This is an interdisciplinary work in Computer Science and Operational Research. As it is
well known, these two very important research fields are strictly connected. Among other
aspects, one of the main areas where this interplay is strongly evident is Networking. As far
as most recent decades have seen a constant growing of every kind of network computer connections,
the need for advanced algorithms that help in optimizing the network performances
became extremely relevant. Classical Optimization-based approaches have been deeply studied
and applied since long time. However, the technology evolution asks for more flexible and
advanced algorithmic approaches to model increasingly complex network configurations. In
this thesis we study an extension of the well known Traveling Salesman Problem (TSP): the
Traveling Salesman Problem with Profits (TSPP). In this generalization, a profit is associated
with each vertex and it is not necessary to visit all vertices. The goal is to determine
a route through a subset of nodes that simultaneously minimizes the travel cost and maximizes
the collected profit. The TSPP models the problem of sending a piece of information
through a network where, in addition to the sending costs, it is also important to consider
what “profit” this information can get during its routing. Because of its formulation, the
right way to tackled the TSPP is by Multiobjective Optimization algorithms. Within this
context, the aim of this work is to study new ways to solve the problem in both the exact
and the approximated settings, giving all feasible instruments that can help to solve it, and
to provide experimental insights into feasible networking instances