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Abstract

Body Area Networks (BANs) are gaining prominence for their capability to revolu-
tionize medical monitoring, diagnosis and treatment. This thesis describes a BAN
that uses conductive fabrics (e-textiles) worn by the user to act as a power distribu-
tion and data communication network to sensors on the user’s body. The network
is controlled by a central hub in the form of a Base Station, which can either be a
standalone device or can be embedded inside one of the user’s portable electronic
devices like a cellphone. Specifications for a Physical (PHY) layer and a Medium
Access Control (MAC) layer have been developed that make use of the asymmetric
energy budgets between the base station and sensor nodes in the network.

The PHY layer has been designed to be suitable for the unique needs of such
a BAN, namely easy reconfigurability, fault-tolerance and efficient energy and data
transfer at low power levels. This is achieved by a mechanism for dividing the network
into groups of sensors. The co-designed MAC layer is capable of supporting a wide
variety of sensors with different data rate and network access requirements, ranging
from EEG monitors to temperature sensors. Circuits have been designed at both ends
of the network to transmit, receive and store power and data in appropriate frequency
bands. Digital circuits have been designed to implement the MAC protocols.

The base station and sensor nodes have been implemented in standard 180nm
1P6M CMOS process, and occupy an area 4.8mm2 and 3.6mm2 respectively. The
base station has a minimum power consumption of 2.86mW, which includes the power
transmitter, modulation and demodulation circuitry. The sensor nodes can recover
up to 33.6µW power to supply to the biomedical signal acquisition circuitry with
peak transfer efficiency of 1.2%.

Thesis Supervisor: Anantha P. Chandrakasan
Title: Joseph F. and Nancy P. Keithley Professor of Electrical Engineering
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Chapter 1

Introduction

1.1 Background

Advances in low-power circuit design [1] have allowed computing to move to ever

more smaller and power-efficient platforms. Nowhere has this revolution been more

pronounced than in the domain of personal electronics, with the rapid proliferation

of cellphones, tablets and laptops to the remotest parts of the world; devices that

can do more than huge computers of the 1950s that took up a whole room, and at a

fraction of the cost. Today, they are an integral part of our lives, affecting our work,

entertainment and interactions with other people.

However, there is still one very important aspect of our lives where personal elec-

tronics have only begun to make a significant difference: healthcare. There has been

a recent increase in the development and sales of some portable medical monitoring

devices, such as pulse rate meters, temperature and blood pressure sensors, etc., but

we are still far away from fully realizing the full potential of low-power electronics.

Medical diagnostics and treatment is mainly limited to hospitals and doctors’ clinics,

and uses bulky equipment whose form factors haven’t changed much in the past 30

years. A paradigm shift is needed in the way patient data is gathered and interpreted

and the way patients are treated.
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1.2 Motivation

An estimated 100,000 people die each year in the US as a result of treatable medical

conditions, such as heart disease [2]. This figure is higher than most other causes

of deaths, such as cancer, AIDS, road accidents, etc. This problem is more acute in

developing regions of the world, where healthcare facilities severely lack the ability to

fulfil the demand and emergency services are almost non-existent. Today’s advanced

sensors [3, 4, 5] can measure biological signals with microwatts of power. CMOS

technology also offers the possibility of intergrating communication circuitry onto

the same die, further reducing size and cost. The quality of healthcare that can be

offered can be readily improved by using Body Area Networks (BAN) for continuous

monitoring of vital signs [6]. Transferring data from sensors to a healthcare provider

is realized as a two-step process: from the sensors to a local base station (like a

cellphone) and from the base station to a healthcare provider using conventional data

networks, as shown in Figure 1-1

Figure 1-1: Body Area Network with Communication Link to the External World

18



However, some key challenges remain. The reduction in power consumption of

biomedical sensors has not been accompanied by a commensurate increase in the cost

of communication [7, 8, 9]. In fact, the power budget of most such SoCs is now

dominated by the power required to transmit and receive information. BANs can

be designed using e-textiles instead of radios. Conductive channels on clothing can

be used to transact data with sensors placed all around the body. Additionally, the

same network can also be used to deliver power to the sensors. This method has the

potential to avoid most of the problems that plague low-power radios in BANs, such

as high path loss around the human body and interference in the unlicensed bands

they operate in.

1.3 Thesis Contributions

This thesis addresses the challenge of designing a Body Area Network using conductive

fabrics capable of handling the tasks of power delivery and data transaction with

sensor nodes placed around the body. Characteristics unique to medical BANs have

been used to lower network power. These include the use of a star topology and

that most health monitoring sensors acquire data at such low rates that data can be

buffered and transmitted in bursts to the base station. The main contributions of the

thesis to the area of Fabric BAN (FBAN) network design are listed below

• Reliability: Since conductive fabrics are exposed to wear and tear from pro-

longed use and frequent washing, a fault-tolerant network architecture for med-

ical BANs has been developed using redundant access paths in order to improve

network reliability. Further, the developed architecture is capable of operating

effectively despite the poor tolerances of circuits fabricated on clothing.

• Low Cost: The designed network avoids the use of multiple active compo-

nents on the e-textiles that increases routing complexity and cost. All active

components reside on a single chip that is not bonded to the fabric. The only

circuit components on fabric are screen-printed passives, which reduces produc-

19



tion cost.

• Resonant Power Transfer: A resonant power transfer scheme to sensors

has been proposed, and a detailed theoretical background consistent with the

implemented circuits is presented.

• Bidirectional Data Transfer: Modulation schemes have been implemented

that push most of the communication complexity to the base station. Messages

from the base station (downlink) are modulated with the transmitted power

signal as carrier and with a very high SNR to reduce receiver power at the

sensor nodes. Backscatter (impedance) modulation is used for messages from

the sensors (uplink) that reduce the modulation effort at the sensors to the

order of a few fJ/bit.

• Access Protocols: A complete Data Link Layer (DLL) has been custom-

designed along with the Physical (PHY) layer of the network. This layer speci-

fies the packet structures, error detection, and Medium Access Control (MAC)

protocols for the network. The custom-DLL allows the network to take advan-

tage of features offered by the network architecture, while avoiding the power

overhead of standard DLLs that is unnecessary for medical BANs.

• Flexibility: The proposed Fabric BAN is flexible enough to allow different

kinds of sensors with diverse functions and bandwidth requirements to co-exist

within the same network, by the use of a hybrid MAC scheme.

A block diagram of the proposed system is shown in Figure 1-2. Sensor nodes of

a band-aid patch form factor are placed on the body of the user and are connected

to the fabric network through an inductive link. A single inductor on clothing may

be shared by multiple sensors. Sensors can have different front-end acquisition cir-

cuitry for measuring different signals, but share a common network module. The

network module handles modulation, demodulation, data buffering, power recovery

and network access decision-making. Power transmitted by the base station and

bi-directional data traffic are multiplexed on the same channel on fabric. The base

20
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station contains RF power transmiter circuits, modulators, demodulators and digital

logic that implements the custom DLL. The digital logic on the base station can be

interfaced with the I/O bus of the electronic device carried by the user it resides in.

1.4 Thesis Outline

Chapter 2 of the thesis will present an overview of previous research done in the field

of Body Area Networks using e-textiles, and develop specifications for the architecture

and DLL of the designed network. Chapter 3 presents the conductive fabrics used

for the network and lists some of their characteristics. Chapter 4 presents circuits

used for transmitting power to the sensor nodes and circuits used at the sensor node

to convert it to DC power. Chapter 5 presents the circuits used for modulation and

demodulation of uplink and downlink data. Chapter 6 presents the DLL used, with

the packet structures, MAC protocols and error detection scheme used. Details of

CMOS implementation and measurement results are presented in Chapter 7. Finally,

Chapter 8 presents a summary of the work done and future research work possible in

the area.
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Chapter 2

Design Targets

The previous chapter presented the motivation behind designing Medical BANs using

conductive fabrics. This chapter presents a brief overview of existing BAN schemes,

both standardized and academic. An architecture for the BAN is proposed and the

accompanying network access scheme is discussed.

2.1 Wireless BAN Design Space

The IEEE 802.15.6 Wireless Body Area Network (WBAN) standard [10] specifies a

detailed PHY and MAC layer structure for WBANs. It supports three PHYs, as

listed below

Human Body Communication (HBC): This technique uses the human body as

the transmission channel to communicate with sensors. Transceivers operate at

frequencies high enough not to have large attenuation constants, but not too

high for the body to start acting as an antenna and interfering with radios in

other bands. This falls in the 10−100MHz range. Thus, signals can be localized

to the human body and a cellular network architecture need not be considered.

Nevertheless, such networks can still pick up interfering signals emitted by other

radios in the band. Communication at up to 2Mb/s with 0.1nJ/bit have been

demonstrated in [11, 12]. However, steps need to be taken to ensure the integrity

of the signal at the receiver in the presence of high-power interferers.
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Ultra-Wideband (UWB) Radios: UWB radios operate by transmitting extremely

short duration GHz-frequency pulses wirelessly that distribute the transmitted

energy over a 500MHz-wide band. This ensures that the transmitted power

spectral density is below the FCC masks for unintended radiators. Ultra-low

power operation is achieved by avoiding the use of power-hungry gigahertz oscil-

lators and phase-locked loops (PLLs), and instead using purely digital architec-

tures. A 17.5pJ/pulse transmitter and a 110pJ/bit receiver have been reported

in [8] and [13] respectively. However, these radios still have to contend with

high-power commercial narrowband radios operating within the transmitted

bandwidth.

Narrowband (NB) Radios: These radios usually operate in one of the unlicensed

Industrial, Scientific and Medical (ISM) bands. Narrowband radios designed for

WBANs are intended for operating over distances in the range of 1-2m, and use

architectures suitable for operation at low power. State-of-the-art narrowband

transmitters and receivers using Film Bulk Acoustic Resonators (FBARs) [14,

15] can operate at 483pJ/bit and 180pJ/bit respectively at 1Mbps.

None of these PHYs listed above is suitable for ultra low-power and compact

sensors without any local energy source. HBC has a transmit mask with a limit

of −36dBm on the maximum transmitted power, in order to avoid potential tissue

damage and interference with critical medical aids such as pacemakers. UWB also has

a spectral mask to prevent interference with narrowband radios operating over the

wide bandwidth. NB radios are more suitable, but most unlicensed bands correspond

to regions with high attenuation constants, which makes power transfer inefficient.

Electronics integrated with the clothing a person wears offer the capability to combine

wireline transmission on clothing with a wireless link that can operate at extremely

low power due to the proximity of clothes to the body. This permits the use of near-

field coupling in order to operate at a lower frequency, and hence lower power. Thus,

e-textile BANs have a great potential to simultaneously deliver power to sensors in

the network and transact data with them.
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2.2 Previous Work

Although no commercial standard for FBANs exists, a number of e-textile BANs for

medical purposes have been proposed in literature. The network presented in [16]

uses fabrics with conductive wires interwoven among the threads. Links to the sensor

nodes are completely wireline with a snap-button that connects the clothing to the

sensor. The same link is used to transmit both power and data. Although this helps

in achieving extemely energy-efficient communication through supply-rail coupling,

it lacks quick reconfigurability and can be cumbersome for users. A similar fully-

wireline communication scheme is proposed in [17] for sleep monitoring by linking

sensors placed around the head.

A chest band using conductive fabrics has been proposed in [18]. The chest band

has the capability to connect inductively to multiple sensors of a band-aid patch form

factor in order to deliver power and transact data. However, the chest band has to

be tightly fitted on the user’s body for operation and it adds an additional piece of

clothing, which could cause discomfort to the user. It also limits the regions where

sensors can be placed to be covered by the network. The design presented in this

thesis will aim to integrate such inductively-linked sensors using everyday clothing,

and deliver power and transact data with them, thus leading to better coverage of all

parts of the body without sacrificing comfort. Some features of existing designs are

compared with features in the proposed design in Table 2.1.

2.3 Network Architecture

Figure 2-1 shows the top-level Fabric Body Area Network (FBAN) schematic on a

shirt, as an example. The base station is connected to traces on the fabric by means

of a snap-button interface matrix. The base station would typically reside in, and

be powered by a portable electronic device carried by the user. Sensors are of a

band-aid form factor, and are connected to the network by means of a near-field

inductive link formed between an inductor on the shirt and an inductor on the band-
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Feature
Mercier, et
al. [16]

Lee, et al.
[17]

Yoo, et al.
[18]

This Work

Communication
Mode

Wireline Wireline
Inductive-
Coupling+
Wireline

Inductive-
Coupling+
Wireline

Power Transfer
Mode

Wireline Wireline Inductive
Resonant
Inductive

Reconfigurability Limited Moderate High High

Coverage Extensive Localized Localized Extensive

Fault-Tolerant No No No Yes

Table 2.1: Comparison of Features of Previous Work with Proposed Design

aid sensor patch. Each of the snap-buttons links to a group of three inductors, which

are connected in parallel with each other. For simplicity, the connections to only

one of the inductor terminals are shown. The three parallelly-connected inductors

form a sub-network, and have more than one path from the snap-button matrix to

the group. The entire network consists of a group of such sub-networks, each with

as many or as few inductors as required that are placed at strategic locations where

there is a possibility of acquiring health data. The use of such a network architecture

has several advantages.

Since power is to be transmitted to the sensors via inductive links, it is imperative

to only transmit power to those inductors on the clothing that actually have sensors

underneath the clothing to prevent wastage of energy. Since the network is intended

to be used for all kinds of healthcare sensors with inductors placed at all possible

spots where data can be acquired, it is obvious that not all users will have all possible

kinds of sensors on their bodies and hence a lot of the inductors would have no sensor

underneath. Inductor locations can be grouped into sub-networks depending on the

type of data a sensor placed at a particular location might acquire. For example,

places where ECG data can be acquired have inductors that are in the same sub-

network. This functional classification allows sub-networks to be turned on and off

depending on what kind of sensors a user has on their body. Further, the network

also allows multiple sensors to be connected via the same inductor.
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Figure 2-1: Example of a Fabric BAN on a Shirt. The return paths for the inductor
currents are not shown for simplicity.

Since each sub-network has more than one path going to all inductors, network

robustness against one of the conductive paths getting open-circuited increases. This

is an extremely important issue for networks on conductive fabrics. Since clothes are

subject to the rigors of daily use and are washed regularly, the possibility of conductive

traces eroding away to increase the trace resistance or even form an open-circuit is

quite high. Having redundancy in the network allows for greater fault-tolerance and

lesser need to replace the conductive clothing.

The network has a star topolgy, with only two possible kinds of data packets, from

the base station to the sensor nodes and from the sensor nodes to the base station.

The former is called downlink while the latter is called uplink. Table 2.2 summarizes

the nomenclature.

Downlink Uplink

(Multicast) (Unicast)

Transmitter Base Station Sensor Node

Receiver Sensor Node Base Station

Table 2.2: Nomenclature for Network Data Traffic
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The block diagram of the base station for the network is shown in Figure 2-2.

Groups of parallel inductors are fabricated on conductive fabric to form sub-networks.

Each sub-network has its dedicated RF oscillator, power amplifier (PA) and downlink

modulator. A resonant LC tank is used to increase the voltage amplitude across the

inductors, which translates to a larger voltage at the secondary. A controller decides

which sub-networks to turn on depending on the user’s input about the kind of sensors

on the body that need to be connected to the network. This way, messages can be

broadcast to all sensors in the network, or just to sensors in any subset of the group of

sub-networks. Uplink data from different sub-networks is combined asynchronously

to form a single uplink stream. This is necessary since the MAC (discussed in Sec-

tion 6.2) has modes wherein the base station does not know which sensor node will be

the next one to transmit. The on-chip digital baseband circuitry performs the tasks

of network scheduling, error checking and external memory interfacing. The base

station designed is capable of supporting two sub-networks with up to two inductors

each.
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Figure 2-2: Block Diagram for Base Station

The block diagram for the sensor node is shown in Figure 2-3. A Sensor Node Net-

work Module that can interface to any healthcare sensor front-end is proposed. The
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Analog Front-End (AFE) of the sensor consists of an analog amplifier and an ADC.

The ADC output is buffered in an SRAM, which has been integrated in the network

module. The SRAM is interfaced with an impedance modulator in order to transmit

uplink data. A demodulator is also included to receive network access and configura-

tion instructions from the base station. An AC-DC converter has been implemented

for powering all circuits in the sensor, along with modulation and demodulation cir-

cuitry for uplink and downlink respectively. The on-chip digital baseband handles the

job of interpreting messages sent by the base station and error-coding the transmitted

packets. An inductor patch forms the inductive link to the network, and is part of a

resonant LC tank with an on-chip capacitor.

2.4 Network Access Protocols

An efficient network access mechanism is needed to manage the potentially large

number of sensors that might be connected to the proposed fabric BAN. Medium

Access Control (MAC) protocols popularly used in BANs like Bluetooth, Zigbee and

IEEE 802.15.6 support a number of features that are unnecessary for a BAN on

conductive fabrics. Using any of these MAC schemes would result in a huge energy
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overhead. The custom-designed Data Link Layer that contains the MAC has a number

of salient features well-suited for fabric BANs, as listed below

• Sensor nodes access the network on a “listen-before-transmitting” basis. This

allows the sensor nodes to go into sleep mode for an indefinitely long period of

time without the need for clock synchronization with the base station at regular

intervals.

• Since sensor nodes do not start transmitting before the base station instructs

them to do so, a half-duplex link is sufficient. The base station maintains

priority over transmission and ceases transmitting when it has instructed a

sensor to start transmitting.

• A wide variety of sensor nodes, with different network access needs, are sup-

ported by the network. This is done by dividing network time into slots, each

with access schemes suited to a particular kind of sensor node. The ratio in

which this division is done can be altered based on the kinds of sensors in the

network.

• A simple, yet effective error-detection scheme using Cyclic Redundancy Check

(CRC) has been employed to protect against occasional packet errors. An Au-

tomatic Repeat Request (ARQ) scheme has also been implemented that tries

to decrease error rates in successive re-transmissions of the same message.

The network access protocols implemented can support up to 16 sensors. Thus, the

network can support up to 16 sensors linked to up to four wearable fabric inductors.

The design can be easily scaled to support more sensors and more fabric inductor

locations.
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Chapter 3

Printed Circuits on Fabric

The previous chapter developed the specifications for the architecture and protocols

associated with the BAN to be designed. This chapter presents an overview of the

fabrics used in the network. The manufacturing process, electrical and mechanical

properties of the conductive fabrics are presented. Characteristics of passives (resis-

tors, inductors and capacitors) fabricated on the fabrics are also presented.

3.1 Fabrication Techniques

Numerous approaches have been presented for integrating electronics into textiles.

Early attempts, mainly pursued by the Center for Wearable Computing at the Swiss

Federal Institute of Technology (ETH), Zurich and Georgia Institute of Technology,

Atlanta [19] were focused on wearable computing. These approaches relied on in-

sulated conductive wires interspersed among the threads of the fabric, as described

in [20]. Gigahertz transmission lines [21] and antennas [22] were designed by ETH

Zurich, while on the digital side Georgia Tech developed the Smart Shirt [23] and the

Wearable Motherboard™ [24]. While capable of forming interconnects and packages

on fabric, these fabrication methods suffer from several drawbacks. Owing to the

way yarn is woven to make a fabric, only perpendicular routing is possible. More-

over, physical properties of the conductive wires like the diameter, thermal expansion

coefficient and Young’s Modulus need to be matched with the yarn, which severely

31



restricts the choice of fabric.

The work described in this thesis uses fabrics that are produced through a different

process. Conductive fabrics are produced using the screen-printing method described

in [25, 26]. A conductive ink paste composed primarily of silver in an adhesive mixture

can be used on a variety of fabric substrates. In mimicking the process used to

manufacture electronic circuits on semiconductors itself, the screen-printing method

offers portability of manufacturing steps between the two. Wires as thin as 200µm

spaced as close as 200µm apart can be realized on fabrics with dense thread counts

and fine fibers. However, fabrics produced using the screen-printing technique have

smaller bandwidth compared to fabrics that use interwoven wires due to the large

parasitic substrate capacitance.

3.2 Electrical Characteristics and Robustness

This section presents a brief overview of the measured electrical characteristics of

e-textiles fabricated on a polyester substrate as described in [26]. The DC sheet

resistance of a 10µm thick and 1mm wide wire on an unwashed fabric has been

measured to be 0.23Ω/�. Washing and wear and tear due to everyday use affects

the DC resistance very strongly. In tests performed by Kim et al., the DC resistance

value of the wires is reported to have increased by upto 40x after 20 washes, which

indicates rapid thinning leading ultimately to an open connection. Coating the wires

with a passivation material such as polyurethane reduces the effects of washing up to

only a 2x increase after 50 washes.

The AC line impedance of a 10µm thick Ground-Signal-Ground coplanar waveg-

uide printed on a 100µm fabric substrate has been measured to be 201.8Ω. The

waveguide has 21.8pF/m parallel capacitance and 891.3nH/m series inductance. S21

measurements show a 3dB cutoff frequency at 80MHz with approximately 0.5dB loss

at DC. Both DC and AC characteristics show little variation with wrinkling of the

fabric. Table 3.1 provides a summary of the electrical characteristics.
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Property Value

DC Resistance (T = 10µm, W = 1mm) 2.3Ω/cm

AC Line Impedance 201.8Ω

s21 3dB Bandwidth 80MHz

Parallel Capacitance (Cp) 21.8pF/m

Series Inductance (Ls) 891.3nH/m

Table 3.1: Electrical Characteristics of Screen-Printed Wires on Polyester Substrate
[26]

3.3 Passive Components

Resistors

Resistors can be realized on fabric using a meandering structure similar to integrated

circuits on silicon. Like silicon, it is difficult to get large resistance values in a limited

area due to small sheet resistance. A 300mm long and 1mm thick meandering wire

occupying a space of 25mm×25mm yields only 85Ω resistance, which corresponds to

a sheet resistance of 0.28Ω/�.

din

dout

(a) Octagonal Spiral In-
ductor

ge

x

s

l

w

(b) Interdigitated Capacitor

Figure 3-1: Layout of Passive Components on Fabric

Inductors

Inductors can be realized using square, hexagonal or octagonal spirals. An octag-

onal spiral inductor is shown in Figure 3-1(a). The inductance value is given by
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Equation 3.1, which has been derived in [27].

L = K1µ
n2davg

1 +K2f
(3.1)

where davg is the arithmetic mean of the inner and outer diameters, n is the number

of turns, µ is the permeability of the fabric, which can be approximated as µ0, the

permeability of free space and f , the fill ratio is defined as

f =
dout − din
dout + din

(3.2)

The constants K1 and K2 are 2.25 and 3.55 respectively for octagonal spiral inductors.

The inductor in Figure 3-1(a), designed with n = 6, din = 6mm, dout = 32mm and

wire thickness of 1mm evaluates to L = 1.8µH. The inductors have Q ≈ 8 in the

20−40MHz range1 and self-resonant frequency fc ≈ 100MHz, beyond which they are

capacitive.

Capacitors

Both parallel-plate and interdigitated capacitors can be fabricated on fabric. An

interdigitated finger capacitor is shown in Figure 3-1(b), where s is the finger spacing,

x is the finger width, l is the finger length, w is the terminal width and ge is the end

gap. The capacitance value is given by Equation 3.3, which has been derived in [28].

C =
εrε0 + 1

d
l[A1(n− 3) + A2]. (3.3)

In Equation 3.3, n is the number of fingers and εr is the relative permittivity of the

fabric. A1 and A2 represent the contributions of the internal and two external fingers

of the capacitor respectively and are functions of (t/x), where t is the thickness of

the wire. The evaluated capacitance of a capacitor with x = 1mm, s = 1mm, n = 8,

t = 10µm, ge = 2mm, l = 38mm and w = 33mm is 16pF.

1Section 4.2 elaborates on the choice of the inductance and capacitance values and the frequency
range of interest
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3.4 Measured Component Values

Fabric inductors and capacitors with specifications as described in Section 3.3 were

fabricated on a polyester substrate, as shown in Figure 3-2. Inductance and Capac-

itance values in the desired frequency range of 20 − 30MHz were measured using

a Network Analyzer. Twelve inductor and capacitor samples were analyzed, and

the average inductance and capacitance values were observed to be 1.4µH and 20pF

respectively compared to 1.8µH and 16pF expected from Equation 3.1 and Equa-

tion 3.3.

(a) Spiral Inductors (b) Interdigitated Capacitors

Figure 3-2: Passives Fabricated on Polyester Substrate

Histograms for the measured inductance and capacitance values are shown in

Figure 3-3. Even though the sample size is small, variations up to 50% can be

observed in some of the samples. This indicates extremely poor tolerances, which are

due to fabric-to-fabric variation and imprecisions of the screen-printing process.
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Figure 3-3: Measured Component Values of Passives on Fabric. Expected Inductance
and Capacitance Values were 1.8µH and 16pF respectively.

The quality factor (Q) and self-resonant frequency (fR) of the inductors as mea-

sured by the network analyzer were Q ≈ 8 in the 20 − 40MHz frequency range and
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fR ≈ 100MHz. The inductive coupling coefficient between the inductors on fabric is

extremely sensitive to variations between fabrics as well as the operating conditions,

like the profile of wrinkles on fabric, etc. Table 3.2 lists some measured coupling

coefficient values.

Distance between Inductors Coupling Coefficient (k)

5mm 0.08

3mm 0.14

2.5mm 0.2

2mm 0.24

Table 3.2: Inductive Coupling Coefficient Values for Different Spacings Between In-
ductors
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Chapter 4

Wireless Power Transfer

The previous chapter presented an overview of the fabrics and passive components

fabricated on them that are used in the network. This chapter develops the theory

for inductive power transfer through coupled resonators. Specifications for network

parameters are developed based on limitations enforced by the fabric characteristics

as well as regulatory authorities. The circuits for resonant AC power transmission

and AC-DC conversion at the sensors are also presented.

4.1 Theoretical Overview

This section presents a brief theoretical overview of power transfer through inductive

links, as described in [29]. Figure 4-1 shows the setup used, with side 1 being the

primary and side 2 being the secondary. The load resistance RL on the secondary is

the equivalent AC resistance of the circuit that converts AC power to DC. A resonant

RLC tank circuit is used on the primary side to achieve maximal voltage across the

inductor. A tank is also used on the secondary side to increase the voltage input to

the rectification circuit. It is assumed that both the primary and secondary networks

have the same resonant frequency.

In Figure 4-1, Z1(s) is the series combination of L1 and R1, while Z2(s) is the

series combination of L2, R2 and the parallel combination of C2 and RL. A detailed

mathematical treatment of the mechanism of power transfer through inductively-
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Figure 4-1: Power Transfer through Inductively-Coupled Resonators

coupled resonators is presented in Appendix B. The power transfer efficiency from

the source on the primary side to the load on the secondary side is

η = η1 · η2 (4.1)

=

(
Q′21 R1 (1 + k2Q1Q

′
2)

Rs +Q′21 R1 (1 + k2Q1Q′2)
· k2Q1Q

′
2

1 + k2Q1Q′2

)
·
(

Q2

Q2 +QL

)
(4.2)

where Q1, Q
′
1, Q2 and Q′2 are the unloaded and loaded quality factors of the primary

and secondary resonators respectively, QL is the quality factor of the load and k is

the inductive coupling coefficient.

4.2 Link Design

The measurement results presented in Section 3.4 show that the fabric inductors

self-resonate at around 80MHz, beyond which they behave as capacitors. Further,

the s21 parameter of wires screen-printed on fabric has a 3-dB cutoff frequency at

80MHz. Given these constraints, it is preferable for the inductive links to operate

a few octaves below these frequency values. Also, even though inductive links have

limited far-field energy, it is advisable to operate in an unlicensed band nevertheless

to avoid interfering with sensitive radios in licensed bands. Inductors are not good at

picking up far-field radiation and hence interference from other radios transmitting in
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the same band is not an issue. A study of available frequency bands in the 5−30MHz

range [30] yields three unlicensed ISM bands at 6.78MHz, 13.56MHz and 27.12MHz.

The 27.12MHz is the most appropriate band to operate in for the following reasons

1. The bandwidth in the 27.12MHz band is 326kHz, compared to 40kHz in the

6.78MHz band and 14kHz in the 13.56MHz band.

2. LC oscillators at 27.12MHz need L and C values of the order of 1µH and a

few tens of pF. Both can easily be obtained by on-fabric spiral inductors and

interdigitated capacitors that measure 3 − 4cm in each dimension. Capacitors

of these values can also be easily realized on a chip with reasonable area.

3. The frequency band is still sufficiently away from the inductors’ self-resonant

frequency and the s21 3-dB cutoff frequency.

As outlined in Section 3.3 and Section 3.4, the screen-printed inductors on fabric

have poor quality factors. Assuming the quality factor of the LC circuits are limited by

the inductor alone1 leads to Q1, Q2 ≈ 8. In order to get a sense of the power numbers

involved, assume that the rectification circuit at the secondary needs to supply 30µA

at 1.8V , with a 50% power conversion efficiency and an AC input voltage amplitude

Vac,in ≈ 2.4V . Assuming unity power factor at the input of the rectification circuit,

i.e. the power transfer frequency perfectly matches the resonant frequency of the

secondary tank, the recitifier consumes an AC input current Iac,in ≈ 90µA. This

corresponds to RL,ac = 26.7kΩ.

With an inductor value L ≈ 1.4µH and capacitor value C ≈ 24pF oscillating

at 27MHz, QL = 110. Since Q2 � QL, Q′2 ≈ Q2 which implies that the primary

efficiency given by Equation B.15 is invariant with the load. It also leads to the total

efficiency being dominated by the secondary, and can be increased by keeping QL,

and hence RL,ac as low as possible. This increases RL,srs, the effective series AC load

resistance, and causes more power to be dissipated across the load than across R2.

For L1 = L2 = 1.4µH, C1 = C2 = 24pF, Q1 = Q2 = 8 and Rs = 1.3kΩ, the transfer

1subsection 4.3.2 justifies this assumption
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Figure 4-2: Simulated Link Efficiency and Voltage Transfer Ratio vs Coupling Coeffi-
cient. Calculated for RL = 26.7kΩ, Rs = 1.3kΩ, L1 = L2 = 1.4µH, C1 = C2 = 24pF,
Q1 = Q2 = 8.

characteristics are plotted in Figure 4-2. More details for the case where the inductive

coupling coefficient k = 0.1 are summarized in Table 4.1.

Parameter Value

Primary Efficiency (η1) 18%

Secondary Efficiency (η2) 6.8%

Total Efficiency (η = η1 · η2) 1.2%

Voltage Transfer Ratio
∣∣∣V2(s)
Vs(s)

∣∣∣ 0.35

Table 4.1: Inductive Power Transfer Characteristics for Coupling Coefficient k = 0.1

Figure 4-2 shows that for the given link parameters, an inductive coupling co-

efficient value k ≈ 0.15 is optimal for maximum power transfer efficiency and for

generating maximum voltage across the input terminals of the rectification circuit,

which leads to better AC-DC conversion performance.
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Figure 4-3: Generic RF Transmitter Architecture

4.3 Near-Field Power Transmitter

4.3.1 Conventional RF Transmitters

Figure 4-3 shows a generic RF transmitter architecture, without the data modulation

blocks. The oscillator may consist of a PLL, which up-converts a stable crystal output

frequency to RF. Using a PLL for generating RF is costly in terms of power because

of the high-speed frequency dividers, precision phase detectors and charge pumps

used. However, PLLs do offer a very good combination of low phase noise, tunability

and stability. Approaches to generating RF outputs without using PLLs usually fall

under one of the following categories

• Ring Oscillators: Low power, good tunability, poor phase noise and stability,

imprecise center frequency

• LC Oscillators: Moderate power, moderate tunability, good phase noise but

poor stability, moderately precise center frequency

• Resonator-based Oscillators: Low power, limited tunability, excellent phase

noise and stability, extremely precise center frequency

The power amplifier is usually implemented as a push-pull (switching) amplifier

(Class-D or higher) to achieve better power efficiency compared to linear amplifiers

[31]. This makes the output band-pass filter essential, in order to eliminate harmonics

generated by the switching action. A separate resonator is used in the oscillator to set
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the center frequency since most resonators have very high quality factors and cannot

operate at high power.

4.3.2 Chosen Transmitter Architecture

In a design with a constrained power budget that prevents the use of a PLL-based

oscillator, the remaining alternatives are the ones described in subsection 4.3.1. Al-

though ring oscillators are extremely low-power, they would need additional complex

circuitry to continuously track and correct their output frequency to the desired

27MHz ISM band. A crystal oscillating at the transmission frequency would have to

be off-chip. The only option remaining is to use an LC oscillator. However, an fully

on-chip LC oscillator would need an inductor of the order of 1µH in order to keep the

capacitor in the range of a few tens of pF, which is not achieveable in current CMOS

technologies within resonable area. An off-chip LC network would only add to the

power and cost of the system. A simple way to deal with this problem is to use a

combined oscillator-PA topology that uses the same LC network for both tuning the

oscillator and filtering the output of the PA, as shown in Figure 4-4.

Oscillator

Power 

Amplifier

Combined Oscillator + PA + Filter

LC Bandpass Filter

Figure 4-4: Oscillator Architecture Used for Power Transfer. The band-pass filter
contains inductors on fabric and serves both to filter the PA output and to set the
center frequency of the oscillator.

In an e-textiles based inductive power transfer scheme, the inductor in the output

band-pass filter should preferably be on fabric so that it can serve the purpose of
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being a part of the filter as well as the near-field emitter, as well as being a part

of tuning network for the oscillator. As noted in Section 3.4, screen-printed fabric

passives (both inductors and capacitors) suffer from extremely poor tolerances and

poor quality factors. This prevents the use of a fully on-fabric band-pass LC filter

at the output. Since the inductor is necessary for transmitting power to the sensor

nodes, the capacitor can be moved on-chip. This permits tuning out the inductance

variations to maintain the same output frequency. Additionally, the quality factor of

the tuning network is now dominated by the inductor, since CMOS on-chip capacitors

have a much higher quality factor [32]. A detailed analysis of self-tuned resonant

power- and data-transfer using coupled inductors and Class-E power amplifiers is

provided in [33].

4.3.3 Modified Colpitt’s Oscillator

C1

C2

L
Vo

Vref

Figure 4-5: Commonly used Colpitt’s Oscillator Circuit in Common-Gate Configura-
tion

A Colpitt’s oscillator is a suitable choice for the design since it requires one induc-

tor and two capcitors. The inductor can be on fabric while the two capacitors can be

on-chip, with the entire LC network simultaneously doing the job of the output filter

and oscillator tuning network, as explained in subsection 4.3.2. Figure 4-5 shows a
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commonly used Colpitt’s oscillator implementation [34]. While this oscillator topol-

ogy is well-known for its robustness and reliability, there are a few reasons why it

could cause issues in the system if used as is.

• The capacitors C1 and C2 are of the order of picofarads. In order to maintain ca-

pacitor linearity and hence frequency stability, Metal-Insulator-Metal capacitors

(MIMcaps) need to be used. The top- and bottom-plate parasitic capacitances

of the MIMcaps are not negligible for such large capacitors. Since the node

between C1 and C2 is not AC ground, the parasitic capacitance from this node

will affect the oscillator performance.

• One of the terminals of the inductor is AC ground, while the other oscillates

about a DC operating point. If the two terminals can be made to oscillate in

opposite phase, the voltage generated at the secondary would double and so

would the efficacy of the rectification circuit.

• Since the oscillator is linear, it is not possible to generate high output power at

high efficiency.

The oscillator topology shown in Figure 4-6 addresses all the issues associated with

the Colpitt’s oscillator. It also has the same expression for the output frequency as the

Colpitt’s oscillator. Both the capacitors have one terminal connected to AC ground,

and hence can absorb parasitics at the top plate. None of the inductor terminals are

connected to AC ground, which offers the possibility of driving them differentially.

The voltage Vref is a mid-band reference that can be derived from the power rails.

The linear differential amplifier is followed by a class-D push-pull amplifier within

the oscillator loop itself. The PA achieves efficient power amplification without the

need for a separate output filter. The capacitors C1 and C2 have 3 bits of tuning for

eliminating output frequency variations arising from the inductor. The PA has 2 bits

of tuning for changing the output power level. In the lowest-power setting, the output

oscillation amplitude is limited by the switch resistance of the PA, which is reduced

as additional parallel PA’s are turned on. Under maximum-power, the PA operates
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Figure 4-6: Oscillator Topology Used

as a true Class-D amplifier with rail-to-rail swing at the output. Gate bias to the

additional PA’s is set such that both the switches are off when the PA is not being

used. This avoids the use of large transistors in series. The capacitor C1 absorbs

the parasitic output capacitance of all PA’s connected in parallel. The entire circuit

is built using thick-gate oxide transistors, and can be operated at a higher supply

voltage in order to increase the voltage across the rectifier circuit at the input of the

sensor nodes.

L1

R1

C1

Vs

Rs

C2

Figure 4-7: Thevenin Equivalent Model of Oscillator
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A simplified Thevenin representation of the circuit in Figure 4-6 under oscillation

is shown in Figure 4-7. The class-D power amplifier under oscillation is represented

by square wave voltage source at the oscillation frequency. The resistor Rs represents

the resistance of the switching transistors in the PA. Resistor R1 includes real part of

both the inductor and the reflected secondary impedance. This representation closely

matches the primary side of Figure 4-1.

Oscillator Loop Gain Analysis

gmVf Ro

C1

C2

L

Vo

Vf

Figure 4-8: Small-Signal Model of Oscillator

Figure 4-8 shows the small-signal model of the oscillator. The poles of the differen-

tial amplifier and the push-pull amplifier are assumed to be at a frequency much higher

than the circuit’s operating frequency and are therefore neglected. The transconduc-

tance parameter gm is the combined effect of the voltage amplification of the dif-

ferential amplifier and the transconductance of the push-pull amplifier. The output

resistance R0 is the combination of the output resistance of the push-pull amplifier

and the resistance of the inductor, parallelized at the resonant frequency using the

dual of Equation B.8.

Figure 4-9 shows the block diagram of the feedback path. Here, Ceq equals the

series combination of C1 and C2.

Ceq =
C1C2

C1 + C2

(4.3)
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Figure 4-9: Small-Signal Feedback Diagram of Oscillator

The loop gain of the oscillator is

L(s) = − gmRo

LC1C2Ros3 + LC2s2 +Ro (C1 + C2) s+ 1
(4.4)

. It is clear that the value of the loop gain is real at DC and at s2 = (LCeq)
−1. At

s = ±j/
√
LCeq, the voltage across the inductor is

VL(s) = Vo(s)− Vf (s) (4.5)

= Vo(s)

(
s2LC2

s2LC2 + 1

)
(4.6)

= Vo(s)

(
−C2

−C2 + Ceq

)
. (4.7)

If Ceq = 0.5C2, then VL(jω0) = 2Vo(jω0) and the inductor can be driven differentially.

Fixing C2 also fixes C1 as

C1 = C2 = 2Ceq. (4.8)

Under this condition, it can be checked that at DC, the loop gain has a phase of 180◦

while at ω =
(√

LCeq

)
, the loop gain has a phase of 360◦. Hence, the circuit oscillates

at this frequency provided it has sufficient gain. This choice of the capacitor values

has another advantage. Given a desired frequency of operation and inductance value,

choosing C1 = C2 is the most area-optimal solution for getting the required Ceq. Also,

under this condition, the connection to ground at the node between capacitors C1 and
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C2 in Figure 4-7 can be removed since C1 = C2 and V0 = −Vf . With the ground

connection removed, Figure 4-7 exactly matches the primary side in Figure 4-1 with

tank capacitance C1||C2.

Root-Locus Analysis

The loop gain for the oscillator in Equation 4.4 has 3 poles. For the component

values L = 1.4µH, C1 = C2 = 48pF and Ro = 1.3kΩ such that ω0 =
(
2π
√
LCeq

)−1 ≈
27MHz, the poles are located at p1 = −8Mrad/s, p2, p3 = −4±j172Mrad/s. Figure 4-

10 shows that once the closed-loop poles enter the right-half plane they never return

back to the left-half plane. This implies that there is only a lower bound on the

DC loop gain for oscillations to take place. Simulations show that the loop oscillates

across PVT corners and fabric variations. This is expected since the feedback action is

expected to bias the inverter formed by the class-D PA around the switching threshold,

which has a high small-signal gain.
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Figure 4-10: Feedback Root Locus Plot of Oscillator Circuit

4.4 AC-DC Conversion at Sensor Node

At the sensor nodes of the network, the wireless AC power radiated by the base

station is gathered and rectified to supply DC power. This section deals with the

design of the power converter that does this job.

48



DC- DC+

ACp

ACn

Mn2

Mn1 Mp2

Mp1

(a) With Diode-Connected Transistors

DC- DC+

ACp

ACn

Mn2

Mn1 Mp2

Mp1

(b) With Threshold Adjustment

Figure 4-11: Two Traditional Full-Bridge CMOS Rectifier Topologies

Although rectifiers can be built to work with very high efficiency using devices with

low forward voltage and large reverse blocking capability such as Schottky diodes, such

a rectifier would not be integrable in regular CMOS technologies. Figure 4-11 shows

some traditional CMOS full-bridge rectifier topologies. Connecting the transistors in

diode-connected configuration is the simplest way to replace the diodes in a full-bridge

rectifier with MOS transistors. However, directly connecting the gate to the drain of

these devices severely affects the output DC power obtainable since the DC voltage

must settle to at least VT below the peak AC value, and even lower when it has to

supply a larger current. To address this issue, [35] uses voltage sources to boost the

gate overdrive beyond the peak AC value by one VT and hence bring the DC output

close to it. However, such a solution does not permit a fully-integrated design. [36]

achieves the same result using charge stored on ferroelectric capacitors. While this

solution is fully integrable on silicon, processes with ferroelectric capacitors are still

uncommon and costly. The Adaptive Threshold Rectifier in [18] uses an initialization

stage that samples the threshold voltage across a MOS capacitor. This approach

works very well for older CMOS technologies, but is unsuitable for newer technologies

that have high gate-leakage.

The sensor node energy harvester uses self-synchronous full-bridge rectifier blocks

[37, 38, 39]. The implementation of this rectifier block is shown in Figure 4-12(a).
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Figure 4-12: Self-Synchronous Rectifier and Functioning Mechanism

All transistors are connected such that their gate terminals are driven by AC phase

opposite to the one driving the source. The functioning mechanism under steady

state in one of the AC phases is shown in Figure 4-12(b). In this figure, the voltage

REF is a common reference terminal for all nodes in the rectifier. In the phase shown,

the gate of Mp1 is pulled to a lower voltage, while the voltage of the source increases.

The transistor Mn1 has its gate pulled to a higher voltage and drain pulled to a lower

voltage.

Figure 4-13 shows simulated current waveforms for IMp1 and IMn1. When the

positive AC input voltage is below the DC+ node voltage, current flows out of the

DC+ node. However, this current is not large since the gate drive is small. Current

flows into the DC output terminal once the positive AC input value crosses the DC+

node voltage. Since this period also corresponds to maximal gate drive, the amount

of total charge going into the DC+ terminal is more than the amount of charge

coming out of it. The same thing happens in opposite at the DC- terminal. The

actual magnitude of the DC outputs depends on the amount of DC output current

demanded by the load, such that the net charge flowing into the DC+ and out of DC-

in one half-cycle corresponds to the net charge flowing into the load during the same

period.

The transistors Mp2 and Mn2 also conduct during the phase shown in Figure 4-

12(b), although ideally they are supposed to be off. However, since the gate drive

of both transistors is lesser than Mp1 and Mn1 respectively during this phase, the

50



0

200

400

600

800

V
ol

ta
ge

 (
m

V
)

 

 

0
100

−100

−300

300

C
ur

re
nt

 (
µA

)

 

 

V
AC,p

V
DC+

I
Mp1
I
Mn1

Figure 4-13: Simulated Rectifier Current Waveforms

amount of current that these transistors conduct is much smaller, and has little effect

on the DC output voltage. The current conduction mechanism works the same way

in the opposite phase, with the roles of the transistors reversed.

Rectifier

ACp

ACn

DC+DC- Rectifier

ACp

ACn

DC+DC- Rectifier

ACp

ACn

DC+DC- Rectifier

ACp

ACn

DC+DC-

Cc

Cc

Cc

Cc

Lr Cr

Cc

Cc

Figure 4-14: Rectifiers Connected in Series to Boost DC Output

From the approximate input voltage amplitude to the AC-DC converter calculated

in Section 4.2, it is evident that a single rectifier cannot produce sufficient VDD to

power circuits in the sensor node. In order to produce the necessary VDD, four

rectifiers have been connected in series [40] as shown in Figure 4-14. The AC coupling

capacitors Cc provide the DC offset between adjacent rectifiers. Also, the fabric

inductor receiving wireless power from the base station Lr forms a resonant tank

with an on-chip capacitor Cr, which serves to increase the voltage across the power

converter. The capacitor Cr can be made to absorb some of the input parasitic

capacitors of the individual rectifiers, and thus can reduce switching losses across

these capacitors by recycling the energy stored under resonance.
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The DC output voltage of the series combination of rectifiers is not the voltage

produced by each rectifier if working alone times the number of rectifiers, as one might

expect. In fact, the total voltage obtained is less than this value due to a variety of

reasons

1. The total DC output resistance increases with more rectifiers, which reduces

the total output DC voltage.

2. The AC path impedance increases as one goes down the series rectifier chain

due to the reactances of the coupling capacitors adding up. The value of Cc

cannot be increased indefinitely owing to chip area constraints.

3. As more and more rectifiers are connected in series, the nMOS devices in the

rectifiers further down the chain have higher threshold voltages due to body-

biasing and hence are less effective. This problem arises only in CMOS processes

without triple-well capability.

Simulations of the rectifier under different coupling constants show that connecting

up to four rectifiers produces enough DC output voltage to power the sensor node

circuitry in most cases. In fact, adding a fifth rectifier provides only marginal benefit

and may, under very weak coupling, contribute negative DC voltage to the total

output.

52



Chapter 5

PHY Design and Communication

Circuitry

The previous chapter discussed the theory and implementation of inductive power

transfer. This chapter focuses on the physical layer (PHY) of the data network. A

review of inductive data links in literature is presented. The choices for modulation

schemes for downlink (base station to sensor nodes) and uplink (sensor nodes to

base station) are explained. A theoretical analysis of the links is performed and the

implemented circuits are presented.

5.1 Existing Inductive Data Links

Various approaches have been reported for communicating to and from biomedical

sensors, both implanted and on the body. A summary of some existing inductive data

links is presented in Table 5.1.

In a BAN built on fabric, inductors are costly in terms of area and state-of-

the-art biomedical implants and sensor patches [45] are too small to allow efficient

coupling with multiple inductors. Further, the power budget on such sensor nodes

demands extremely low transmit and receive powers, which does not permit the use

of FSK or PSK modulators/demodulators. [46] describes a novel feedback scheme

for powering sensors inductively and using information from the sensors to increase
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Ghovanloo,
TCAS ’04
[41]

Ghovanloo,
TCAS ’06
[42]

Simard,
TBCAS ’10
[43]

Mandal, TB-
CAS ’08 [44]

Modulation
Scheme

FSK

FSK (Down-
link)
PWM ASK
(Uplink)

Offset QPSK

PWM ASK
(Downlink)
Imp. Modn.
ASK (Uplink)

Power Trans-
fer Capability

No Yes Yes No

Data Transfer Uplink only Bidirectional Bidirectional Bidirectional

No. of Induc-
tor Pairs

Single Multiple Multiple Single

Table 5.1: Summary of Previously Published Inductive Links

transfer efficiency. Data transfer is done by a switch across the secondary which

modulates the load impedance, and can be perceived at the primary. Since driving the

switch requires much less power than actively generating a carrier and modulating it

for transmission, this method (known as impedance modulation) is an ideal candidate

for extension to data transfer from sensors.

5.2 Downlink Communication

Downlink communication refers to communication from the base station to the sensor

nodes. This section provides an overview of the modulation schemes chosen and

describes the circuits used in the link.

5.2.1 Modulation Scheme Used

Although most of the network data traffic is from the sensor nodes to the base station,

the network needs to handle traffic in the other direction as well. Messages trans-

mitted from the base station to the sensor node could include sensor configuration

instructions and network-related commands, such as going to/waking up from sleep

or initiation of uplink data transfer. However, even though receiving data is usually

more complex than transmitting, the receiver circuitry on the sensor nodes must not

54



Modulated Signal

(in Baseband)

Integrate & Dump at 

Negative Edge

0 1 0

1 0 1

Complement of 

Modulated Signal

Figure 5-1: PWM Modulated Signal and Demodulation Scheme

have significant power overhead. This needs to be taken care of by using appropriate

modulation schemes and messaging protocols.

In order to keep the receiver circuitry at the sensor simple, a modulation scheme

that does not need clock recovery is required. This can be achieved by using a Return-

to-Zero (RZ) signaling scheme. A common RZ signaling scheme used is Pulse-Width

Modulation (PWM). In PWM, bits are encoded into the width of a train of pulses.

Usually one of the edges of all pulses in the pulse train is synchronized to a clock.

The location of the other edge is varied according to the bit encoded in the particular

pulse. Figure 5-1 shows how data is encoded as a PWM signal and how it can be

demodulated. Since the negative edges of the pulses in Figure 5-1 are synchronized,

a longer pulse (which signals a ’1’) implies that the preceding duration where there

was no pulse is shorter. Sensing and comparing the durations when the pulse was

absent and when it was present allows demodulation without any clock recovery.
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Figure 5-1 depicts a 25− 75% width modulation for representing logic 0 and logic

1. This ensures optimum performance with the detection mechanism used. Since

the required data rate for the downlink is very small, the cycle time for pulses in

the downlink transmission has been chosen to be 1/12th of the uplink transmission

bitrate. This permits the use of digital integrate and dump schemes with the on-

board sensor node clock intended for uplink transmission. Choosing a digital scheme

reduces the area by avoiding the use of large integrating capacitors.

In order to transmit the PWM signal over an inductive link to a sensor node, it

needs to be modulated on an RF carrier. The 27MHz signal used for power transfer

can be modulated with the PWM waveform using On-Off Keying (OOK). OOK, being

incoherent, allows the sensor to recover the original PWM signal for demodulation

by simple envelope detection. Since the downlink is only meant for carrying sensor

and network confiuration instructions, data traffic is extremely sporadic and consists

of small packets. This low duty cycle ensures that the amount of power that can be

transferred remains unaffected.

5.2.2 Transmitter
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Figure 5-2: Scheme for Generating PWM Signals with OOK1

Figure 5-2 shows the power transmitter on the base station integrated with the

1The OOK output in Figure 5-2 is highly exaggerated. Each PWM pulse is long enough and
contains enough sinusoidal pulses for the low-pass filter of the envelope detector to be effective.
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pulse-width modulator. The modulator takes as input the the binary-coded downlink

packet and converts it to a baseband pulse-width modulated signal using a one-to-one

digital mapping of the input bits. The modulated signal goes to a power switch that

turns on/off the supply to the differential amplifier in the oscillator loop. Oscillations

are produced whenever a modulated output is HIGH. When the modulated output is

LOW, the differential amplifier does not get power and the feedback loop is broken,

causing the oscillations to die down. This technique of controlling the oscillations is

efficient since large power transistors to control the PA are avoided, the supply to

the linear amplifier is cut off, and the class-D PA being just a CMOS inverter has

negligibly small static power. Since the PWM output is at a frequency much lower

than the oscillator output, the time taken for the oscillator to start-up or die down is

negligible compared to the actual pulse widths. Hence, OOK modulation is achieved

with minimal additional circuitry. The digital mapper and the logic generating the

downlink packets is designed such that the PWM output remains HIGH when there

is no downlink message to be transmitted, and thus allows power transfer to take

place unhindered.

5.2.3 Receiver
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Figure 5-3: Envelope Detector Circuit for Recovering PWM Signal

Receiving messages transmitted from the base station to the sensor node is done in
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two steps. The first step, shown in Figure 5-3 extracts the PWM waveform from the

On-Off Keyed (OOK) waveform using a common envelope detector topology. Again,

since the envelope is modulated at a frequency much lower than those associated with

the oscillator steady-state or start-up transients, the time taken by the oscillator to

start up and shut down does not affect the demodulation. The top branch of the

envelope detector shown in Figure 5-3 extracts the negative (below DC) envelope

while the bottom branch extracts the positive (above DC) envelope. The envelope

detector topology used avoids the need for large resistors. The time constant of the

low pass filtering is given by Equation 5.1.

τf =
Cf

gm,diode

(5.1)
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Figure 5-4: Simulated Outputs of Envelope Detector at Sensor Node Receiver

gm,diode is the transconductance of the diode-connected transistor, which can be

calculated from the current If using the subthreshold transconductance formula. For

If = 100nA and Cf = 500fF, the filter cutoff frequency is 1.2MHz, which is small

enough to reject the carrier at 27.12MHz but large enough not to attenuate the

PWM signal. The forward voltage drop of the diode-connected transistors allows the

outputs of the two branches to be fed into a standard comparator designed without

any deliberate offset, as shown in Figure 5-4. The output of the comparator is gated
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in order to prevent unintentional demodulation of messages transmitted by the sensor

node, which also appear as ASK signals across the inductor at the sensor node. This

will be discussed further in Section 5.3.

Figure 5-5 shows the digital demodulator used at the sensor node. The output of

the envelope detector and its complement are passed through digital “integrate-and-

dump” circuits, represented as definite integral blocks in the figure. Integration is

done digitally from one negative edge of the input waveform to the next as shown in

Figure 5-1, by using the sensor node clock to count the number of cycles for which the

input of the block is HIGH. The outputs are fed to a digital comparator whose output

is latched at the subsequent negative edge. A counter keeps count of the number of

bits left to be demodulated and gates the clock going into the demodulator once the

downlink packet has been received. The bit-width of the counter shown in Figure 5-5

corresponds to the downlink packet size, which is described in Section 6.4.

5.3 Uplink Communication

Uplink communication refers to communication from the sensor nodes to the base

station. This section presents a theoretical analysis of the modulation scheme chosen

and describes the circuits used in the link.
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5.3.1 Modulation Scheme Used

Data transfer from sensor nodes to the base station constitutes a major portion of

the network traffic. Uplink messaging needs to be relatively fast, but should involve

minimal transmission effort by the sensor nodes. Impedance modulation is well-suited

for these requirements. It involves turning on and off a switch connected across the

sencondary inductor in Figure 5-6, which only adds the switch to the existing power

transmission system shown in Figure 4-1. A theoretical background for impedance

modulation can be developed by extending the analysis for inductive power outlined

in Section 4.1.
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Figure 5-6: Schematic for Uplink Data Transmission using Impedance Modulation

When the secondary is a short-circuit, the secondary impedance in Figure 5-6 is

Z2(s) = sL2. Using Equation B.7, the reflected impedance at the primary is

Zrfl,sc(jω0) =
−ω2

0M
2

Z2(s)
(5.2)

= ksL1 (5.3)

which uses the relation M = k
√
L1L2 and assumes L1 = L2. Under this condition,

the impedance of the inductive branch of the tank is

Z1(s) = ω0L1

(
1− k2

)
+R1. (5.4)

When the switch at the secondary in Figure 5-6 is opened, the only load across the
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tank is the rectifier, which presents an AC resistance RL. Under this condition, from

Equation B.14

Z1(jω0) = ω0L1 +R1

(
1 + k2Q1Q

′
2

)
(5.5)

where Q′2 is the loaded quality factor of the secondary and is given by Equation B.13.

Since Q′2 is dominated by the quality factor of the inductor in the tank at the sec-

ondary (Q′2 = Q2), the amount of impedance modulation observed is independent of

whether the recitifer is kept connected when the switch is open (which presents RL

across the tank) or is disconnected. Converting the resistor in series with the primary

inductor in both cases to a parallel resistance gives∣∣∣∣V1(jω0)

Vs(jω0)

∣∣∣∣
sc

=
Q2

1R1

Rs +Q2
1R1

(5.6)

∣∣∣∣V1(jω0)

Vs(jω0)

∣∣∣∣
oc

=
Q′21 R1 (1 + k2Q1Q2)

Rs +Q′21 R1 (1 + k2Q1Q2)
. (5.7)

Q′1 is the loaded quality factor of the primary. The modulation index m is defined as

the relative change in the amplitude of the AC signal upon switching from one binary

data value to the other. The expression∣∣∣∣V1(jω0)

Vs(jω0)

∣∣∣∣
oc

=

∣∣∣∣V1(jω0)

Vs(jω0)

∣∣∣∣
sc

(1−m) (5.8)

gives

m = 1− Q′21 R1 (1 + k2Q1Q2)

Rs +Q′21 R1 (1 + k2Q1Q2)
· Rs +Q2

1R1

Q2
1R1

. (5.9)

Using the same link parameters used in Section 4.2, i.e. Q1 = Q2 = 8, Rs = 1.3kΩ

and R1 = 30Ω, the variation of the modulation index m with change in the inductive

coupling coefficient is plotted in Figure 5-7.

Figure 5-7 shows that as expected, the modulation index increases as the coupling

coefficient is increased. At a reasonable value of k = 0.1, the modulation index is

m = 0.21. The bitrate used for uplink can range from 300kbps to 1Mbps. Even

though no pulse shaping is performed on the uplink data before transmission due to

power constraints, the main lobe of the uplink data spectrum lies fully within the

61



0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Coupling Coefficient (k)

M
od

ul
at

io
n 

In
de

x 
(m

)

Figure 5-7: Variation of Impedance Modulation Index at Receiver Input vs. Inductive
Coupling Coefficient

326kHz bandwidth of the 27.12MHz ISM band at the lowest data rate. Although

the uplink data spectrum is not accommodated in the 27.12MHz band at higher data

rates, transmission can still be safely carried out since near-field coupling, which dies

down as 1/d4 in power [47], is used. Moreover, since the modulation index is small,

the energy outside the center frequency is 14dB below the carrier.

The transmitter for the impedance modulation link can be implemented by using

just a switch that is driven by a digital signal representing the serialized data. The

receiver circuitry on the base station is a lot more complex. Figure 5-8 shows the

signal waveforms as they are observed across the secondary and primary tanks when

the transmitting switch is modulated. The receiver needs a sensitive demodulation

circuit to resolve the small differences in AC amplitude that signal a binary 1 or

0. Further, since the signaling scheme is Non-Return-to-Zero (NRZ) in order to use

bandwidth efficiently, a Clock-Data Recovery (CDR) block that uses a Phase-Locked

Loop (PLL) is required. The network is divided into two sub-networks, as described

in Section 2.3, which are driven by separate oscillators. Under conditions where it is

not known a priori at the base station which sensor node will be transmitting next,

the impedance modulation data modulated on these two separate carriers needs to be

multiplexed. The output of the multiplexer is then analyzed by the digital circuitry

for processing and storage.
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Figure 5-8: Signal Waveforms for Impedance Modulation Data Transfer

5.3.2 Transmitter

The impedance modulation transmitter is an NMOS switch that is modulated by the

serialized data output of the digital circuitry that interfaces with the AFE and ADC.

The switching transistor in Figure 5-8 is chosen such that the gate drive is sufficiently

higher than the VT of the device and the width of the device is large enough for it to

effectively short circuit the inputs of the rectifier.

5.3.3 Receiver

Demodulator 0

Demodulator 1

Multiplexer

Clock 
Recovery

D Q
Sub-Network 0

Sub-Network 1

Impedance 
Modulated 

Inputs

Recovered 
Bit-stream

Figure 5-9: Block Diagram of Impedance Modulation Receiver

Figure 5-9 shows a block diagram of the receiver at the base station. Data

coming in from the two sub-networks is processed by two separate demodulators,

which give binary bitstream outputs. The demodulator outputs go to a multiplexer

which chooses the bitstream that is toggling, indicating incoming data from that
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Figure 5-10: Demodulator at Impedance Modulation Receiver

sub-network. The output of the multiplexer goes to a CDR circuit that recovers the

transmit clock and latches the input data with respect to it. Each of these blocks is

described in detail in the subsequent sections.

Demodulator

Figure 5-10 shows a schematic of the demodulator that forms the first block of the

receiver in Figure 5-9. The input to the demodulator is an ASK signal with a mod-

ulation index m ≈ 0.2 as shown in Figure 5-7. The first step in demodulation is

envelope detection, shown in Figure 5-10. The upper branch of the envelope detector

recovers the negative (below DC) envelope of the signal while the lower branch recov-

ers the positive envelope. The filter parameters used are If = 500nA and Cf = 3pF.

From Equation 5.1, this gives a low-pass cutoff frequency of fc ≈ 4.4MHz, which is

sufficiently low to reject the carrier at 27.12MHz but high enough to let the bitstream

at 300kbps-1Mbps pass. The envelope detector circuitry is operated at the higher

supply voltage running the oscillator and power amplifier.

Unlike the downlink receiver, the uplink receiver has to demodulate a weaker

ASK-modulated signal. Hence, additional amplification stages are required before

making a decision. The outputs of the envelope detector are amplified using single-

stage op-amps with capacitive feedback. The use of capacitors instead of resistors in

the feedback eliminates loading constraints on the DC bias current of the amplifier,
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and provides a decoupling capacitance that allows the rest of the demodulator to

be operated at the nominal supply voltage, which reduces power. The charge on

capacitive feedback network is initialized using pass-gate switches that are turned on

at system reset and at intermediate points, both during and after packet reception.

The controls for the switches come from the digital circuitry that recovers information

from the bitstream, and will be covered in detail in Section 6.4. A mid-rail reference

voltage is generated for initialization using two sets of back-to-back PMOS diode-

connected transistos connected from VDD to ground. Variations in the diodes do

not affect the circuit since any drift from the mid-rail value is reflected in both the

amplifiers. The outputs of the baseband amplifiers go to a low-pass gm − C filter.
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Figure 5-11: Simulated Waveforms at Output of Uplink Demodulator Baseband Am-
plifier

The necessity of this filter is justified by the simulated waveforms of the amplification

stage output shown in Figure 5-11. Since the calibration is done under with the

transmitted bit either at 0 or 1, the DC levels of the toggling signals at the output

of the baseband amplifier are not the same. The gm − C filter uses a very small bias

current to generate a small gm in order to recover the DC level of the signal without

using a large capacitor. Achieving the same with a passive R-C filter requires large

resistors, large capacitors, or both. The filter cutoff is set to be low enough to reject

the baseband signal but not so low that it takes a long time for the filter output to

settle. Although the same job can be done by introducing a programmable offset
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into the comparator, this approach was disregarded since it would require additional

comparator calibration steps before operation.

In0 In0avg
In1In1avg

OUT

Figure 5-12: Offset-Compensated Comparator used in Uplink Demodulator

The outputs of the amplifiers and the filters are sent to a 4-input comparator

shown in Figure 5-12. The first stage of the comparator references each output of

the amplifier to its DC reference value, and compares the result. The second stage of

the comparator consists of cross-coupled transistors driven by differential AC current

sources. The cross-coupled transistors are cascoded with a DC current source in order

to increase the gain around the switching threshold for faster, and more sensitive

response.

Multiplexer

The digital demodulated outputs from the two sub-networks are passed to a multi-

plexer. Although building a digital multiplexer is a trivial affair, the job at hand is

made complicated by the absence of a “select” input to the multiplexer due to the

lack of knowledge at the base station about the origin of incoming data that is yet

to come. A simple solution for this problem could be to monitor each sub-network

for a fixed amount of time before switching to the other. However, in order to detect

incoming data from a sub-network, the PLL in the clock recovery circuit must be

given sufficient time to start-up and lock. The start-up and lock routine would then

need to be performed upon every switch, which leads to larger power consumption
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and higher probability of missing packets.
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Figure 5-13: Multiplexer to Select Between 2 Sub-Network Uplink Demodulator Out-
puts

Instead, the solution that has been employed in Figure 5-13 is to let the multiplexer

detect which input is toggling and automatically select that input. This assumes that

data is coming in from only one sub-network at any given time. This has been taken

care of by the MAC protocol described in Section 6.2. The demodulator outputs are

fed to a D-flip flop with an aynchrnonous reset. The output of the flip-flop acts as

the select input of a 2:1 multiplexer. The outputs of the demodulator are LOW when

no data is being transmitted. If data starts coming in from Sub-Network 0, the mul-

tiplexer is configured to select the output of Demodulator 0. The multiplexer select

input stays at the same value till data starts coming in from Sub-Network 1, upon

which the multiplexer is configured to select Demodulator 1. This implementation

of the multiplexer causes the loss of at most one bit of the preamble, which can be

tolerated since the preamble of the packet contains no information and is only used

for locking the PLL.

Clock-Data Recovery

A block diagram of the PLL used is shown in Figure 5-14. It consists of a Phase

Detector (PD), Frequency Detector (FD), Charge Pump (CP), Loop Filter (LF) and

a Voltage-Controlled Oscillator (VCO). Since the required output frequency of the

clock is quite low (300kHz-1MHz), the PLL is operated at the output frequency and
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Figure 5-14: Block Diagram of PLL used for CDR

no clock division is used in the feedback path. Each block in Figure 5-14 is described

in detail in the following paragraphs.
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Figure 5-15: Schematic of Phase and Frequency Detectors Used

The PD is implemented as a Hogge Phase Detector [48], as shown in Figure 5-

15(a). Incoming data is sampled by the recovered clock, and the sampled data is

re-sampled by the complement of the recovered clock. Under lock, the positive edge

of the recovered clock is offset by a half-bit period duration compared to the incoming

data, as shown in [31]. The phase detector constant KD for the Hogge PD is

KD =
VDD

2π
(5.10)

Each uplink packet contains a preamble of alternating 1’s and 0’s that allows the

PLL to lock on to the transmitting clock. Since the packets could be widely separated
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in time, the data input to the PLL can remain stable at a single value for a long time.

This would pull the VCO input voltage close to zero and stop the clock oscillations.

From the schematic of the Hogge PD in Figure 5-15(a), it can be inferred that the

detector fails to lock when the clock is not oscillating. In order to avoid this issue, the

loop keeps a separate Frequency Detector (FD) selected between packets, as shown

in Figure 5-14. As the preamble of an uplink packet arrives, the FD causes the loop

to act as a Frequency-Locked Loop (FLL) and control can subsequently be passed to

the PD. The schematic of the FD is shown in Figure 5-15(b).
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UPUP
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OUT

(a) Charge Pump

IN OUT

Rp

Cp Cf

Rf

(b) Loop Filter

Figure 5-16: Schematic of Charge Pump and Loop Filter Used in PLL

The charge pump used is shown in Figure 5-16(a). Switches have been imple-

mented with cascoded transistors. The circuit contains a bypass path for the current

when both signals UP and DN are LOW, which ensures the voltage across the current

sources, which are implemented by current mirrors, does not go to zero. This, and

the use of cascode transistors prevents the charge pump output voltage from droop-

ing between successive clock edges and creating spurs in the output spectrum. The

current sources Ip and In source and sink 10µA of current respectively.

The loop filter used is shown in Figure 5-16(b). The resistor Rp = 10kΩ and

capacitor Cp = 2nF form the zero in the PLL transfer function that prevents the loop

from becoming unstable. Rf = 100Ω and Cf = 100pF form the pole that restores the

-40dB/decade slope of the transfer function beyond the unity gain crossover frequency.
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The capacitors Cp and Cf are off-chip. Since Cf � Cp, the transfer function of the

loop filter can be approximated as

VOUT (s)

IIN(s)
=

1

sCp

· 1 + sCpRp

1 + sCfRp

. (5.11)

−

+

[2:0]

[1:0]

VIN

OUT

Figure 5-17: Schematic of Voltage-Controlled Ring Oscillator

The VCO used is shown in Figure 5-17. It is a ring oscillator with 11 inverters,

where eight inverters that are current-starved, and the other three ensure the output

clock has a small enough rise and fall time. The input stage of the VCO needs to

change the current-source value according to the input voltage. Directly loading the

preceding stage with the resistor is not advisable since it would load the VCO control

line, leading to undesired droop in the voltage and spurs in the output spectrum.

Controlling the current through a transistor connected in common-drain configuration

introduces an error with both static and dynamic components due to the VGS of the

transistor. The feedback configuration used allows the current to be linearly controlled

by the input voltage without any effect from the transistor parameters. The VCO

is provided with two bits of tuning for changing the VCO constant, and three bits

of tuning for changing the center frequency. The latter three bits are automatically

initialized upon startup by using the loop as an FLL. The tuning bits are adjusted

while the system reset is asserted so that the output of the PLL is locked to the local

clock at the base station, which is in the same range as the sensor node transmit clock

frequency.

Figure 5-18 shows a plot of the simulated VCO characteristics. The output fre-
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quency is linear over a wide input voltage range. From the slope of the plot, the VCO

constant is found to be KV CO = 800kHz/V under a particular tuning-bit setting.
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Figure 5-18: Simulated VCO Output Characteristics
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Figure 5-19: Open Loop Frequency Response of PLL

The loop transfer function of the PLL is

L(s) = −IcpKV CO

s2Cp

· 1 + sCpRp

1 + sCfRp

. (5.12)

At 1rad/s, the magnitude of the loop transfer function is L(s = j · 1rad/s) = 4× 109,

with a zero at 50krad/s and a pole at 1Mrad/s. The theoretically calculated frequency

response of the loop gain is shown in Figure 5-19. The magnitude of the loop gain
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initially falls as −40dB/decade, before hitting the zero. It crosses the unity gain

(0dB) line at approximately 100kHz, with a phase margin of 50◦. The crossover point

is one decade away from the nominal frequency at which it is supposed to operate for

the given bit settings, which is 1MHz. The maximum phase margin of the loop for

any value of gain above 0dB is greater than 60◦. The loop gain returns to the original

−40dB/decade slope and −180◦ phase close to the loop operating frequency so that

it has a zero steady state error to a ramp input in the phase, which is useful for a

fast start-up.
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Chapter 6

Data Link Layer

The previous chapter discussed the PHY layer for the network. This chapter presents

the next layer in the seven-layer OSI model for networks: the Data Link Layer (DLL).

A brief literature review of existing MAC protocols for BANs is presented. The

custom-MAC designed for the network is also presented, including a network con-

figuration routine. Finally, the packet structures and error-coding schemes used are

described.

6.1 Network Architecture Considerations

As described in Section 2.3, the network is divided into two sub-networks to improve

power-transfer efficiency. Inductors within a sub-network are connected in parallel

to each other using multiple paths for network reliability and fault-tolerance. Hence,

messages transmitted by the base station (downlink) to a sensor node in a particular

sub-network are also transmitted to all other sensor nodes in that sub-network. While

this is unnecessary for messages that are intended for only one sensor, it is useful for

broadcasing beacons across the network. Section 6.2 describes the MAC protocols

used for the network and outlines the necessity for having easy broadcast capability.

Messages transmitted by the sensors (uplink) are also, in theory, available to all other

sensors in the network which could create data security issues. However, in order

to be demodulated by other sensor nodes, the uplink packet has to go through two
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inductive hops, each with approximately 1% power efficiency. Demodulating such

weak signals is beyond the power budget of the sensors in the network.

6.2 Medium Access Control (MAC)

Design of the MAC sub-layer primarily revolves around the network access scheme

used. There are many ways in which network resources can be shared among nodes,

some of which are listed below. Brief descriptions of how each of the schemes work

are provided in Appendix C.

• Contention Access (CA)

• Carrier-Sense Multiple Access (CSMA)

• Time-Division Multiple Access (TDMA)

• Frequency-Division Multiple Access (FDMA)

• Code-Division Multiple Access (CDMA)

Several MAC schemes have been reported in literature for Wireless Sensor Net-

works (WSNs) and Wireless BANs (WBANs). MAC protocols for the former have

been reported in [49, 50, 51], but they are not suited for low-power BAN applications.

Commercial standards, such as IEEE 802.11, Bluetooth and IEEE 802.15.4/Zigbee

[52] also include excessive overhead for supporting peer-to-peer networks and a va-

riety of PHYs. A TDMA MAC for WBANs is proposed in [53], but such a scheme

is wasteful for sensors with extremely low transmit duty cycles. A MAC solution

specifically devised for Wireless BANs in a star/single-hop topology is presented in

[54], but it has several features making it unsuitable for use with low-power sensors in

the desired network. It requires sensors to go to sleep for a pre-determined amount of

time, after which both the sensor and the base station wake up. This sets an upper-

bound on the maximum sleep time due to timing offsets between the sensor and the

base-station. Moreover, it relies on CSMA, which is untenable for the sensors sending
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data through load modulation, which would have to go through two inductive hops

for another sensor to recognize.

MAC solutions for fabric BANs have also been presented in previous research. [16]

presents a MAC for a fully-wireline fabric BAN that uses a TDMA scheme with a star

topology. It supports CA peer-to-peer networking only in the absence of a central

node. A MAC for a fabric Personal Area Network (PAN) is presented in [55], which

uses a CA scheme to link electronic circuits on different layers of clothing. The Fabric

BAN needs to be designed to act as a general-purpose network capable of handling

various kinds of biomedical sensors with different network access requirements. These

can range from sensors that need to stream data continuously at rates of the order of

10kbps, such as ECG, EEG and EMG sensors [56, 3] to sensors that need to send small

packets of information every couple of minutes or hours, such as body temperature,

blood glucose or blood oxygenation monitors.

TDMA schemes are well suited for networks with sensors that transmit informa-

tion regularly. Sensors that stream ECG, EEG or EMG waveforms are ideal can-

didates for TDM access mechanisms. However, assigning fixed timeslots to sensors

that transmit infrequently is wasteful of network resources. On the other hand, CA

schemes, while good for infrequent transmitters, lead to excessive collision rates and

network inefficiency with high transmit-duty cycle sensors. A hybrid TDMA-CA

scheme has been implemented in this work to address this issue. Sensor nodes are

classified as stream-mode or burst-mode sensors, depending on whether they are high-

or low-duty cycle transmitters respectively. The base station, which is the hub of the

network, determines the type of each sensor joining the network. The base station

initially assigns a a fixed timeslot to each stream-mode sensor in the network, whose

duration depends on the number of stream-mode nodes in the network. Upon cy-

cling through all the stream-mode nodes, the base station opens up a CA period for

burst-mode nodes to transmit, if they choose to. Owing to the network architecture,

burst-mode sensors are incapable of doing CSMA, and hence packets have a non-zero

collision probability. In order to address this, the network includes error detection

and Automatic Repeat Request (ARQ) capability, which is discussed in detail in
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Figure 6-1: Top-Level Flowchart for MAC used in Fabric BAN. Details of downlink
data sent to and uplink data coming from each sensor are not shown in this diagram.

Section 6.5. A top-level flowchart for the MAC is shown in Figure 6-1.

The designed MAC scheme avoids the need for clock synchronization between the

base station and the sensors. Both in TDMA and in CA mode, the sensor node fol-

lows a “listen-before-transmit” principle, which eliminate the possibility of mistimed

transmissions. This allows sensor nodes to go to sleep for arbitrarily long periods of

time before waking up, receiving power, receiving appropriate instructions and then

transmitting data.
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6.2.1 Time-Division Multiplexing

Figure 6-2 shows a flowchart for the network during TDMA mode. The base station

maintains a list of all stream-mode sensors from a network initialization routine.

In the TDMA mode, each stream-mode sensor is allocated a fixed time period for

transmitting data back to the base-station. The allotted time is communicated as

the maximum packet size that can be transmitted by the addressed sensor. The

network can handle a maximum packet size of 4KB, which gives a maximum allotted

time slot of 32ms at 1Mbps. Stream-mode sensors are configured to transmit at the

highest bitrate possible due to the large volume of data they transmit. The received

packet is checked for errors and an ARQ is issued in case errors are found. Once the

packet is succesfully received or the limit on the number of erroneous transmissions

is reached, the base station sends an acknowledgement (ACK) packet and moves to

the next sensor, repeating the same routine.

6.2.2 Contention Access

The network enters CA mode once all the stream-mode sensors have transmitted

data. A flowchart for the network during CA mode is shown in Figure 6-3. The start

of the CA mode is signaled by the base station to all sensors using a beacon. Each

sensor node has a Psuedo-Random Bit Sequence (PRBS) generator which generates

a random number upon receiving the CA beacon. A decision on whether to transmit

in the current CA cycle is taken by comparing the PRBS value against a transmission

probability, which is preset depending upon the function of the sensor and the fre-

quency with which it needs to access the network. If a decision is taken to transmit

in the current CA cycle, another PRBS is used to generate a random time-offset from

the start of the CA period at which to start transmitting. This is done to prevent

packets from multiple sensors colliding at the start of the CA period, and the rest

of the CA period remaining unused. In case of packet transmission errors, the base

station sends an ARQ to the particular sensor, otherwise it sends an ACK. In case

errors prevent the base station from knowing the network ID of the sensor node that
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Figure 6-2: Flowchart for TDMA Communication with Sensor Nodes

sent the packet, the base station does not respond to the incoming packet. This lets

the transmitting sensor to know that its transmission was not received succesfully.

The end of the CA period is signaled to all sensors using a separate beacon.
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Figure 6-3: Flowchart for CA-Mode Communication with Sensor Nodes

6.3 Network Initialization

Upon startup, the base station has to initialize the network in order to transact

data with the sensors. A flowchart for the network configuration routine is shown

in Figure 6-4. Upon staring the power amplifier that transmits power across the

inductive link, the base station waits for 8 seconds for the sensor nodes connected to

the network to charge up the DC storage capacitors. It then transmits a configuration

beacon to all sensors in the network. Upon receiving this beacon, all sensors in the

network automatically defer their response in a manner similar to the CA mode
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Figure 6-4: Flowchart for Network Configuration Mode

described in Section 6.2. Each sensor transmits a packet containing information

about its network access requirements and a PRBS-generated random number. The

base station, upon receiving this packet, uses the random number as an ACK and

assigns the sensor’s network ID and programs it as a stream- or burst-mode sensor.
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If two uplink packets collide causing the base station to produce a garbled message

the base station cannot understand, it does not respond. The absence of an ACK

lets the affected sensors know that they have to try transmitting again. If the base

station receives and acknowledges the wrong random number, the sensor node does

not accept the ID assignment and tries again.

6.4 Packet Structure

6.4.1 Uplink

Figure 6-5 shows the packet structure used for uplink communication. The packet

consists of a 256-bit synchronization sequence of alternating 1’s and 0’s, which allows

the PLL at the base station to lock on to the transmit clock. A 16-bit preamble

containing the transmitting sensor’s ID follows the sync sequence, which is followed

by a 12-bit message size (in bytes). The data payload is split into segments of 16,

32, 64 or 128 bytes, depending on a 2-bit encoded segment size field in the downlink

packet preceding the uplink. A 16-bit CRC checksum is generated for each segment

for error detection. This enables the base station to detect packet collisions in CA

mode and other network errors.

6.4.2 Downlink

Three examples for different kinds of packets used for downlink communication are

shown in Figure 6-6. Each packet has a 4-bit header that corresponds to the message

0

Sync Sequence

Message Size

Preamble

276 X X+16

CRC Bits

256

Figure 6-5: Packet Structure for Uplink Communication
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type. During network configuration, the first beacon sent out contains just the header.

All packets except the CA start and end beacons contain the addressed sensor ID as

the next 8-bits of the packet. The following bits vary according to the packet header

• For sensor ID assignment, the 8-bit random number acknowledgement follows.

• For TDMA and CA packet request, the 2-bit encoded segment size and 10-bit

encoded message size follow.

• For ARQ, the 2-bit encoded new segment size and 8-bit encoded error location

follow.

0

Type Assigned SN ID

4 12 32

0

Type SN ID

4 12 32

0

Type

4 12 3226

Maximum Size

Maximum SizeSeg. Size

Seg. Size

16

16 26

Network Configuration - SN ID Assignment

Random Number Ack.

20

TDMA Uplink Initiation

Contention Access Uplink Initiation

Figure 6-6: Packet Structure for 3 Packet Types used in Downlink

6.5 Error Detection and ARQ

An error detection scheme is provided with uplink communication in order to ensure

Quality of Service (QoS). As discussed in Section 6.4, each uplink packet is divided

into segments. Each of these segments contains a 16-bit trailing Cyclic Redundancy

Check (CRC) checksum. The 16-bit CRC checksum is implemented using the CRC-

16-CCITT polynomial, which goes as x16 + x12 + x5 + 1. This polynomial is widely

used in protocols such as Bluetooth. A discussion on CRC error detection can be

found in [57].
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The base station uses this checksum to check the validity of the transmitted data.

In case of an error in one of the segments, the base station asks the transmitting sensor

to retransmit everything including and after the erroneous segment. This is done in

order to minimize downlink transmit time by avoiding transmitting information about

each erroneous segment. Moreover, it is simple and very effective for burst errors,

which are highly likely due to dynamic changes in the network parameters. The

retransmission is attempted with a smaller segment size, in an effort to get more

segments across without errors. Each communication cycle with a sensor node can

contain at most 4 attempts with errors, after which the base station ceases asking for

retransmissions and moves on.

Error detection is not employed in downlink packets because of the high SNR

involved. Moreover, if the downlink signal received at the sensor is too weak for

error-free detection, there is no possibility of using the same signal to power up the

sensor node.
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Chapter 7

Implementation and Testing

This chapter presents the CMOS implementations for the designed base station and

sensor node network modules. The test setup used is described and results are pre-

sented.

7.1 CMOS Implementation and PCB Design

The base station and sensor node network modules were implemented in TSMC

180nm 1P6M Mixed-Signal technology. The base station die occupies an area of

2.2mm×2.2mm and contains 64 pads. It contains two 27MHz power transmitters for

two sub-networks, along with their associated on-chip capacitors for the oscillator

tuning networks, associated OOK PWM modulators and impedance modulation de-

modulators. The outputs of the demodulators are multiplexed and passed through a

CDR circuit for data recovery. The digital baseband implements the DLL and has a

gate count of 1630 gates. Figure 7-1 shows a die photograph of the base station.

The sensor node die occupies an area of 2mm×1.8mm and has 50 pads. It takes

as input the data measured by the Analog Front-End (AFE) and converter by the

ADC of the biomedical acquisition circuits and buffers it in an SRAM. The 4KB

SRAM has been generated using a standard compiler. Inductively-transferred power

is rectified and stored on a 100µF off-chip capacitor. The digital baseband interprets

the instructions from the base stations and has a gate count of 1230 gates. Figure 7-2
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Figure 7-1: Die Photgraph of Base Station

shows a die photograph of the sensor node network module.

All pads were wire-bonded to the package. Since the frequency of operation is

well below 100MHz, both dies were packaged in a 64-pin TQFP package in order to

allow for the use of the same socket. A 4-layer Printed Circuit Board (PCB) was

designed to test both chips. An Opal Kelly FPGA testing kit with a Xilinx Spartan-6

FPGA was used to configure the shift registers that store the tuning bits for the

analog blocks in the chip and to implement the digital MAC. The PCBs contain an

interface to the FPGA module, level converters and in the case of the sensor node,

voltage regulators and storage capacitors for the rectified DC output.
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Figure 7-2: Die Photograph of Sensor Node Network Module

7.2 Test Setup

A photograph of the test setup is shown in Figure 7-3. Clinical trials for testing the

system on real patients have not been performed. Instead, two pieces of fabric, one

each for the base station and the sensor node, have been taped to cardboard stands

and the link between them is tested. Epoxy-based conductive glue has been used to

connect wires to the inductors on fabric. The other end of the wires is connected to

the PCB by SMA connectors.

The chips are mounted on a 64-pin TQFP-footprint socket. The Opal Kelly FPGA

kit controlled through a computer is used to program the tuning bits for the analog

components on the chip, and for running an HDL implementation of the designed

DLL. The PCB is connected to the FPGA board by using the expansion connectors

on the latter. Level shifters are used to interface between the 3.3V and 1.8V I/O

levels of the FPGA and the designed circuit respenctively. The base station PCB

uses two separate supply voltages: 3.3V for the power transmitter and 1.8V for the

modulators, demodulators and the clock recovery circuits. A block diagram of the

test setup is shown in Figure 7-4.
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Figure 7-3: Photograph of Test Setup

7.3 Measurement Results

The analog blocks on both the base station and sensor node were tested for different

packet sizes and inductive coupling coefficients. These blocks include the power trans-

mission and rectification circuits, data modulators and demodulators at both ends

and the clock recovery circuit at the base station. The digital baseband and SRAM

were synthesized on the FPGA used for testing the system, as shown in Figure 7-4.

7.3.1 Power Transmitter

The system end-to-end power transfer efficiency was measured, from DC bias current

drawn by base station to DC current supplied by AC-DC converter at sensor node.

Efficiency plots for two different PA driving strengths are shown in Figure 7-5. The

maximum attainable efficiency at 1x power is 1.2%, which agrees in order of magnitude

with the theoretically predicted value in Table 4.1 for coupling coefficient k = 1. The

generated VDD for this observation was 1.5V. At low output power, the higher power

transmission is more inefficient as expected. The behavior reverses as the output

power is increased, which causes the output voltage to droop sharply for lower power

transmission. Careful characterization of efficiency would allow the network to be at
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Figure 7-4: Block Diagram of Test Setup. The analog blocks on the chips were tested,
while the digital logic was implemented on an FPGA.

the optimal efficiency for a given power demand by the sensor node.

7.3.2 Data Transmission

The OOK PWM envelope detection and demodulation circuitry at the sensor node

consumes 1.5µW power from the 1.6V recovered VDD. The impedance modulating

switch has power consumption below 100nW. Figure 7-6 shows the OOK PWM data

at the input of the sensor node and the demodulated output for a network configu-

ration packet transmitted by the base station.

At the base station, the demodulator and CDR ciircuits consume 138µW power

from a 1.4V supply. Figure 7-7 shows the impedance modulated data at the input

of the base station and the demodulated output, for a network configuration ACK

packet transmitted by the sensor node. Figure 7-8 shows the demodulated output

and the synchronized clock output of the PLL for a similar packet.

7.3.3 Future Measurement Work

A complete system with multiple sensor nodes of different types needs to be imple-

mented, measured and characterized. Additionally, the digital baseband circuits and

SRAM on the base station and sensor nodes needs to be tested.

89



10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Load Current (µA)

P
ow

er
 T

ra
ns

fe
r 

E
ffi

ci
en

cy
 (

%
)

 

 

1x Tx Power
4x Tx Power

Figure 7-5: Measured End-to-End Power Transfer Efficiency Plots. Measurements
were taken with 2V supply voltage for the power transmitter at the base station. The
input power with 1 PA was 2.7mW, and with 4 PAs was 6.6mW. The inductors had
a 5mm physical separation.

0 20 40 60 80 100 120 140 160 180 200

0

0.4

0.8

V
ol

ta
ge

 (
V

)

0 20 40 60 80 100 120 140 160 180 200
Time (µs)

Network Configuration
Beacon

Figure 7-6: Input and Output Waveforms for Demodulator at Sensor Node with 5mm
inductor separation

90



0 10 20 30 40 50 60 70 80
0

1

2

V
ol

ta
ge

 (
V

)

0 10 20 30 40 50 60 70 80
Time (µs)

PreamblePLL Lock Sequence Random Number ACK

Figure 7-7: Impedance Modulated Input and Output Waveforms for Demodulator at
Base Station with 5mm inductor separation

0 10 20 30 40 50 60 70
Time (µs)

0 10 20 30 40 50 60 70
Time (µs)

Figure 7-8: Data Input and Synchronized Output Clock for PLL at Base Station

91



7.4 Summary

A summary of the system performance is provided in Table 7.1

Base Station VDD
2.0V (Power Transmitter)
1.4V (Modulator, Demodulator, CDR)

Base Station Power
2.7mW (Power Transmitter)
104µW (Demodulator)
38.3µW (CDR)

Power Transfer Efficiency 1.2% (max.)

Sensor Node VDD 1.5V

Sensor Node Active Communication Power < 2µW

Technology 180nm CMOS

Table 7.1: System Performance Summary
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Chapter 8

Conclusions

This chapter summarizes the work done in the thesis and lists possible directions for

future research on the topic of Fabric BANs.

8.1 Thesis Summary

This thesis presented a design of a BAN for diverse healthcare applications on con-

ductive fabrics. Specifications were developed for the network with focus on the

asymmetric energy budgets at various nodes of the network. A star topology was

chosen with a network base station as the hub, and sensor nodes each talking directly

only with the base station. A near-field resonant inductive coupling scheme was cho-

sen for linking the sensors to the base station for its ability to deliver power wirelessly

to sensor nodes with relatively high efficiency and minimal inconvenience to the user.

A network architecture that addresses issues unique to circuits on fabrics was chosen.

Techniques for reducing energy wastage by transmitting power to network locations

with sensor nodes were presented.

Modulation schemes that could operate under the asymmetric budgets at the base

station and sensor nodes were chosen. A OOK PWM scheme was chosen for trans-

mitting downlink messages in order to avoid the need for carrier and clock recovery

at the sensor nodes. The OOK modulation is performed on the transmitted power

in order to avoid the use of a separate frequency band. Impedance modulation was
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used for transmitting uplink messages. This reduces the uplink communication effort

at the sensor nodes to the order of a few 10s of fJ/bit. Simple OOK modulation

was chosen for the uplink, with demodulators to amplify the weak received signal at

the base station and a clock recovery circuit for synchronization. The use of ASK

modulation for both uplink and downlink messaging using the same carrier prevents

the network from being full-duplex, which is acceptable since the network has a low

access duty cycle.

A custom-DLL has been designed to minimize the energy overhead of network

access and error handling. Two separate network access schemes are time-multiplexed

to allow sensors with different access requirements choose the one that best suits their

needs. A simple error-detection scheme has been used with an ARQ mechanism that

tries to reduce the packet error rate in successive retransmissions of the same message.

The implemented base station can support 16 sensors linked to any one out of

four inductors on clothing. It has a power consumption of 2.86mW, and it can supply

33.6µW maximum power to the sensors’ biopotential acquisition circuits. Modulation

and demodulation circuits at the sensors consume less than 2µW power when active.

8.2 Future Directions

Integrating Sensor Network Module with AFE: The design presented contained

only the network communication module for the sensor node. Biopotential ac-

quisition circuitry was to be on a separate die. In order to reduce system area

and cost, the AFE of the micropower sensors need to be integrated with the

network module. The network’s capability to handle sensors with a wide range

of power and communication requirements would allow this to be done relatively

easily.

Clinical Trials: Real-life clinical testing on patients needs to be performed to get

data on network performance and reliability.

Support for Implanted Devices: The network can currently only support medi-
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cal devices on the body, which are usually sensors. However, a large number of

medical devices are actuators, like deep-brain stimulators or cardiac pacemak-

ers, and are implanted in the patient’s body. Network architectures and access

schemes need to be investigated to extend support to such implanted devices in

conjunction with on-body sensors.

Standardization: Currently-existing BAN standards support far-field wireless and

body-coupled communication PHYs. A effort to standardize wearable fabric

BANs needs to be undertaken with active support from academia and industry

in order to pave the way for commercialization and widespread use.
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Appendix A

List of Abbreviations

ACK: Acknowledgement

ADC: Analog-Digital Converter

AFE: Analog Front-End

ARQ: Automatic Repeat Request

ASK: Amplitude-Shift Keying

BAN: Body Area Network

BCC: Body-Coupled Communication

CA: Contention Access

CCITT: Comité Consultatif International Téléphonique et Télégraphique (Interna-

tional Telegraph and Telephone Consultative Committee)

CDMA: Code-Division Multiple Access

CDR: Clock-Data Recovery

CP: Charge Pump

CRC: Cyclic Redundancy Check

CSMA: Carrier-Sense Multiple Access

DLL: Data Link Layer

ECG: Electro-cardiogram

EEG: Electro-encephalogram

EMG: Electro-myogram

FBAN: Fabric Body Area Network
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FD: Frequency Detector

FDMA: Frequency-Division Multiple Access

FLL: Frequency-Locked Loop

FSK: Frequency-Shift Keying

HBC: Human Body Communication

ISM: Industrial, Scientific and Medical

LF: Loop Filter

MAC: Medium-Access Control

NRZ: Non-Return-to-Zero

OOK: On-Off Keying

OQPSK: Offset-Quadrature Phase-Shift Keying

OSI: Open Systems Interconnection

PA: Power Amplifier

PAN: Personal Area Network

PD: Phase Detector

PHY: Physical Layer

PLL: Phase-Locked Loop

PRBS: Pseudorandom Bit Sequence

PSK: Phase-Shift Keying

PWM: Pulse-Width Modulation

QoS: Quality of Service

RZ: Return-to-Zero

SoC: System-on-Chip

TDMA: Time-Division Multiple Access

TQFP: Thin Quad Flat Pack

UWB: Ultra-Wideband

VCO: Voltage-Controlled Oscillator

WBAN: Wireless Body Area Network

WSN: Wireless Sensor Network
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Appendix B

Resonant Power Transfer Analysis

+

Figure B-1: Block Diagram of Resonant Inductive Power Transfer [29]

Figure B-1 shows a block diagram of the resonant inductive power transfer scheme.

The coupling coefficient of the link k is defined as k = M√
L1L2

. The loop gain of the

feedback system is

L(s) =
s2M2

Z1(s)Z2(s)
(B.1)

where Z1 is the total impedance of the inductor. The current flowing into the inductor

I1 is

I1(s) =
V1(s)

Z1(s)
.

1

1− L(s)
. (B.2)
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The impedance seen by a voltage source V1 across the tank Ztank(s) is

Ztank(s) = Z1(s). [1− L(s)] || (sC1)
−1 (B.3)

= Z1(s).

(
1− s2M2

Z1(s)Z2(s)

)
|| (sC1)

−1 (B.4)

=

(
Z1(s)−

s2M2

Z2(s)

)
|| (sC1)

−1 (B.5)

= (Z1(s)− Zrfl(s)) || (sC1)
−1 (B.6)

where

Zrfl(s) =
s2M2

Z2(s)
. (B.7)

Zrfl(s) in Equation B.7 is the reflected impedance of the secondary seen by the

primary. Around the resonant frequency ω0 =
(√

L1C1

)−1
=
(√

L2C2

)−1
, the parallel

load resistance at the secondary RL can be approximately transformed to a series

resistance using the well-known expression

RL,srs =
RL

Q2
L + 1

(B.8)

where QL = ω0C2RL is the quality factor of the load. At resonance, the reflected

impedance is real and is given by

Zrfl(jω0) =
−ω2

0M
2

R2 +RL,srs

(B.9)

= − k2ω2
0L1L2

R2 +RL,srs

(B.10)

= −k2ω0L1Q
′
2 (B.11)

where Q′2, the loaded quality factor of the secondary, is defined as

Q′2 =
ω0L2

R2 +RL,srs

(B.12)

=
Q2QL

Q2 +QL

(B.13)
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. Under resonance, the real part of Z1(jω0) is

Re [Z1(jω0)] = R1

(
1 + k2Q1Q2′

)
(B.14)

Converting this resistance in series with the inductor into a parallel resistance across

the tank, the power transfer efficiency of the primary is

η1 =
Q′21 R1 (1 + k2Q1Q

′
2)

Rs +Q′21 R1 (1 + k2Q1Q′2)
· k2Q1Q

′
2

1 + k2Q1Q′2
. (B.15)

Q′1 is the loaded quality factor of the primary, calculated using Equation B.14. The

power transfer efficiency of the secondary is

η2 =
RL,srs

R2 +RL,srs

(B.16)

=
ω0C2RL,srs

ω0C2R2 + ω0C2RL,srs

(B.17)

=
Q−1L

Q−12 +Q−1L

(B.18)

=
Q2

Q2 +QL

. (B.19)

The net power transfer efficiency of the link is the product of the two individual

efficiency values.
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Appendix C

Common Network Access Schemes

Contention Access (CA): Also known as the ALOHA protocol, this scheme allows

nodes to transmit data whenever it is available, and allows for re-transmission

in case of collision. Suitable for networks with low transmit-duty cycle nodes,

which leads to lesser collision probability.

Carrier-Sense Multiple Access (CSMA): Modification of CA, wherein a node

first “senses” the common network channel for a fixed amount of time for any

transmission that is under progress, and starts transmitting if none is found.

Reduces collision rate but increases complexity for star-topology networks.

Time-Division Multiple Access (TDMA): Each node transmits only in a fixed

timeslot assigned to it. Suitable for networks with repeatable traffic patterns.

Frequency-Division Multiple Access (FDMA): Simulaneous data streams at

different frequencies. Not preferred for low-power applications due to additional

complexity at the transmitter and receiver.

Code-Division Multiple Access (CDMA): Simultaneous data streams modulated

on orthogonal vectors (“codes”). Also not suited for low-power applications due

to increased computational complexity.
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[5] R. F. Yazicioğlu, C. Hoof, and R. Puers, Biopotential Readout Circuits for
Portable Acquisition Systems. Springer Netherlands, 2009, ch. Introduction,
pp. 1–4.

[6] T. Norgall, R. Schmidt, and T. von der Grün, “Wearable ehealth systems for
personalised health management: State of the art and future challenges; body
area network - a key infrastructure element for patient-centered telemedicine,”
pp. 142–148, 2004.

[7] A. C. W. Wong, G. Kathiresan, C. K. T. Chan, O. Eljamaly, O. Omeni, D. Mc-
Donagh, A. J. Burdett, and C. Toumazou, “A 1 V wireless transceiver for an
ultra-low-power soc for biotelemetry applications,” IEEE Journal of Solid-State
Circuits, vol. 43, no. 7, pp. 1511–1521, Jul. 2008.

[8] P. P. Mercier, D. C. Daly, and A. P. Chandrakasan, “An energy-efficient all-
digital UWB transmitter employing dual capacitively-coupled pulse-shaping
drivers,” IEEE Journal of Solid-State Circuits, vol. 44, no. 6, pp. 1679–1688,
Jun. 2009.

105



[9] D. C. Daly, P. P. Mercier, M. Bhardwaj, A. L. Stone, Z. N. Aldworth, T. L.
Daniel, J. Voldman, J. G. Hildebrand, and A. P. Chandrakasan, “A pulsed UWB
receiver SoC for insect motion control,” IEEE Journal of Solid-State Circuits,
vol. 45, no. 1, pp. 153–166, Jan. 2010.

[10] IEEE Standard for Local and metropolitan area networks: Wireless Body Area
Networks, IEEE Std. 802.15.6, 2012.

[11] S. J. Song, N. Cho, and H. Yoo, “A 0.2-mW 2-Mb/s digital transceiver based on
wideband signaling for human body communications,” IEEE Journal of Solid-
State Circuits, vol. 42, no. 9, pp. 2021–2033, Sep. 2007.

[12] J. Bae, K. Song, H. Lee, H. Cho, L. Yan, and H. Yoo, “A 0.24nj/b wireless
body-area-network transceiver with scalable double-fsk modulation,” in IEEE
International Solid-State Circuits Conference (ISSCC) Digest of Technical Pa-
pers, Feb. 2011, pp. 34–36.

[13] M. Verhelst, N. V. Helleputte, G. Gielen, and W. Dehaene, “A reconfigurable,
0.13m cmos 110pj/pulse, fully integrated ir-uwb receiver for communication and
sub-cm ranging,” in IEEE International Solid-State Circuits Conference (ISSCC)
Digest of Technical Papers, Feb. 2009, pp. 250–251,251a.

[14] A. Paidimarri, “Architecture for ultra-low power multi-channel transmitters for
body area networks using RF resonators,” Master’s thesis, Massachusetts Insti-
tute of Technology, Cambridge, MA, 2011.

[15] P. M. Nadeau, “Multi-channel ultra-low-power receiver architecture for body area
networks,” Master’s thesis, Massachusetts Institute of Technology, Cambridge,
MA, 2011.

[16] P. P. Mercier and A. P. Chandrakasan, “A supply-rail-coupled eTextiles
transceiver for body-area networks,” IEEE Journal of Solid-State Circuits,
vol. 46, no. 6, pp. 1284–1295, Jun. 2011.

[17] S. Lee, L. Yan, T. Roh, S. Hong, and H. Yoo, “A 75w real-time scalable network
controller and a 25w exg sensor ic for compact sleep-monitoring applications,” in
IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical
Papers, Feb. 2011, pp. 36–38.

[18] J. Yoo, L. Yan, S. Lee, Y. Kim, and H. Yoo, “A 5.2 mW self-configured wear-
able body sensor network controller and a 12µW wirelessly powered sensor for
a continuous health monitoring system,” IEEE Journal of Solid-State Circuits,
vol. 45, no. 1, pp. 178–188, Jan. 2010.

[19] D. Marculescu, R. Marculescu, N. H. Zamora, P. Stanley-Marbell, P. K. Khosla,
S. Park, S. Jayaraman, S. Jung, C. Lauterbach, W. Weber, T. Kirstein, D. Cottet,
J. Grzyb, G. Troster, M. Jones, T. Martin, and Z. Nakad, “Electronic textiles:
A platform for pervasive computing,” Proceedings of the IEEE, vol. 91, no. 12,
pp. 1995–2018, Dec. 2003.

106



[20] S. Jung, C. Lauterbach, M. Strasser, and W. Weber, “Enabling technologies
for disappearing electronics in smart textiles,” in IEEE International Solid-State
Circuits Conference (ISSCC) Digest of Technical Papers, Feb. 2003, pp. 386–387
vol.1.

[21] D. Cottet, J. Grzyb, T. Kirstein, and G. Troster, “Electrical characterization of
textile transmission lines,” IEEE Transactions on Advanced Packaging, vol. 26,
no. 2, pp. 182–190, May 2003.

[22] I. Locher, M. Klemm, T. Kirstein, and G. Troster, “Design and characterization
of purely textile patch antennas,” IEEE Transactions on Advanced Packaging,
vol. 29, no. 4, pp. 777–788, Nov. 2006.

[23] S. Park and S. Jayaraman, “Enhancing the quality of life through wearable tech-
nology,” IEEE Engineering in Medicine and Biology Magazine, vol. 22, no. 3,
pp. 41–48, Jun. 2003.

[24] C. Gopalsamy, S. Park, R. Rajamanickam, and S. Jayaraman, “The Wearable
Motherboard™: The first generation of adaptive and responsive textile structures
(ARTS) for medical applications,” Virtual Reality, vol. 4, no. 3, pp. 152–168,
1999.

[25] H. Kim, Y. Kim, B. Kim, and H. Yoo, “A wearable fabric computer by planar-
fashionable circuit board technique,” in Proceedings of the IEEE International
Workshop on Wearable and Implantable Body Sensor Networks (BSN), Jun.
2009, pp. 282–285.

[26] Y. Kim, H. Kim, and H. Yoo, “Electrical characterization of screen-printed cir-
cuits on the fabric,” IEEE Transactions on Advanced Packaging, vol. 33, no. 1,
pp. 196–205, Feb. 2010.

[27] S. S. Mohan, M. del Mar Hershenson, S. P. Boyd, and T. H. Lee, “Simple accurate
expressions for planar spiral inductances,” IEEE Journal of Solid-State Circuits,
vol. 34, no. 10, pp. 1419–1424, Oct. 1999.

[28] G. D. Alley, “Interdigital capacitors and their application to lumped-element
microwave integrated circuits,” IEEE Transactions on Microwave Theory and
Techniques, vol. 18, no. 12, pp. 1028–1033, Dec. 1970.

[29] M. W. Baker and R. Sarpeshkar, “Feedback analysis and design of RF power
links for low-power bionic systems,” IEEE Transactions on Biomedical Circuits
and Systems, vol. 1, no. 1, pp. 28–38, Mar. 2007.

[30] K. Finkenzeller, RFID Handbook: Fundamentals and Applications in Contactless
Smart Cards, Radio Frequency Identification and Near-Field Communication,
3rd ed. Wiley, 2010.

[31] T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, 2nd ed.
Cambridge University Press, 2004.

107



[32] D. Kim, J. Kim, J. O. Plouchart, C. Cho, R. Trzcinski, M. Kumar, and C. Norris,
“Symmetric vertical parallel plate capacitors for on-chip RF circuits in 65-nm
SOI technology,” IEEE Electron Device Letters, vol. 28, no. 7, pp. 616–618, Jul.
2007.

[33] C. M. Zierhofer and E. S. Hochmair, “High-efficiency coupling-insensitive tran-
scutaneous power and data transmission via an inductive link,” IEEE Transac-
tions on Biomedical Engineering, vol. 37, no. 7, pp. 716–722, Jul. 1990.

[34] B. Razavi, Design of Analog CMOS Integrated Circuits. McGraw-Hill, 2003.

[35] T. Umeda, H. Yoshida, S. Sekine, Y. Fujita, T. Suzuki, and S. Otaka, “A 950-
MHz rectifier circuit for sensor network tags with 10-m distance,” IEEE Journal
of Solid-State Circuits, vol. 41, no. 1, pp. 35–41, Jan. 2006.

[36] H. Nakamoto, D. Yamazaki, T. Yamamoto, H. Kurata, S. Yamada, K. Mukaida,
T. Ninomiya, T. Ohkawa, S. Masui, and K. Gotoh, “A passive UHF RF iden-
tification CMOS tag IC using ferroelectric RAM in 0.35-µm technology,” IEEE
Journal of Solid-State Circuits, vol. 42, no. 1, pp. 101–110, Jan. 2007.

[37] W. A. Tabisz, F. C. Lee, and D. Y. Chen, “A MOSFET resonant synchronous rec-
tifier for high-frequency DC/DC converters,” in Proceedings of the IEEE Power
Electronics Specialists Conference (PESC), Oct. 1990, pp. 769–779.

[38] J. A. Cobos, O. Carcia, J. Sebastian, J. Uceda, and F. Aldana, “Optimized syn-
chronous rectification stage for low output voltage (3.3 V) DC/DC conversion,”
in Proceedings of the IEEE Power Electronics Specialists Conference (PESC),
Jun. 1994, pp. 902–908 vol.2.

[39] P. Alou, J. A. Cobos, O. Garcia, R. Prieto, and J. Uceda, “A new driving scheme
for synchronous rectifiers: single winding self-driven synchronous rectification,”
IEEE Transactions on Power Electronics, vol. 16, no. 6, pp. 803–811, Nov. 2001.

[40] S. Mandal and R. Sarpeshkar, “Low-power CMOS rectifier design for RFID ap-
plications,” IEEE Transactions on Circuits and Systems—Part I: Fundamental
Theory and Applications, vol. 54, no. 6, pp. 1177–1188, Jun. 2007.

[41] M. Ghovanloo and K. Najafi, “A wideband frequency-shift keying wireless link
for inductively powered biomedical implants,” IEEE Transactions on Circuits
and Systems—Part I: Fundamental Theory and Applications, vol. 51, no. 12, pp.
2374–2383, Dec. 2004.

[42] M. Ghovanloo and S. Atluri, “A wide-band power-efficient inductive wireless link
for implantable microelectronic devices using multiple carriers,” IEEE Transac-
tions on Circuits and Systems—Part I: Fundamental Theory and Applications,
vol. 54, no. 10, pp. 2211–2221, Oct. 2007.

108



[43] G. Simard, M. Sawan, and D. Massicotte, “High-speed OQPSK and efficient
power transfer through inductive link for biomedical implants,” IEEE Transac-
tions on Biomedical Circuits and Systems, vol. 4, no. 3, pp. 192–200, Jun. 2010.

[44] S. Mandal and R. Sarpeshkar, “Power-efficient impedance-modulation wireless
data links for biomedical implants,” IEEE Transactions on Biomedical Circuits
and Systems, vol. 2, no. 4, pp. 301–315, Dec. 2008.

[45] L. Yan, J. Yoo, B. Kim, and H. Yoo, “A 0.5-µVrms 12-µW wirelessly powered
patch-type healthcare sensor for wearable body sensor network,” IEEE Journal
of Solid-State Circuits, vol. 45, no. 11, pp. 2356–2365, Nov. 2010.

[46] G. Wang, W. Liu, M. Sivaprakasam, and G. A. Kendir, “Design and analysis
of an adaptive transcutaneous power telemetry for biomedical implants,” IEEE
Transactions on Circuits and Systems—Part I: Fundamental Theory and Appli-
cations, vol. 52, no. 10, pp. 2109–2117, Oct. 2005.

[47] C. Girard, C. Joachim, and S. Gauthier, “The physics of the near-field,” Reports
on Progress in Physics, vol. 63, pp. 893–938, 2000.

[48] C. Hogge, Jr., “A self correcting clock recovery circuit,” IEEE/OSA Journal of
Lightwave Technology, vol. 3, no. 6, pp. 1312–1314, Dec. 1985.

[49] I. E. Lamprinos, A. Prentza, E. Sakka, and D. Koutsouris, “Energy-efficient MAC
protocol for patient personal area networks,” in Proceedings of the International
Conference of the Engineering in Medicine and Biology Society (IEEE-EMBS),
Jan. 2005, pp. 3799–3802.

[50] T. van Dam and K. Langendoen, “An adaptive energy-efficient mac protocol for
wireless sensor networks,” in Proceedings of the 1st international conference on
Embedded networked sensor systems, 2003, pp. 171–180.

[51] W. Ye, J. Heidemann, and D. Estrin, “An energy-efficient MAC protocol for
wireless sensor networks,” in Proceedings of the Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM), vol. 3, 2002, pp. 1567–
1576 vol.3.

[52] IEEE Standard for Local and metropolitan area networks: Low-Rate Wireless
Personal Area Networks (LR-WPANs), IEEE Std. 802.15.4, 2011.

[53] S. J. Marinkovic, E. M. Popovici, C. Spagnol, S. Faul, and W. P. Marnane,
“Energy-efficient low duty cycle MAC protocol for wireless body area networks,”
IEEE Transactions on Information Technology in Biomedicine, vol. 13, no. 6,
pp. 915–925, Nov. 2009.

[54] O. Omeni, A. Wong, A. J. Burdett, and C. Toumazou, “Energy efficient medium
access protocol for wireless medical body area sensor networks,” IEEE Trans-
actions on Biomedical Circuits and Systems, vol. 2, no. 4, pp. 251–259, Dec.
2008.

109



[55] J. Yoo, S. Lee, and H. Yoo, “A 1.12 pJ/b inductive transceiver with a fault-
tolerant network switch for multi-layer wearable body area network applica-
tions,” IEEE Journal of Solid-State Circuits, vol. 44, no. 11, pp. 2999–3010,
Nov. 2009.

[56] J. L. Bohorquez, M. Yip, A. P. Chandrakasan, and J. L. Dawson, “A biomedical
sensor interface with a sinc filter and interference cancellation,” IEEE Journal
of Solid-State Circuits, vol. 46, no. 4, pp. 746–756, Apr. 2011.

[57] A. S. Tanenbaum and D. J. Wetherhall, Computer Networks, 5th ed. Pearson
Education, 2011.

110


	Introduction
	Background
	Motivation
	Thesis Contributions
	Thesis Outline

	Design Targets
	Wireless BAN Design Space
	Previous Work
	Network Architecture
	Network Access Protocols

	Printed Circuits on Fabric
	Fabrication Techniques
	Electrical Characteristics and Robustness
	Passive Components
	Measured Component Values

	Wireless Power Transfer
	Theoretical Overview
	Link Design
	Near-Field Power Transmitter
	Conventional RF Transmitters
	Chosen Transmitter Architecture
	Modified Colpitt's Oscillator

	AC-DC Conversion at Sensor Node

	PHY Design and Communication Circuitry
	Existing Inductive Data Links
	Downlink Communication
	Modulation Scheme Used
	Transmitter
	Receiver

	Uplink Communication
	Modulation Scheme Used
	Transmitter
	Receiver


	Data Link Layer
	Network Architecture Considerations
	Medium Access Control (MAC)
	Time-Division Multiplexing
	Contention Access

	Network Initialization
	Packet Structure
	Uplink
	Downlink

	Error Detection and ARQ

	Implementation and Testing
	CMOS Implementation and PCB Design
	Test Setup
	Measurement Results
	Power Transmitter
	Data Transmission
	Future Measurement Work

	Summary

	Conclusions
	Thesis Summary
	Future Directions

	List of Abbreviations
	Resonant Power Transfer Analysis
	Common Network Access Schemes

