125 research outputs found

    The Vehicle Routing Problem with Service Level Constraints

    Full text link
    We consider a vehicle routing problem which seeks to minimize cost subject to service level constraints on several groups of deliveries. This problem captures some essential challenges faced by a logistics provider which operates transportation services for a limited number of partners and should respect contractual obligations on service levels. The problem also generalizes several important classes of vehicle routing problems with profits. To solve it, we propose a compact mathematical formulation, a branch-and-price algorithm, and a hybrid genetic algorithm with population management, which relies on problem-tailored solution representation, crossover and local search operators, as well as an adaptive penalization mechanism establishing a good balance between service levels and costs. Our computational experiments show that the proposed heuristic returns very high-quality solutions for this difficult problem, matches all optimal solutions found for small and medium-scale benchmark instances, and improves upon existing algorithms for two important special cases: the vehicle routing problem with private fleet and common carrier, and the capacitated profitable tour problem. The branch-and-price algorithm also produces new optimal solutions for all three problems

    Solving open travelling salesman subset-tour problem through a hybrid genetic algorithm

    Get PDF
    In open travelling salesman subset-tour problem (OTSSP), the salesman needs to traverse a set of k (≤n) out of n cities and after visiting the last city, the salesman does not necessarily return to the central depot. The goal is to minimize the overall traversal distance of covering k cities. The OTSSP model comprises two types of problems such as subset selection and permutation of the cities. Firstly, the problem of selection takes place as the salesman’s tours do not contain all the cities. On the other hand, the next problem is about to determine the optimal sequence of the cities from the selected subset of cities. To deal with this problem efficiently, a hybrid nearest neighbor technique based crossover-free Genetic algorithm (GA) with complex mutation strategies is proposed. To the best of the author’s knowledge, this is the first hybrid GA for the OTSSP. As there are no existing studies on OTSSP yet, benchmark instances are not available for OTSSP. For computational experiments, a set of test instances is created by using TSPLIB. The extensive computational results show that the proposed algorithm is having great potential in achieving better results for the OTSSP. Our proposed GA being the first evolutionary-based algorithm that will help as the baseline for future research on OTSSP

    Traveling Salesman Problem

    Get PDF
    This book is a collection of current research in the application of evolutionary algorithms and other optimal algorithms to solving the TSP problem. It brings together researchers with applications in Artificial Immune Systems, Genetic Algorithms, Neural Networks and Differential Evolution Algorithm. Hybrid systems, like Fuzzy Maps, Chaotic Maps and Parallelized TSP are also presented. Most importantly, this book presents both theoretical as well as practical applications of TSP, which will be a vital tool for researchers and graduate entry students in the field of applied Mathematics, Computing Science and Engineering

    Covering tour problem with varying coverage: Application to marine environmental monitoring

    Get PDF
    In this paper, we present a novel variant of the Covering Tour Problem (CTP), called the Covering Tour Problem with Varying Coverage (CTP-VC). We consider a simple graph = ( ,), with a measure of importance assigned to each node in . A vehicle with limited battery capacity visits the nodes of the graph and has the ability to stay in each node for a certain period of time, which determines the coverage radius at the node. We refer to this feature as stay-dependent varying coverage or, in short, varying coverage. The objective is to maximize a scalarization of the weighted coverage of the nodes and the negation of the cost of moving and staying at the nodes. This problem arises in the monitoring of marine environments, where pollutants can be measured at locations far from the source due to ocean currents. To solve the CTP-VC, we propose a mathematical formulation and a heuristic approach, given that the problem is NP-hard. Depending on the availability of solutions yielded by an exact solver, we evaluate our heuristic approach against the exact solver or a constructive heuristic on various instance sets and show how varying coverage improves performance. Additionally, we use an offshore CO2 storage site in the Gulf of Mexico as a case study to demonstrate the problem’s applicability. Our results demonstrate that the proposed heuristic approach is an efficient and practical solution to the problem of stay-dependent varying coverage. We conduct numerous experiments and provide managerial insights.publishedVersio

    The bi-objective travelling salesman problem with profits and its connection to computer networks.

    Get PDF
    This is an interdisciplinary work in Computer Science and Operational Research. As it is well known, these two very important research fields are strictly connected. Among other aspects, one of the main areas where this interplay is strongly evident is Networking. As far as most recent decades have seen a constant growing of every kind of network computer connections, the need for advanced algorithms that help in optimizing the network performances became extremely relevant. Classical Optimization-based approaches have been deeply studied and applied since long time. However, the technology evolution asks for more flexible and advanced algorithmic approaches to model increasingly complex network configurations. In this thesis we study an extension of the well known Traveling Salesman Problem (TSP): the Traveling Salesman Problem with Profits (TSPP). In this generalization, a profit is associated with each vertex and it is not necessary to visit all vertices. The goal is to determine a route through a subset of nodes that simultaneously minimizes the travel cost and maximizes the collected profit. The TSPP models the problem of sending a piece of information through a network where, in addition to the sending costs, it is also important to consider what “profit” this information can get during its routing. Because of its formulation, the right way to tackled the TSPP is by Multiobjective Optimization algorithms. Within this context, the aim of this work is to study new ways to solve the problem in both the exact and the approximated settings, giving all feasible instruments that can help to solve it, and to provide experimental insights into feasible networking instances

    A discrete simulated kalman filter optimizer for combinatorial optimization problems

    Get PDF
    Combinatorial optimization problems are ubiquitous in many fields, including healthcare, economics, engineering, manufacturing, and others. A solution to a combinatorial optimization problem is frequently expressed in terms of a permutation, arrangement, or combination of elements. Due to the practical significance of this problem in real-world issues, numerous algorithms have been proposed to solve it. These algorithms specifically refer to those that operate in discrete search space, often known as combinatorial algorithms. Another type of algorithm is called numerical algorithms. These algorithms were built specifically to address numerical optimization problems. In the last few decades, significant research effort has been spent on the development of numerical algorithms, particularly for solving combinatorial problems. An example of a numerical algorithm is the simulated Kalman filter (SKF). Various method has been introduced as an extension of a numerical algorithm to adapt it to a discrete search space. There are currently three extensions to the SKF, resulting in three combinatorial algorithms: the binary SKF (BSKF), the distance evaluated SKF (DESKF), and the angle modulated SKF (AMSKF). However, these extensions may result in increased execution times for the algorithm. In this research, a new combinatorial algorithm named discrete simulated Kalman filter optimizer (DSKFO) is proposed to solve combinatorial optimization problem. This new algorithm is originated by the concept of the simulated Kalman filter (SKF). Due to the limitation of the SKF algorithm which only able to operate in continuous search space, the proposed algorithm makes use of a new interpretation that incorporates mutation and Hamming distance, allowing the proposed algorithm to function in discrete search space. In this research, three combinatorial problems namely the travelling salesman problem (TSP), assembly sequence planning (ASP), and the hole drilling proble are used to evaluate the proposed algorithm. Two types of analysis are used to evaluate the proposed algorithm. First, the DSKFO algorithm is used to solve the travelling salesman problem (TSP), and then the algorithm's execution time is measured. Existing SKF methods are then compared to the findings of the DSKFO algorithm. DSKFO performs the fastest, requiring just 13 seconds to solve a small TSP instance such as eil51, whereas DESKF, AMSKF, BSKF, and SEDESKF require around 36, 42, 34, and 14 seconds, respectively. To solve larger TSP instance such as rl1889, DSKFO requires 139 seconds to execute a single run, whereas DESKF, AMSKF, BSKF, and SEDESKF require around 1587, 1590, 2418, and 208 seconds, respectively. For the second analysis, the performance of the proposed method is evaluated using three combinatorial problems: the travelling salesman problem (TSP), the assembly sequence planning (ASP), and the hole drilling problem. The results are compared to four previously published combinatorial SKFs: the BSKF, the AMSKF, the DESKF, and the SEDESKF. The DSKFO may be considered the best algorithm for solving the TSP and hole drilling problem, as it has the highest number of best performances. For solving the ASP, the DSKFO ranked third, while the AMSKF came in first, followed by the DESKF in second

    The multicommodity traveling salesman problem with priority prizes: a mathematical model and metaheuristics

    Get PDF
    Artigo científico.The classic Traveling Salesman Problem (TSP) only considers the costs involved in the routes and does not differentiate products or customers. Logistic companies face conflict between operational costs, customers with different categories of products, and customer satisfaction, which is directly related to delivery time. This paper presents a new mathematical model for a TSP with variable costs and priority prizes, taking into account the customer’s product and preference values. This problem is denoted as the Multicommodity Traveling Salesman Problem with Priority Prizes (MTSPPP). Two versions of the Biased Random-Key Genetic Algorithm (BRKGA) are proposed to solve medium and large instances of the MTSPPP. Computational tests were performed, using modified instances based on classical TSP instances. The proposed methods have proved to be efficient in solving the MTSPPP.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES
    corecore