Air Force Institute of Technology
AFIT Scholar

Theses and Dissertations Student Graduate Works

6-13-2013

Evaluation of Cyber Sensors for Enhancin
Situational Awareness in the ICS Environment

Jeremy R. Otis

Follow this and additional works at: https://scholar.afit.edu/etd

Part of the Computer and Systems Architecture Commons

Recommended Citation

Otis, Jeremy R., "Evaluation of Cyber Sensors for Enhancing Situational Awareness in the ICS Environment" (2013). Theses and
Dissertations. 894.
https://scholar.afit.edu/etd/894

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and

Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact richard. mansfield@afit.edu.

https://scholar.afit.edu?utm_source=scholar.afit.edu%2Fetd%2F894&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F894&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/graduate_works?utm_source=scholar.afit.edu%2Fetd%2F894&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F894&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=scholar.afit.edu%2Fetd%2F894&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/894?utm_source=scholar.afit.edu%2Fetd%2F894&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

EVALUATION OF CYBER SENSORS FOR ENHANCING
SITUATIONAL AWARENESS IN THE ICS ENVIRONMENT

THESIS

Jeremy R. Otis

AFIT-ENG-13-J-06

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, the Department of Defense, or the United
States Government.

This material is declared a work of the U.S. Government and is not subject to copyright
protection in the United States.

AFIT-ENG-13-J-06

EVALUATION OF CYBER SENSORS FOR ENHANCING
SITUATIONAL AWARENESS IN THE ICS ENVIRONMENT

THESIS

Presented to the Faculty
Department of Electrical and Computer Engineering
Graduate School of Engineering and Management
Air Force Institute of Technology
Air University
Air Education and Training Command
in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computer Science

Jeremy R. Otis, B.S.C.S.

June 2013

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT-ENG-13-J-06

EVALUATION OF CYBER SENSORS FOR ENHANCING
SITUATIONAL AWARENESS IN THE ICS ENVIRONMENT

Jeremy R. Otis, B.S.C.S.

Approved:
Cm (_\Bomﬁ 9@1_3
Maj Qonathan Butts, PhD (Chairman) Date
&_\ [l 5vdE 2012
Lt Col Robmso} PhD (Member) Date

QQQW A 6 June 2003

Mr. Juan Lopezr. (embér) Date
\ A (\

—
~—

. j
L

N

AFIT-ENG-13-J-06
Abstract

Industrial Control Systems (ICS) monitor and control operations associated with the
national critical infrastructure (e.g., electric power grid, oil and gas pipelines and water
treatment facilities). These systems rely on technologies and architectures that were
designed for system reliability and availability. Security associated with ICS was never an
inherent concern, primarily due to the protections afforded by network isolation. However,
a trend in ICS operations is to migrate to commercial networks via TCP/IP in order to
leverage commodity benefits and cost savings. As a result, system vulnerabilities are now
exposed to the online community. Indeed, recent research has demonstrated that many
exposed ICS devices are being discovered using readily available applications (e.g., Shodan
search engine and Google-esque queries).

Due to the lack of security and logging capabilities for ICS, most knowledge about
attacks are derived from real world incidents after an attack has already occurred. Further,
the distributed nature and volume of devices requires a cost effective solution to increase
situational awareness. This research evaluates two low cost sensor platforms for enhancing
situational awareness in the ICS environment. Data obtained from the sensors provide
insight into attack tactics (e.g., port scans, Nessus scans, Metasploit modules, and zero-
day exploits) and characteristics (e.g., attack origin, frequency, and level of persistence).
The results indicate that the low cost cyber sensors perform sufficiently within the ICS
environment. Furthermore, findings enable security professionals to draw an accurate, real-
time awareness of the threats against ICS devices and help shift the security posture from

reactionary to preventative.

v

Acknowledgments

My sincerest thanks and appreciation goes out to my supportive wife. I would
also like to thank my advisor, Maj Butts, who dedicated much of his time helping me
accomplish my academic and professional goals. Finally, I would like to thank my family

for their unending support throughout my academic career.

Jeremy R. Otis

Table of Contents

Page

ADbStract e e v
Acknowledgments L L v
Table of Contents e vi
Listof Figures o e X
Listof Tables e X
Listof Acronyms e e xi
I Introduction e 1
1.1 Background 1

1.2 Motivation L e e 2

1.3 Problem Statement 2

1.4 Approach 3

1.5 Scope and Limitations o 3

1.6 Organization. ot e e 4

II. Literature Review e 5
2.1 ICSBackground. 5

22 ICSSecurity e 7

2.3 Logging and Categorizationof Data 9

2.4 Control Systems Availability 10

2.5 Attack Techniques, 11

2.6 Incidents. 14
2.6.1 ThreatPicture 14

2.6.2 Maroochy Shire 17

2.6.3 Davis-Besse Nuclear Power Plant 17

2.6.4 Worcester Air Traffic Communications 18

2.6.5 Stuxnet e e 18

277 CyberSensors 19

2.8 Situational AWarenessot e e 20
2.8.1 Logging e 20

2.8.2 Intrusion Detection Systems 21

Vi

I1I.

IV.

2.83 Analytics 22
29 Summary 22
Methodology e 23
3.1 Problem Definition 23
32 Goals e e 23
3.3 Hypothesis e 23
34 Environment.o e e e e 23
34.1 TrafficGenerator 24
342 LogAnalyzer 25
343 CyberSensors e 25
344 Communication 28
3.5 Evaluation Technique 28
35.1 Network Traffic 28
3.5.2 Performance Metrics 30
3.6 EXxperiments e e 31
3.6.1 Effectiveness e 34
3.7 Methodology Summary L 35
Analysisand Results 36
4.1 Implementation Details 36
4.1.1 CyberSensor 36
412 LogAnalyzer 36
4.1.3 EventDevelopment. 37
4.2 Initialization Checks 37
4.2.1 Functionality TestCase 37
4.2.2 Identification TestCase 39
43 Results. 39
4.3.1 Functionality TestCase 39
4.3.2 Identification TestCase 42
433 Examination e 44
4.4 Degradation Observations 47
4.5 ResultsSummary L 48
Conclusions 50
5.1 Applications e 51
5.1.1 ICS-CERT IncidentResponse 51
5.1.2 Network Performance Metrics 52
5.1.3 OperationPicture 52

vii

52 FutureWork 52
5.2.1 Snort Signatures 52

5.22 Optimizationo 53

5.2.3 Deployment in Operational Environment 53

5.2.4 Additional Capabilities 53

5.3 ConcludingRemarks 54
Appendix A: TestData L 55
Appendix B: ScriptsandCode oo 58
Appendix C: Configurations v i i i 62

viii

List of Figures

Figure Page
2.1 ICSLayout e 7
2.2 ICSvsIT . . . o 8
2.3 Banner from Shodan oo 11
2.4 Map of Available ICS through Shodan 12
2.5 Various microcomputers used as cyber sensors. 19
3.1 Complete Evaluation Environment 24
32 Gumstix Size e 26
33 RaspberryPiSensor. 27
4.1 Percentage PacketLoss 45
4.2 Sensors Compression Times 46
4.3 Degradation Trend 48
A.1 Full Functionality TestResults 56
A.2 Full Identity TestResults 57

X

Table

2.1
2.2
2.3
2.4
3.1
3.2
3.3
4.1
42
43
4.4
45
4.6
4.7
4.8
4.9
C.1
Cc2

List of Tables

Page
Common Web Attacks 13
Common Authentication Attacks L. 14
ICSThreats e 15
ICSThreats e 16
Sensor Specifications L 28
Functionality Test Enumeration 33
Identification Test Enumeration 34
Calibrated Rate Ranges 38
Functionality Test Case:Laptop Results 40
Functionality Test Case:Raspberry PiResults 41
Functionality Test Case:Gumstix Results 41
Total Log Size 42
Identification Test Case:Laptop Results 43
Identification Test Case:Raspberry PiResults 43
Identification Test Case:Gumstix Results 44
Compression Ratios 46
Functionality Test Randomization 63
Identification Test Randomization 64

List of Acronyms

Acronym Definition

AFB Air Force Base

CIA Confidentiality Integrity Availability

COM Computer-on-Module

CPU Central Processing Unit

DCS Distributed Control Systems

DoS Denial of Service

GB Gigabytes

GPS Global Positioning System

HDMI High Definition Multimedia Interface

HTTP HyperText Transfer Protocol

HMI Human Machine Interface

ICS Industrial Control Systems

IDS Intrusion Detection System

IED Intelligent Electronic Device

I/O Input/Output

IT Information Technology

X1

Acronym Definition

KB Kilobyte

LAN Local Area Network

MAC Media Access Control

MB Megabytes

MBPS Megabytes per Second

MTU Master Terminal Unit

NIC Network Interface Card

PLC Programmable Logic Controller

pps Packets Per Second

RAM Random Access Memory

RTU Remote Terminal Unit

SA Situational Awareness

SCADA Supervisory Control and Data Acquisition
SCP Secure Copy

SQL Structured Query Language

SUT System Under Test

TCP/IP Transmission Control Protocol/Internet Protocol

USAF United States Air Force

Xii

Acronym Definition

USB Universal Serial Bus

VM Virtual Machine

WPAFB Wright-Patterson Air Force Base

XSS Cross Site Scripting

Xiii

EVALUATION OF CYBER SENSORS FOR ENHANCING
SITUATIONAL AWARENESS IN THE ICS ENVIRONMENT

I. Introduction

1.1 Background

Industrial control systems (ICS) integrate plant and processing data onto computer
systems that are accessible via a network. ICS monitor and send limited instructions to
facilities dispersed over a large geographical area. These networks include infrastructure,
such as power grids, water and waste management, gas, oil pipelines, and more.

Due to the proprietary nature of ICS and the isolation from the rest of the connected
world, they have traditionally been considered immune to cyber attack. Unfortunately,
academic research, as well as real world incidents, have demonstrated that ICS is anything
but immune to cyber attack. Indeed, the adoption of technologies such as TCP/IP and
Ethernet, have interconnected the once air-gapped systems. As a consequence, attack
surfaces have increased and ICS are experiencing elevated exposure to malicious activity.

Attacks against ICS field devices are discovered primarily after the fact with no means
for advanced warning. To improve resiliency and help thwart attacks, it is important to
enhance system situational awareness. This paper presents a robust logging capability for
TCP traffic in ICS utilizing two popular microcomputers as cyber sensors. These sensors
provide a low cost logging solution that can be distributed across operational networks to

provide early warning indications of looming or in progress attacks.

1.2 Motivation

Industrial control systems offer a variety of unique security challenges [31]. The
promise of remote availability to isolated locations has introduced entry points into the
systems that cannot be physically safeguarded. These entry points are the result of
interconnecting ICS devices and migrating them into public networks, such as the Internet.

Security mechanisms, such as authentication, intrusion detection systems, and
network logging are used in traditional information technology (IT) systems to detect
and prevent malicious activity. ICS systems, however, lack the necessary resources,
such as processing power, memory, or communication capabilities to incorporate these
security mechanisms. Additionally, the highly dispersed nature of ICS requires extensive
costs to retrofit or deploy security solutions. One of the primary concerns is the lack of
network logging capabilities. Without fundamental logging, situational awareness in the

ICS domain remains underdeveloped.

1.3 Problem Statement

Situational awareness in ICS environments is limited, there is a need for an
inexpensive distributive solution to enhance real-time threat identification. Current
awareness of the attacks against ICS are after they occur on real time systems. That
awareness relies on the ability to document the extent of the damage and how it was carried
out. In order to learn and protect against these threats there is a need to understand the
variety of attacks being conducted without damaging production systems. Therefore, a
need exists to determine if an inexpensive solution can be deployed and perform sufficiently
within the ICS environment. The objective of this research is to provide a solution to
enhance situational awareness using inexpensive cyber sensing platforms. Specifically, this

research focuses on the the following two goals:

1. Determine if the functionality of the cyber sensors are adequate for ICS environ-

ments.

2. Determine if logged traffic can be identified as non-standard or malicious.

These goals will provide a better understanding of the frequency and types of attacks
against ICS today. Specifically, this research focuses on capturing interactions between ICS
field devices and potential attackers using inexpensive and readily available technology.
The solution can be used to gather information and help classify new attacks, as well as
serve as an early warning sensor.

The sensors should demonstrate that they can accurately record traffic under four
volumes: base, low, medium, high. The recorded traffic should then be compressed and
sent to a central collection point where identification analysis can take place. The sensors
are compared against a baseline to determine sufficient performance and capabilities. The
cyber sensors’ performance is considered sufficient or effective if they perform within 5%
of the baseline sensor. It should also be demonstrated that any traffic that does not follow

expected patterns can be identified as non-standard traffic.

1.4 Approach

For this research a logging algorithm is deployed across three platforms, a baseline
laptop, a Gumstix Overo Earth COM, and a Raspberry Pi. The sensors are evaluated based
on performance, as well as their ability to capture and identify malicious activity. They are
tested in an experimental environment and measurements on their accuracy, timing, and

identification are recorded for analysis.

1.5 Scope and Limitations

The scope of this research focuses on the ability to capture and identify ICS TCP/IP
traffic. Note that the traffic is specific to ICS network traffic and not ICS field device
protocols. This research is limited to two cyber sensors: Gumstix Overo Earth COM,
and the Raspberry Pi. Additionally, one custom Snort signature is used to identify non-

standard traffic. The signature is readily modified for application to varying operational

environments. This research is limited to an experimental environment. Based on the large
scale and distributed nature of ICS networks, deploying the cyber sensors in an operational
environment is beyond the scope of this research. Finally, this research evaluates the
feasibility of employing cyber sensors in an ICS environment; optimization of the sensors

is reserved for future research.

1.6 Organization

Chapter 2 presents background information about ICS, ICS security, threats to the ICS
domain, and related efforts. Chapter 3 presents the methodology used for this research.
Chapter 4 presents the results from the experiments and Chapter 5 presents conclusions

and future work.

II. Literature Review

2.1 ICS Background

Industrial control systems encompass several types of automated control functionali-
ties, including supervisory control and data acquisition (SCADA) systems and distributed
control systems (DCS). These systems control and gather information on assets that are
dispersed over large geographical areas associated with electric power grids, oil and nat-
ural gas, water management, public transportation, and other critical infrastructures. The

following list details the major ICS components [7]:

Master Terminal Unit (MTU)
The MTU resides in the control center and processes information received from one

or more remote terminal units and relays the data to the human machine interface.

Remote Terminal Unit (RTU)
The RTU gathers information, such as valve settings, sensors, or alarms, from
field devices. The data is then stored until the MTU requests it, or likewise sends

instructions to field devices that the MTU issues.

Programmable Logic Controller (PLC)
A PLC is a field device controller that can be programmed to interact with field
devices, such as valves, meters, sensors, etc. An example is a PLC that controls a
valve on a tank of water. It can read from a sensor and open the value when a certain
criterion is met. Modern PLCs are preconfigured with small web servers that provide
the capability to directly connect to the PLC and manipulate its configuration, or

view its status [3].

Intelligent Electronic Device (IED)

IEDs are smart sensors that can communicate with other devices, gather data,

and control field devices. Typically, this requires multiple pieces of hardware to
accomplish similar results, but the IED is capable of performing all of these tasks on

one device.

Human Machine Interface (HMI)
The HMI is composed of both hardware and software that enables operators to have
the capability to interact with various field devices attached to the ICS network. It
collects and presents data about the system in a user friendly format and can be
used to generate reports on the statuses of processes in real time. The HMI also
allows the operator to manipulate control processes by sending commands from a
centralized location. The centralized location typically requires physical access in
order to interact the HMI. However, modern HMI software suites provide remote

capabilities that operators and engineers can utilize via the Internet.

Data Historian
The Data Historian is a centralized database used to collect all ICS transactions and

processing. This data is used for statistical analysis and process control.

Figure 2.1 shows a general ICS configuration. The HMI, MTU, and Data Historian
are located in a control center, and communicate with multiple field sites over various
communication channels. The communication infrastructure must span over large areas
and are comprised of radio waves, satellite, telephone, and power lines. PLCs or RTUs
gather information about the sensors and field devices. The data is then sent to the control
center where the MTU collects the information and and displays it to the HMI in a format
easily readable to the operator [7]. Based on alarm thresholds or set conditions, the HMI
or MTU generates an appropriate action. Transactions are gathered for analysis on the data

historian.

Control Center —— Field Site 1 —
Enginssring — ===][]
! Hwiichad Taln
HMI Workstations i Modem
Power Ling Based PLC
D E I Commumications
|:j i - — Fiald Site 2 —
i Radm
Mlcémlll.'alvs =y
ENE LED WAN CARD IED
59*‘"“9 —— Field Site 3 —
Control Server Communications
Data (SCADA - MTU) Routers Wde TS,
Historian Modem
RTU

Figure 2.1: ICS general layout [31].

2.2 ICS Security

Most ICS in use today were developed prior to the integration of personal computers
and the Internet into everyday business operations [31]. Indeed, ICS were fundamentally
designed to support availability, reliability, and safety requirements. At the time, security
was inherited from the physical isolation of the communication links.

ICS evolved alongside personal computers and the use of the Internet. Lured by
the prospect of remote availability and faster communications, ICS started migrating onto
the Internet through the adoption of inexpensive TCP/IP components. These adjustments
altered the attack surface of ICS, exposing them to new types of threats that increased the
likelihood of compromise.

ICS environments have many characteristics that differ from traditional IT systems
[15]. IT systems rely on three cornerstones of cyber security: confidentiality, integrity,
and availability (CIA). Confidentiality means that information should only be able to be
accessed by authorized users. Integrity is concerned with the “trustworthiness, origin,
completeness, and correctness of information as well as the prevention of improper or

unauthorized modification of information [10].” Availability ensures that the information

is readily accessible to the authorized users that request it. IT systems are designed to
encompass all aspects of CIA, but focus mainly on confidentiality and integrity. On the
other hand, ICS security is concerned primarily with availability and integrity. ICS must
remain available to provide critical services with minimal fault tolerance levels. Since these
systems control physical assets, if availability and integrity are not consistent, it could result
in severe human injury or impact critical infrastructure assets.

The goals of ICS often conflict with standard IT security practices (e.g., requiring
passwords may interfere with emergency actions for ICS). Simply deploying IT security
solutions into control systems may not be a viable solution. Figure 2.2 shows some

common IT security solutions and how they are addressed in IT domains as opposed to

ICS [31].
Security Solution Information Technology Industrial Control Systems
Rare, difficult to implement
Anti-virus Commonly used without affecting availability
Software Patches Regularly scheduled Rare, unscheduled, vendor specific
Standard practice fordata |Difficult to implement without
Encryption transmission affecting availability
Authentication Heavily integrated If even possible, rarely enforced
Generally accepted and
Secure System adopted during Usually not adopted for
Development development development
Technology Support 2-3 years, multiple vendors |10-20 years, same vendor
Commonly used, easily Rare, difficult to implement due to
Logging implemented limited system resources

Figure 2.2: Difference in IT and ICS security solutions [15].

One security solution that is fundamental in IT is the capability to log and categorize
information. Currently, end devices such as PLCs, RTUs, or IEDs have limited
resources (e.g., processing power, and memory) and are not designed to execute additional

applications. As a result, there are minimal logging mechanisms designed particularly for

ICS. This restricts the identification of early attack indicators and impedes the ability to
perform vital forensics when a system has been attacked. The next section details the

importance of logging and categorizing data.

2.3 Logging and Categorization of Data

As ICS migrate onto the Internet through the adoption of TCP/IP and Ethernet
communications, it is important to monitor traffic for malicious activity. A network logger
is a device that uses specialized software to capture traffic transmitted over a particular
communication medium. Note that the network logger is primarily used to capture data
between multiple devices. The SANS Log Management Survey provides a list of benefits

for deploying a network logger [28]:

Detect/Prevent unauthorized access or insider abuse;

Forensic analysis after compromise;

Track suspicious behavior;

Monitor user activity;

Measure application performance; and

Ensure regulatory compliance.

On large networks, the amount of information captured by a network logger can
be overwhelming and arduous to the analyst. To make this more manageable, filtering
is required to categorize and generate a subset of suspicious activity. This is often
accomplished using intrusion detection systems (IDS). The goal of IDS are to detect
intrusions or suspicious activity [20]. IDS use configuration files, called signatures, that
are designed to recognize patterns in network activity. Signatures can be developed on

a case-by-case basis depending upon an analyst’s needs. IDS detect intrusions for active

network communications and stored log files. For this research, the focus is on the second
function: the ability to filter traffic based on a custom signature of logged network traffic.

The next section discusses the availability of ICS and a popular myth about their isolation.

2.4 Control Systems Availability

The basis of this research was motivated by a paper entitled, “Quantitatively
Assessing and Visualising Industrial System Attack Surfaces,” written by Eireann Leverett
[21]. Leverett debunked the popular myth that ICS are not connected to the Internet.
Additionally, his work presented logging data from connections and visualized them
alongside vulnerability information available from ICS-CERT advisories. His intent was
to gather information on ICS through the use of open source information, following the

restrictions below:

e Do not interact with any device other than viewing the HyperText Transfer Protocol

(HTTP) interface.

e Do not attempt to login to any device, when prompted for credentials, cancel any

interaction.

e Do not actively scan the Internet for devices, rather use existing information.

In order to abide by the third restriction, Leverett leveraged the Shodan search engine.
Shodan is a search engine much like Google, but instead of searching for websites, Shodan
searches for specific computers running certain software [23]. Once a device is found,
banners are used (see Figure 2.3) to further categorize device types and running services.
For example, Figure 2.3 shows a successful connection to a EnergyICT RTU. Finally, the
list of known devices are cross referenced with vulnerability and exploitation databases in

order to discern possible weaknesses.

10

HTTP/1.0 200 OK

Date: Sat, 23 Apr 2011 21:1:34 GMT
Content-Type: text/html

EnergyICT RTU 130-D93392-0840
Expires: Sat, 23 Apr 2011 21:1:34 GMT

Figure 2.3: An example banner from Shodan [21].

At the end of the two-year experiment period, 7,500 control systems were identified.
Of those 7,500, only 17 percent had authentication mechanisms and 20.5 percent had
published remote exploits. The results encompassed responses received globally; however,
52 percent of the exposed devices resided in the USA. Figure 2.4 is a visual representation
of ICS devices identified during the research.

The research was successful in debunking the myth that ICS are not connected to
public networks. The results show that not only are there myriad control systems exposed,
but they are also vulnerable to readily available exploits. The research serves as an eye
opener for the ICS community, as the awareness of who is connecting to these systems, and
for what purpose, is unknown. The next section examines some common attacks available

to employ against these connected devices.

2.5 Attack Techniques

There are a multitude of attack vectors for ICS. HMI software is typically deployed on
a Microsoft based operating system (e.g., Microsoft Server, Windows XP/Vista/7) and is
subject to the inherent operating systems’ vulnerabilities, as well as vulnerabilities that may

exist in the HMI software. Additionally, Reid Wightman, of Digital Bond, led a team of

11

[Vep] Satetie |- Tersin
ey 3 5

2011 TerraMetrics, NASA - Terms of Use

Figure 2.4: Visual representation of available ICS [21].

researchers in Project Basecamp to test the security of specific end devices [33]. The team
discovered flaws in the device’s remote services as well as authentication mechanisms.
Many devices in ICS are preconfigured with a default web server that allows an
operator to remotely change configurations or view the status of processes. Most of
these devices require authentication, namely username/password, in order to make major
changes. However, some do not require any authentication whatsoever. The use of these
web servers increase the remote availability of ICS devices and, as a result, expose them
to common vulnerabilities associated with this feature. Table 2.1 describes some common

attacks used against web servers and their impact on ICS.

12

Attack
Cross Site Scripting (XSS)

Description
Stealing private data through due to improperly validated input,
allowing malicious code execution on any machine that views the
site. This can be used to steal cookies or session IDs without the
knowledge of the user, used in conjunction with session hijacking
or replay attacks [30].

SQL Injection

A technique used for manipulating web services that send SQL
queries to alter, insert, or delete data in a database. This can be
used in ICS to reveal or change information stored in the Data
Historian, or any database attached to ICS [29].

Directory Traversal

Occurs when an attacker tries to access restricted files used by the
web server. These attacks can be used to bypass authentication
and access the devices configuration or password files, as well as
to execute arbitrary commands [29].

Denial of Service (DoS)

A technique designed to stop or suspend system service by
either overwhelming the server with inputs, or sending malformed
packets.

Information Leakage

Used to gather information about a target. Information displayed
to users, such as a model number, manufacturer, location,
or operating thresholds, can be used by an attacker to find
vulnerabilities specific to the device [34].

Fuzz Testing

Implemented by tools called fuzzers, which are programs or
scripts that submit some combination of inputs to the test target
to reveal how it responds [18]. In ICS networks, fuzz testing can
be devastating because most devices are designed to only handle
preconfigured inputs. If the inputs deviate, the device could seize
up or fail altogether.

Table 2.1: Common attacks used against web servers in ICS.

Vulnerabilities in ICS may occur from flaws, misconfigurations, or improper

administration of ICS network connections. These particular vulnerabilities exist in the

various authentication mechanisms employed across the ICS domain. Table 2.2 describes

some common attacks used to exploit authentication vulnerabilities and their impact on

ICS.

13

Attack | Description
No password Some devices are configured requiring no authentication or
having authentication as an optional feature.
Default Passwords | Most devices that have require authentication are preconfigured
with a default password. The password is often in the manual and
is available on the vendors website. One of the attackers initial
tests would be to see if the default password has been changed,
if not they can log in and make changes without the operators
knowledge.
Brute Force Brute force is an attack that enumerates all possible password
options. Due to hardware limitations in ICS, there is a tendency
to use small passcodes or passwords that can be brute forced in a
matter of hours and because there is no logging, the operator has
no knowledge of the attack.
Replay Attack A replay attack is when a malicious actor records authentication
information of a successful login, and replays that information to
the target posing as the legitimate user.
Session hijacking | The exploitation of a computer session to gain unauthorized
access to a devices hosted services. This is often used in
conjunction with Cross Site Scripting and replay attacks, with
the objective of stealing the cookie or session id of a legitimate
session and leveraging it to establish or resume the authorized
connection.

Table 2.2: Common attacks used against authentication used in ICS.

2.6 Incidents

This section discusses threats and incidents involving ICS. Note, not all impacts
resulted from malicious intent, however, the results demonstrate direct physical impact.

2.6.1 Threat Picture.

Threats to ICS can come from numerous sources to include intentional, accidental,
human error, and even natural disasters. It is important to understand the threat landscape
in order to develop proper defenses against it. The Guide to Industrial Control Systems

(ICS) Security [31], describes a list of possible ICS threats that are shown in Table 2.3.

14

Threat Agent
Attackers

Description

Attackers break into networks for the thrill of the challenge or for
bragging rights in the attacker community. While remote cracking
once required a fair amount of skill or computer knowledge,
attackers can now download attack scripts and protocols from
the Internet and launch them against victim sites. Thus,
while attack tools have become more sophisticated, they have
also become easier to use. Many attackers do not have the
requisite expertise to threaten difficult targets such as critical U.S.
networks. Nevertheless, the worldwide population of attackers
poses a relatively high threat of an isolated or brief disruption
causing serious damage.

Bot-network operators

Bot-network operators are attackers; however, instead of breaking
into systems for the challenge or bragging rights, they take
over multiple systems to coordinate attacks and to distribute
phishing schemes, spam, and malware attacks. The services
of compromised systems and networks are sometimes made
available on underground markets (e.g., purchasing a denial of
service attack or the use of servers to relay spam or phishing
attacks).

Criminal groups

Criminal groups seek to attack systems for monetary gain.
Specifically, organized crime groups are using spam, phishing,
and spyware/malware to commit identity theft and online fraud.
International corporate spies and organized crime organizations
also pose a threat to the U.S. through their ability to conduct
industrial espionage and large-scale monetary theft and to hire
or develop attacker talent.

Foreign intelligence services

Foreign intelligence services use cyber tools as part of their in-
formation gathering and espionage activities. In addition, several
nations are aggressively working to develop information warfare
doctrines, programs, and capabilities. Such capabilities enable a
single entity to have a significant and serious impact by disrupting
the supply, communications, and economic infrastructures that
support military powerimpacts that could affect the daily lives of
U.S. citizens.

Table 2.3: Threats against ICS [31].

15

Threat Agent

Insiders

Description

The disgruntled insider is a principal source of computer crime.
Insiders may not need a great deal of knowledge about computer
intrusions because their knowledge of a target system often
allows them to gain unrestricted access to cause damage to the
system or to steal system data. The insider threat also includes
outsourcing vendors as well as employees who accidentally
introduce malware into systems. Insiders may be employees,
contractors, or business partners. Inadequate policies, procedures,
and testing can, and have led to ICS impacts. Impacts have
ranged from trivial to significant damage to the ICS and field
devices. Unintentional impacts from insiders are some of the
highest probability occurrences.

Phishers

Phishers are individuals or small groups that execute phishing
schemes in an attempt to steal identities or information for
monetary gain. Phishers may also use spam and spyware/malware
to accomplish their objectives.

Spammers

Spammers are individuals or organizations that distribute unso-
licited e-mail with hidden or false information to sell products,
conduct phishing schemes, distribute spyware/malware, or attack
organizations (e.g., DoS).

Spyware/malware authors

Individuals or organizations with malicious intent carry out
attacks against users by producing and distributing spyware and
malware. Several destructive computer viruses and worms have
harmed files and hard drives, including the Melissa Macro Virus,
the Explore.Zip worm, the CIH (Chernobyl) Virus, Nimda, Code
Red, Slammer, and Blaster.

Terrorists

Terrorists seek to destroy, incapacitate, or exploit critical in-
frastructures to threaten national security, cause mass casualties,
weaken the U.S. economy, and damage public morale and confi-
dence. Terrorists may use phishing schemes or spyware/malware
to generate funds or gather sensitive information. Terrorists may
attack one target to divert attention or resources from other tar-
gets.

Industrial Spies

Industrial espionage seeks to acquire intellectual property and
know-how by clandestine methods

Table 2.4: Threats against ICS (cont) [31].

16

2.6.2 Maroochy Shire.

Between February 28, 2000 and April 23, 2000, at least 46 attacks were conducted
on sewage equipment in Australia [2]. Vitek Boden worked for Hunter Watertech, an
Australian firm specializing in installing SCADA radio-controlled sewage equipment for
the Maroochy Shire Council in Queensland, Australia. After leaving Hunter Watertech,
Boden applied for a job directly with the Maroochy Shire Council and was turned down.
Seeking revenge on both the Council and Hunter Watertech, Boden drove around the area
with stolen radio equipment attacking sewage facilities on at least 46 separate occasions.
The results were devastating. Over 800,000 liters of raw sewage was dumped into local
parks, rivers, and creeks turning water black and killing local marine life. Normally, these
systems are set up to alarm engineers if such malfunctions occur, however, Boden disabled
alarms at four of the major pumping stations. This allowed him to carry out the attacks with
a relatively low chance of being caught. The attack was carried out with insider knowledge
and motivated by revenge. The system under attack had no existing cyber security policy,
or procedure, to deal with such a threat and, as a result, had no cyber security defenses in
place to thwart the attack.

2.6.3 Davis-Besse Nuclear Power Plant.

In January 2003, the Slammer Worm infected the Davis-Besse nuclear power plant in
Ohio, disabling safety monitoring software for five hours [11]. The worm was introduced
via a private contractor’s laptop. Once within the plant’s boundaries, it replicated and
spread to factory systems over a T1 line. Investigators later found that the line between the
contractor’s laptop and the plant’s computers bypassed the firewall entirely. Fortunately,
the plant had already been shut down for maintenance, so the worm did not pose a serious

risk at the time.

17

2.6.4 Worcester Air Traffic Communications.

In March 1997, a teenager in Worcester, Massachusetts disabled phone services using
a dial-up modem [9]. The disruption caused phone blackouts to the air control tower, airport
security, airport fire department, and weather service. Additionally, the tower’s main radio
transmitter, and transmitters that control runway lights, were disabled, as well as a printer
used to monitor flight progress. In addition to the airport, phone services to over 600 homes
and businesses were knocked out in the nearby town of Rutland.

2.6.5 Stuxnet.

Stuxnet has received a considerable amount of attention from researchers and media
around the world. It is one of the most complex pieces of malware discovered thus far [14].
This particular threat propagated through IT systems, but its final goal was to target and
reprogram SCADA devices. Stuxnet was not discovered until July 2010, but is thought to
have been implemented one year prior to its discovery. The worm spread over traditional
IT networks and contained many different exploits including zero-days, forged certificates,
default password attacks, and rootkits. Once the worm gained access to a computer it
would look for a certain SCADA PLC controlling programs and would rewrite instructions
to carry out different operations. It would also send signals to the operator, telling them
that all systems are operating as normal. One of its main functions was to alter equipment
processes in order to damage materials. The result slowed production down considerably
and costing the facility an untold amount of financial losses. Stuxnet is the first of its kind,
propagating through commercial networks and containing multiple payloads depending
on which system it infected. Stuxnet required extensive insider knowledge of specific
devices and protocols, indicating a well funded and well trained adversary. The post-
stuxnet consensus indicated that the author was most likely a nation state targeting other

countries infrastructure.

18

2.7 Cyber Sensors

As stated previously, it can be expensive and arduous to deploy any security solution
in ICS environments. Most of the security mechanisms mentioned in Section 2.2 are
used on computing platforms that provide extensive system resources, such as dedicated
servers, desktop workstations, or laptops. The size and cost of these platforms hinder
their ability to be distributed among large scale networks. This research leverages tiny
computer modules referred to as cyber sensors. Cyber sensors use fully functional ‘micro’
computers that are designed to run a modern operating system. Most of these devices are
about the size of a credit card or smaller, (see Figure 2.5), and bear the capabilities for
standard input/output (I/O) (e.g., keyboard, mouse, video output and sound output) and
communication (e.g., USB, Ethernet, or WiFi). These cyber sensors can be configured to
execute the same applications as full scale computers as long as the applications system
resources requirements do not exceed those of the sensor. Cyber sensors, however, have
limited resources, so while they do not perform well executing multiple resource intensive
applications, they excel in one or two smaller applications. This makes them ideal
candidates for small robust sensors in the ICS domain. The sensors used for this research

are discussed further in Section 3.4.3.

Figure 2.5: Various microcomputers used as cyber sensors.

19

2.8 Situational Awareness

This section describes related research for increasing situational awareness in the field
of ICS. Dr. Mica Endsley defines situational awareness as, “the perception of the elements
in the environment within a volume of time and space, the comprehension of their meaning,
and the projection of their status in the near future [13].” There are three functions that a
system must perform to achieve situational awareness: (i) it must sense its environment; (ii)
it must take raw data and assemble it into a meaningful understanding of its environment;
and (iii) it must use its current understanding to predict the future [25].

2.8.1 Logging.

The first function, the system must sense its environment, can be accomplished with
the use of extensive logging mechanisms, such as network loggers and honeypots.

Morris and Pavurapu [24] developed an embedded device that can be attached to
networks at the PLC or RTU level and capture traffic on specific protocols. The logging
solution provides the capability to securely record and store traffic without affecting the
performance of the end device. It does not, however, provide TCP/IP capability nor the
flexibility to be distributed over different areas of an ICS network.

Chandia, et al., [8] proposed a forensics architecture that can be used on ICS
communications. In this architecture, agents capture traffic at three levels and forward
all traffic to a centralized server for storage and analysis. Level 1 agents capture traffic
at the control station, or master node location. Level 2 agents collect information at
intermediate locations in the network between Level 1 and Level 3. Level 3 agents capture
network traffic at the end device, such as PLCs, RTUs, or IEDs. It is important to note that
all communications from the centralized storage server to the agents occur on a separate
isolated network. While Morris and Pavurapu’s embedded device is best suited for level 3

collection, it is not suited for full situational awareness across the levels.

20

Some ICS vendors offer logging features for their RTU, IED, and PLC devices. For
instance, Microsystems, Inc offers SCADAPack 350 and SCADAPack 357 [12]. While
they provide the capability for the RTU to be connected to external storage and log process
data, they do not allow for logging network transactions going to and from the RTU.

Another important research area to note is the use of honeypots in ICS. Honeypots
are typically deployed in IT systems and are designed to impersonate production devices.
All traffic going to and from the honeypot is logged and stored for further analysis. It
is important to note that because these are fake systems, there should be no legitimate
reason to connect to the device, therefore, all data collected is suspicious. Digital Bond
[6] has developed a honeynet that is capable of emulating five popular ICS protocols
using virtual machines. A honeynet is simply a network of honeypots. This research is
a proof-of-concept to demonstrate that honeypots can be used in ICS. However, it lacked
the robustness to be deployed and interacted with in production environments. Dustin
Berman [4] furthered honeypot research by successfully emulating a PLC on a Gumstix
Overo COM (cyber sensor). The research indicates that the device was able to respond
correctly to a number of different connections (e.g., common protocols, fingerprinting,
MAC address resolution, and invalid traffic) and successfully captured all network traffic
involved. This research provides the capability to capture information at the PLC level and
can be distributed across an ICS network to aggregate data. Honeypots can be a valuable
asset for increasing situational awareness in control systems, but they are limited in that
they only record data going to and from that device.

2.8.2 Intrusion Detection Systems.

The second function of situational awareness, it must take raw data and assemble it
into a meaningful understanding of its environment, can be accomplished with the use of

pattern analyzers, such as intrusion detection systems.

21

Digital Bond has developed an IDS signature package that encompasses four different
ICS communication protocols [5]. The signatures are designed to integrate with pre-
deployed intrusion detection systems, and can identify unauthorized requests, malformed
protocol requests, and dangerous commands. Note that while these signatures are useful in
identifying attacks, they require a pre-existing sensor infrastructure that is not common in
ICS today.

Fovino et al. [16] present a state-based intrusion detection system designed
specifically for SCADA architectures. The proposed system blends together traditional
signature based IDS with an innovative state analysis technique. The solution keeps track
of the state of a control system and monitor it for malicious activity. While the results show
promise, it does not allow monitoring traffic beyond the DNP3 and Modbus protocols.

2.8.3 Analytics.

The third function of situational awareness, using current understanding to predict the
future, can be accomplished through analyzing the data gathered from logging and IDS for
predictable behavior. Because this function relies on previously recorded data, analytics
in the ICS environment is lacking, however, the data gathered from real world incidents
has been used to develop some threat detection capabilities [5]. Note that looking at future
threats is outside the scope of this research, however, the data collected can be used to

identify those threats.

2.9 Summary

This chapter explains ICS, ICS security, and the importance of logging and
categorizing information within the network. It describes how accessible control systems
are to the public, the types of attacks that can occur, and incidents that have resulted.
This chapter also details ICS current abilities to log network traffic and the affect it has
on situational awareness. The next chapter discusses the methodology used to evaluate the

effectiveness of the logging solution created as part of this research.

22

III. Methodology

3.1 Problem Definition

Current logging capabilities for ICS field devices are inadequate or often nonexistent.
Most devices are designed for specific functionalities, and do not have the necessary
computing power to carry out proper logging. Without the ability to record activity, the
ICS environment lacks the situational awareness required to gather intelligence on targeted

attacks.

3.2 Goals

The goal of this research is to demonstrate that logging capabilities can be
implemented using a low cost solution without suffering a loss of performance, given
limited resources. This research focuses on two functionalities: (i) performance evaluation
of each sensor (functionality test) and (ii) ability to distinguish malicious traffic from

standard traffic (identification test).

3.3 Hypothesis

It is expected that inexpensive computing systems perform adequately as cyber sensors
by logging ICS field traffic and differentiating targeted malicious traffic from legitimate
ICS traffic. It is expected that the inexpensive cyber sensors will perform within 5% of the

baseline laptop device and identify malicious traffic.

3.4 Environment

This section contains the hardware and software specifications used in this experiment.
Figure 3.1 shows the evaluation environment. Traffic that conforms to standard ICS
parameters is generated to emulate operational packets sent to an ICS field device. Note that

the actual field device is not within the scope of this research, the interest is in the network

23

traffic destined for the device. The sensors are placed in promiscuous mode in order to
receive, log, and process the packets. Captured traffic is then forwarded to a Log Analyzer
for analysis and to discern malicious or unexpected activities. The Log Analyzer enables
centralized processing, while providing a capability to distribute the sensors throughout an

operational environment.

Log
Analyzer

—

Traffic
Generator

Figure 3.1: Evaluation environment.

3.4.1 Traffic Generator.

The Traffic generator is a virtual machine (VM) running 32-bit Ubuntu 12.04 with
a 20GB hard drive, 4GB of memory, and 1 core of an 17-M640 CPU at 2.80 GHz. The
software, Nping, generates standard ICS network traffic. Nping is an open-source tool that
provides the capability to generate raw random packets for numerous protocols and can

be used for network stress testing [22]. The software, netcat, generates a password replay

24

attack that is consistent with exploiting an ICS field device. Netcat is a networking utility
which reads and writes data across a network [17].

3.4.2 Log Analyzer.

Similar to the Traffic Generator, the Log Analyzer is a VM running 32-bit Ubuntu
12.04, with a 20GB hard drive, 4GB of memory, and 1 core of an 17-M640 CPU at
2.80GHz. This machine is used as a repository for all logs generated by each sensor.
The tool, Snort, examines the traffic logs for malicious activity. Snort is an open source
network intrusion detection system developed by Sourcefire that can be customized to
include unique attack signatures and detection [27]. For this research, Snort signatures
are developed that identify traffic that does not conform to specified operating parameters.

3.4.3 Cyber Sensors.

The cyber sensors are placed in promiscuous mode, connected to the router, and
receive traffic generated for the PLC device. The logging software is tcpdump version
4.2.1. Tcpdump is a command-line network packet analyzer that utilizes the libpcap library
[19]. The traffic is stored on the sensor until it reaches a specified size, then uses bzip2 to
compress the traffic and secure copy (scp) to transfer the compressed traffic to the Log
Analyzer for further analysis. Note that the transfer occurs on the back channel using the
secondary network interface to enhance operational security.

The Gumstix Overo Earth COM is a small computer that, not surprisingly, is about
the size of a stick of gum (see Figure 3.2). It runs a Linux based platform leveraging the
Open Embedded framework and costs approximately $149 [1]. The Gumstix board has a
ARM Cortex-A8 600MHz processor, 512MB of memory, and microSD card slot for non-
volatile storage. For this research, an 8 GB microSD card is used. Gumstix do not natively
posses 1/O capabilities and must leverage expansion boards to extend interactive operation
such as bluetooth, GPS, 802.11 wireless, and Ethernet. For this research, the Tobi-Duo (an

additional $79, see Figure 3.2) expansion board is used to provide dual NIC functionality.

25

A primary NIC captures live network traffic and a secondary NIC sends compressed traffic
logs, on the back channel, to the Log Analyzer for post process analysis. Both the primary
and secondary NICs operate at 10/100 MBPS. The operating system on the Gumstix is

Linux 2.6.34. Appendix C.2 provides specific configuration details used in this research.

Figure 3.2: Tobi Duo expansion board (top), Gumstix Overo Earth (bottom).

The Raspberry Pi Model B is a microcomputer depicted in Figure 3.3 and costs
$35 [26]. It uses an ARM1176 800MHz processor, 512MB of memory, and SD card slot
for non-volatile storage. For this research an 4GB SD card is used. Unlike the Gumstix,
the Raspberry Pi does not require expansion boards to provide basic I/O capabilities; it
comes with a single NIC and various I/O ports such as USB, HDMI, and audio out. For
this research, a USB wifi dongle is used, specifically Wi-Pi (an additional $16.50), to
extend the Raspberry Pi’s communication capabilities to match the Gumstix ability for dual
communication. The primary 10/100 MBPS NIC is used as the capture interface, and the
Wi-Pi is used to send compressed logs on the back channel. The Wi-Pi supports 802.11n

wireless networks, and is capable of speeds of 150 MBPS. The operating system native to

26

the Raspberry Pi is Linux kernel 3.2.27. Appendix C.3 provides the specific configuration

details.

Figure 3.3: Raspberry Pi.

A standard laptop (LAPT) is a VM running 32-bit Ubuntu 12.04. It has a 20GB hard
drive, 4GB of memory, and has been allocated 1 core of an 17-2620M CPU at 2.70GHz.
These particular specifications in a laptop typically can cost between $700 to $1000 and is
considered standard. The laptop uses a primary 10/100/1000 MBPS Ethernet connection to
capture traffic, and a 802.11n 300 MPBS wireless interface to send compressed traffic on
the back channel.

Table 3.1 provides a specification summary of all sensors. The CPU determines the
overall system speed, RAM affects the speed in which the system can execute processes,
and the NIC affects the speed of network traffic sent and received.

The laptop serves as the baseline to evaluate the performance of the cyber sensors.
The laptop is consistent with a system deployed in traditional IT systems for logging

capabilities.

27

Cyber Sensor CPU Storage @ RAM NIC (MBPS) OS Tot. Cost

Gumstix Overo 600 MHz 8GB 512MB 10/100 Ethernet Linux 2.6.34 $228

Earth 10/100 Ethernet

Raspberry Pi 800 MHz 4GB 512MB 10/100 Ethernet Linux 3.2.27 $51.50
150 Wireless

Laptop PC 2.8 GHz 20GB 4GB 10/100/1000 Ethernet Ubuntu 12.04 $700-$1000
300 Wireless

Table 3.1: Sensor specifications.

3.4.4 Communication.

A Trendnet (TEW-672GR) router connects all sensors for communication. The router
is capable of 10/100/1000 MBPS connections on LAN, and 300 MBPS on wireless. The
Gumstix sensor connects both NICs via wired Ethernet connection. The Rasberry Pi sensor
connects via one wired Ethernet and one wireless connection. The LAPT connects via
one Ethernet connection and one wireless connection. Note that the capability of the
router exceeds that of the sensors so it is expected that it will not impact packet loss in
this research. This router is chosen because it is consistent with specifications used in an

operational environment.

3.5 Evaluation Technique

The three cyber sensors are evaluated for performance characteristics. The Gumstix
and Raspberry Pi sensors are selected because they are the leading technology for
inexpensive, portable, and reliable computer systems [1]. The laptop serves as a baseline
in which to compare the sensor’s performance. This section discusses the techniques used
to evaluate the cyber sensors’ capabilities.

3.5.1 Network Traffic.

Network traffic is used to test the cyber sensors’ packet capturing limitations. Network
traffic consists of packet rate, event rate, and traffic type. Aspects are varied to measure

performance.

28

Packet Rate
Packet rate is the rate of traffic, measured in packets per second, sent to the sensors.
For this research four values are used: base, low, medium, and high. Note that the
packet rates were derived from examination of packet captures of actual production
ICS. The base rate is defined at 1 packet per second (pps). Low traffic is 10 pps and
is representative of an operational liquid pipeline system. Medium traffic represents
100 pps and is associated with more active ICS networks including small electric
power grids or waste water facilities. High rate is chosen to represent an overly
active network associated with large electric power grids or HVAC systems and is

defined as 1000 pps.

Event Rate
Rate of events is the number of malicious events targeting the field device. The
three event rates low, medium, and high represent: 5, 10, and 20 events per hour
respectively. Note that the signature is designed to alert on specific traffic patterns
and is not dependent on when they occur, so for an added level of control during
testing, the intervals between malicious events were not randomized. This ensures

consistency across the different tests for evaluating identification of malicious traffic.

Traffic Type
Traffic type describes the type of traffic generated and sent to the sensors. There are
two traffic types: standard or non-standard. Standard traffic is generated using Nping
to deliver ICS payloads via the HTTP (port 80) protocol. HTTP is a common protocol
for ICS to use when serving up management web sites to the engineer. These web
sites contain the ability to configure the devices and are often vulnerable to basic
attacks. Note that the traffic used in this research was derived from actual production
systems to represent traditional ICS packet size and protocols. Non-standard traffic

is traffic that does not conform to predefined operational parameters and is indicative

29

of malicious events. For malicious events a replay attack is used to generate an
unauthorized administrator login to a PLC’s web server configuration page. It is
important to point out that due to the design of many ICS components, traffic does
not necessarily have to be malicious for it to damage or degrade service. In this
research a known vulnerability for a particular series of PLCs (MicroLogix 1400) is

used to serve as non-standard traffic to demonstrate a likely real world scenario [32].

3.5.2 Performance Metrics.
It is vital that each sensor remains available and perform as intended. These following

metrics are used to evaluate the outcome of the experiments.

Accuracy

Packets Logged
For each packet sent, the same packet must be logged. In the functionality test,
Nping is used to calculate how many packets are generated, and tcpdump on the
cyber sensor is used to calculate how many packets have been captured. The

metric recorded is [No. of packets received] / [No. of packets sent].

Event Logged
In the identification test, a script is used in conjunction with netcat to generate
the desired amount of malicious events. The logged traffic confirms the number
of events received. The metric recorded is [No. of events received] / [No. of

events sent].

Compressed
Once tcpdump logs 2MB of packets, it compresses the log file and rotates to a
fresh file. In order to test the sensor’s compression performance thoroughly, a

larger, 20MB file, is used during the high rate. Compression takes place on the

30

sensor and is measured by listing and comparing files. The metric recorded is

[No. of compressed log files] / [No. of total log files].

Transferred
Once the log files are compressed, they are transferred to the Log Analyzer. A
comparison is performed between the files sent from the cyber sensor and the
files received on the Log Analyzer. The metric recorded is [No. of compressed

files received] / [No. of compressed files sent].

Identification
The main metric gathered in the Identification Test Case is how many events are
identified. Snort is used with a custom filter to identify all events that occurred.

The metric is [No. of events identified] / [No. of events sent].
Timing

Compression
The time to compress a file depends on the sensor’s resources and may
vary when other resource intensive processes are running. As each file is
compressed, the time command available in Linux is used to determine how
long the process takes to execute, and is measured in seconds. The metric

recorded is [No. of seconds to compress].

3.6 Experiments

The experiments examine the cyber sensor’s functionality and identification capability.
The functionality test is designed to determine if the sensors can perform sufficiently under
different rates of traffic that is measured in packets per second. Additionally, it is designed
to examine the sensor’s ability to adequately compress and transfer log files of varying
size. The traffic identification test is designed to determine if suspicious traffic can be

accurately recorded and identified. Note that ICS traffic is predictable and consists of a

31

small subset of traffic functionality. Any traffic not conforming to expected traffic patterns
and functionality are identified as suspicious. The ease of developing Snort signatures
ensures that the ability to define expected traffic patterns is readily expandable to meet

specific ICS operational environments.

Functionality Test
There are 12 tests consisting of 4 varying packet rates (base, low, medium, and high)
for the 3 cyber sensors shown in Table 3.2. Each test is repeated 3 times for statistical
significance using a 95% confidence interval. The order of each test is randomized
to rule out equipment anomalies. Note that Appendix C.1 shows the steps to ensure

randomization. The following steps are used to conduct the tests:

1. Tcpdump is started on the cyber sensor under test.

2. A script is executed on the Traffic Generator to start sending packets at the
specified rate, using Nping, to the sensor. Note that the script is set to run for 1

hour to ensure a sufficient amount of traffic for analysis.

3. Once the capture traffic reaches the size of 2MB for the base, low, and medium
rates or 20MB for the high rate, it is compressed using bzip2 and transferred to

the Log Analyzer using scp.

All scripts record the outputs of each process and performance metrics are gathered
for each test. The performance metrics associated with this test are accuracy and
timing. Accuracy consists of packets logged, log files compressed, and compressed

files transferred. Timing consists of compression time.

Traffic Identification Test Case

There are 9 tests consisting of 3 event rates (low, medium, high) for the 3 cyber

32

Parameters Rate Type Service Platform

Levels Low, Med,High Standard ~ Web LAPT, Raspberry Pi, Gumstix

1

O 00 1 O\ Dt &~ W

Base Standard ~ Web LAPT
Low Standard ~ Web LAPT
Medium Standard ~ Web LAPT
High Standard ~ Web LAPT
Base Standard ~ Web Raspberry Pi
Low Standard ~ Web Raspberry Pi
Medium Standard ~ Web Raspberry Pi
High Standard ~ Web Raspberry Pi
Base Standard ~ Web Gumstix
Low Standard ~ Web Gumstix
Medium Standard ~ Web Gumstix
High Standard ~ Web Gumstix

Table 3.2: Functionality test enumeration.

sensors which is shown in Table 3.3. The following steps are used to conduct the

tests:

1.

2.

Tepdump is started on the cyber sensor.

The same script used in the functionality test is used to generate standard traffic
at a medium rate to serve as an operating environment. Note that medium traffic
was selected to serve as white-noise and should not diminish identification

accuracy during post process analysis.
Netcat is started on the sensor to accept incoming HTTP requests.

Another script is executed on the Traffic Generator to start sending malicious
events at the specified rate. For this research, a password replay attack is
generated and sent using netcat. The script is set to run for 1 hour in order

to generate a sufficient amount of traffic for analysis.

33

5. Once the capture traffic reaches the size of 2MB for the base, low, and medium
rates or 20MB for the high rate, it is compressed using bzip2 and transferred to

the Log Analyzer using scp.

6. The Log Analyzer unzips and filters the traffic to remove standard traffic using

Snort and a custom signature filter.

All scripts record the outputs of each process and performance metrics are gathered
for each test. The performance metric associated with this test is accuracy. Accuracy

consists of events logged and events identified.

Parameters Rate Type Service Platform
Levels Low, Med,High Non-Standard ~ Web LAPT, Raspberry Pi, Gumstix

1 Low Non-Standard ~ Web LAPT
2 Medium Non-Standard ~ Web LAPT
3 High Non-Standard ~ Web LAPT
4 Low Non-Standard ~ Web Raspberry Pi
5 Medium Non-Standard ~ Web Raspberry Pi
6 High Non-Standard ~ Web Raspberry Pi
7 Low Non-Standard ~ Web Gumstix
8 Medium Non-Standard ~ Web Gumstix
9 High Non-Standard ~ Web Gumstix

Table 3.3: Identification test enumeration.

3.6.1 Effectiveness.

The results of the functionality and traffic identification tests for the two cyber sensors
are compared to the baseline laptop. Acceptable results may be case dependent based on the
financial limitations of the organization, however, for this research all performance metrics
within 5% of the baseline laptop are considered effective. The performance metrics that
will be compared are percent of packets logged, compressed, transferred, and identified, as

well as the time to compress the log files.

34

3.7 Methodology Summary

With the rapid push to integrate ICS into traditional IT networks, it is necessary to
employ security solutions. The approach taken in this methodology is to integrate localized
logging capabilities into these networks. ICS networks are the backbone of providing
critical services across the globe. Since the ability to monitor attacks is limited, this effort
determines if logging capabilities can be implemented cost effectively. The design of this
experiment consists of two main cases. The first case tests 4 rates using standard traffic
against the HTTP service for all 3 sensors, and is repeated 3 times. The second case tests
similar parameters differing only with 3 rates. Each experiment is designed to provide
metrics on performance that are used to evaluate the effectiveness of each cyber sensor

ultimately deciding if the sensor performs at an effective level.

35

IV. Analysis and Results

This chapter discusses research results. Implementation details for the evaluation
environment are discussed, followed by initialization checks run prior to each test. Next
are the results of the functionality and identification tests for each sensor: standard laptop,
Raspberry Pi, and Gumstix. An examination of the test results is discussed, followed by a

summary concluding the chapter.

4.1 Implementation Details

This section describes the implementation details of the cyber sensors, Log Analyzer,
and malicious event development.

4.1.1 Cyber Sensor.

A logging algorithm was developed and deployed across all three sensors. The
logging algorithm consisted of executing tcpdump, bzip2, and scp in a particular order
with specified configurations. Tcpdump is set to capture raw packets on port 80, that have
a source IP of the Traffic Generator. Once the traffic log reaches the specified size, it closes
the file, executes a script, and rotates to a fresh file. The script executes bzip2 to compress
the closed log file, transfers it to the Log Analyzer, and deletes the compressed file if the
transfer was successful. The transfer occurs on the back channel communication using
scp and is encrypted with a 2048 bit RSA public/private key pair. Note that the software
versions for tcpdump, bzip2, and scp were the same on all three cyber sensors. Further
details are described in Appendix C.

4.1.2 Log Analyzer.

The Log Analyzer is a VM running Ubuntu and Snort. As the logs are received
from the cyber sensors, they are decompressed using bzip2, and merged using mergecap.

Mergecap is a tool included in the libpcap library that merges multiple log files into one.

36

Snort is then executed on the merged file, to filter out all standard traffic, leaving only the
malicious events. The signature used in this research alerts on any traffic that does not
conform to standard traffic. Using this signature, Snort alerts on any traffic trying to access
the administrative page on a PLC web server. Specifically, the signature alerts when the
traffic data contains the username ‘administrator,” indicating that an attempt to log in with
administrator credentials has occurred. The Log Analyzer’s complete configuration and
Snort signatures is in section B.3.

4.1.3 Event Development.

For this research a man-in-the-middle attack was chosen to represent a malicious
event, specifically a password replay attack. Wireshark was used to capture traffic
from a Micro Logix 1400 PLC during a successful administrative login to the device’s
configuration web page. The page request was captured and used as the replay attack
payload, sent by the Traffic Generator. The Traffic Generator initiates a connection with
the cyber sensor via netcat, and transmits the payload. Specific event development details

are provided in Appendix B.

4.2 Initialization Checks

Prior to starting each test case, initialization and validation checks were executed to
ensure the systems were operational and functioning properly.

4.2.1 Functionality Test Case.

The following initialization and validation checks were executed for the functionality

test case:

e Network communications;

e The Traffic Generator sends intended traffic at the designated rate;

e The sensors capture, compress traffic, and transferring logs; and

37

e The Log Analyzer accepts transferred logs.

Network communications were tested by sending ICMP ping messages to each sensor.
A response from the sensor indicates proper configuration to communication on the
network.

To ensure the Traffic Generator was sending intended traffic, sample packets were
generated using Nping, captured on the cyber sensor under test, and inspected using
Wireshark. During testing, Wireshark’s packet inspection similarly ensured no data loss
within the packet. Nping’s rate flag indicates the rate in which to send packets, measured
in packets per second. It was noted that there can be differences between the set rate and
the actual rate the traffic is generated. This discrepancy can depend on many variables such
as packet-size, type, or interface speed. Due to these variables the tool had to be calibrated
for each sensor in order to achieve the value closest to the desired rate (1, 10, 100, 1000).
This was accomplished by incrementing Nping’s rate flag until the actual rate converged
on the desired rate. The calibration resulted in a range of packets per seconds for each rate
as shown in Table 4.1. Note that during the test cases, the average packet per second never

exceeded the bounds of the calibrated ranges.

Rate Desired (pps) Actual Rate (pps)

Base (1) 1
Low (10) 9-10
Medium (100) 70-85
High (1000) 730-770

Table 4.1: Calibrated rate ranges.

The traffic sent during the initialization check for the Traffic Generator was captured
on each sensor, compressed, and sent to the Log Analyzer where it was tested for data

loss using the checksum feature in the TCP protocol. The Log Analyzer received logs

38

transferred from each sensor successfully. Additionally, the number of logs sent by the
cyber sensors was compared to the number of logs received by the Log Analyzer, ensuring
100% accuracy.

4.2.2 Identification Test Case.

The following initialization and validation checks were added for the identification

test case:

e The Traffic Generator sends non-standard traffic; and

e The Log Analyzer executes Snort to identify malicious events.

This was validated by sending one malicious event to one of the sensors, that was then
logged and sent to the Log Analyzer where Wireshark was used to confirm its contents.
Snort was operating properly on the Log Analyzer and capable of identifying malicious
events. Snort was executed against the single event generated in the previous check to

validate successful operation.

4.3 Results

This section describes results of the functionality test and identification test for the
cyber sensors.

4.3.1 Functionality Test Case.

The main goal of this test was to evaluate the functionality and performance of each
cyber sensor. It examined how the three sensors perform under varying traffic rates (base,
low, medium, and high) to ensure they could log traffic, compress logs, and transfer
compressed logs appropriately. The metrics associated with these goals are percent of
packets logged, compressed, and transferred, as well as time to compress the logs files. A
detailed list of all results and calculations is provided in Appendix A.

Table 4.2 shows the consolidated results for the laptop. Traffic was successfully logged

during all rates except high, in which there was a slight loss of traffic logged. Captured

39

traffic was successfully compressed and transferred with 100% accuracy for all rates. Note
that the longest compression time of 3.92 seconds was on a 20MB file captured during the
high rate.

During traffic logging, it was observed that the base rate did not generate 2MB of data.
On average, this resulted in bzip2 compressing a 320KB file instead. It is expected to see
faster compression times for the base rate, due to a smaller original file size. Additionally,
it was also observed that bzip2’s compression ratio varied slightly. Compressing the 2MB
files used in the low and medium rates resulted in file sizes ranging from 81 KB to 82KB. It
was expected to see similar compression times between the two rates. However, upon
further investigation, it was noted that the low rate had an average file size of 81KB,
whereas the medium rate had an average file size of 82KB. Due to the higher compression

ratio used in the low rate, a longer compression time is expected.

Rate Logged Compressed Compression Time Transferred
Base (1) 100.00% 100.00% 0.09s 100.00%
Low (9-10) 100.00% 100.00% 0.40s 100.00%
Medium (70-85) 100.00% 100.00% 0.33s 100.00%
High (730-770) 99.93% 100.00% 3.92s 100.00%

Table 4.2: LAPT functionality results.

Table 4.3 shows the results for the Raspberry Pi. Both the base and low rates were
logged with 100% accuracy; however, the cyber sensor’s logging capability degraded as
the rate increased. The longest compression time was 119 seconds for a 20MB file. Note
that the base rate does not generate 2MB of traffic, instead the compression was done on
logs with an average file size of 320KB. The sensor compressed and transferred all captured

packets.

40

Rate Logged Compressed Compression Time Transferred

Base (1) 100.00% 100.00% 1.53s 100.00%
Low (9-10) 100.00% 100.00% 11.07s 100.00%
Medium (70-85) 99.61% 100.00% 11.57s 100.00%
High (730-770) 97.14% 100.00% 119.00s 100.00%

Table 4.3: Raspberry Pi functionality results.

Table 4.4 shows the results for the Gumstix Overo. At the base rate, the sensor logged,
compressed, and transferred all packets. As the rate of packets increased, percentage of the
logged traffic decreased. At the high rate of traffic generation, the sensor successfully
logs 94.28%. For compression time, the high rate generated a 20MB file, resulting in
a 158.27 second compression time. Once again, the base rate did not generate 2MB of
traffic, and resulted in compressing a 320KB log file in 1.78 seconds. Because both the
low and medium rates generated a 2MB log file, it was expected that their compression
time would be similar. However, on average, the low rate of traffic compressed data with
a higher ratio, resulting in an 80KB file, whereas the medium rate produced an 82KB file.
Due to the higher compression ratio, it is expected to see longer delays for the low rate of

traffic.

Rate Logged Compressed Compression Time Transferred
Base (1) 100.00% 100.00% 1.78s 100.00%
Low (9-10) 99.77% 100.00% 15.16s 100.00%
Medium (70-85) 96.36% 100.00% 13.95s 100.00%
High (730-770) 94.28% 97.37% 158.27s 100.00%

Table 4.4: Gumstix functionality results.

Although this test leverages a central log storage device, the Log Analyzer, the cyber
sensors have the potential to store log files for an extended period of time if the back channel

is not available or if the sensor is used primarily for forensic analysis. Table 4.5 shows the

41

average size of the generated traffic that is stored on the sensors, ordered by rate of traffic.
Note that the file sizes for all sensors is similar. For example, the laptop captured 245MB
of traffic during the high rate of traffic for 1 hour, which was compressed to 8.92MB for
local storage. Since the high rate of traffic generates the most amount of data, it is expected
that the sensors are capable of logging over 4 days of traffic per every 1GB of available
storage. The sensors ability to store log file for longer periods of time is dependent on the
size of the non-volatile storage used (microSD or SD card), and have the potential to be
expanded further via the use of USB hard drives. The implications of this observation are
such that these sensors posses the capability to store large amounts over an extended period

of time before being collected for analysis.

Sensor Rate Raw File Size Compressed File Size
Laptop Base (1) 320KB 16KB
Low (9-10) 2.86MB 137KB
Medium (70-85) 25MB 1.04MB
High (730-770) 245MB 8.92MB
Raspberry Pi Base (1) 320KB 16KB
Low (9-10) 2.86MB 137KB
Medium (70-85) 22.5MB 1.04MB
High (730-770) 241MB 8.92MB
Gumstix Base (1) 320KB 16KB
Low (9-10) 2.85MB 137KB
Medium (70-85) 22.4MB 1.03MB
High (730-770) 230MB 8.91MB

Table 4.5: Total log sizes based on rate.

4.3.2 Identification Test Case.

The main goal of this test was to evaluate the ability to capture and identify non-
standard traffic, referred to as malicious events. A captured event is one that is logged
on the sensor, compressed, and transferred to the Log Analyzer with no loss of data. A

malicious event is successfully identified when the Log Analyzer filters and identifies non-

42

standard traffic by using Snort with custom signatures. The metrics associated with this
goal are the percentage of events logged and percentage of events identified.

Table 4.6 shows malicious events for the laptop. In each instance, 100% of events
were logged. This indicates that the events were captured on the laptop, compressed, and
transferred to the Log Analyzer without loss of data. 100% of events were accurately

identified by the Log Analyzer signatures.

Rate Logged Identified

Low (5) 100.00% 100.00%
Medium(10) 100.00% 100.00%
High (20) 100.00% 100.00%

Table 4.6: LAPT identification results.

Table 4.7 shows results for the Raspberry Pi. 100% of malicious events were logged

and identified.

Rate Logged Identified

Low (5) 100.00% 100.00%
Medium (10) 100.00% 100.00%
High (20) 100.00% 100.00%

Table 4.7: Raspberry Pi identification results.

Table 4.8 shows results for the Gumstix. The sensor logged 100% of malicious events
for low and medium rates. At the high rate 98.33% of events were logged. As noted during
the packet capturing process from the functionality test, it is expected to see some event
loss during the high as well. The cyber sensor did, however, successfully identify all events

that were captured.

43

Rate Logged Identified

Low (5) 100.00% 100.00%
Medium (10) 100.00% 100.00%
High (20) 98.33% 100.00%

Table 4.8: Gumstix identification results.

4.3.3 Examination.

Due to the varying nature of ICS networks, it is important that the all sensors
perform effectively under different workloads and environments. Figure 4.1 compares the
percentage of packet loss between the three cyber sensors. Note that the 95% confidence
interval generated for each value is too small to be accurately represented in the figure.
The laptop performed consistently with little packet loss during all rates, the Raspberry Pi
started showing an increase of packet loss at the high rate, whereas the Gumstix started
showing a larger increase of packet loss at the medium rate. The Raspberry Pi out-
performed the Gumstix sensor by 2.86% at the high rate. This may become a factor in
some environments, but in either situation the sensors performed at or above 94.28% under
the highest rate of traffic tested. Note that for this research a cyber sensor is only considered
effective if it performs within 5% of the baseline. For packets logged, the Gumstix sensor
is not considered effective at the high rate of traffic.

Although not optimal, the findings demonstrate an ability to successfully log traffic
and provide a capability that currently is void in ICS security. Additionally if these sensors
are deployed on an ICS network with low to medium traffic, they would capture traffic with

little to no data loss.

Figure 4.2 compares the compression time between the three cyber sensors. On all
sensors, the base rate generated a 320KB file, low and medium produced a 2MB file,

whereas high generated a 20MB file. During the base, low, and medium rates both sensors

44

Packet Loss

5.72%

3.64%

-
w
S o003 —#=—Lapt
#

2.86%
== Rasp
0.0z
/ Gum
0.01

0.39%
0.23% 0.07%
0 rmoo - a : - d : *

Base Low Medium High
Rate (packets/second)

Figure 4.1: Percentage of packet loss by cyber sensor.

performed similarly. However, during the high rate, larger differences between the sensors
were observed, which is indicative of the sensor’s limited resources. On average, it takes
119 seconds to compress a 20MB log file on the Raspberry Pi, and 158.27 seconds on the
Gumstix sensor. Note that when compared to the baseline laptop, both the Raspberry Pi
and Gumstix sensors do not perform within 5% on any rate of traffic, and therefore are not
considered effective for compression time.

Upon further investigation it was discovered that the Gumstix sensor had a higher
rate of compression than both the Raspberry Pi and standard laptop. Table 4.9 shows the
compression ratio measured by percent of the original file size. Note that because the
Gumstix compresses at a higher rate it takes longer for the process to execute. If these
sensors are used for logging and forensic analysis, then the compression time is negligible
and a 5% loss may be acceptable. However, if the sensor is used to react to an attack in
real-time on a network equivalent to the high rate (e.g., 700 packets per second), the analyst

may have over a two-and-a-half minute delay to understand and react accordingly.

45

Note that since the Raspberry Pi is restricted to use a WiFi dongle as its second
network communication interface, it is limited to wireless communication speeds, in
this case 150 MBPS. The result could introduce an additional time delay and may be a

consideration when deploying it particular environments.

Compression Time
180.00
15827
160.00
14000 —
11900
12000 —
£ 100.00 —
8 MLapt
< B0.00 —
v M Rasp
60.00 —
Gum
40.00 —
20.00 ETRET 11.0 15.16 115713.95 |
009t - 0.40 0.33
0.00 ' B ,
Base (320KB) Low (2MB) Medium (2MB) High (20MB)
Rate (packets/second)

Figure 4.2: Compression times by sensor.

Sensor 320KB 2MB 20MB
Laptop 5.2% 4% 3.4%
Raspberry Pi 5.2% 4% 3.4%
Gumstix 52% 39% 3.3%

Table 4.9: Compression ratio for each sensor measured by percent of original file size.

Because of the noted loss during the packet capturing process, it was expected to see
some loss during the event capturing process as well. This is evident in the high rate of
events for the second test. It is important to note that so long as the event was captured

it was always identified. This means that the events that were captured by the sensor,

46

compressed, and transferred to the Log Analyzer were identified 100%. For all sensors,
Snort was able to identify all of the events that were transferred to it. All three sensors
captured 100% of events except for the Gumstix, which lost one event during the high rate.
This indicates that the most important function of the sensor is the ability to accurately log
traffic.

All of these factors should be taken into account when assessing if either of the cyber
sensors will perform sufficiently, as the success of the sensor depends on the environment

in which it is deployed.

4.4 Degradation Observations

During the functionality test, it was observed that in the worse case scenario across
both sensors, only a 6% degradation occurred at the highest rate of traffic. Asset owners
may be curious to know the threshold of the sensors, and where they begin to fall below an
acceptable performance. After the functionality and identification tests were completed, a
pilot evaluation was conducted to examine the impact of traffic rates beyond those tested.
This was accomplished by adding multiple Traffic Generators to increase the rate of traffic,
and recording the logging performance of each sensor.

Figure 4.3 shows the degradation trend between the Raspberry Pi and Gumstix
sensors. One interesting observation is that the Gumtix sensor starts out-performing the
Raspberry Pi at around 1,000 packets per second. As demonstrated in the functionality
test, the opposite was observed during traffic rates below 800 packets per second. This
indicates that as the rate of traffic increases, the Gumstix sensor may fail more gracefully
than the Raspberry Pi. The Raspberry Pi starts performing below 50% at approximately
2,200 packets per second, whereas the Gumstix falls below 50% until at approximately

2,800 packets per second.

47

Degradation Trend

7%

Be%
Nﬁa
04%
-
TT%
8 con 54%
a% \\ == Gumstix
35%

40% == Raspberry Pi

40% o
20% TG
D% T T T T 1
730 1250 1700 2700 5400

Rate (packets per second)

Figure 4.3: Degradation trend.

4.5 Results Summary

Both the Gumstix and Raspberry Pi cyber sensors were successful in capturing traffic
with slight performance degradation as the rate of traffic was increased. They were also
successful in identifying the malicious event used in this research with 100% accuracy.
Both sensors are considered effective at successfully compressing and transferring log
files. The Raspberry Pi is considered effective at logging traffic, whereas the Gumstix
sensor failed to be effective during the high rate of traffic. Both, the Raspberry Pi and
Gumstix sensors failed to be considered effective at compression times when compared to
the baseline laptop. As the results indicate, the Raspberry Pi out-performed the Gumstix
sensor in all tests. The performance of the Raspberry Pi along with its lower cost indicates
that this sensor is the optimal choice when deployed on ICS networks that has a low to
medium amount of network traffic.

The overall results are promising for deploying a sensor that captures traffic and

forwards it to a centralized system for analysis. The findings also demonstrate a

48

requirement to optimize the processing at a higher rate of traffic to reduce the number

of packets that are not logged.

49

V. Conclusions

This research introduced a robust logging capability that utilizes small, inexpensive
sensors. The highly distributive nature and low cost of these sensors offer situational
awareness for ICS environments where it is currently lacking. Indeed, the sensors afford the
ability to capture and analyze traffic for suspicious activity. Employment of sensors into
production environments helps identify and subsequently categorize patterns associated
with malicious behavior. This data can be used to gain insight into attacker tactics (e.g., port
scans, vulnerability scans, and zero-day exploits) and characteristics (e.g. attack origin,
frequency, and level of persistence), as well as provide early warning capabilities needed
to thwart future attacks.

This research tested the functionality and identification capability of the Raspberry Pi
and Gumstix sensors. The Raspberry Pi was successful in capturing 100% of the traffic
on the base and low traffic rates, with marginal performance degradation as the traffic rate
increased to high. The Gumstix sensor was successful at capturing 100% of the traffic on
the lowest rate of traffic, and slightly degraded in performance as the traffic rate increased. It
is important to note that other factors, such as compression and transfer time, may become
bottlenecks when the sensors are used for real-time analysis. The findings indicate that the
Gumstix sensor will work best in ICS networks with low rates of traffic, and that further
optimization is needed for high rate systems. However, the Raspberry Pi out-performed the
Gumstix sensor in packet logging, log compression accuracy, and compression time. It is
best suited for networks with low to medium traffic rates and, based on cost effectiveness, is
the optimal sensor for most environments. Note that the transmission rate of the Raspberry
Pi sensor for back channel communication is limited to wireless speeds, and may have
additional delays in certain environments. Both the Raspberry Pi and Gumstix sensors

successfully identified 100% of malicious events.

50

During the high traffic rate, for the Gumstix, the logging capability was not within
5% of the baseline laptop and according to the prerequisite goals of this research it
is not considered effective. Additionally, due to the sensors’ limited resources, the
compression time for both sensors is not considered effective, however, there is a potential
for optimization in future work. Note that based on the organizational requirements and
environment, anything over 5% may be an acceptable loss.

In summary, both the Raspberry Pi and Gumstix sensors can perform in most ICS
networks with little to no data loss. The sensor’s ability to be distributed at any layer of
ICS networks to gather data on network attacks can provide the necessary foundation to

increase situational awareness in the ICS domain.

5.1 Applications

Some applications of these sensors can be put to use immediately without further
optimization. These applications include deploying with ICS-CERT incident response
teams, gathering network performance metrics, and building a state-based operational
picture of a ICS network.

5.1.1 ICS-CERT Incident Response.

When an ICS-CERT incident response team is contacted by ICS facilities alerting to
a possible compromise, their first action is typically to send a responder out to assess the
situation. In essence, the responder collects data on the ICS environment and sends it back
to ICS-CERT for further forensic analysis. Instead of sending a responder to assess the state
of the ICS environment, cyber sensors can be shipped overnight and connected throughout
the network to collect traffic remotely to send logs back for further analysis. The sensors
can then be left on the network to continue gathering data and send back to ICS-CERT for

ongoing analysis.

51

5.1.2 Network Performance Metrics.
Another application of the sensors can be to gather network performance metrics on
ICS networks. The network traffic can be collected and analyzed to answer questions such

as:

Are devices performing as expected?

What is the time delay between two points in the network?

Is device traffic in compliance with regulatory guidelines?

What time of day is the network utilized the most?

Where are the most active parts of the network, and how can they be optimized to

ensure stability?

5.1.3 Operation Picture.

Asset owners can deploy cyber sensors into their ICS networks to gather data and
build a standard traffic history. The standard traffic history can be used to develop a ‘safe
state’ composed of healthy network activity. If an incident were to occur, new data can be
compared to the safe state in order to understand when and how the network transitioned
into an unsafe state. Additionally, the sensors are already in place before an attack occurs,

providing incident responders the pertinent information they need to resolve the issue.

5.2 Future Work

Future work includes the development of additional attack signatures for ICS,
optimizing the sensors, deployment in operational environments, and providing additional
capabilities.

5.2.1 Snort Signatures.

Follow on work for the cyber sensors includes developing more attack signatures for

ICS used by Snort to detect malicious activity. These signatures should encompass multiple

52

protocols and should be narrowly tailored to ICS environments. In addition to attack
signatures, another area of research is expanding white-listing capabilities for predictable
ICS traffic. Due to the predictable nature of ICS traffic, a white-listing approach can be used
to identify any traffic that does not conform to expected patterns. Developing a solution that
employs both attack signatures and white-list signatures will improve event detection for
known and unknown attacks.

5.2.2 Optimization.

During this research, there was data loss during heavy traffic loads. Optimizing the
cyber sensors’ performance may be necessary before employing them in ICS environments
with high rates of traffic. Some areas that show potential for optimization are: the logging
algorithm, tcpdump, bzip2, and the operating system. During the evaluation, a pilot study
was performed to examine the degradation trend of each sensor. An in-depth analysis of
the failure rate of these sensors should be conducted to determine how they perform under
extreme rates of traffic such as denial-of-service attacks.

5.2.3 Deployment in Operational Environment.

Implementing cyber sensors into an operational environment may introduce additional
restrictions that affect the sensor’s ability to log, compress, and transfer traffic adequately.
Employing the cyber sensors in an operational ICS environment will further evaluate
their capabilities. Additionally, determining the most effective placement of the sensors
throughout an ICS network should be evaluated.

5.2.4 Additional Capabilities.

Follow on work for the cyber sensors includes expanding their initial capabilities
beyond network traffic logging, such as firewalls and log repositories. Firewalls can be
installed on the sensors to further regulate traffic between ICS end devices. Additionally,
the sensors can be configured to be cost effective log servers that store various log files,

such as event logs, systems logs, and application logs.

53

5.3 Concluding Remarks

Situational awareness is an inherent problem in the ICS domain. This research
demonstrated a method to employ inexpensive cyber sensors into ICS environments that
will provide operators and asset owners more detailed analysis. As further research is
conducted and adopted among the control systems community, the findings will enable
security professionals to draw accurate awareness of the threats against ICS and help shift

the security posture from reactionary to preventative.

54

Appendix A: Test Data

55

9¢

Run 1

Rum 2

Run 3

Aparagay

Test 1: Functionality

Parameters Fresquency Type Service Platiarm Metrics
Leyels RBun Order | Low, Med Migh | Standard Wieh LAPT, Raspberry Pi,| Gumstiz Meuracy
Logged Comprassed Transferred
Sent Received Lost Rate % Logged Possible | Actual |Lost| % Compressed | Timing (5] Lost | % Transferred | Timing (<]

1 2 Standard LAPT 3528 3588 1] 0.298 100.00% 1 1 o 100.00% 0.1] 100.00% 533
2 g Standard LAPT 32062 32962 1] 9.16 100.00% 2 2 1] 100.00% 0.40] 100.00% 5.40
3 1 Standard LAPT 283074 285074 1] 803 100.00% 12 14 1] 100.00% 0.34] 100.00% 5.34
4 4 Standard LAPT 2381910 | 22E1091 819 63363 99.96% 13 13 1] 100.00% 3,58 a 100005 5.42
5 5 5 Raspberry Pi 3500 3550 1] 0.997 100.00% 1 1 1] 100.00% 154 a 100.00% 5.89
6] Srandard Raspberry Pi 32885 329BS 1] 916 100.00% 2 2 1] 100.00% 13.18 a 100.00% 6.20
7 10 Standard Raspberry Pi 269158 26057 1101 T4.45 99.59% 10] 0 1000003 11.57] 100.00% 7.00
2 2 Standard Raspberry Pi E85320 | 2809215 76105 | 78028 S97.36% 13 13 0 1100 0% 11%.47 [100.00% 7.69
9 7 Standard Gurmstia 3581 3591 1] 0.298 100.00% 1 1 1] 100.00% 1.77 1 1] 100.00% 5.53
10 11 Standard Gurmstin 312976 32911 B5 9.14 o9.800% 2 2 1] 100.00% 14.24 2 2 a 100005 555
11 3 Standard Gurmstin 263378 255713 9665 7114 96.41% 12 12 1] 100.00% 16.14 12 12 a 100005 5.54
12 12 Standard Gumstin 2EBO30E | 27225931 | 157715 | 756.23 84.5F% 12 11 1 91.67% 15236 11 11 1] 1001003 568
1 2 Standard LAPT 3502 3542 1] 0.998 100.00% 1 1 1] 100.00% 1 1 a 100005 526
2 [Srandard LAPT 32060 32960 1] 9.16 100.00% 2 2 1] 100.00% 2 2 a 10003 532
3 5 Standard LAPT 287559 287599 1] 7989 100.00% 14 14 o 100.00% 1 14] 100.00% 533
4 1 Standard LAPT 2835703 | 2837578 2125 | 78812 29.93% 13 13 o 100.00% 13 13] 100.00% 539
5] Standard Raspberry Pi 3589 3589 1] 0.997 100.00% 1 1 a 100000 1 1] 100.00%

& 3 Standard Raspberry Pi 32585 32985 1] 9.16 100.00% 2 2 a 100000 2 2] 100.00%

7 1 Standard Raspherry Pi 25TEE J5EHE3 TEL 7135 o970 1z 12 1] 100,00 12 1z a 100003

a 10 Standard Raspberry Pi JBSE934 | 2774770 2164 | TTOT a71FK 13 13 o 100,00 13 13 a 100.00% 3

g 4 Srandard Gurmstia 3500 3550 1] 0.997 100.00% 1 1 1] 100.00% 1 1 a 10003 5.54
10 2 Standard Gurmstia 32982 32884 B3 913 29.73% 2 2 o 100.00% 2 2] 100.00% 5.55
11 11 Standard Gurmstia 260238 251746 2492 70 96.74% 12 12 o 100.00% 12 12] 100.00% 5.54
12 7 Standard Gurmstin 2B25782 | 2664848 | 160834 | 74015 94.31% 13 13 1] 100.00% 13 13 [] 100005 573
1 9 Standard LAPT 3503 3593 [1] 0.998 100.00% 1 1 1] 100.00% 1 1 [] 100005 530
2 3 Standard LAPT 32583 32983 1] 9.16 100.00% 2 2 1] 100.00% 2 2 a 100005 535
3 11 Srandard LAPT 2EILI6 JR0ATE 1] 5039 100.00% 14 14 1] 100.00% 1 14 a 10003 528
4 Srandard LAPT 2B04118 | JB01E9E 2333 7783 99.97% 13 13 1] 100.00% 13 13 a 100003 5.40
5 10 Standard Raspberry Pi 3590 3590 0 0.997 100.00% 1 1 0 1000003 1 1] 100.00% 5.90
& 2 ndard Raspberry Pi 32580 32980 0 9.16 100.00% 2 2 0 1000003 2 2] 100.00% 6.00
7 12 ndard Raspberry Pi 257109 255972 1137 71 99.56% 12 12 a 100000 12 1z] 100.00% 5.90
& 1 ndard Raspherry Pi 2B133096 | 2726B5% 86537 | 7574 96.97% 13 13 1] 100,00 13 13 a 100.00% 6.90
g 7 Standard Gurmstin 3500 3550 1] 0.287 100.00% 1 1 1] 100.00% 1 1 a 100005 5.54
10 8 Srandard Gurmstia 32575 32902 73 9.14 99,78 2 2 1] 100.00% 2 2 a 10003 5.57
11 L Srandard Gurmstia 2ETEET 57040 10847 Ti4 95.95% 12 12 1] 100.00% 12 12 a 10003 5.54
12 E] Standard Gurmstin 2B3I55S | J6E3ISAT | 169562 | 74147 94.0F% 13 13 1] 100.00% 13 13 [] 100005 575
1 1 Standard LAPT 355100 3591.00 Q.00 loo 100.00% 1.00 100.00% 0.09 100 1.00 a 100005 530
2 8-10 Srandard LAPT 37065.33 | 32968.31 000 9.16 100.00% 200 100.00% 0.40 200 200 a 10003 536
3 T0-85 Standard LAPT Z38699.67 | 2EBES9.ET 0.00 80119 100.00% 14.00 100.00% 0.33 14.00) 1400] 100.00% 532
4 T30-T70 Standard LAPT 2641910.33| 2640188.33| 1722.00 | 733.38 29.93% 13.00 100.00% 382 13.00) 13.00] 100.00%

5 1 ndard Raspberry Pi 358967 35B9.67 0.00 100 100.00% 1.00 100000 Loo 1.00] 100.00%

& 810 ndard Raspberry Pi 329E3.33 | 3398333 0.00 9.16 100.00% 2.00 100000 200 200] 100.00%

7 TO-85 randard Raspherry Pi 261310033 | 26030400 | 1006.33 | 7227 99.61% 1133 100,00 11.331] 1133 a 100003

a T30-T70 ndard Raspberry Pi 285188133 I770281.33| 81602.00 | 769.46 aris% 13.00 100,00 =X 13.00) 13.00 a 100003

g 1 Srandard Gurmstia 353033 3500.33 000 ioo 100.00% 1.00 100.00% 1.78 100 1.00 a 10003

10 8-10 Standard Gurmstia 33977.67 | 3290233 7533 9.14 29.77T% 2.00 100.00% 15.16 200| 200] 100.00% 5.56
11 T0-85 Standard Gurmstia 265834.33 | 25616633 | S663.00 | 7118 96.35% 12.00 100.00% 13.95 12.00) 1200] 100.00% 5.54
12 T0-TF0 Standard Gurmstin 2545545 67 2683846.00 | 16270367 745.55 425K 1267 97.37% 15827 [1233] 1233 [] 100005 572

Figure A.1: Functionality Test Full Results

LS

Run 1

Run 2

Run3

Averages

Test 2: Traffic Identification

Parameters Freguency Type Service Platform Metrics
Levels Run Order High, Med, Low Mon-Standard Web PC, Raspberry Pi, Gumstix Logging Accuracy Identification Accuracy
Sent Logged Last % Logged | Identified | % Identified
1 3 Low Nan-Standard Web LAPT 5 5 a 100.00% 5 100.00%)
2 4 Medium Naon-Standard Web LAPT 10 10 1] 100.00% 10 100.00%)
3 7 High Nan-Standard Web LAPT 20 20 a 100.00% 20 100.00%)
4 1 Law Mon-Standard Web Raspberry Pi 5 5 0 100.00% 5 100.00%
5 [Medium Mon-Standard Web Raspberry Pi 10 10 a 100.00% 10 100.00%
b 9 High Mon-Standard Web Raspberry Pi 20 20 L] 100.00% 20 100.00%
i 8 Low Maon-Standard Web Gumstix 5 5 0 100.00% 5 100.00%)
B 2 Medium Non-Standard Web Gumstix 10 10 0 100.00% 10 100.00%
9 5 High Naon-Standard Web Gumstix 20 20 1] 100.00% 20 100.00%)
10] Low Naon-Standard Web LAPT s 5 1] 100.00% s 100.00%)
11 3 Medium Nan-Standard Web LAPT 10 10 a 100.00% 10 100.00%)
12 7 High Non-Standard Web LAPT 20 20 (1] 100.00% 20 100.00%
13 5 Law Mon-Standard Web Raspberry Pi 5 5 a 100.00% 5 100.00%
14 [Medium Mon-Standard Web Raspberry Pi 10 10 1] 100.00% 10 100.00%
15 1 High Mon-Standard Web Raspberry Pi 20 20 0 100.00% 20 100.00%
16 4 Low Non-Standard Web Gumstix 5 5 0 100.00% 5 100.00%
17 2 Medium Maon-Standard Web Gumstix 10 10 0 100.00% 10 100.00%)
18 a High Mon-Standard Web Gumstix 20 19 1 95.00% 19 100.00%
19 1 Low Nan-Standard Web LAPT 5 5 a 100.00% 5 100.00%)
20 7 Medium Non-Standard Web LAPT 10 10 (1] 100.00% 10 100.00%
21 5 High Naon-Standard Web LAPT 20 20 1] 100.00% 20 100.00%)
22 [Law Mon-Standard Web Raspberry Pi 5 5 1] 100.00% 5 100.00%
23 3 Medium Mon-Standard Web Raspberry Pi 10 10 0 100.00% 10 100.00%
24 8 High Mon-Standard Web Raspberry Pi 20 20 1] 100.00% 20 100.00%
25 4 Low Maon-Standard Web Gumstix 5 5 0 100.00% 5 100.00%,
26 2 Medium Non-Standard Web Gumstix 10 10 0 100.00% 10 100.00%
27 9 High Non-Standard Web Gumstix 20 20 (1] 100.00% 20 100.00%
1 5 Naon-Standard Web LAPT s 5 1] 100.00% 5 100.00%
2 10 Naon-Standard Web LAPT 10 10 1] 100.00% 10 100.00%
3 20 Non-Standard Web LAPT 20 20 (1] 100.00% 20 100.00%
4 5 Mon-Standard Web Raspberry Pi 5 5 0 100.00% 5 100.00%
5 10 Mon-Standard Web Raspberry Pi 10 10 1] 100.00% 10 100.00%
b 20 Mon-Standard Web Raspberry Pi 20 20 0 100.00% 20 100.00%
7 5 Non-Standard Web Gumstix 5 5 0 100.00% 5 100.00%
8 10 Maon-Standard Web Gumstix 10 10 0 100.00% 10 100.00%
9 20 Naon-Standard Web Gumstix 20 19.67 033 98.33% 19.67 100.00%

Figure A.2: Identity Test Full Results

Appendix B: Scripts and Code

B.1 Traffic Generator
nping.sh

This script executes Nping to generate traffic at a desired rate.

1 sudo nping —tcp ——data—length 21 —-c $1 —-rate $2 $3 &
2 sleep 1lh;
3 sudo killall -2 nping;

replay.sh

This script sends the replay attack payload to the device.

1 #!/bin/bash
2 c=1
3 freq=%$2
4 while [$c —-le $freq |
5 do
6 if [$freq ==]; then
7 t=10
8 fi
9 if [$freq == 10]; then
10 t=5
11 fi
12 if [$freq == 20]; then
13 t=2
14 fi
15 echo “Run:.$c”
16 sudo nc -n —i 5 $1 80 —c ’cat payload’ | grep HTTP
17 ((c++))
18 sleep $t’m”;
19 done
payload

This is the payload used in the replay attack.

GET /svr_set.htm HTTP/1.1

1
2
3 Host: 192.168.0.102
4

58

@)}

10
11

12
13
14
15
16
17

Proxy—Connection: keep—alive

Authorization: Digest username="administrator”, realm="1766-
L32AWA_B/11.00”, nonce="
a4b8c8d7e0f6a7b2c3d2e4f5a4b7c5d2e7f”, uri="/svr_set.htm”,
algorithm=MDS5, response="4d0f097f3dbbf6bcaa5f9841a3019dfa”
, qop=auth, nc=00000001, cnonce="b963861c153b5233”

Accept: text/html,application/xhtml+xml, application/xml;q
=0.9,%/%;9=0.8

User—Agent: Mozilla/5.0 (Windows NT 6.1; WOWH) AppleWebKit
/537.17 (KHIML, like Gecko) Chrome/24.0.1312.57 Safari
/537.17

Referer: http://192.168.0.100/ navtree .htm

Accept—Encoding: gzip,deflate ,sdch

Accept—Language: en-US,en;q=0.8

Nping Result

This is an example of the output of Nping after execution.

N

Max rtt: 66.310ms | Min rtt: 0.017ms | Avg rtt: 0.017ms

Raw packets sent: 2885320 (176.005MB) | Rcvd: 2885108
(132.715MB) | Lost: 212 (0.01%)

Tx time: 3600.94005s | Tx bytes/s: 0.00 | Tx pkts/s: 0.00

Rx time: 3601.94005s | Rx bytes/s: 0.00 | Rx pkts/s: 0.00

Nping done: 1 IP address pinged in 3600.94 seconds

B.2 Log Analyzer

unzipNmerge.sh

This script unzips log files and merges them.

bunzip2 $1=x
mergecap $1x —-w $2
bzip2 $1=

59

B.3 Snort Signatures
runSnort.sh

This script runs Snort to identify malicious events.

1 sudo snort -r $1 —-A full —c “/snort/local.rules -1 ~/snort/
logs/
local.rules

This is the black-list signature file used to identify the replay attack.

1 alert tcp any any —> any 80 (msg:”Admin_Login”; content:”
administrator”;sid:1000111;nocase)

white.rules

This is the white-list signature file used to identify the replay attack.

1 alert tcp any any —> any 80 (msg:”Non-standard_Traffic”;
window :11480; flags : |R;sid=1000119)

alertCount.sh

This script was used to count malicious events after Snort filtered them out.

1 cat alert_$175”% | grep Login | wc -1
2 cat alert_$1710”« | grep Login | wc -1
3 cat alert_$1720”% | grep Login | wc -1

B.4 Gumstix, Raspberry Pi, and Standard Laptop
tcpdump.sh

This script executes tcpdump on the sensor.

1 sudo tcpdump port 80 —nnXvvSs 0 —C $4 —w $1 —z ./ zipNship.sh
—i ethO0 and src $2 and dst $3 &

2 sudo sleep 62m;

3 sudo killall -2 tcpdump;

zipNship.sh

This script compresses and sends the log files to a centralized server.

60

1 #! /bin/sh

2

3 bzip2 $1

4

5 if [-f $1.bz2]

6 then

7 scp —i /home/pi/.ssh/id_rsa $1.bz2 user@$2:/home/user/
tcplogs

8 STATUS=$?

9 else

10 echo ”zip_file._does_not_exist”

11 exit

12 fi

13 if [$STATUS -eq 0]

14 then

15 rm —f ”$1.bz2”

16 else

17 echo 7scp.failed”

18 fi

nc-listen.sh

This script starts netcat as a listener on each sensor.

1 while true; do sudo nc —-lvp 80; done

Tcpdump Output

This is an example output of tcpdump after execution.

1 2281091 packets captured
2281911 packets received by filter
3 820 packets dropped by kernel

61

Appendix C: Configurations

C.1 Experiment Randomization
These steps were taken to randomize the tests conducted in this research. Randomizing

the test ensures statistical significance from equipment anomalies.

—_—

. Open Excel
2. Number 1-12 in one column

3. Use the Rand() function to generate random numbers in the second column, ensure

each number (1-12) has an associated random number

4. Order the two columns by the second column (random number) and use the first

column as randomized run order.

5. Repeat for Identity Test. See Table C.1 for the Functionality Test and Table C.2 for

the Identification Test.

Once the randomization is complete, the randomized integers (1-12) are used as the
run order show in Appendix A. For example, the first test during run 1 of the functionality

test case is for the laptop using a medium rate of traffic.

62

Runl Run2 Run3

8 10.033961 | 2| 0.019748 | 9 | 0.072526

9 10.156853 0.067562 | 6 | 0.151557

W | O\

1]0.202113 0.069656 | 11 | 0.271843

41 0.25293 | 1]0.092817 | 4 | 0.284646

510332345 | 9| 0.471312 | 10 | 0.324353

6 0.3596 | 3| 0.603972 | 2 | 0.365958

10 | 0.379342 | 12 | 0.668211 | 12 | 0.491657

21 0.391605 | 10 | 0.732998 | 1 | 0.534157

710419383 | 4| 0.745249 | 7| 0.733333

11 0.5819 | 8 | 0.746738 | 8 | 0.865366

310847273 | 11 | 0.771163 | 5 | 0.950034

12 | 0.861974 | 7| 0.777119 | 3 | 0.963456

Table C.1: Randomized table for Functionality Test

63

Runl Run2 Run3

310.398512 | 8 | 0.180933 | 1 | 0.038384

410414042 | 3 | 0.259183 | 7 | 0.180268

7 | 0.632219 | 7 | 0.282256 0.315046

5
1]0.029468 | 5 | 0.312254 | 6 | 0.33644

0.590719 | 6 | 0.344602 | 3 | 0.337531

6
91 0.92956 | 1 | 0.349315 | 8 | 0.501056

8 10.663341 | 4 | 0.39797 | 4 | 0.525709
21 0.061786 | 2 | 0.540214 | 2 | 0.680244
510521138 | 9 | 0.635688 | 9 | 0.923471

Table C.2: Randomized table for Identification Test

64

C.2 Gumstix Setup
I. BUILDING OVERO OPEN EMBEDDED IMAGE
The following directions are an excerpt from the guide (http://gumstix.org/software-

development/open-embedded/61-using-the-open-embedded-build-system.html) [1]:

1. Build a new machine with the Ubuntu 10.10 x86 ISO file to act as the development

laptop.
(a) http://releases.ubuntu.com/10.10/ubuntu-10.10-desktop-i1386.is0

2. Once booted, use the Update Manager to update the default packages. Do not

upgrade to Ubuntu 11.04 or other versions.

3. Open the synaptic package manager and select the following packages for install:

(a) git

(b) subversion
(c) gee

(d) build-essential
(e) help2man

(f) diffstat

(g) texi2Zhtml

(h) texinfo

(1) libncurses5-dev
() cvs

(k) gawk

(1) python2.7-dev

65

10.

11.

12.

13.

14.

15.

16.

17.

18.

(m) python-pysqlite2
(n) unzip
(o) chrpath

(p) ccache

sudo dpkg-reconfigure dash

(a) Answer No when asked whether you want to install dash as /bin/sh.

. mkdir -p -/overo-oe

cd -/overo-oe

. git clone git://gitorious.org/gumstix-oe/mainline.git org.openembedded.dev

. cd org.openembedded.dev

. git checkout —track -b overo-2011.03 origin/overo-2011.03

cd -/overo-oe

git clone git://git.openembedded.org/bitbake bitbake

cd bitbake

git checkout 1.12.0

cd -/overo-oe

cp -r org.openembedded.dev/contrib/gumstix/build .

cp ~/.bashrc -/bashrc.bak

cat -/overo-oe/build/profile >>_/.bashrc

Close the Terminal window and open a new one.

66

19. gedit -/overo-oe/org.openembedded.dev/recipes/images/omap3-console-image.bb

(a) Save and close the window

20. bitbake omap3-console-image

21. The Overo file system is built at: -/overo-oe/tmp/deploy/glibc/images/overo/omap3-

console-image-overo.tar.bz2

22. The Overo OE Linux Kernel is built at: -/overo-oe/tmp/deploy/glibc/images/overo/ulmage-

overo.bin

II. PARTITIONING BOOTABLE SD CARD FOR OVERO IMAGE
The next five sections are excerpts from the two guides, (http://gumstix.org/create-a-bootable-

microsd-card.html) and (http://gumstix.org/how-to/70-writing-images-to-flash.html) [1]:

1. df

2. umount /media/

3. umount /

III. DEPLOYING OVERO IMAGE

1. On the development laptop:

2. Delete the current file structure, if any, on the EXT3 partition of the micro SD card

(a) sudo nautilus

(b) Edit >Preferences >Behavior >Check Include a Delete command that bypasses

Trash
(c) Select rootfs

(d) Select all files >Right Click >Delete

67

3. Copy the contents of /overo-oe/tmp/deploy/glibc/images/overo/omap3-console-

image-overo.tar.bz2 into the rootfs partition of the micro SD card.
4. On the micro SD card FAT partition:

(a) Delete ulmage
(b) Copy ulmage-<kernel version>-overo.bin into /

(c) Rename ulmage-<kernel version>-overo.bin to ulmage

IV. BOOTING OVERO IMAGE CONSOLE

1. Power off the Overo board.
2. Insert the newly created micro SD card into the micro SD slot of the Overo board.

3. Connect a USB cable between the Console mini USB B port on the Overo board and

the development laptop with ckermit installed.

4. On the development laptop create a file called overo_serial.cfg
set line /dev/ttyUSBO (Note: 0 might changed)
set flow-control none
set carrier-watch off
set speed 115200
set reliable
fast
set prefixing all
set file type bin
set rec pack 4096
set send pack 4096
set window 5

connect

68

. Open a terminal and type:

(a) kermit

(b) take overo_serial.cfg

. Power on the Overo board. You should see the boot sequence displayed on the

terminal. It will finish with a prompt to login.

. Enter “root” as the username to log in.

. To exit kermit:

(a) ctrl-/-c

(b) Type: exit

V. COMPILING TCPDUMP FOR OVERO IMAGE

1. On the development laptop:

(a) bitbake tcpdump

2. Packages will be built in: /overo-oe/tmp/deploy/glibc/ipk/armv7a

3. Copy the packages onto the Overo EXT3 partition

(a) sudo scp ./tcpdump_<version number>.ipk <overo IP addres>:/home/root

4. On the Overo console, install the package

(a) opkg install ./tcpdump_<version number>.ipk

VI. REMOVING UNWANTED PACKAGES

1. update-rc.d f ntpd remove

2. update-rc.d f avahi-daemon remove

69

3. update-rc.d f portmap remove

VII. CONFIGURING THE OVERO BOARD TO WORK WITH THE TOBI
DUO

1. This is only needed if you have used the Tobi board to set up the Overo Board

2. Place the Overo Board on the Tobi Duo Expansion Board and power on the board.

3. Once the board has come online (Detected by the blue light on the CPU stops

flashing) unplug the board and place the board back on the Tobi Expansion board.

4. Turn on the Overo

5. vi /etc/udev/rules/70-persistant-net.rules

6. There should now be three net device () lines in this file ethO eth?2.

7. Edit the ethl line so that NAME=ethO

8. Edit the eth2 line so that NAME=eth1

9. If you restart the Overo with the Tobi-Duo extension you should now be able to SSH

to 172.16.1.10.

C.3 Raspberry Pi Setup
I. DOWNLOAD THE RASPBERRY PI OPERATING SYSTEM

The following are excerpts from the guide (Guide: http://www.raspberrypi.org/quick-start-

guide) [26]:

1. The recommended OS is called Raspbian. Download it here:
http://downloads.raspberrypi.org/images/raspbian/2012-12-16-wheezy-raspbian/2012-

12-16-wheezy-raspbian.zip

70

I1. UNZIP THE FILE

1. Right click and choose “Extract All”

2. Follow the instructions — you should end up with a .img file
III. DOWNLOAD THE WIN32DISKIMAGER SOFTWARE

1. Download win32diskimager-binary.zip (currently version 0.6) from:

https://launchpad.net/win32-image-writer/+download
2. Unzip it in the same way you did the Raspbian .zip file

3. You now have a new folder called win32diskimager-binary

You are now ready to write the Raspbian image to your SD card.
IV. WRITING RASPBIAN TO SD CARD
1. Plug your SD card into your PC

2. In the folder you made in section III, run the file named Win32DiskImager.exe
(in Windows Vista, 7 and 8 we recommend that you right-click this file and choose

“Run as administrator’).

3. If the SD card (Device) you are using isnt found automatically then click on the drop

down box and select it
4. In the Image File box, choose the Raspbian .img file that you downloaded
5. Click Write
6. After a few minutes you will have an SD card that you can use in your Raspberry Pi
V. BOOTING YOUR RASPBERRY PI FOR THE FIRST TIME

1. On first boot you will come to the Raspi-config window

71

2. Change settings such as timezone and locale if you want
3. Finally, select the second choice: expand_rootfs, and say ‘yes’ to a reboot

4. The Raspberry Pi will reboot and you will see raspberrypi login:

(a) Type:pi
(b) You will be asked for your Password

(c) Type:raspberry
5. You will then see the prompt:pi @raspberry -$

6. Start the desktop by typing:startx

72

Bibliography

[1] “Gumstix”. 2013. URL www.gumstix.com.

[2] Abrams, Marshall and Joe Weiss. “Malicious Control System Cyber Security
Attack Case StudyMaroochy Water Services, Australia”. McLean, VA: The MITRE

Corporation, 2008.
[3] Bailey, David and Edwin Wright. Practical SCADA for industry. Newnes, 2003.

[4] Berman, Dustin, Jonathan Butts, Barry Mullins, and Juan Lopez Jr. Emulating

Industrial Control System Field Devices Using Gumstix Technology. Technical report,

2012.

[5] Bond, Digital. “Quickdraw SCADA IDS”. 2011. URL http://www.digitalbond.com/

tools/quickdraw/.

[6] Bond, Digital. “SCADA Honeynet”. 2011. URL http://www.digitalbond.com/tools/

scada-honeynet/.

[7] Boyer, Stuart A. SCADA: supervisory control and data acquisition. International

Society of Automation, 2009.

[8] Chandia, Rodrigo, Jesus Gonzalez, Tim Kilpatrick, Mauricio Papa, and Sujeet Shenoi.
“Security Strategies for SCADA Networks”. Eric Goetz and Sujeet Shenoi (editors),
Critical Infrastructure Protection, volume 253 of IFIP International Federation for

Information Processing, 117-131. 2007.

[9] Cheah, Zi bin and Omar Faruk. “Identifying and Responding to External Threats in a

PCS Network”. Norwegian University of Science and Technology, 2007.

73

[10] Chirillo, John and Edgar Danielyan. SUN Certified Security Administrator for Solaris
9 and 10 Study Guide. McGraw-Hill, 2005.

[11] Commission, USNR et al. “Potential Vulnerability of Plant Computer Network to

Worm Infection”. NRC Information Notice, 14, 2003.

[12] Electric, Schneider. “SCADAPack 350, 375”. 2011. URL www.schneider-electric.

coml.

[13] Endsley, Mica R. “Toward a theory of situation awareness in dynamic systems”.

Human Factors: The Journal of the Human Factors and Ergonomics Society,

37(1):32-64, 1995.

[14] Falliere, Nicolas, Liam O. Murchu, and Eric Chien. “W32. stuxnet dossier”’. White

paper, Symantec Corp., Security Response, 2011.

[15] Fergus, Donald J. “Industrial Control System Security Current Trends and Risk

Mitigation”. White Paper, Intekras Inc., 2009.

[16] Fovino, I.N., A. Carcano, T. De Lacheze Murel, A. Trombetta, and M. Masera.
“Modbus/DNP3 State-Based Intrusion Detection System”. Advanced Information
Networking and Applications (AINA), 2010 24th IEEE International Conference on,

729-736. 2010.

[17] Giacobbi, Giovanni. “The GNU netcat project”. software available at http://netcat.

sourceforge. net, 2006.

[18] of Homeland Security, Department. ‘“Security in the Software Lifecycle: Making
Software Development Processes and Software Produced by Them More Secure”.

Security in the Software Lifecycle, 2006.

74

[19] Jacobson, Van, Craig Leres, and Steven McCanne. Tcpdump, 2009. URL http:

//www.tcpdump.org/.

[20] Kemmerer, R.A. and G. Vigna. “Intrusion detection: a brief history and overview”.

Computer, 35(4):27-30, 2002.

[21] Leverett, Eireann P. “Quantitatively Assessing and Visualising Industrial System

Attack Surfaces”. University of Cambridge, Darwin College, 2011.

[22] Martin-Garcia, L. and Fyodor. “Nping - Network packet generation tool”. 2012. URL

http://nmap.org/nping/.

[23] Matherly, John C. “SHODAN the computer search engine”. 2013. URL http:

//[www.shodanhqg.com/help.

[24] Morris, T. and K. Pavurapu. “A retrofit network transaction data logger and intrusion
detection system for transmission and distribution substations”. Power and Energy

(PECon), 2010 IEEE International Conference on, 958-963. 2010.

[25] Okolica, James, J Todd McDonald, Gilbert L Peterson, Robert F Mills, and
Michael W Haas. “Developing systems for cyber situational awareness”. 2nd

Cyberspace Research Workshop, 46. 2009.

[26] Pi, Raspberry. “An ARM GNU/Linux box for 25”. Take a byte, 2012. URL

http://www.raspberrypi.org/.

[27] Roesch, Martin and Chris Green. “Snort users manual”. Snort Release, 1(3), 2003.

[28] Shenk, Jerry. “SANS Sixth Annual Log Management Survey Report”. 2010.

[29] Singhal, Anoop, Theodore Winograd, and Karen Scarfone. “NIST Special Publication
800-95”. Guide to Secure Web Services, 2007.

75

[30] Spett, Kevin. “Cross-site scripting”. SPI Labs, 2005.

[31] Stouffer, Keith, Joe Falco, and Karen Scarfone. “Guide to industrial control systems

(ICS) security”. NIST Special Publication, 800:82, 2011.

[32] US-CERT/NIST. “CVE-2012-6440". National Vulnerability Database, 2013.

[33] Wightman, Reid, Dillon Beresford, Jacob Kitchel, and Rubin Santamarta. “Project

Basecamp”. Digital Bond, 2012.

[34] Wilhelm, Thomas. Professional penetration testing: Creating and operating a formal

hacking lab. Syngress, 2009.

76

REPORT DOCUMENTATION PAGE OM’E’,’\’,’O_A’;’;Z)ZV_G&%

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704—-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)|2. REPORT TYPE 3. DATES COVERED (From — To)
13-06—2013 Master’s Thesis Oct 2010—Jun 2013
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER
Evaluation of Cyber Sensors for Enhancing

Situational Awareness in the ICS environment

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER
Otis, Jeremy R.,

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
Air Force Institute of Technology NUMBER

Graduate School of Engineering and Management (AFIT/EN)

2950 Hobson Way AFIT-ENG-13-J-06

WPAFB, OH 45433-7765

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

Department of Homeland Security, ICS-CERT

Neil Hershfield ;
900 N. Stuart St. Apt. 75 1. ﬁ,'fﬁ,,”,onR'}é';"ON'TOR S REPORT

Arlington, VA 22203

BiPIRIRHTON S ARIERTY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

UPPLEMENTARY NOTES . . .
113h1ss work 1s declared a work of the U.S. Government and is not subject to copyright protection in the United States.

ﬁd?lgtsr.{a Agcl;ntrol Systems (ICS) monitor and control operations associated with the national critical infrastructure
(e.g., electric power grid, oil and gas pipelines and water treatment facilities). These systems rely on technologies and
architectures that were designed for system reliability and availability. Security associated with ICS was never an
inherent concern, primarily due to the protections afforded by network isolation. However, a trend in ICS operations is
to migrate to commercial networks via TCP/IP in order to leverage commodity benefits and cost savings. As a result,
system vulnerabilities are now exposed to the online community. Indeed, recent research has demonstrated that many
exposed ICS devices are being discovered using readily available applications (e.g., Shodan search engine and Google-
esque queries).

Due to the lack of security and logging capabilities for ICS, most knowledge about attacks are derived from real world
incidents after an attack has already occurred. Further, the distributed nature and volume of devices requires a cost
effective solution to increase situational awareness. This research evaluates two low cost sensor platforms for enhancing
situational awareness in the ICS environment. Data obtained from the sensors provide insight into attack tactics (e.g.,
port scans, Nessus scans, Metasploit modules, and zero-day exploits) and characteristics (e.g., attack origin, frequency,
and level of persistence). The results indicate that the low cost cyber sensors perform sufficiently within the ICS
environment. Furthermore, findings enable security professionals to draw an accurate, real-time awareness of the threats
against ICS devices and help shift the security posture from reactionary to preventative.

BJECT TERMS
hrllss?oggl:ing, éumstix logging, Raspberry Pi, situational awareness, ICS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF | 18. NUMBER | 19a. NAME OF RESPONSIBLE PERSON
a. REPORT | b. ABSTRACT|c. THIS PAGE| ABSTRACT Fces | (ENG)
19b. TELEPHONE NUMBER (include area code)
U U U uu 91 (937) 255-3636 ext. 4332

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

	Air Force Institute of Technology
	AFIT Scholar
	6-13-2013

	Evaluation of Cyber Sensors for Enhancing Situational Awareness in the ICS Environment
	Jeremy R. Otis
	Recommended Citation

	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Background
	Motivation
	Problem Statement
	Approach
	Scope and Limitations
	Organization

	Literature Review
	ICS Background
	ICS Security
	Logging and Categorization of Data
	Control Systems Availability
	Attack Techniques
	Incidents
	Cyber Sensors
	Situational Awareness
	Summary

	Methodology
	Problem Definition
	Goals
	Hypothesis
	Environment
	Evaluation Technique
	Experiments
	Methodology Summary

	Analysis and Results
	Implementation Details
	Initialization Checks
	Results
	Degradation Observations
	Results Summary

	Conclusions
	Applications
	Future Work
	Concluding Remarks

	Appendix A: Test Data
	Appendix B: Scripts and Code
	Traffic Generator
	Log Analyzer
	Snort Signatures
	Gumstix, Raspberry Pi, and Standard Laptop

	Appendix C: Configurations
	Experiment Randomization
	Gumstix Setup
	Raspberry Pi Setup

