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Abstract

The classic Traveling Salesman Problem (TSP) only considers the costs
involved in the routes and does not differentiate products or customers.
Logistic companies face conflict between operational costs, customers
with different categories of products, and customer satisfaction, which is
directly related to delivery time. This paper presents a new mathematical
model for a TSP with variable costs and priority prizes, taking into
account the customer’s product and preference values. This problem is
denoted as the Multicommodity Traveling Salesman Problem with Priority
Prizes (MTSPPP). Two versions of the Biased Random-Key Genetic
Algorithm (BRKGA) are proposed to solve medium and large instances
of the MTSPPP. Computational tests were performed, using modified
instances based on classical TSP instances. The proposed methods have
proved to be efficient in solving the MTSPPP.

traveling salesman; multicommodity; priority; genetic algorithm.

1 Introduction
The Traveling Salesman Problem (TSP) is a well-known NP-hard problem in
network optimization [3, 10, 11, 24]. It consists of determining a minimum
cost Hamiltonian path, visiting all customers only once, and returning to the
starting point. The TSP arises in many applied settings, such as drilling of
printed circuit boards [17], the order-picking problem in depots [32], the school
bus routing problem [2], the defender-attacker-defender problem [26], and the
maritime logistics [27].
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The TSP and most of its variations are oriented by costs and, in the literature,
we hardly see studies considering different demands. One variation that does
consider different demands is the Multicommodity Traveling Salesman Problem
(MTSP) [34, 36, 37]. In the MTSP, product types and quantities that pass
through a route connecting two customers are considered in the total cost. In
practice, customers with larger demands or more precious or high-risk products
must be delivered with a higher priority. For example, sensitive materials may
require special transport structure, perishable products must be refrigerated,
both leading to higher transportation costs. The authors [34] consider variable
costs for each product type in each route between two customers and propose a
network flow model that is solved by a lagrangian relaxation and a branch-and-cut
method [35, 38].

Another variation of the TSP considers priority prizes for customers along
the route. These prizes are collected by the salesman according to the order each
customer is visited. In this variation the quality of customer service and delivery
priorities are considered, because customer preferences in terms of delivery
sequence order must be quantified and optimized. Morabito et al. [30] modeled
this problem as a special case of a quadratic assignment problem [23], called the
Travelling Salesman Problem with Priority Prizes (TSPPP) and they solved it
by a Tabu Search metaheuristic [13]. Silva [39, 40] used the TSPPP and the
Profitable Tour Problem (PTP) [4, 5] to formulate the problem of elaborating
touristic itineraries considering variables such as the profile of the visitors, the
planning of the trip, visitors’ preferences and touristic attractions. The authors
considered a case study in the City of Belém, in the State of Pará, Brazil, solving
the problem by a Tabu Search metaheuristic.

Besides these situations, logistic companies face conflict between operational
costs, customers with different categories of products, and customer satisfaction,
which is directly related to delivery time. It then becomes a challenge to choose
between minimizing travel costs and ensuring a degree of service quality for
all customers. In order to obtain solutions that balance operating costs and
customer satisfaction, we propose a new model that combines the TSPPP with
MTSP.

In this paper we look at the TSP from both the customer’s and the salesman’s
points of view. We consider the objective of minimizing total costs, while
satisfying customers preference, by maximizing the priority prizes. Our model is
based on the assignment problem and a network flow problem. Commodities
flowing in the network represent the products. We denote this problem as
Multicommodity Traveling Salesman Problem with Priority Prizes (MTSPPP).

In this study we used two versions of the Biased Random-Key Genetic
Algorithm (BRKGA) [14] to solve medium and large instances of the MTSPPP. A
local search based on Iterated Local Search (ILS) [25] and Variable Neighborhood
Descent (VND) [18] were also used in order to improve the solutions found by
BRKGA.

We generated some instances for the MTSPPP based on classical instances of
TSP and we performed computational tests with the model and the metaheuris-
tics. The model was able to solve small instances and the proposed metaheuristics
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efficiently solved medium and large instances. To the best of our knowledge, the
MTSPPP has not been addressed before in the literature.

This article is organized as follows. A mathematical model of MTSPPP
is presented in Section 2. In Section 3 the BRKGA+CS and A-BRKGA+CS
algorithms are briefly introduced and in Section 4 a framework of BRKGA+CS
and A-BRKGA+CS are presented in detail to solve the MTSPPP. The compu-
tational results for the proposed model and methods are presented and analyzed
in Section 5. Finally, in Section 6 some conclusions are presented.

2 The Multicommodity Traveling Salesman Prob-
lem with Priority Prizes

Let N be the number of customers to be visited including the depot. Consider a
graph G(V,A), where V is a set composed by N nodes, numbered 1 to N , and
A is a set of arcs. For convenience, Node 1 is the depot and the other nodes
represent the customers to be visited. The set of arcs A in this graph represent
the paths between customers. For simplicity, we consider that product l, a
commodity, will be delivered to customer l. We also assume that each customer
can order only one product type, i.e., the same node (customer) cannot order
different products. Denote cij as the fixed cost in the arc (i, j), ql as the demand
required by customer l, dijl as the variable cost to pass product l through arc
(i,j), and pki the prize value collected when customer i is visited in the kth order.
We assume, without loss of generality, that ql > 0 and integer for all l.

Let xki be a binary decision variable equal to 1, if customer i is visited in the
kth order, and 0, otherwise. Similarly, let yij be a binary decision variable equal
to 1, if customer j is visited immediately after customer i, and 0, otherwise. Let
fijl be a real decision variable corresponding to the flow quantity of the product
l that is transported from customer i to customer j. Observe that in an optimal
solution, due to constraints (7), (8), and (9) of the model, the values of the fijl

variables will be integer if ql is integer for all l. So, a mathematical formulation
for the problem MTSPPP is the following:

Max Z =
N∑

k=2

N∑
i=2

pkixki −
N∑

i=1

N∑
j=1
i 6=j

(cijyij +
N∑

l=2
dijlfijl) (1)

subject to:
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N∑
i=1

xki = 1, k = 1, 2, . . . , N (2)

N∑
k=1

xki = 1, i = 1, 2, . . . , N (3)

N∑
j=1

yij = 1, i = 1, 2, . . . , N (4)

N∑
h=1

yhi = 1, i = 1, 2, . . . , N (5)

x(k−1)h + xki − yhi ≤ 1, h 6= i = 1, 2, . . . , N, k = 2, 3, . . . , N (6)
N∑

j=2
f1jl = ql, l = 2, 3, . . . , N (7)

N∑
i=1
i 6=l

fill = ql, l = 2, 3, . . . , N (8)

N∑
h=1

i 6=l,h6=i

fhil −
N∑
j=1

i 6=l,i6=j

fijl = 0, l, i = 2, 3, . . . , N (9)

fijl ≤ qlyij , i 6= j = 1, 2, . . . , N, l = 2, 3, . . . , N (10)
fijl ≥ 0, i, j = 1, 2, . . . , N, l = 2, 3, . . . , N, (11)
xki, yij ∈ {0, 1}, k, i, j = 1, 2, . . . , N, i 6= j. (12)

The objective function (1) maximizes the priority prizes while it minimizes
the fixed total costs and variable costs. Constraints (2) and (3) impose the
constraint that each customer must be visited only once. Constraints (4) and
(5) are assignment constraints. Constraints (6) links the variables x and y. It
ensures that, if customer h is visited in the (k − 1)th position, and customer i is
visited in the kth position, then the arc (h,i) will be used.

Constraints (7) ensures that all products will leave the depot with their
respective demands, and Constraints (8) guarantees that all products will reach
their destinations, taking into account the demand required. Constraints (9)
enforces the conservation of flow at any node that is not the final destination for
the products. Constraints (10) links the variables f and y. It ensures that no
flow is allowed on an arc (i, j) unless it is used. Finally, Constraints (11) and
(12) define the domain of the decision variables. We set the first position in the
route at 1, i.e., x11 = 1, since, for convenience, we set node 1 as the depot.

The subtours elimination constraints are implied by constraints (4), (5),
(7)-(12). Node 1 is the supply node for all products l, l = 2, 3, . . . , N . Therefore,
in a feasible solution, there must be a path from node 1 to node l, l = 2, 3, . . . , N ,
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where the quantity ql of product l has to flow to satisfy the demand of node
l, l = 2, 3, . . . , N , respectively. At each node in this path, we must have the
conservation of flow, imposed by constraints (9). According to (10) and (12), the
corresponding yij of the arcs in these paths must have value 1. Assume there is
a subtour in the solution. There are two possibilities: (i) node 1 does not belong
to this subtour; (ii) node 1 belongs to this subtour. Case (i) cannot happen
for there is no path from node 1 to any of the nodes belonging to the subtour.
Therefore, the demands of these nodes cannot be satisfied. In case (ii), there is
at least one node, say t, that does not belong to the subtour. Since there must
be a path from node 1 to node t in order to satisfy the demand of this node, then
we have two possibilities: this path from node 1 to node t contains only nodes
not belonging to the subtour or, this path contains other nodes of the subtour
before reaching node t. The first case cannot happen because of constraint (4)
that imposes that there is only a single arc with flow leaving node 1. Hence,
we cannot have two arcs with positive flows leaving node 1, one to supply the
demand of node t and the other to supply the demands of the nodes belonging
to the subtour. The second case also cannot happen because of constraint (4).
Let us consider the node, say s, belonging to the subtour, where the flow to
node t leaves the subtour. Again, we cannot have two arcs with positive flows
leaving node s, one to supply the demand of node t and the other to supply the
demands of the nodes belonging to the subtour.

Computational experiments were performed with this model, using CPLEX
12.6.3 and are presented in Section 5. The model was able to solve instances
with at most 28 customers in 10800 seconds. For medium and large instances
the solver was not able to find a feasible solution within the time limit set.

3 BRKGA
The Biased Random-Key Genetic Algorithm (BRKGA) was proposed by Gon-
çalves and Resende [14]. The method consists of a specialization of the RKGA
(Random-Key Genetic Algorithm) [6], an algorithm that evolves a population
of random keys, where each vector of n random keys represents a solution of a
combinatorial optimization problem. A random key is a real number randomly
generated in the continuous interval [0, 1). A vector of random keys is decoded
into a feasible solution and an objective value (or fitness) through a deterministic
algorithm called a decoder, which is dependent on the problem to be solved.

A population of p individuals is made up. At each generation, the population
is divided into two sets, according to the fitness of each individual. The pe best
fitness vectors are identified as an elite set and the rest of the population as a
non-elite set. All elite vectors are copied, without change, to the next generation
and pm mutants are introduced. A mutant is a vector of random keys generated
in the same way as all individuals of the initial population. The p − pe − pm

remaining individuals are generated by combining pairs of randomly chosen
solutions an elite set and another non-elite set [41].

In Figure 1, we illustrate a flow diagram of the BRKGA. In this diagram,
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the gray rectangle represents the decoder function. This is the single component
of a BRKGA that depends on the problem being solved.

Figure 1: The BRKGA framework. Adapted from [8, 9].

3.1 Adaptive BRKGA (A-BRKGA)
The Adaptive Biased Random-Key Genetic Algorithm (A-BRKGA) is a recent
metaheuristic proposed by Chaves et. al [9]. This metaheuristic tunes parameters
on-line so that the processes of intensification and diversification are balanced.
In Figure 2, we illustrate the evolutionary process of the A-BRKGA.

In A-BRKGA a solution of a combinatorial optimization problem is also
represented by a vector of n random-keys plus two extra random-keys in positions
n+ 1 and n+ 2. They are used to compute the self-adaptive parameters.

If we denote pmax and pmin as the maximum and the minimum sizes of the
population respectively, the maximum number of generations (maxgen), the stop
criterion, is given by the equation:

maxgen = γ(logpminγ −pmax). (13)
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Figure 2: The Adaptive BRKGA framework. Adapted from [8, 9].

Equation (13) is motivated by the expression used in Simulated Annealing [20]
to calculate the maximum number of required iterations for a given temperature.
The parameters pmax and pmin are set at 1000 and 100, respectively. These
values are recommended in the literature [16, 29]. The parameter γ is selected
from the set {0.999, 0.998, 0.997} and depends on the available running time.

At each generation, the population is divided into two groups: the first group
(RCL, restricted chromosome list) consists of the best individuals evaluated by
fitness and, the second group composed of the individuals of the population not
in RCL. The RCL is composed of individuals whose fitness is less than a bound
fe (minimization problem), given by a convex combination of the fitness values
of the best (fmin) and the worst (fmax) individuals in the current population:

7



fe = αfmax + (1− α)fmin, (14)

with α ∈ [0, 1]. The number of individuals in the RCL is limited by pe = p ∗ κe,
where κe is given by Equation (15). In Equation (15), gk is the number of the
current generation. According to the literature, the range of the number of elite
individuals should vary between 10% and 25% of the population [16, 29]. The
number of elite individuals is lower in the initial generations when the average
quality of the individuals is low and this number increases in the subsequent
generations.

κe = 0.10 + gk

maxgen
∗ (0.25− 0.10). (15)

The parameter α in (14) is modified at each iteration according to Equation
(16). It starts with the value 0.3 and ends up with the value 0.1. fe decreases
during the evolution of the population because of the tendency of flatness of the
individuals fitness after a certain number of generations.

α = 0.10 +
(

1− gk

maxgen

)
∗ (0.30− 0.10). (16)

The individuals in the RCL with the same fitness are perturbed by an
adaptive parameter β, that is the probability of randomly swapping two random
key values, and that is updated according to Equation (17), where xn+2 is the
random-key in position n+ 2 of the individual x in the current generation. This
perturbation maintains the diversity of the population and avoids premature
convergence.

β = 0.001 + xn+2 ∗ (0.10− 0.001). (17)

All RCL individuals in the population of generation k are copied to the
population of generation k + 1. At each generation pm = p ∗ κm individuals
are generated as in the initial population and inserted to the population of
generation k + 1, where κm is given by Equation (18). These individuals are
named mutants. Based on the literature, the number of mutants should range
between 5% and 20% of the population [16, 29]. As the population evolves, the
number of mutants decreases aiming at a greater intensification in the search for
the solution.

κm = 0.05 +
(

1− gk

maxgen

)
∗ (0.20− 0.05). (18)

To complete the population, p−|RCL|−pm additional individuals are needed.
These individuals are obtained by combining pairs of individuals of the current
population, using the parameterized uniform crossover [41]. A number rj ∈ [0, 1]
is generated for each individual gene. If rj ≤ ρe, then this individual gene
inherits the allele of the RCL parent. Otherwise, it inherits the allele of the
other parent. The parameter ρe is self-adaptive and is given by equation:
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ρe = 0.65 + yn+1 ∗ (0.80− 0.65), (19)

where yn+1 is the random-key in position n+ 1 of the individual y that is not
in RCL. The probability of accepting an elite allele is always between 65% and
80% as recommended in the literature [9].

All ranges of the parameters used in the A-BRKGA were based on studies in
the literature and on empirical tests. They were defined aiming the development
of an algorithm that easy reuse code and is efficient to solve different combinatorial
optimization problems. In subsection 3.2 we present a local search heuristic used
with BRKGA and A-BRKGA.

3.2 Local Search
Chaves et al. [9] showed that the use of local search heuristics can improve the
performance of BRKGA and A-BRKGA. However, to avoid a significant increase
in running time these heuristics are applied only in regions considered promising
by the algorithm. To find these promising regions, the Label Propagation (LP)
method [31] is used to identify communities with a great number of similar
individuals within the RCL. As RCL contains the best individuals evaluated by
fitness, these communities are considered promising regions.

The similarity level, r, between two individuals x and y is calculated by the
Pearson correlation coefficient [33] and is given by the Equation (20), where x
and y are the random-keys vectors, and x and y are the arithmetic means of x
and y, respectively. A adaptive parameter σ is defined by Equation (21) and
used to represent the similarity degree during the search process. If r ≥ σ then
the individuals x e y are similar. The parameter σ starts in 0.3 and increases
during the population evolution, because the diversity decreases throughout the
evolution process.

r =

n∑
i=1

(xi − x)(yi − y)√√√√ n∑
i=1

(xi − x)2
n∑

i=1
(yi − y)2

. (20)

σ = 0.30 + gk

maxgen
∗ (0.70− 0.30). (21)

Initially, we build a graph G(V,A) where each individual of the RCL is
represented by a node v ∈ V . There is an edge auv ∈ A only if the individuals
u and v have a similarity level greater than σ. Then, to each node we assign
a different number, named label. For each node v of the graph, LP searches
the label with the highest frequency among its neighbors. If ties occur one of
them is chosen at random. The label of v is then replaced by the label of this
neighbor with the highest frequency. The algorithm ends when the label of each
node in the graph is the more common of its neighborhood. Finally, all nodes
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with the same label are grouped into a community (cluster). Figure 3 illustrates
an example of the LP applied to a RCL with 9 individuals. Every edge in this
graph is incident to nodes having similar individuals. Starting with graph of
Figure 3A, LP ends up with the graph of Figure 3D. The way the labels of the
nodes are updated is shown one at a time. At the end, two clusters with labels 2
and 6 are obtained.

Figure 3: Example of an iteration of the Label Propagation algorithm.

The individual in a cluster with the best fitness value and that was not yet
explored by the specific local search is chosen as the representative solution of
this cluster. This individual is decoded into a solution of the problem and the
local search is applied to this solution. The local optimal solution found does not
return to the current population since this would require a re-decoding process.
If this solution is better than the best-known solution so far, then the current
best solution is updated. Since this solution is not returned to the current
population, it does not interfere in the evolutionary process of the BRKGA or
the A-BRKGA.

The BRKGA and A-BRKGA methods with this local search heuristics are
named BRKGA+CS and A-BRKGA+CS, respectively [8, 9].
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4 BRKGA+CS and A-BRKGA+CS for the MT-
SPPP

In this paper, we encode the solution of the MTSPPP as a vector S with n
random-keys in the BRKGA+CS, and a vector of n + 2 random-keys in the
A-BRKGA+CS, where n is the number of customers to be visited plus the
depot, and the positions n + 1 and n + 2 are used to calculate the value of
the parameters ρe and β, respectively. The decoding of S in a solution S′ of
MTSPPP is accomplished by sorting the customers in ascending order of their
corresponding random-keys values. The first position in S is set at 1, representing
the depot, whose salesman starts and ends his trip there. In Figure 4, we show
an example of the decoding process for the MTSPPP with six customers, where
the gray rectangle represents the depot with its respective random-key value.

The fitness of Solution S′ is calculated by the corresponding value of the
objective function (1).

Figure 4: Example of an encoded solution.

4.1 Local Search for MTSPPP
The local search heuristic used is an Iterated Local Search (ILS) algorithm [25].
ILS combines a local search phase with a perturbation phase. Specifically, the
Variable Neighborhood Descent (VND) [18] was used in the local search phase
of ILS and Swap(1,1) was used in the perturbation phase.

Our VND used three neighborhood structures:
1) N (1) - 2-Opt: Reverse the order of the visitation of customers between

positions i and j, inclusive, in Solution S′;
2) N (2) - Shift(1): Transfer customer i from its current position to position

k, in Solution S′;
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3) N (3) - Swap(1,1): Change the visitation position of customer i with the
visitation position of customer j in Solution S′.

Examples of these neighborhoods are shown in Figure 5. In (a) we present an
example of a route with 5 customers plus the depot whose order is 1−2−3−4−5−6.
In (b) we present the route 1− 5− 4− 3− 2− 6 obtained by applying 2-Opt to
the positions 2 and 5. In (c) we present the route 1− 3− 4− 5− 2− 6 obtained
by applying Shift(1) to customer 2 to position 5. In (d) we present the route
1− 5− 3− 4− 2− 6 obtained by applying Swap(1,1) to customers 2 and 5.

Figure 5: Examples of the three neighborhood structures used in the MTSPPP.
In (a) an example of a customer route. In (b) route obtained by 2-Opt. In (c)
route obtained by Shift(1). In (d) route obtained by Swap(1,1).

Let S′ be a decoded representative solution, i.e., a solution provided by
the clustering process and decoded by the decoder function. For each of these
solutions, we apply Algorithms 1 and 2, which are the ILS and VND procedures,
respectively.

In Algorithm 1, the initial solution (s0) is a decoded solution (S′) in a
promising region determined as described in subsection 3.2. VND is applied to
obtain a better solution that will be the current solution, s, (line 2). We set to
3 the number of iterations of the algorithms (line 4) because of the available
running time. In lines 5 to 10 we apply the local search phase; in line 7 we
realize a perturbation in the current solution by Swap(1,1) before applying VND.
If a better solution is found then the current solution is updated (lines 9 and 10).
This is recursively applied until the maximum number of iterations is reached.

In Algorithm 2, the initial solution s0 is obtained by the ILS procedure
(Algorithm 1, lines 2 and 8). The number of neighborhood structures nr was
set to 3, which are 2-opt, Shift(1) and Swap(1,1). A search is performed in all
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Algorithm 1 Pseudo code of ILS
1: Initial solution s0 . representative decoded solution of region
2: s← VND(s0)
3: Iter . current iteration
4: Itermax ← 3 . maximum number of iterations
5: while (Iter < Itermax) do
6: Iter ← Iter + 1
7: s′ ← Swap(1, 1)
8: s′′ ← VND(s′)
9: if (f(s′′) > f(s)) then

10: s← s′′

11: Return s

Algorithm 2 Pseudo code of VND
1: Initial solution s0
2: Number of neighborhood structures nr

3: s← s0 . current iteration
4: k ← 1 . type of neighborhood structure
5: while (k ≤ nr) do
6: Find the best neighbor s′ ∈ N (k).
7: if (f(s′) > f(s)) then
8: s← s′

9: k ← 1
10: else
11: k ← k + 1
12: Return s
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neighborhoods until the best solution for all structures is obtained (lines 5 to
11). In each neighborhood structure k (line 5) we find the best neighbor (line
6). Whenever a better solution is found, we return to the first neighborhood
structure (line 9), ensuring that the final solution obtained is the best for all
neighborhood structures. When a better solution is not found using the kth
neighborhood structure (lines 10 and 11) then the structure changes to k + 1.

5 Computational results
The BRKGA+CS and A-BRKGA+CS were coded in C++ and the computational
tests were carried out on an Intel Core i7 3.6 GHz processor with 16GB of RAM
in a Windows 10 environment. The solver ILOG CPLEX 12.6.3.0 [19] was used
to obtain a solution using the model MTSPPP. The two versions of BRKGA
were run using 20 different seeds.

The parameter tuning of BRKGA+CS is realized by the Relative Deviation
Index (RDI) [21]. The RDIi of a solution i with objective function value Si is
defined as:

RDIi = SB − Si

SB − SW
, (22)

where SB is the best value obtained by the metaheuristics and SW is the worst
value obtained by the metaheuristics. Different combinations of parameters were
tested on a subset of instances and the configuration with the best RDI was
chosen for the computational tests of the BRKGA+CS.

The parameter’s sets used in the tuning phase are shown in Table 1. The
parameters found are given in Table 2 together with the range of the parameters
used in A-BRKGA+CS. The settings of BRKGA+CS were kept constant for all
instances whereas the parameters of A-BRKGA+CS varied within those intervals
according to the theory presented in subsection 3.1.

Table 1: Parameters values used in tuning process of BRKGA+CS.
Parameter Meaning Values
p size of population 1000
pe size of elite population 0.10, 0.15, 0.20, 0.25, 0.30
pm size of mutant population 0.15, 0.20, 0.25, 0.30
ρe elite allele inheritance probability 0.70, 0.75, 0.80, 0.85

The instances used in the tests were generated from the TSPLib library [42]
and were based on Sarubbi [35]. Each customer had an integer demand that
ranged between 1 to τ (maximum demand), in which τ varied between 5 to 20
units. The depot, or initial node, always had a demand of 1 unit. The demands
could be any positive real number. In this case, the value of the variables fijl in
an optimal solution will be a real number. The product γl ∗ cij represents the
cost of passing the product l through arc (i, j). The better the conditions for a
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Table 2: Parameters used in the BRKGA+CS and the A-BRKGA+CS.
Parameter BRKGA+CS A-BRKGA+CS

Value Range values
p 1000 [100, 1000]
Gen 300 271
pe 0.15 [0.10, 0.25]
pm 0.20 [0.05, 0.20]
ρe 0.70 [0.65, 0.80]

arc (i, j), are the lower the value of the corresponding parameter. This parameter
γl varied from 0.5% to 2%. Each customer also had a ηl value correspondent.
This corresponds to the relative value of the product, and the more valuable the
product is, the greater the value of the parameter. Parameters ηl were randomly
generated between 0.5 and 1.5. The priority prizes were randomly generated
between 0 and 100, considering only integer values [39]. All these parameters
were generated using a uniform distribution. In A-BRKGA we set γ at 0.999
because the running time implied by it was enough for the metaheuristic to find
satisfactory solutions.

All instances satisfied the triangular inequality in relation to fixed costs. Each
instance has its number of customers specified in its name. For example, Instance
burma14 has 13 customers to visit and the depot. In Table 3, all instances used
in the computational tests are presented divided by the quantity of customers.

Table 3: The symmetric instances selected from the TSPLIB [42], by instance
sizes. The instance dj38 was selected from TSP Test Data [43].

1-50 customers 51-100 customers 101-150 customers
burma14 eil51 eil101
ulysses16 berlin52 lin105
gr17 brazil58 pr107
gr21 st70 gr120
ulysses22 eil76 pr124
gr24 pr76 bier127
fri26 gr96 ch130
bays29 rat99
dj38 kroA100
dantzig42 kroB100
att48
gr48
hk48

We generated three sets of instances that differ themselves by a θ param-
eter multiplied to the priority prizes. This parameter serves only to gener-
ate different instances. We denoted the set with θ = c by A, the set with
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θ = c

4(N − 1)p

(
2N +

N∑
l=2

zl

)
by B, and the set with θ = 1 by C, where

c = 1
N(N − 1)

N∑
i=1

N∑
j=1
i 6=j

cij , p = 1
(N − 1)2

N∑
k=2

N∑
i=2

pki, and zl = γlηlql.

Set A is closest to the assignment problem, since the priority prizes are
much larger than the fixed costs. Set B is a balance between the assignment
problem and the traveling salesman problem, and Set C is closest to the traveling
salesman problem, since the priority prizes are much smaller than the fixed costs.

In Tables 4, 5 and 6 we present the results for the CPLEX, A-BRKGA+CS
and BRKGA+CS for Sets A, B, and C, respectively. The entries in the tables
are the instances; the solution obtained by the CPLEX (solC) within time limit
of 10800 seconds, the best solution (S*), the average solution (S) over 20 runs,
the time to find the best solution (T*), the average running time (T) in seconds,
the deviation (Dev) defined as 100 × (S - S*) / S*, and the GAP provided by
CPLEX defined as (|upper bound - lower bound| / |lower bound|). The entries
“-” in the column solC mean that the CPLEX was not able to find a feasible
solution within the time limit set.

In Table 8, we present the results for the linear relaxation compared to the so-
lutions of the proposed metaheuristics. The gaps were calculated using Equation
(23), where SRL is the solution of the linear relaxation, SC is the solution of the
integer model from CPLEX, SA is the solution from A-BRKGA+CS, and SB is
the solution from BRKGA+CS. In Time(s) column, the times used by CPLEX
to solve the linear relaxation in instances of sets A, B, and C are presented.

GAP i
RL = |SRL − Si|

|SRL|
, i = A,B,C. (23)

CPLEX was not able to find a feasible solution to all instances within the
time limit set. For set A, CPLEX was able to solve 8 instances to optimality
within the limit time set, and 6 instances with GAPs smaller than 4%. But, it
was unable to find a feasible solution in 14 of the 30 instances. For sets B and C
CPLEX solved only 2 instances to optimality and was not able to find feasible
solutions in 13 instances.

When the priority prizes were much larger than the costs (Set A), the
assignment problem gains dominated the overall objective function and the
model was able to solve more instances to optimality. The assignment problem
has the integrality property, i.e., the solution of linear relaxation is the optimal
solution of the problem, which may explain the smaller execution time for these
instances compared to the instances in sets B and C. As a consequence, the
linear relaxation solution MTSPPP model approached the optimal solution. In
Table 8, the values of GAPC

RL show the relative distance between the linear
relaxation and the optimal solution (or better solution provided by CPLEX).
Six instances had GAPC

RL smaller than 4.5%, not counting Instances eil51 and
berlin52, where the solutions found within the time limit by CPLEX were not
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very good, or others where the CPLEX did not find a feasible solution,
In Sets B and C, the linear relaxation solution did not present good results,

producing gaps around 100%, and, in some cases, even larger gaps, as in the cases
of instances gr48, berlin52, and brazil58, with gaps of 3742.34%, 1883.20%,
and 1157.06%, respectively, in Set C.

In Tables 4, 5, and 6, we observe that the A-BRKGA+CS performed worse
than the BRKGA+CS for the instances of Set A. The first metaheuristic was
better in 30% of the instances, while the second one was better in 43%. Both
metaheuristics found the same solutions in 26% of the instances. In Set B, the
A-BRKGA+CS was better in 46% of the instances, while the BRKGA+CS
was better in 23%. In Set C, the A-BRKGA+CS was better in 33% of the
instances, while BRKGA+CS was better in 20%. Observe that, when priority
prize penalties decrease, the number of instances in which the metaheuristics
return the same solution increases from 26% in A to 30% and 46% in B and C.

To compare the two sets of solutions given by A-BRKGA+CS and BRKGA
+CS for each set and analyze if there is a significant difference between them, the
Wilcoxon signed-rank (WSR) test [44] and Friedman test [12] were applied. The
results of the tests are shown in Table 7 where Z, is the sum of the flagged posts
of the WSR test, Chi-squared is the test statistic and df is the degrees of freedom
of the Friedman test. We concluded that the A-BRKGA+CS and BRKGA+CS
ranks were statistically equivalent (WSR test) and the distributions of the scores
for the methods compared are equal (p-value > 0.001 - Friedman test) for all
sets, at a 0.05 significance level.

From Tables 4, 5, and 6, we observe that the proposed MTSPPP model
found better solutions than the proposed metaheuristics for three instances
of set A: dantzig42, gr48, and hk48. The gaps of the solutions obtained by
A-BRKGA+CS, for these instances were 0.76%, 1.51%, and 1.54%, respectively;
and, for the solutions obtained by BRKGA+CS they were 0.77%, 1.69%, and
1.54%, respectively. The solutions obtained by the models have gaps 0.52%,
1.22%, and 1.32%. On the other hand, the model found worse solutions for two
instances, eil51 and berlin52, showing gaps of 44.99% and 55.86%, respectively;
while A-BRKGA+CS obtained solutions with gaps of 1.97% and 2.69%, and
BRKGA+CS obtained solutions with gaps of 1.96% and 2.44%. For all the
other instances in Sets B and C, the proposed model performed worse than the
proposed heuristic methods.

6 Conclusion
In this paper we presented a new variant of the Traveling Salesman Problem that
considers variable costs and priority prizes, in addition to fixed costs. A mathe-
matical model was proposed to represent this problem, using a multicommodity
flow model. Two hybrid methods were proposed to find solutions to this problem.
The first consisted of a Biased Random-Key Genetic Algorithm (BRKGA) with
a Label Propagation (LP) communities detection method. For the local search,
an Iterated Local Search (ILS) combined with Variable Neighborhood Descent
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Table 4: Results from CPLEX, BRKGA+CS, and A-BRKGA+CS for Set A.
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Table 5: Results from CPLEX, BRKGA+CS, and A-BRKGA+CS for Set B.
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Table 6: Results from CPLEX, BRKGA+CS, and A-BRKGA+CS for Set C.
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Table 7: Result of the WSR test and Friedman test for Sets A, B, and C.
WSR test Friedman test

Set Z p-value Chi-squared df p-value
A 97 0.3464 0.7273 1 0.3938
B 164 0.0952 2.3333 1 0.1266
C 80 0.5521 1.0000 1 0.3173

(VND) was proposed. The second method consisted of an Adaptive BRKGA
with the same communities detection method and local search process.

For the computational experiments, 90 different instances were generated
based on instances of the TSPLib library, TSP Test Data, and Sarubbi [35].
Three penalties to priority prizes were generated, resulting in three sets of
instances: Set A consisted of penalizing the priority prizes for average fixed costs;
Set B the penalty was using a balance between fixed costs and variable costs;
and Set C did not use any penalty.

The proposed model was able to provide good solutions for instances of Set
A, but not for instances in Sets B and C. This happened because of the linear
relaxation model. While in Set A the linear relaxation model was very good,
approaching the optimal solution, in Sets B and C, it performed poorly. Because
of penalties, the instances in Set A approached the assignment problem that has
the integrality property, where the solution of linear relaxation is the optimum
solution of the integer model.

Both the proposed heuristic methods performed well in both computational
time and quality of solution of instances tested. In general, the A-BRKGA+CS
method found better solutions (33) than the BRKGA+CS method (26), al-
though it was not statistically different according to the Wilcoxon and Friedman
tests performed. The main difference between the two methods is that the
BRKGA+CS method needs to be calibrated, while the A-BRKGA+CS method
is adaptive.

Future studies could be to develop other decoders in the proposed methods.
For example, partial sequences of customers could be considered to build all
the sequencing. Other local search methods also could be applied and methods
to improve the upper bounds of the model could be developed. A re-decoding
process can be studied to return the solution obtained by local search to the
current population of BRKGA.
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Table 8: Results for the linear relaxation of Sets A, B, and C.
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