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Fractal Image Compression on MIMD
Architectures II: Classification Based
Speed-up Methods�

Jutta Hämmerle and Andreas Uhl
RIST++ & Department of Scientific Computing, University of Salzburg, Austria

Since fractal image compression is computationally very
expensive, speed-up techniques are required in addi-
tion to parallel processing in order to compress large
images in reasonable time. In this paper we discuss
parallel fractal image compression algorithms suited for
MIMD architectures which employ block classification
as speed-up method.

1. Introduction

Fractal image compression �9, 10, 27, 31� has
generated much interest in the image compres-
sion community as possible competitor �11� to
well established compression techniques �e.g.
DCT-JPEG� and to newer technologies �e.g.
wavelets�. Additionally, hybrid techniques par-
tially based on fractal coding have evolved �3,
4, 41�. One of the main drawbacks of conven-
tional fractal image coding is the high encoding
complexity �whereas decoding complexity is
much lower� as compared to e.g. transform cod-
ing. On the other hand, fractal image compres-
sion offers interesting features like resolution-
independent and fast decoding, and good im-
age quality at low bit-rates which makes it an
interesting candidate for off-line applications
�e.g. video-on-demand �VoD�, photo or video
CD-ROMs, etc.�. Additionally, basic building
blocks of fractal compression technology may
be used in many other fields, like e.g. feature
extraction �39�, image watermarking �36�, and
motion compensation in video coding �35�.

However, speed-up techniques are necessary in
order to accelerate the encoding phase of fractal
compression. Two different approaches can be
distinguished:

� Sequential techniques �38�,

� High Performance Computing.

In this work we discuss parallel fractal image
compression algorithms suited forMIMDarchi-
tectures which additionally employ the sequen-
tial speed-up method “block classification” in
order to speed up the computation furthermore.
It should be noted that the algorithms discussed
in this work are not restricted to fractal com-
pression only, but may be applied to all types of
applications where block matching operations
are involved �like e.g. vector quantization or
block-based motion estimation techniques�.

2. Fractal Image Compression

Fractal image compression exploits similarities
within images. These similarities are described
by a contractive transformation of the image
whose fixed point is close to the image itself.
In our implementation the image transformation
consists of block transformationswhich approx-
imate smaller parts of the image by larger ones,
using contractive affine transforms. The smaller
parts are called ranges and the larger ones do-
mains. All ranges together �range pool� form

� This work was partially supported by Österreichische Nationalbank, Jubiläumsfonds project no. 6900 and was presented in
part at the Fourth International Conference of the ACPC �ACPC’99�, Salzburg, February 1999.
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a partition of the image. The domains �hav-
ing twice the height and length of the ranges�
can be selected freely within the image and may
overlap. For each range an appropriate domain
must be found. The domain blocks are trans-
formed to match a given range block as closely
as possible.

To compare image blocks �i.e. range and do-
main� usually rms �root mean square error� is
used. The transformation applied to the domain
classically consists of the following parts:

� Geometrical contraction �usually imple-
mented by averaging the domain�.

� Affine motion �modeled by using the 8
isometries of the square block�.

� Gray value adaptation �a least square op-
timization is performed in order to deter-
mine the best values for the parameters
describing contrast and brightness modifi-
cation, respectively�.

In a non-adaptive algorithm for each range the
block transformation with the smallest rms-
error becomes part of the image transformation
- no matter how well the range can be covered.
In an adaptive algorithm the error of a single
block transformation is compared to a prede-
fined maximum error. If the calculated error
is larger the specific range is split into smaller
blocks which are then covered independently or
coded directly in the case of the lowest partition
level. So – in contrast to the non-adaptive al-
gorithm – a specific image quality can be guar-
anteed. As a typical example for this kind of
algorithm serves the “adaptive quadtree algo-
rithm” �9, 31�.

The search for appropriate transformations is
computationally enormously expensive and
causes the need for an acceleration of the en-
coding speed.

In literature, several sequential complexity re-
duction schemes are presented �for a summary
of such techniques see �38��. In this paper we
focus on discrete feature extraction methods of-
ten also denoted as block classification �see e.g.
�9, 28, 29��. The domain pool is divided into
several classes according to specific discrete
features within the domain blocks. The fea-
tures of the range determine the class in which
optimal matches should be located �i.e. only

within this single class the search for the opti-
mal match is performed�. The use of discrete
feature extraction methods usually slightly re-
duces the achieved image quality.

3. Fractal Image Compression on MIMD
Computers

Fisher �9� points out that the simplest way to
implement a fractal encoder in parallel is to as-
sign a piece of the image to each processor ele-
ment �PE�. When running this algorithm with-
out communication after the distribution of the
image this corresponds to the use of a smaller
domain pool �a localized codebook� and leads
to different results �in most cases worse �18�� as
compared to the sequential algorithm.

There has already been done a significant
amount of work on implementing the encoding
phase of the fractal image coding technique on
different high performance computing architec-
tures: A reduced version of the algorithm with-
out its adaptive features has been implemented
on a pyramidal SIMD architecture �44� using
a pixel-based parallelization. An image-block-
based parallelization on a SIMD array processor
is used for the calculations in �13�, several dif-
ferent block-based algorithms for this type of
architecture have been discussed and compared
in �22, 23�. VLSI chip sets for fractal encoding
�21, 6, 7, 8� have been developed as well as par-
allel algorithms for fractal video coding �34�. A
parallel algorithm for the decoding phase has
also been developed �33�.

A large amount of work has also been already
devoted to fractal compression algorithms suited
for MIMD architectures preserving sequential
coding quality. In a series of papers we iden-
tify two major groups of algorithms suited for
MIMD computations which trade off memory
versus communication demand and are there-
fore applied according to the relation between
memory capacity of one PE and image size
�16, 15, 17, 42�:

� Algorithms Class A �parallelization via
ranges�: Within this class it is necessary
that at least the entire image can be stored
in the memory of each PE. Out of the
image-data the complete domain pool can
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be produced. To each PE a subset of the
range pool is assigned – either statically
or dynamically – and the PE calculates
the best transformations for its range sub-
set. Algorithms of this class may include
a dynamic load balancing �15�. According
to memory capacities and communication
costs further distinctions can be made. For
more details see e.g. �14, 26, 32, 43, 45�.

� Algorithms Class B �parallelization via
domains�: Within this class of algorithms
the domain pool cannot be stored in the
memory of one PE - therefore the domain
pool is distributed evenly among the PEs.
The most efficient algorithms transfer the
ranges among the PEs in a pipelined man-
ner in order to carry out the range-domain
comparisons of all sub-domain pools. Ac-
cording to synchronization levels and avail-
able architectures further distinctions can
be made. For more details see e.g. �2, 24,
25, 30�.

Depending on the memory capacities of the PEs
either algorithms of class A or B are applied.
The change from class A to B has to be paid
with the de-facto loss of dynamic load balancing
possibilities and�or a much higher communica-
tion demand. As a consequence, algorithms of
class A show a much better scalability.

Therefore, algorithms of class A are well suited
for execution on multiprocessors whereas on
multicomputers the most suitable algorithm is
chosen according to possible memory restric-
tions �of course preferably out of class A�.

4. Classification Based Speed-up on MIMD
Computers

The block-classification of the domain pool
needs to be performed prior to the actual com-
pression. Therefore, it may be executed in
sequential or parallel mode, no matter which
class the subsequent fractal compression algo-
rithm belongs to. Parallel algorithms of class A
are very efficient and show nearly linear speed-
up in the order of the number of processors.
They may include dynamic load balancing, and
the number of PEs can be larger than with al-
gorithms of class B before a bottleneck in the
host-process occurs �42�. Therefore, this class is

a good basis for combining parallel algorithms
and sequential speed-up techniques in an ef-
ficient way. When processing large images
on distributed memory architectures, unfortu-
nately these algorithms cannot be applied due
to memory restrictions. Consequently, the do-
main pool has to be distributed among the PEs
�algorithms of class B�. Algorithms of this type
can be distinguished according to whether the
assignment of parts of the domain pool to each
PE is done prior to or after any precalculations.
In the first case the domain pool is distributed
evenly among the PEs �fixed distribution�, in
the second case the distribution is performed
according to the results of the precalculations
�adaptive distribution�.

4.1. Parallel Classification

Parallel precalculations for classification meth-
ods with predefined classes include the follow-
ing steps:

1. Distribution of the domain pool �and pos-
sibly also the range pool� to the PEs in a
way that each PE receives an equal sized
part. Each PE receives either the entire
pool but uses only a part for precalcula-
tions or receives only a part.

2. On each PE: Precalculations for specific
sub-domain pool.

3. Redistribution of the domain pool includ-
ing results of precalculations �or only re-
sults if the nodes already possesses the
whole pool�. This redistribution can ei-
ther be organized by a host process or by
the PE themselves.

Classificationmethodswith image-adapted clas-
ses include a kind of image-adapted clustering
process. In literature – for example – Koho-
nen’s self-organizing maps �20� or LBG code-
book generators �29� are used. This clustering
process must be done prior to the classification
process and is not discussed here. The steps
following these procedures are the same as for
methods with predefined classes.

The following parameters determine the effi-
ciency of parallel precalculations: number of
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PEs, speed of PEs, communication cost, com-
plexity of precalculations, size of the image, and
amount of overlap of the domain pool.

The more PEs are available the more time is
wasted if all PEs perform all precalculations.
But the results must be redistributed after the
precalculations for most of the algorithms dis-
cussed. This induces that either each node
must communicate with each other �which has
a complexity of O�p2�, p�number of PE� or a
host process must collect and redistribute the re-
sults which might cause a bottleneck in the host.
Therefore, the complexity of the entire precal-
culations on a single PE �also determined by
the size of the image� must be compared with
the communication cost of distributing values
to the PE, complexity of calculations on the PE,
and redistributing the results. It turns out that
it is often more efficient to perform the precal-
culations sequentially, since the small computa-
tional effort does not justify the parallelization
effort �e.g., this is true for the classification ap-
plied in our experiments�.

4.2. Classification and Class A Algorithms
(CA)

The entire image �and consequently the en-
tire domain pool� is residing on each PE. Af-
ter the precalculation step the ranges may be
distributed among the PEs and processed inde-
pendently. The distribution can be performed
dynamically or statically – also, the optimal
static distribution may be performed for each
quadtree level �15�. This is done similarly to the
technique C2B introduced in the next section
– knowledge about the class structure of both
domain and range pool is required for this task.

It should be noted that the communication ef-
fort of class CA algorithms remains constant as
compared to that of class A algorithms without
classification during the fractal encoding itself.
On the other hand, computations are reduced
significantly for each range �by a factor of 1�c
in the ideal case, if c denotes the number of
classes� for class CA algorithms. Therefore,
the choice of a suitable communication struc-
ture and load balancing scheme is even more
important for class CA algorithms.

4.3. Classification and Class B Algorithms
(CB)

Algorithms C1B – Fixed Distribution

The domain pool is distributed evenly among
the PEs. Each PE performs necessary precalcu-
lations �i.e. averaging, classification� for its
private domain pool. Consequently, parallel
precomputations may be performed in this case
without the need of subsequent data redistri-
bution. If a range is processed by a PE it is
first classified and the corresponding class of
the private domain pool is being searched. Sub-
sequently, the range is passed on to the next PE
in the pipeline.

For a specific range a specific class provides do-
mains for an optimal match and only this class
is being searched. The sizes of the classes in the
private domain pools on the PEs will generally
be very different for different PEs. Therefore,
the processing time for a given range might be
very different on different PEs, which leads to
a severe disturbance of the pipelined execution.

Consider the following bad case: On each PE
exists one class which contains far more do-
mains of the private pool as compared to the
other classes. This large class may be different
for different PEs. A PE on which a range is
classified into the large class has a significantly
higher processing time than most other PEs.
This effect may occur for almost each range
at different time instances. Since the “slowest”
range determines the speed of the pipelined ex-
ecution the speed-up is limited and - in a worst
case - equal to or even smaller than the speed-
up of the parallel algorithm without additional
sequential speed-up techniques.

The requirement for optimal speed-up concern-
ing discrete feature extraction methods is there-
fore a uniform size distribution of the domain
classes on each PE. The size distribution of the
domain classes can be controlled to some extent
if discrete feature extraction methods with im-
age adapted classes are being used – if fixed or
heuristic classes are used a different strategy is
needed for avoiding the load balance problem.
However, if fixed distribution is used, it is im-
portant not to execute the pipeline in synchro-
nized manner – the unsynchronized pipelined
processing mode is capable of compensating
the load balancing problem to some extent.
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�a� ranges �b� domains

Fig. 1. Number of ranges and domains for all classes of the first quadtree level �Lena image�.

Algorithms C2B – Adaptive Distribution

For this type of algorithms it is necessary to have
knowledge about the class structure and size of
the classes of both range and domain pool, re-
spectively. The precalculations are done prior to
any adaptive data distribution. Contrary to the
fixed distribution we do not perform a distribu-
tion of the domain pool itself but we distribute
the classes among the PEs – both domains and
ranges of a given class are assigned to a given
PE which calculates the optimal match. This
means that we neither apply data parallelism
via ranges �class A� nor via domains �class B�
but via classes.

An optimal distribution of the classes among
the PEs therefore depends on:

� Class structure of range pool �i.e. number
of ranges in each class�,

� Class structure of domain pool,

� relation c
p �c �number of classes,

p �number PEs�.

Distributing the classes evenly among the PEs
would lead to a severe load balancing problem,
since

a� the size of the classes �i.e. the number of
domains in the classes� is generally very
different and

b� the amount of computation inside one class
is again very different, since a different
number of ranges belongs to each class.

According to the precalculations, we know the
number of ranges and domains belonging to a
given class �for example see Figure 1�.

The use of image-adaptive classes with uniform
class sizes would save the computation of the
class complexities at the cost of an even more
expensive adaptive class generation. However,
the number of range-domain comparisonswithin
a class can be determined in any case – we
denote this number as “class complexity” �see
Figure 2�. The total of all class complexities
gives the overall complexity of the algorithm.
Obviously, we have to distribute the class com-
plexities evenly among the PEs.

These observations lead to the following opti-
mization problem: Given the number of PEs
and the precalculated class complexities, dis-
tribute the class complexities as uniformly as
possible among the PEs. This type of optimiza-
tion can be interpreted as simple knapsack prob-
lem with several knapsacks of equal size. An
additional constraint of this optimization may
be the memory capacity of the PEs – in the
case of very small capacity it may not be possi-
ble to distribute the class complexities at once
but a step-by-step assignment �possibly dynam-
ically� might be necessary.

An additional issue to be considered is that the
calculated distribution of class complexities is
valid only for the first quadtree level of the adap-
tive quadtree decomposition. The distribution
of classes of the domain pool of the subse-
quent quadtree levels among the PEs is different
from the distribution of the first level. �For a
comparison of class complexity distribution of
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�a� first level �b� second level �c� third level

Fig. 2. Class complexities of different quadtree levels �Lena image�.

three quadtree levels see Figure 2�. Therefore,
a class complexity calculation and distribution
is required at each quadtree level. These pro-
cedures involve a synchronization and central-
ization step at each quadtree level which limits
parallelization efficiency.

Preferably, entire classes are distributed among
the PEs according to their calculated complex-
ities. However, this technique may lead to a
very unbalanced load distribution �large class
complexitiesmay occur, which significantly ex-
ceeds one PE’s quota, see e.g. �19, p.283�� and is
restricted to the case #PE � #classes. In order
to overcome these restrictions we must allow
the distribution of the class complexity of each
class. The decision whether a class complexity
is distributed or not is controlled by a tolerance
parameter which specifies the allowed deviation
from the uniformity of the final complexity dis-
tribution. Theoretically, a completely uniform
distribution is achievable by setting this param-
eter to zero. But in this case communication and
memory demand rises since many small com-
plexities �the minimal size in our case is one
range and the domain pool of one class� have to
be distributed.

Although sophisticated techniques may be used
for distributing the class complexities among
the PEs, the following simple technique has
proven to be sufficiently precise. The class com-
plexities are sorted and subsequently assigned
to the PEs startingwith the largest one. If a class
complexity exceeds one PE’s computed quota,
it is assigned to the PE with the next lower com-
plexity level, and so on. If a class complexity
exceeds all PE’s quotas, it is assigned to the PE
with the current lowest complexity level. The
amount of complexity exceeding the PE’s quota
is assigned again to the set of not yet distributed
class complexities. This is done by assigning

all domains of this class to the PE, whereas only
the corresponding share of ranges is assigned to
it. Unfortunately, this technique has to be paid
with a slight increase of memory demand on the
PEs, since the domains of a single class may be
assigned to different PEs for several times.

This technique is applied until all class com-
plexities have been distributed. Depending
upon the choice of the tolerance parameter, we
accomplish a more or less uniform load distri-
bution.

Note that if for any reason dynamic load bal-
ancing is required �e.g. due to changing load
conditions in multi-user environments or mem-
ory constraints� it is straightforward to create a
task pool of any desired structure using the tech-
nique described above. We want to emphasize
that load balancing is not possible in a sensible
way in the case of a fixed distribution.

A final remark on memory requirement: in
memory critical systems the fixed domain pool
distribution is done by distributing the image
itself evenly. On each PE the necessary do-
mains are calculated from this image part, which
may dramatically reduce memory demand in re-
turn for increase of computational demand if an
overlapping domain partition is used. In such
a case the described technique of precomputed
adaptive distribution is not successful since the
technique “higher complexity for lower mem-
ory” is not applicable �since the domains of one
class will generally be distributed over the en-
tire image�. Therefore, precomputed adaptive
distribution is restricted to non-overlapping or
“little-overlapping” domain partitions �which is
a must for large images anyway�. For domain
partitions with a higher amount of overlap class
complexities are distributed in a dynamical way
�see previous paragraph� according to the avail-
able memory resources on the single PEs.
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�a� Lena �b� Satellite image

Fig. 3. Test images with 8bpp.

5. Experimental Results

We apply an adaptive quadtree algorithm �start-
ing with range-size 16 � 16 pixels we parti-
tion until size 4 � 4 is reached, subsequently
the range is coded directly� and employ a grey-
value classification scheme which is introduced
by Fisher �9�. This scheme uses the ordering
of mean and variance values in the four block-
quadrants as classification feature and results in
72 classes. This is of course only one possi-
bility for a discrete feature extraction method.
Many other techniques exist, which may result
in an either higher or lower number of classes
�see e.g. �28, 29��. The domains in the domain
pool are chosen to be non-overlapping �as it
is done in most fractal coders in order to keep
the complexity reasonably low� or overlapping
with offset 4 �for ensuring higher quality �12��.
The necessary precalculations �i.e. domain av-
eraging and classification� are not performed
in parallel due to reasons explained earlier �de-
pending on image content precomputations re-
quire only 1% or less of the entire sequential
processing time�.

It should be noted that the validity of our al-
gorithmic considerations is neither affected in
principle by the choice of the concrete classifi-
cation technique nor by the image partitioning
method employed �the applicability of the al-
gorithms discussed is, of course, bound to the

existence of discrete feature extraction methods
for e.g. quadtree, HV, or triangulation �5� based
partitioning�. Therefore, our results do carry
over to a wide range of different algorithms.

The following images with 8bpp are used: the
well known Lena image �1024 � 1024 pix-
els� and a satellite image �1024 � 1024 and
2048 � 2048 pixels� �see Fig. 3.a and 3.b, re-
spectively�.

For our experiments we use a FDDI intercon-
nected NOW consisting of 8 DEC AXP 3000�
400 workstations and a SGI POWERChallenge
GR with 2.5 GB memory and 20 MIPS R10000
processors. PVM �40� is employed for imple-
menting a message passing based host�node
configuration whereas we use PowerC �1� for
shared memory programming �the correspond-
ing algorithm is denoted “PC”�. In shared mem-
ory programming a sequential algorithmmay be
transformed into a parallel one by simply iden-
tifying areas which are suitable to be run in par-
allel i.e. in which no data dependencies exist.
Subsequently, only local and shared variables
need to be declared and parallel compiler direc-
tives are inserted. Therefore, shared memory
programming can be performed very quickly.
On the other hand, message passing requires an
explicit programming of each communication
event occurring among processors and is conse-
quently very time demanding. However, mes-
sage passing programs written in e.g. MPI or
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�a� Lena �b� Satellite

Fig. 4. Overall Comparison for 1024� 1024 pixel images on NOW, non-overlapping domain pool.

PVM may be used without changes on different
architectures �no matter if multiprocessors or
multicomputers� whereas shared memory pro-
gramming always uses a native programming
language.

The number of PEs as depicted in the plots refers
to the number of node processes, the vertical
axis shows speed-up relative to sequential exe-
cution. The host process is executed on a dif-
ferent PE and is not counted �except in the case
of algorithm PC where no explicit host process
with different functionality exists�. If not de-
clared otherwise, algorithmCA is executedwith
dynamic load balancing using single ranges as
tasks and algorithm C2B allows the distribu-
tion of class complexities of single classes to a
certain extent.

We start with the results of the message pass-
ing algorithms suited for multicomputers. Fig.
4 shows a comparison of algorithms CA, C1B,
and C2B using non-overlapping domain pool on
the NOW. For both images considered there is
a fixed and clear ranking: C2B performs best,
C1B worst, and CA is in-between. The relation
between algorithms CA and C1B is in com-
plete accordance with the case without classi-
fication based speed-up �42�, but the absolute
performance of both algorithms is very poor.
Whereas we easily achieve almost linear speed-
up for algorithms of class A and at least loga-
rithmic speed-up for algorithms of class B, here
speed-up for algorithm CA is very moderate
�e.g. 2.6 or 3 using 6 node PEs� and speed-
up for algorithm C1B is saturated at 3 node
PEs for both images considered �at a value of
1.5 or 1.9, respectively�. This effect is due to

the significant reduction of computational ef-
fort required for algorithms using classification
– since the communication amount is not re-
duced, efficiency �and, as we shall see later,
scalability as well� is diminished. On the other
hand, algorithm C2B shows considerably bet-
ter results for both images and especially its
relation to C1B entirely conforms with the the-
oretical considerations. However, it should be
noted that algorithm C2B may be “emulated”
under algorithm CA conditions �i.e. enough
memory to keep the entire image on the node
PEs�. This leads to an even improved perfor-
mance since only index-information about the
distribution of classes needs to be transferred to
the node PEs instead of the data itself.

Obviously, the dynamic task distribution ap-
proach in algorithm CA is not competitive in
this setting. Therefore, different strategies have
been investigated �which have been discussed
before for class A algorithms �15��. Whereas a
static distribution of 30% or 50% of all ranges
and subsequent dynamic range distribution as
applied before does not lead to an improvement
of the results, sensible static distribution of all
ranges sometimes does. Let n denote the num-
ber of PEs, r the number of ranges, and s � r�n.
In the case of block distribution PEi gets ranges
Ris� Ris�1� Ris�2� � � � �contiguous image blocks
are assigned to the node PEs�. This is what
would probably be done in an SPMD approach.
This strategy behaves very poorly, as it can be
seen in Fig. 5.a. The reason is the following: the
computation load can be extremely unbalanced
if the image has different characteristics in var-
ious areas; e.g. variance. If one PE receives
many smooth blocks that can be encoded with-
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�a� Lena, non-overlapping �b� Satellite, offset 4

Fig. 5. Different load distribution strategies for CA and the effect of distributing complexity classes for C2B applied
to 1024� 1024 pixel images on NOW.

�a� Satellite, 1024� 1024 non-overlapping �b�Lena, offset 4

Fig. 6. Scalability of different algorithms for 1024� 1024 pixels images on the SGI.

out further splitting and another one receives
many blocks that have to be split several times,
the loads of these two PEs differ significantly.

In the case of leap distribution PEi gets ranges
Ri� Ri�n� Ri�2n� � � � �the blocks are assigned to
the PEs in interleaved manner and are there-
fore distributed across the entire image�. This
strategy leads to a slight improvement of the re-
sults of CA using 5 and 6 node PEs, as can be
observed in Fig. 5.a. �Note, that in Fig. 4.a al-
gorithm CA is used with leaps.� Of course, the
success of this distribution strategy depends on
the structure of the image considered. Also, the
application of some sort of precalculation �e.g.
variance calculation� in order to determine the
amount of splitting required fo each range fails,
since the class structure of the domain pool is
not considered.

In Fig. 5.b we display results concerning algo-

rithms CB only. Note that although performing
worst again, the performance of algorithm C1B
is improved as compared to Fig. 4. This is
caused by the higher amount of computation
required for a domain pool with offset 4. The
effect of distributing the class complexity of sin-
gle classes is shown here as well. We notice a
small gain in the case of enabling this type of
distribution. �The effect would of course be
more spectacular if more PEs and a classifica-
tion with less classes is employed.�

Before discussing the results on the multipro-
cessor, note the fact that the speed of the PEs of
the SGI is about a factor of 4 higher as compared
to the PEs of the DEC AXP workstations in the
NOW. Fig. 6 shows results for 1024 � 1024
pixels images on the SGI.

Contrasting to the results seen before, we notice
a saturation and even decrease of speed-up. For
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�a� non-overlapping �b� offset 4

Fig. 7. Scalability of different algorithms for the 2048� 2048 pixels satellite image on the SGI.

a non-overlapping domain pool �Fig. 6.a� the
peak in speed-up for the message passing algo-
rithms is reached at 4 PEs, however, their rela-
tive behaviour is preserved to some extent. For
6 PEs and more algorithm PC is significantly
more efficient and exhibits good scalability. For
a domain pool with offset 4 �Fig. 6.b� a similar
but less pronounced tendency may be observed.
Obviously, the small overall amount of compu-
tations as compared to communication leads to
a bottleneck in the host-node configuration very
soon. It is interesting to see that algorithm C1B
shows almost constant speed-up for 6 PEs up-
wards whereas algorithms CA and C2B reach a
peak at 12 PEs and loose speed-up subsequently.

Finally, we present results for the 2048� 2048
pixels satellite image on the SGI �Fig. 7�. At
first sight it is clear that the higher amount of
computation required for the large image signif-
icantly improves the efficiency and scalability
of the message passing algorithms. This effect
may be observed as well when comparing non-
overlapping and offset 4 domain pools �Fig. 7.a
and Fig. 7.b, respectively�.

Additionally, the enormous advantage of shared
memory programming �algorithm PC� is re-
duced. However, for a high number of PEs algo-
rithm PC is still best performing. For both do-
main pool settings a tendency already observed
in Fig. 6.b is clearly visible: Whereas algorithm
CA is superior for a lower number of PEs, algo-
rithm C1B is performing better using 16 and 18
PEs. This effect is due to the communication
structure of algorithm CA where the dominant
host process causes a bottleneck at higher PE
numbers. On the other hand, the pipelined ex-

ecution mode of algorithm C1B can cope with
this situation better.

6. Conclusion and Future Research

In the discussion of parallelization approaches
for classification accelerated fractal image com-
pression algorithms we have seen that all kinds
of message passing algorithms show a limited
scalability and should therefore be restricted to
moderate parallel multicomputers. Within this
class of algorithms a parallelization via classes
has turned out to be most efficient �algorithm
C2B�, followed by parallelization via ranges
�CA�, and domains �C1B�. However, algorithm
C1B shows the best scalability due to the lack of
a dominant host process. On multiprocessors,
sharedmemory programming is clearly superior
to message passing if a large number of PEs is
employed, especially in the case of low overall
computational demand.

Future researchwill be conducted on how to em-
ploymultidimensional nearest neighbour search
techniques �37� �which is currently the most ef-
ficient sequential speed-up technique for fractal
encoding� within parallel algorithms of class A
and B.
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