4,382 research outputs found

    Behavior Flexibility for Autonomous Unmanned Aerial Systems

    Get PDF
    Autonomous unmanned aerial systems (UAS) could supplement and eventually subsume a substantial portion of the mission set currently executed by remote pilots, making UAS more robust, responsive, and numerous than permitted by teleoperation alone. Unfortunately, the development of robust autonomous systems is difficult, costly, and time-consuming. Furthermore, the resulting systems often make little reuse of proven software components and offer limited adaptability for new tasks. This work presents a development platform for UAS which promotes behavioral flexibility. The platform incorporates the Unified Behavior Framework (a modular, extensible autonomy framework), the Robotic Operating System (a RSF), and PX4 (an open- source flight controller). Simulation of UBF agents identify a combination of reactive robotic control strategies effective for small-scale navigation tasks by a UAS in the presence of obstacles. Finally, flight tests provide a partial validation of the simulated results. The development platform presented in this work offers robust and responsive behavioral flexibility for UAS agents in simulation and reality. This work lays the foundation for further development of a unified autonomous UAS platform supporting advanced planning algorithms and inter-agent communication by providing a behavior-flexible framework in which to implement, execute, extend, and reuse behaviors

    Identification and Optimal Linear Tracking Control of ODU Autonomous Surface Vehicle

    Get PDF
    Autonomous surface vehicles (ASVs) are being used for diverse applications of civilian and military importance such as: military reconnaissance, sea patrol, bathymetry, environmental monitoring, and oceanographic research. Currently, these unmanned tasks can accurately be accomplished by ASVs due to recent advancements in computing, sensing, and actuating systems. For this reason, researchers around the world have been taking interest in ASVs for the last decade. Due to the ever-changing surface of water and stochastic disturbances such as wind and tidal currents that greatly affect the path-following ability of ASVs, identification of an accurate model of inherently nonlinear and stochastic ASV system and then designing a viable control using that model for its planar motion is a challenging task. For planar motion control of ASV, the work done by researchers is mainly based on the theoretical modeling in which the nonlinear hydrodynamic terms are determined, while some work suggested the nonlinear control techniques and adhered to simulation results. Also, the majority of work is related to the mono- or twin-hull ASVs with a single rudder. The ODU-ASV used in present research is a twin-hull design having two DC trolling motors for path-following motion. A novel approach of time-domain open-loop observer Kalman filter identifications (OKID) and state-feedback optimal linear tracking control of ODU-ASV is presented, in which a linear state-space model of ODU-ASV is obtained from the measured input and output data. The accuracy of the identified model for ODU-ASV is confirmed by validation results of model output data reconstruction and benchmark residual analysis. Then, the OKID-identified model of the ODU-ASV is utilized to design the proposed controller for its planar motion such that a predefined cost function is minimized using state and control weighting matrices, which are determined by a multi-objective optimization genetic algorithm technique. The validation results of proposed controller using step inputs as well as sinusoidal and arc-like trajectories are presented to confirm the controller performance. Moreover, real-time water-trials were performed and their results confirm the validity of proposed controller in path-following motion of ODU-ASV

    Practical and Rich User Digitization

    Full text link
    A long-standing vision in computer science has been to evolve computing devices into proactive assistants that enhance our productivity, health and wellness, and many other facets of our lives. User digitization is crucial in achieving this vision as it allows computers to intimately understand their users, capturing activity, pose, routine, and behavior. Today's consumer devices - like smartphones and smartwatches provide a glimpse of this potential, offering coarse digital representations of users with metrics such as step count, heart rate, and a handful of human activities like running and biking. Even these very low-dimensional representations are already bringing value to millions of people's lives, but there is significant potential for improvement. On the other end, professional, high-fidelity comprehensive user digitization systems exist. For example, motion capture suits and multi-camera rigs that digitize our full body and appearance, and scanning machines such as MRI capture our detailed anatomy. However, these carry significant user practicality burdens, such as financial, privacy, ergonomic, aesthetic, and instrumentation considerations, that preclude consumer use. In general, the higher the fidelity of capture, the lower the user's practicality. Most conventional approaches strike a balance between user practicality and digitization fidelity. My research aims to break this trend, developing sensing systems that increase user digitization fidelity to create new and powerful computing experiences while retaining or even improving user practicality and accessibility, allowing such technologies to have a societal impact. Armed with such knowledge, our future devices could offer longitudinal health tracking, more productive work environments, full body avatars in extended reality, and embodied telepresence experiences, to name just a few domains.Comment: PhD thesi

    Modular Platform for Commercial Mobile Robots

    Get PDF

    Logging Stress and Anxiety Using a Gamified Mobile-based EMA Application, and Emotion Recognition Using a Personalized Machine Learning Approach

    Get PDF
    According to American Psychological Association (APA) more than 9 in 10 (94 percent) adults believe that stress can contribute to the development of major health problems, such as heart disease, depression, and obesity. Due to the subjective nature of stress, and anxiety, it has been demanding to measure these psychological issues accurately by only relying on objective means. In recent years, researchers have increasingly utilized computer vision techniques and machine learning algorithms to develop scalable and accessible solutions for remote mental health monitoring via web and mobile applications. To further enhance accuracy in the field of digital health and precision diagnostics, there is a need for personalized machine-learning approaches that focus on recognizing mental states based on individual characteristics, rather than relying solely on general-purpose solutions. This thesis focuses on conducting experiments aimed at recognizing and assessing levels of stress and anxiety in participants. In the initial phase of the study, a mobile application with broad applicability (compatible with both Android and iPhone platforms) is introduced (we called it STAND). This application serves the purpose of Ecological Momentary Assessment (EMA). Participants receive daily notifications through this smartphone-based app, which redirects them to a screen consisting of three components. These components include a question that prompts participants to indicate their current levels of stress and anxiety, a rating scale ranging from 1 to 10 for quantifying their response, and the ability to capture a selfie. The responses to the stress and anxiety questions, along with the corresponding selfie photographs, are then analyzed on an individual basis. This analysis focuses on exploring the relationships between self-reported stress and anxiety levels and potential facial expressions indicative of stress and anxiety, eye features such as pupil size variation and eye closure, and specific action units (AUs) observed in the frames over time. In addition to its primary functions, the mobile app also gathers sensor data, including accelerometer and gyroscope readings, on a daily basis. This data holds potential for further analysis related to stress and anxiety. Furthermore, apart from capturing selfie photographs, participants have the option to upload video recordings of themselves while engaging in two neuropsychological games. These recorded videos are then subjected to analysis in order to extract pertinent features that can be utilized for binary classification of stress and anxiety (i.e., stress and anxiety recognition). The participants that will be selected for this phase are students aged between 18 and 38, who have received recent clinical diagnoses indicating specific stress and anxiety levels. In order to enhance user engagement in the intervention, gamified elements - an emerging trend to influence user behavior and lifestyle - has been utilized. Incorporating gamified elements into non-game contexts (e.g., health-related) has gained overwhelming popularity during the last few years which has made the interventions more delightful, engaging, and motivating. In the subsequent phase of this research, we conducted an AI experiment employing a personalized machine learning approach to perform emotion recognition on an established dataset called Emognition. This experiment served as a simulation of the future analysis that will be conducted as part of a more comprehensive study focusing on stress and anxiety recognition. The outcomes of the emotion recognition experiment in this study highlight the effectiveness of personalized machine learning techniques and bear significance for the development of future diagnostic endeavors. For training purposes, we selected three models, namely KNN, Random Forest, and MLP. The preliminary performance accuracy results for the experiment were 93%, 95%, and 87% respectively for these models

    Control and communication systems for automated vehicles cooperation and coordination

    Get PDF
    Mención Internacional en el título de doctorThe technological advances in the Intelligent Transportation Systems (ITS) are exponentially improving over the last century. The objective is to provide intelligent and innovative services for the different modes of transportation, towards a better, safer, coordinated and smarter transport networks. The Intelligent Transportation Systems (ITS) focus is divided into two main categories; the first is to improve existing components of the transport networks, while the second is to develop intelligent vehicles which facilitate the transportation process. Different research efforts have been exerted to tackle various aspects in the fields of the automated vehicles. Accordingly, this thesis is addressing the problem of multiple automated vehicles cooperation and coordination. At first, 3DCoAutoSim driving simulator was developed in Unity game engine and connected to Robot Operating System (ROS) framework and Simulation of Urban Mobility (SUMO). 3DCoAutoSim is an abbreviation for "3D Simulator for Cooperative Advanced Driver Assistance Systems (ADAS) and Automated Vehicles Simulator". 3DCoAutoSim was tested under different circumstances and conditions, afterward, it was validated through carrying-out several controlled experiments and compare the results against their counter reality experiments. The obtained results showed the efficiency of the simulator to handle different situations, emulating real world vehicles. Next is the development of the iCab platforms, which is an abbreviation for "Intelligent Campus Automobile". The platforms are two electric golf-carts that were modified mechanically, electronically and electrically towards the goal of automated driving. Each iCab was equipped with several on-board embedded computers, perception sensors and auxiliary devices, in order to execute the necessary actions for self-driving. Moreover, the platforms are capable of several Vehicle-to-Everything (V2X) communication schemes, applying three layers of control, utilizing cooperation architecture for platooning, executing localization systems, mapping systems, perception systems, and finally several planning systems. Hundreds of experiments were carried-out for the validation of each system in the iCab platform. Results proved the functionality of the platform to self-drive from one point to another with minimal human intervention.Los avances tecnológicos en Sistemas Inteligentes de Transporte (ITS) han crecido de forma exponencial durante el último siglo. El objetivo de estos avances es el de proveer de sistemas innovadores e inteligentes para ser aplicados a los diferentes medios de transporte, con el fin de conseguir un transporte mas eficiente, seguro, coordinado e inteligente. El foco de los ITS se divide principalmente en dos categorías; la primera es la mejora de los componentes ya existentes en las redes de transporte, mientras que la segunda es la de desarrollar vehículos inteligentes que hagan más fácil y eficiente el transporte. Diferentes esfuerzos de investigación se han llevado a cabo con el fin de solucionar los numerosos aspectos asociados con la conducción autónoma. Esta tesis propone una solución para la cooperación y coordinación de múltiples vehículos. Para ello, en primer lugar se desarrolló un simulador (3DCoAutoSim) de conducción basado en el motor de juegos Unity, conectado al framework Robot Operating System (ROS) y al simulador Simulation of Urban Mobility (SUMO). 3DCoAutoSim ha sido probado en diferentes condiciones y circunstancias, para posteriormente validarlo con resultados a través de varios experimentos reales controlados. Los resultados obtenidos mostraron la eficiencia del simulador para manejar diferentes situaciones, emulando los vehículos en el mundo real. En segundo lugar, se desarrolló la plataforma de investigación Intelligent Campus Automobile (iCab), que consiste en dos carritos eléctricos de golf, que fueron modificados eléctrica, mecánica y electrónicamente para darle capacidades autónomas. Cada iCab se equipó con diferentes computadoras embebidas, sensores de percepción y unidades auxiliares, con la finalidad de transformarlos en vehículos autónomos. Además, se les han dado capacidad de comunicación multimodal (V2X), se les han aplicado tres capas de control, incorporando una arquitectura de cooperación para operación en modo tren, diferentes esquemas de localización, mapeado, percepción y planificación de rutas. Innumerables experimentos han sido realizados para validar cada uno de los diferentes sistemas incorporados. Los resultados prueban la funcionalidad de esta plataforma para realizar conducción autónoma y cooperativa con mínima intervención humana.Programa Oficial de Doctorado en Ingeniería Eléctrica, Electrónica y AutomáticaPresidente: Francisco Javier Otamendi Fernández de la Puebla.- Secretario: Hanno Hildmann.- Vocal: Pietro Cerr

    Ground Vehicle Platooning Control and Sensing in an Adversarial Environment

    Get PDF
    The highways of the world are growing more congested. People are inherently bad drivers from a safety and system reliability perspective. Self-driving cars are one solution to this problem, as automation can remove human error and react consistently to unexpected events. Automated vehicles have been touted as a potential solution to improving highway utilization and increasing the safety of people on the roads. Automated vehicles have proven to be capable of interacting safely with human drivers, but the technology is still new. This means that there are points of failure that have not been discovered yet. The focus of this work is to provide a platform to evaluate the security and reliability of automated ground vehicles in an adversarial environment. An existing system was already in place, but it was limited to longitudinal control, relying on a steel cable to keep the vehicle on track. The upgraded platform was developed with computer vision to drive the vehicle around a track in order to facilitate an extended attack. Sensing and control methods for the platform are proposed to provide a baseline for the experimental platform. Vehicle control depends on extensive sensor systems to determine the vehicle position relative to its surroundings. A potential attack on a vehicle could be performed by jamming the sensors necessary to reliably control the vehicle. A method to extend the sensing utility of a camera is proposed as a countermeasure against a sensor jamming attack. A monocular camera can be used to determine the bearing to a target, and this work extends the sensor capabilities to estimate the distance to the target. This provides a redundant sensor if the standard distance sensor of a vehicle is compromised by a malicious agent. For a 320×200 pixel camera, the distance estimation is accurate between 0.5 and 3 m. One previously discovered vulnerability of automated highway systems is that vehicles can coordinate an attack to induce traffic jams and collisions. The effects of this attack on a vehicle system with mixed human and automated vehicles are analyzed. The insertion of human drivers into the system stabilizes the traffic jam at the cost of highway utilization

    Design and Implementation of a Modular Human-Robot Interaction Framework

    Get PDF
    With the increasing longevity that accompanies advances in medical technology comes a host of other age-related disabilities. Among these are neuro-degenerative diseases such as Alzheimer\u27s disease, Parkinson\u27s disease, and stroke, which significantly reduce the motor and cognitive ability of affected individuals. As these diseases become more prevalent, there is a need for further research and innovation in the field of motor rehabilitation therapy to accommodate these individuals in a cost-effective manner. In recent years, the implementation of social agents has been proposed to alleviate the burden on in-home human caregivers. Socially assistive robotics (SAR) is a new subfield of research derived from human-robot interaction that aims to provide hands-off interventions for patients with an emphasis on social rather than physical interaction. As these SAR systems are very new within the medical field, there is no standardized approach to developing such systems for different populations and therapeutic outcomes. The primary aim of this project is to provide a standardized method for developing such systems by introducing a modular human-robot interaction software framework upon which future implementations can be built. The framework is modular in nature, allowing for a variety of hardware and software additions and modifications, and is designed to provide a task-oriented training structure with augmented feedback given to the user in a closed-loop format. The framework utilizes the ROS (Robot Operating System) middleware suite which supports multiple hardware interfaces and runs primarily on Linux operating systems. These design requirements are validated through testing and analysis of two unique implementations of the framework: a keyboard input reaction task and a reaching-to-grasp task. These implementations serve as example use cases for the framework and provide a template for future designs. This framework will provide a means to streamline the development of future SAR systems for research and rehabilitation therapy

    Evaluation of Cyber Sensors for Enhancing Situational Awareness in the ICS Environment

    Get PDF
    Industrial Control Systems (ICS) monitor and control operations associated with the national critical infrastructure (e.g., electric power grid, oil and gas pipelines and water treatment facilities). These systems rely on technologies and architectures that were designed for system reliability and availability. Security associated with ICS was never an inherent concern, primarily due to the protections afforded by network isolation. However, a trend in ICS operations is to migrate to commercial networks via TCP/IP in order to leverage commodity benefits and cost savings. As a result, system vulnerabilities are now exposed to the online community. Indeed, recent research has demonstrated that many exposed ICS devices are being discovered using readily available applications (e.g., Shodan search engine and Google-esque queries). Due to the lack of security and logging capabilities for ICS, most knowledge about attacks are derived from real world incidents after an attack has already occurred. Further, the distributed nature and volume of devices requires a cost effective solution to increase situational awareness. This research evaluates two low cost sensor platforms for enhancing situational awareness in the ICS environment. Data obtained from the sensors provide insight into attack tactics (e.g., port scans, Nessus scans, Metasploit modules, and zero-day exploits) and characteristics (e.g., attack origin, frequency, and level of persistence). The results indicate that the low cost cyber sensors perform sufficiently within the ICS environment. Furthermore, findings enable security professionals to draw an accurate, real-time awareness of the threats against ICS devices and help shift the security posture from reactionary to preventative
    corecore