1,533 research outputs found

    A survey of parallel algorithms for fractal image compression

    Get PDF
    This paper presents a short survey of the key research work that has been undertaken in the application of parallel algorithms for Fractal image compression. The interest in fractal image compression techniques stems from their ability to achieve high compression ratios whilst maintaining a very high quality in the reconstructed image. The main drawback of this compression method is the very high computational cost that is associated with the encoding phase. Consequently, there has been significant interest in exploiting parallel computing architectures in order to speed up this phase, whilst still maintaining the advantageous features of the approach. This paper presents a brief introduction to fractal image compression, including the iterated function system theory upon which it is based, and then reviews the different techniques that have been, and can be, applied in order to parallelize the compression algorithm

    A Review on Block Matching Motion Estimation and Automata Theory based Approaches for Fractal Coding

    Get PDF
    Fractal compression is the lossy compression technique in the field of gray/color image and video compression. It gives high compression ratio, better image quality with fast decoding time but improvement in encoding time is a challenge. This review paper/article presents the analysis of most significant existing approaches in the field of fractal based gray/color images and video compression, different block matching motion estimation approaches for finding out the motion vectors in a frame based on inter-frame coding and intra-frame coding i.e. individual frame coding and automata theory based coding approaches to represent an image/sequence of images. Though different review papers exist related to fractal coding, this paper is different in many sense. One can develop the new shape pattern for motion estimation and modify the existing block matching motion estimation with automata coding to explore the fractal compression technique with specific focus on reducing the encoding time and achieving better image/video reconstruction quality. This paper is useful for the beginners in the domain of video compression

    Comparative analysis of various Image compression techniques for Quasi Fractal lossless compression

    Get PDF
    The most important Entity to be considered in Image Compression methods are Paek to signal noise ratio and Compression ratio. These two parameters are considered to judge the quality of any Image.and they a play vital role in any Image processing applications. Biomedical domain is one of the critical areas where more image datasets are involved for analysis and biomedical image compression is very, much essential. Basically, compression techniques are classified into lossless and lossy. As the name indicates, in the lossless technique the image is compressed without any loss of data. But in the lossy, some information may loss. Here both lossy & lossless techniques for an image compression are used. In this research different compression approaches of these two categories are discussed and brain images for compression techniques are highlighted. Both lossy and lossless techniques are implemented by studying it’s advantages and disadvantages. For this research two important quality parameters i.e. CR & PSNR are calculated. Here existing techniques DCT, DFT, DWT & Fractal are implemented and introduced new techniques i.e Oscillation Concept method, BTC-SPIHT & Hybrid technique using adaptive threshold & Quasi Fractal Algorithm

    Lossless Hybrid Coding technique based on Quasi Fractal & Oscillation Concept Method for Medical Image Compression

    Get PDF
    The Image compression is the most important entity in various fields. Image compression plays vital role in many applications. Out of which biomedical is one of the challenging applications. In medical research, everyday there is fast development and advancement. Medical researchers are thinking about digital storage of data hence medical image compression has a crucial role in hospitals. Here Morphological filter & adaptive threshold are used for refinement and used Quasi Fractal & Oscillation concept for developing new hybrid algorithm. Oscillation concept is lossy image compression technique hence applied on Non-ROI. Quasi fractal is lossless image compression technique applied on ROI. The experimental results shows that better CR with acceptable PSNR has been achieved using hybrid technique based on Morphological band pass filter and Adaptive thresholding for ROI. Here, innovative hybrid technique gives the CR 24.61 which improves a lot than hybrid method using BTC-SPIHT is 5.65. Especially PSNR is also retained and bit improved i.e. 33.51. This hybrid technique gives better quality of an image

    Statistical Analysis of Fractal Image Coding and Fixed Size Partitioning Scheme

    Get PDF
    Fractal Image Compression (FIC) is a state of the art technique used for high compression ratio. But it lacks behind in its encoding time requirements. In this method an image is divided into non-overlapping range blocks and overlapping domain blocks. The total number of domain blocks is larger than the range blocks. Similarly the sizes of the domain blocks are twice larger than the range blocks. Together all domain blocks creates a domain pool. A range block is compared with all possible domains block for similarity measure. So the domain is decimated for a proper domainrange comparison. In this paper a novel domain pool decimation and reduction technique has been developed which uses the median as a measure of the central tendency instead of the mean (or average) of the domain pixel values. However this process is very time consuming

    A review on region of interest-based hybrid medical image compression algorithms

    Get PDF
    Digital medical images have become a vital resource that supports decision-making and treatment procedures in healthcare facilities. The medical image consumes large sizes of memory, and the size keeps on growth due to the trend of medical image technology. The technology of telemedicine encourages the medical practitioner to share the medical image to support knowledge sharing to diagnose and analyse the image. The healthcare system needs to ensure distributes the medical image accurately with zero loss of information, fast and secure. Image compression is beneficial in ensuring that achieve the goal of sharing this data. The region of interest-based hybrid medical compression algorithm plays the parts to reduce the image size and shorten the time of medical image compression process. Various studies have enhanced by combining numerous techniques to get an ideal result. This paper reviews the previous works conducted on a region of interest-based hybrid medical image compression algorithms

    Modified Three-Step Search Block Matching Motion Estimation and Weighted Finite Automata based Fractal Video Compression

    Get PDF
    The major challenge with fractal image/video coding technique is that, it requires more encoding time. Therefore, how to reduce the encoding time is the research component remains in the fractal coding. Block matching motion estimation algorithms are used, to reduce the computations performed in the process of encoding. The objective of the proposed work is to develop an approach for video coding using modified three step search (MTSS) block matching algorithm and weighted finite automata (WFA) coding with a specific focus on reducing the encoding time. The MTSS block matching algorithm are used for computing motion vectors between the two frames i.e. displacement of pixels and WFA is used for the coding as it behaves like the Fractal Coding (FC). WFA represents an image (frame or motion compensated prediction error) based on the idea of fractal that the image has self-similarity in itself. The self-similarity is sought from the symmetry of an image, so the encoding algorithm divides an image into multi-levels of quad-tree segmentations and creates an automaton from the sub-images. The proposed MTSS block matching algorithm is based on the combination of rectangular and hexagonal search pattern and compared with the existing New Three-Step Search (NTSS), Three-Step Search (TSS), and Efficient Three-Step Search (ETSS) block matching estimation algorithm. The performance of the proposed MTSS block matching algorithm is evaluated on the basis of performance evaluation parameters i.e. mean absolute difference (MAD) and average search points required per frame. Mean of absolute difference (MAD) distortion function is used as the block distortion measure (BDM). Finally, developed approaches namely, MTSS and WFA, MTSS and FC, and Plane FC (applied on every frame) are compared with each other. The experimentations are carried out on the standard uncompressed video databases, namely, akiyo, bus, mobile, suzie, traffic, football, soccer, ice etc. Developed approaches are compared on the basis of performance evaluation parameters, namely, encoding time, decoding time, compression ratio and Peak Signal to Noise Ratio (PSNR). The video compression using MTSS and WFA coding performs better than MTSS and fractal coding, and frame by frame fractal coding in terms of achieving reduced encoding time and better quality of video

    Fractal Image Compression on MIMD Architectures II: Classification Based Speed-up Methods

    Get PDF
    Since fractal image compression is computationally very expensive, speed-up techniques are required in addition to parallel processing in order to compress large images in reasonable time. In this paper we discuss parallel fractal image compression algorithms suited for MIMD architectures which employ block classification as speed-up method
    corecore