215 research outputs found

    DESIGN OF RELIABLE AND SUSTAINABLE WIRELESS SENSOR NETWORKS: CHALLENGES, PROTOCOLS AND CASE STUDIES

    Get PDF
    Integrated with the function of sensing, processing, and wireless communication, wireless sensors are attracting strong interest for a variety of monitoring and control applications. Wireless sensor networks (WSNs) have been deployed for industrial and remote monitoring purposes. As energy shortage is a worldwide problem, more attention has been placed on incorporating energy harvesting devices in WSNs. The main objective of this research is to systematically study the design principles and technical approaches to address three key challenges in designing reliable and sustainable WSNs; namely, communication reliability, operation with extremely low and dynamic power sources, and multi-tier network architecture. Mathematical throughput models, sustainable WSN communication strategies, and multi-tier network architecture are studied in this research to address these challenges, leading to protocols for reliable communication, energy-efficient operation, and network planning for specific application requirements. To account for realistic operating conditions, the study has implemented three distinct WSN testbeds: a WSN attached to the high-speed rotating spindle of a turning lathe, a WSN powered by a microbial fuel cell based energy harvesting system, and a WSN with a multi-tier network architecture. With each testbed, models and protocols are extracted, verified and analyzed. Extensive research has studied low power WSNs and energy harvesting capabilities. Despite these efforts, some important questions have not been well understood. This dissertation addresses the following three dimensions of the challenge. First, for reliable communication protocol design, mathematical throughput or energy efficiency estimation models are essential, yet have not been investigated accounting for specific application environment characteristics and requirements. Second, for WSNs with energy harvesting power sources, most current networking protocols do not work efficiently with the systems considered in this dissertation, such as those powered by extremely low and dynamic energy sources. Third, for multi-tier wireless network system design, routing protocols that are adaptive to real-world network conditions have not been studied. This dissertation focuses on these questions and explores experimentally derived mathematical models for designing protocols to meet specific application requirements. The main contributions of this research are 1) for industrial wireless sensor systems with fast-changing but repetitive mobile conditions, understand the performance and optimal choice of reliable wireless sensor data transmission methods, 2) for ultra-low energy harvesting wireless sensor devices, design an energy neutral communication protocol, and 3) for distributed rural wireless sensor systems, understand the efficiency of realistic routing in a multi-tier wireless network. Altogether, knowledge derived from study of the systems, models, and protocols in this work fuels the establishment of a useful framework for designing future WSNs

    Study of information transfer optimization for communication satellites

    Get PDF
    The results are presented of a study of source coding, modulation/channel coding, and systems techniques for application to teleconferencing over high data rate digital communication satellite links. Simultaneous transmission of video, voice, data, and/or graphics is possible in various teleconferencing modes and one-way, two-way, and broadcast modes are considered. A satellite channel model including filters, limiter, a TWT, detectors, and an optimized equalizer is treated in detail. A complete analysis is presented for one set of system assumptions which exclude nonlinear gain and phase distortion in the TWT. Modulation, demodulation, and channel coding are considered, based on an additive white Gaussian noise channel model which is an idealization of an equalized channel. Source coding with emphasis on video data compression is reviewed, and the experimental facility utilized to test promising techniques is fully described

    Power line communications: an implementation of a real time control architecture for smart grid

    Get PDF
    Negli ultimi anni è aumentata la presenza di risorse energetiche distribuite (DERs) nella rete elettrica. La visione della ``rete intelligente'' (Smart Grid) cerca di introdurre un'infrastruttura di controllo e di comunicazione di tipo distribuito in modo da sfruttare le potenzialità delle DERs e quindi potenziare e modernizzare la rete di distribuzione attuale. Applicandolo alle reti a bassa tensione, la cosiddetta ``Smart Microgrids'', si è sviluppato un banco di prova (testbed) che permette di dimostrare tecniche di riduzione delle perdite di distribuzione. La soluzione adottata bilancia localmente la potenza reattiva della microgrid attraverso il controllo delle risorse locali ottenendo una riduzione della corrente necessaria per alimentare la rete. Inoltre, vengono analizzati i vantaggi nell'usare la linea elettrica come mezzo di comunicazione e vengono evidenziati alcuni standard di comunicazion

    Second year technical report on-board processing for future satellite communications systems

    Get PDF
    Advanced baseband and microwave switching techniques for large domestic communications satellites operating in the 30/20 GHz frequency bands are discussed. The nominal baseband processor throughput is one million packets per second (1.6 Gb/s) from one thousand T1 carrier rate customer premises terminals. A frequency reuse factor of sixteen is assumed by using 16 spot antenna beams with the same 100 MHz bandwidth per beam and a modulation with a one b/s per Hz bandwidth efficiency. Eight of the beams are fixed on major metropolitan areas and eight are scanning beams which periodically cover the remainder of the U.S. under dynamic control. User signals are regenerated (demodulated/remodulated) and message packages are reformatted on board. Frequency division multiple access and time division multiplex are employed on the uplinks and downlinks, respectively, for terminals within the coverage area and dwell interval of a scanning beam. Link establishment and packet routing protocols are defined. Also described is a detailed design of a separate 100 x 100 microwave switch capable of handling nonregenerated signals occupying the remaining 2.4 GHz bandwidth with 60 dB of isolation, at an estimated weight and power consumption of approximately 400 kg and 100 W, respectively

    Energy Efficiency in Communications and Networks

    Get PDF
    The topic of "Energy Efficiency in Communications and Networks" attracts growing attention due to economical and environmental reasons. The amount of power consumed by information and communication technologies (ICT) is rapidly increasing, as well as the energy bill of service providers. According to a number of studies, ICT alone is responsible for a percentage which varies from 2% to 10% of the world power consumption. Thus, driving rising cost and sustainability concerns about the energy footprint of the IT infrastructure. Energy-efficiency is an aspect that until recently was only considered for battery driven devices. Today we see energy-efficiency becoming a pervasive issue that will need to be considered in all technology areas from device technology to systems management. This book is seeking to provide a compilation of novel research contributions on hardware design, architectures, protocols and algorithms that will improve the energy efficiency of communication devices and networks and lead to a more energy proportional technology infrastructure

    Testing communication reliability with fault injection : Implementation using Robot Framework and SoC-FPGA

    Get PDF
    Taajuusmuuttajia käytetään teollisuudessa laajasti, sillä merkittävän osan teollisuuden sähkönkulutuksesta muodostavat oikosulkumoottorit, joita ajetaan taajuusmuuttajien avulla. Taajuusmuuttajiin on mahdollista kytkeä optiokortteja, jotka lisäävät taajuusmuuttajaan valvonta-, ohjaus- ym. toiminnallisuuksia. Nämä kortit kommunikoivat sarjaliikenneväylän kautta taajuusmuuttajan pääyksikön kanssa. Sarjaliikennelinkissä, kuten taajuusmuuttajan väylällä, voi syntyä virheitä, jotka häiritsevät tietoliikennettä. Sen takia sarjaliikenneprotokolliin on luotu virheentunnistus- ja -korjausmekanismeja, joilla pyritään varmistamaan virheetön tiedon kuljettaminen. Luotettavuutta testaamaan voidaan väylälle generoida virheitä siihen tarkoitetulla laitteella. Tässä diplomityössä luotiin taajuusmuuttajia valmistavan yrityksen, Danfoss Drivesin (aik. Vacon), pyynnöstä häiriögeneraattorijärjestelmä. Järjestelmä koostuu SoC-FPGA-piirillä luodusta virheitä syöttävästä laitteesta, PC-työkalulle luodusta testirajapinnasta sekä Ethernet-kommunikaatiosta niiden välillä. Laite kytketään väylään, ja testirajapinta tekee testaajalle mahdolliseksi luoda mukautettavia testejä ja ajaa testejä käyttäen Robot Framework -testiympäristöä. Diplomityössä tutkittiin ensin sarjakommunikointiväylien yleisimpiä virheentunnistus- ja korjauskeinoja sekä SoC-FPGA-piirien sekä työssä käytetyn Robot Frameworkin ominaisuuksia. Järjestelmä suunniteltiin ylhäältä-alas-periaatteella ensin tunnistamalla kolmen edellä mainitun komponentin päärakenne päätyen lopulta yksittäisten ohjelmafunktioiden logiikan suunnitteluun. Tämän jälkeen laite ja testirajapinta toteutettiin C- ja Python-ohjelmointikielillä käyttäen suunnitellun kaltaista kommunikaatiota näiden kahden komponentin välillä. Lopulta järjestelmä testattiin kaikki komponentit yhteen kytkettynä. Varsinainen injektorilogiikka, joka luo virheitä väylään, ei ollut työn loppuun mennessä vielä toimittavan tahon puolelta valmis, joten järjestelmää ei voitu testata todellisessa ympäristössä. Työssä luodut osuudet voidaan kuitenkin myöhemmin kytkeä kokonaiseen järjestelmään. Työn tärkeimpänä johtopäätöksenä on, että tavoitteiden mukainen järjestelmä saatiin luotua ja testattua toimivaksi mahdollisin osin. Jatkokehityskohteeksi jäi mm. kokonaisen järjestelmän luonti ja testaus oikeaan kommunikaatioväylään kytkettynä.Frequency converters are widely used in industry because a notable part of the industrial electricity consumption is by electrical induction motors driven by frequency converters. It is possible to connect option boards into a frequency converter to add monitoring and control features. These option boards communicate with the main control unit of the frequency converter over a serial communication link. In a serial communication link, e.g. in a frequency converter, it can occur faults that interfere with the transfer. Hence, error handling mechanisms are used to secure transmission of the data without errors. A fault injector device, which generates errors into the data travelling in the link, can be used to test the communication reliability. In this master’s thesis, an error generator system was created for a company, Danfoss Drives (previously Vacon), manufacturing frequency converters. The system consists of a fault injector device created with a SoC-FPGA, a testing interface for a PC tool, and an Ethernet-based communication between these two. The device is connected to a serial communication link, and the testing interface makes it easy for a tester to create and run modifiable fault injection tests using a Robot Framework test environment. At the beginning of the thesis, the most common error detection and correction mechanisms in serial communication and properties of SoC-FPGAs, and Robot Framework were studied. Following this, the system was designed with top-down approach, first identifying the main structure of the components, and finally ending up in designing the logic of individual functions. After this, the device and the testing interface were implemented in C and Python using the designed Ethernet communication between them. After the implementation, the system was tested with all the components combined. The actual fault injection logic was not ready by the end of the thesis, so the tests were not run in a real environment. However, the work is done so that the implemented parts can be later used in a complete system. The most important conclusion is that the system was created and tested to meet the requirements with applicable parts. Further development includes creating a complete system and testing it with a real communication link

    A low power, reconfigurable fabric body area network for healthcare applications

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 105-110).Body Area Networks (BANs) are gaining prominence for their capability to revolutionize medical monitoring, diagnosis and treatment. This thesis describes a BAN that uses conductive fabrics (e-textiles) worn by the user to act as a power distribution and data communication network to sensors on the user's body. The network is controlled by a central hub in the form of a Base Station, which can either be a standalone device or can be embedded inside one of the user's portable electronic devices like a cellphone. Specifications for a Physical (PHY) layer and a Medium Access Control (MAC) layer have been developed that make use of the asymmetric energy budgets between the base station and sensor nodes in the network. The PHY layer has been designed to be suitable for the unique needs of such a BAN, namely easy reconfigurability, fault-tolerance and efficient energy and data transfer at low power levels. This is achieved by a mechanism for dividing the network into groups of sensors. The co-designed MAC layer is capable of supporting a wide variety of sensors with different data rate and network access requirements, ranging from EEG monitors to temperature sensors. Circuits have been designed at both ends of the network to transmit, receive and store power and data in appropriate frequency bands. Digital circuits have been designed to implement the MAC protocols. The base station and sensor nodes have been implemented in standard 180nm 1P6M CMOS process, and occupy an area 4.8mm2 and 3.6mm2 respectively. The base station has a minimum power consumption of 2.86mW, which includes the power transmitter, modulation and demodulation circuitry. The sensor nodes can recover up to 33.6paW power to supply to the biomedical signal acquisition circuitry with peak transfer efficiency of 1.2%.by Nachiket Venkappayya Desai.S.M

    Proceedings of the Second International Mobile Satellite Conference (IMSC 1990)

    Get PDF
    Presented here are the proceedings of the Second International Mobile Satellite Conference (IMSC), held June 17-20, 1990 in Ottawa, Canada. Topics covered include future mobile satellite communications concepts, aeronautical applications, modulation and coding, propagation and experimental systems, mobile terminal equipment, network architecture and control, regulatory and policy considerations, vehicle antennas, and speech compression

    Space programs summary no. 37-32, volume iii for the period january 1, 1965 to february 28, 1965. deep space network

    Get PDF
    Network system for communication and control of spacecraft on deep space exploration mission

    Telecommunications for a deregulated power industry

    Get PDF
    Telecommunication plays a very important role in the effective monitoring and control of the power grid. Deregulation of the US power industry has enabled utilities to explore various communication options and advanced technologies. Utilities are increasingly investing in distributed resources, dynamic real-time monitoring, automated meter reading, and value added services like home energy management systems and broadband access for its customers. Telecommunication options like power line communications (PLC) and satellites are fast replacing legacy telephone and microwave systems in the US.;The objective of this thesis is to study the communication options that are available for utilities today. Phasor measurement units (PMUs) are analyzed in detail and communication delays due to the use of PMUs in wide area measurement systems (WAMS) are also studied. The highlight of this thesis is a close look at the characteristics of the power line channel by presenting a power line channel model and the use of digital modulation techniques like SS and OFDM, which help overcome the effects of such a hostile medium of communication. (Abstract shortened by UMI.)
    corecore