2. Differential Evolution (DE)

The DE algorithm is capable to find a solution for nonlinear complex problems with lest error. This 
algorithm was introduced by (Storn & Price, 1995) to overcome the genetic algorithm (GA) shortcom-
ing in lack of local search. The difference of DE and GA is in the order of mutation and crossover and 
operation of selection operator (Figure 3).

This algorithm employed an evolution operator to produce new population so that this operator ex-
changes the information between the population members. One of the advantages of this algorithm is 
having a memory that keeps the information up-to-date in the current population. Another advantage 
of this algorithm is its selection operator. In this algorithm, all members of a population have the same 
chance of being elected as one of the parents. In this way, the generation of the infant with the parent 
generation is compared in terms of fitness value that is measured by the objective function. Then the 
best members will enter the next step as the next generation.

The most important features of the DE algorithm are its high speed, robustness and simplicity. This 
method only works by adjustment three parameters; the number of population (NP), mutation factor 
(F) and crossover (Cr). Based on (Storn & Price, 1995) suggestion, F and Cr are in the range of [0 2] 
and [0 1], respectively. In general, this algorithm has four basic steps: 1) initialization; 2) mutation; 3) 
crossover and; 4) selection.

Figure 3. The task process of operators of differential evolution algorithm
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1. Initialization

This algorithm initially produces a random population (NP) in the range of the corresponding problem 
quantities. At this stage, the boundaries of the values are determined. The Population vector contains N 
parameters are produced as follows:

X rand X X X j N i
i j j i j j, ,max ,min ,min

, ( , ,..., )(= 


 ⋅ −( )+ = =0 1 1 2 11 2, ,..., )NP 	 (8)

where j is the number of parameters of a vector which are optimized through training process, i is the 
number of population parameter vector.

2. Mutation

The mutated vector which are defined in different forms are generated are presented to produced new 
population from initial population which are defined randomly. Different mutation vector are presented 
as follows:

V X F X X
iG r G r G r G, , , ,+ = + −( )1 1 2 3

	 (9)

V X F X X
iG best G r G r G, , , ,+ = + −( )1 1 2

	 (10)

V X F X X F X X
iG i G best G i G r G r G, , , , , ,+ = + −( )+ −( )1 1 2

	 (11)

V X F X X F X X
iG r G r G r G r G r G, , , , , ,+ = + −( )+ −( )1 1 2 3 4 5

	 (12)

where Xr1,G, Xr2,G, Xr3,G, Xr4,G and Xr5,G which are selected randomly are the results’ vector related to rith 
vector and Gth generation, Xbest

G is the best vector in Gth generation nad F is scale factor which are defined 
to control the convergence speed.

3. Crossover

In this operator, the trial vector is generated using a combination of a mutated vector and a target vector 
which are selected in the first stage. The basis of this combination is based on the crossover coefficient 
(Cr). So that, each of the mutated vector components is transmitted to the candidate vector with a Cr 
probability. Otherwise, the equivalent component is replaced in the original vector.



130

Hybrid Data Intelligent Models and Applications for Water Level Prediction
﻿

u
V If rand j Cr or j randb

x Otherwiseji G
ji G

ji G
,

,

,

( ) ()
+

+=
≤ =





1

1
 










	 (13)

4. Selection

At this stage, the trial vector obtained from the previous stage and target vector, which was selected in 
the first stage, is evaluated according to the objective function. If the trial vector is worth more than the 
target vector, it will be one of the next generation members. Otherwise, the target vector becomes one 
of the next generation population.
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3.3. SaE-ELM Model

The SaE-ELM is a novel learning algorithm named self-adaptive evolutionary (SaE) extreme learning 
machine (ELM) which is proposed by (Cao, Lin, & Huang, 2012) to overcome the limitation manually 
choosing control parameters and selectiob of trial vector generation strategies in (Zhu et al. 2005; Subu-
dhi & Jena, 2008). The SaE-ELM algorithm for SLFFNN is a combination of self-adaptive differential 
evolution algorithm (SaDE) (Qin, Huang, & Suganthan, 2009) and ELM (Guang-Bin Huang & Chee-
Kheong Siew, 2004). The hidden node biases and network input weights are optimized by SaDE and 
the network output weights are derived by ELM.

Consider a training data set (D) with an activation function (g(x)) and M hidden nodes, the SaE-
ELM algorithm are summarized in the four steps: 1) Initialization; 2) Calculations of output weights 
and RMSE; 3) Mutation and Crossover; and 4) Evaluation.

1. Initialization

The first generation population is initialized as a NP vectors so that each one containing the parameters 
of hidden node.

X a a a b b
k G M, , , , , ,

, ,..., , , ,.=
1 2 1 2( ) ( ) ( ) ( ) ( )k,G
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k,G
T

k,G
T

k,G k,G ...,
,

b
M ( )k,G





 	 (15)

where G is the generation number, k=1, 2, …, NP; and ai and bi are randomly produced (i=1, 2, …, M).

2. Calculations of Output Weights and RMSE

The root mean square error (RMSE) and the matrix of output weight du to each population vector are 
calculated as follow, respectively:
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The population vector with the lowest RMSE in the first generation is known as RMSE
bestθ ,1

 and 

saved in θ
best,1

.

3. Mutation and Crossover

For each target vector correspond to current generation, the trial vector production strategy (Equations 
9-12) is selected from a candidate pool constructed du to probability pl,G (Qin, Huang, & Suganthan, 
2009) where pl,G is the selection probability of lth strategy at the Gth generation. By definition of genera-
tion number as learning period (LP), the probability is updated based on comparison of current genera-
tion number (G) and LP. If the current generation number is lower than generation number (G≤LP), the 
probability of each strategy is equal (i.e. pl,G =0.25). Otherwise (G>LP), the probability og each one 
are computed as follows:
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where nsl,g and nfl,g are the number of generated trial vector by lth strategy at gth iterations that can enter 
or discard the next iteration, respectively. The number of failure and success trial vectors are saved. Once 
the generations go beyond the initial iterations, the new records are replaced with earliest ones. The ε is 
a positive constant value to prevent the possible null success rate. Moreover, a set oc control parameters 
namely as crossover constant (Cr) and scale factor (F) are randomly produced for each target vector due 
to the normal distribution N(0.5,0.1) and N(0.5,0.3) (respectively).

4. Evaluation

All generated trial vectors at (G+1)th iterations are assessment using Equation (19). Due to (Bartlett, 
1998) underscore, the norm of output weight β( )  is also considered as additional criteria in selection 

of trial vector to reach better generalization performance with small weights. Steps mutation and cross-
over and “evaluation” are repeated until the LP is completed or expected goal is achieved. The flowchart 
of SaE-ELM is presented in Figure 4.

5. DISCUSSION OF THE APPLICATION

The effectiveness of the proposed techniques is examined upon real historical water level data obtained 
From the Department of Irrigation and Drainage (DID), Malaysia. In this section, a detailed description 
and analysis of the proposed and the comparable predictive methods are debated. It should be noticed that 
the utilized data is continuous and not experience any missing monitoring events data during the period 
under the study. The forecasting skill was examined using multiple statistical index including regression 
coefficient R2, coefficient of determination R, variance (VAF), root mean square error (RMSE), scat-

Figure 4. The flowchart of SaE-ELM model
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ter index (SI), mean absolute error (MAE), mean absolute percentage error (MAPE), root mean square 
relative error (RMSRE), mean relative error (MRE), BIAS and Nash-Sutcliffe coefficient (NS).

Table 1 and 2 displayed the performance indicators of daily time scale modelling for ELM and SaE-
ELM, respectively. As visualized in these two tables that nine antecedent values of water level were used 
to construct the forecasting models. The best performance accuracies were performed for three previ-
ous records to forecast one step ahead consistently for both model. The results of the statistical metrics 
showed a harmony the in the performance in term of minimum absolute error measures and maximum 
best fit of goodness measurements.

On the other hand, Table 3 and 4 tabulated the forecasting skills indicators of the long-term (e.g., 
monthly time scale) for ELM and SaE-ELM, respectively. In this case, the constructed input variables 
were inspected up to eleven months lag time. This is owing to the results of the correlation statistics. 
The best lag time performed for ELM model is nine antecedents’ values. Whereas, SaE-ELM model 
achieved its best forecasting accuracies using five lag times attributes.

Scatter plots graphical inspection generated between the observed and forecasted values of river 
water level over the testing period (See Figure 5). The figure revealed an excellent agreement between 

Table 1. Forecasting performance of daily time scale water level using ELM model

Models R2 R VAF RMSE SI MAE MAPE RMSRE MRE BIAS NS

Model 1 0.925 0.962 92.361 0.294 0.065 0.179 0.038 0.058 -0.008 -0.027 0.922

Model 2 0.930 0.965 93.021 0.280 0.062 0.172 0.036 0.053 -0.005 -0.014 0.927

Model 3* 0.933 0.966 93.256 0.275 0.061 0.170 0.036 0.053 -0.005 -0.014 0.930

Model 4 0.925 0.962 92.523 0.289 0.064 0.173 0.037 0.056 -0.003 -0.003 0.922

Model 5 0.915 0.956 91.376 0.311 0.069 0.199 0.043 0.064 0.001 0.017 0.911

Model 6 0.926 0.962 92.517 0.290 0.064 0.179 0.038 0.057 -0.002 0.000 0.923

Model 7 0.908 0.953 90.595 0.325 0.072 0.213 0.046 0.064 0.000 0.007 0.906

Model 8 0.921 0.960 92.020 0.299 0.066 0.185 0.039 0.058 -0.002 0.003 0.917

Model 9 0.905 0.951 90.247 0.331 0.073 0.217 0.047 0.069 0.000 0.012 0.902

Table 2. Forecasting performance of time scale water level using SaE-ELM model

Models R2 R VAF RMSE SI MAE MAPE RMSRE MRE BIAS NS

Model 1 0.925 0.962 92.347 0.294 0.065 0.179 0.038 0.058 -0.008 -0.027 0.922

Model 2 0.931 0.965 93.045 0.280 0.062 0.170 0.036 0.053 -0.005 -0.014 0.928

Model 3* 0.934 0.966 93.354 0.273 0.060 0.166 0.035 0.052 -0.005 -0.010 0.931

Model 4 0.934 0.967 93.427 0.272 0.060 0.167 0.035 0.051 -0.005 -0.010 0.931

Model 5 0.927 0.963 92.680 0.287 0.063 0.179 0.038 0.056 -0.006 -0.013 0.924

Model 6 0.928 0.963 92.807 0.284 0.063 0.175 0.037 0.055 -0.006 -0.018 0.924

Model 7 0.927 0.963 92.212 0.295 0.065 0.200 0.043 0.059 0.000 -0.004 0.927

Model 8 0.931 0.965 93.021 0.280 0.062 0.174 0.037 0.053 -0.005 -0.012 0.928

Model 9 0.925 0.962 92.111 0.297 0.066 0.203 0.044 0.060 -0.001 -0.007 0.925
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the observed and forecasted values for both time scales. However, SaE-ELM model outperformed the 
ELM model for both investigated time scales.

Evidently, implementing only historical water level information is not sufficiently provide outstanding 
forecasting skills. Thus, it is necessary to consider other model input parameters which are dependent 
such as other related metrological, physical or even climatological. Both models have been developed 
performed almost the same level of accuracy; apparently, the predictive models were not the source the 
low prediction skills yet the nature of the water level pattern is highly complicated. Based on the authors 
knowledge, the perception is the rainfall is the source of the high fluctuation of the time series data. 
Therefore, reason that there could be an improvement in forecasts only by using climatic parameters to 
support the historical datasets in order to develop a good and successful model for forecasting. It may 

Table 3. Forecasting performance of monthly time scale water level using ELM model

Models R2 R VAF RMSE SI MAE MAPE RMSRE MRE BIAS NS

Model 1 0.853 0.923 84.457 0.405 0.090 0.280 0.060 0.082 -0.017 -0.067 0.845

Model 2 0.868 0.931 86.748 0.368 0.082 0.242 0.051 0.070 -0.005 0.002 0.843

Model 3 0.881 0.939 88.080 0.350 0.077 0.241 0.051 0.068 -0.008 -0.014 0.864

Model 4 0.889 0.943 88.781 0.340 0.075 0.237 0.050 0.066 -0.010 -0.032 0.881

Model 5 0.873 0.934 87.143 0.364 0.081 0.242 0.051 0.071 -0.009 -0.026 0.864

Model 6 0.853 0.923 85.161 0.391 0.087 0.261 0.054 0.075 -0.010 -0.028 0.837

Model 7 0.844 0.919 84.384 0.400 0.089 0.270 0.057 0.078 -0.009 -0.020 0.824

Model 8 0.852 0.923 84.912 0.395 0.087 0.261 0.056 0.078 -0.011 -0.033 0.840

Model 9* 0.890 0.943 88.906 0.339 0.075 0.241 0.051 0.066 -0.011 -0.036 0.882

Model 10 0.878 0.937 87.750 0.356 0.079 0.246 0.052 0.068 -0.010 -0.033 0.867

Model 11 0.878 0.937 87.196 0.368 0.081 0.276 0.059 0.075 -0.016 -0.064 0.872

Table 4. Forecasting performance of monthly time scale water level using SaE-ELM model

Models R2 R VAF RMSE SI MAE MAPE RMSRE MRE BIAS NS

Model 1 0.865 0.930 85.932 0.384 0.085 0.265 0.057 0.079 -0.016 -0.059 0.858

Model 2 0.877 0.936 87.610 0.356 0.079 0.229 0.048 0.067 -0.004 0.005 0.852

Model 3 0.881 0.939 88.080 0.350 0.077 0.241 0.051 0.068 -0.008 -0.014 0.864

Model 4 0.895 0.946 89.340 0.333 0.074 0.237 0.050 0.064 -0.012 -0.044 0.889

Model 5* 0.908 0.953 90.156 0.323 0.072 0.214 0.045 0.065 -0.014 -0.059 0.905

Model 6 0.875 0.935 87.363 0.361 0.080 0.235 0.049 0.071 -0.009 -0.027 0.865

Model 7 0.848 0.921 84.750 0.395 0.088 0.259 0.055 0.076 -0.007 -0.010 0.825

Model 8 0.876 0.936 87.484 0.359 0.080 0.248 0.053 0.072 -0.010 -0.030 0.864

Model 9 0.896 0.946 89.384 0.333 0.074 0.233 0.049 0.066 -0.012 -0.046 0.890

Model 10 0.890 0.943 88.936 0.337 0.075 0.226 0.047 0.065 -0.008 -0.024 0.879

Model 11 0.882 0.939 88.161 0.349 0.077 0.236 0.048 0.066 -0.009 -0.024 0.872
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be expected that the availability of parameters for rainfall parameters and their use as input variables 
during modelling can improve the level of accuracy.

6. CONCLUSION AND REMARKS

In this chapter, a novel predictive model called (SaE-ELM) is proposed to forecast one-step-ahead short- 
and long-term river water level. To achieve this objective, a highly stochastic case study is examined 
positioned in tropical environment, Linggi River, Negeri Sembilan state in peninsular Malaysia. The 
forecasting modelling has been undertaken based on the correlated antecedent values of the time series. 
The results of the proposed approach compared and assessed with ELM model using several performance 
indicators. The results demonstrated that SaE-ELM model can be applied efficiently to establish accurate 
and reliable daily and monthly water level at this particular case study. This research can be expended 
for future investigation which might be enhance the forecasting modelling. For instance, involve some 
other hydrological parameters “e.g., rainfall, streamflow or other catchment physical properties” that 
may provide more knowledge about the water level phenomena.

Figure 5. Scatter plot graphical presentation over the testing phase using ELM and SaE-ELM models
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