

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 20, 2017

Modular Platform for Commercial Mobile Robots

Kjærgaard, Morten; Ravn, Ole; Andersen, Nils Axel; Koed, Kakob

Publication date:
2013

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Kjærgaard, M., Ravn, O., Andersen, N. A., & Koed, K. (2013). Modular Platform for Commercial Mobile Robots.
Technical University of Denmark, Department of Electrical Engineering.

http://orbit.dtu.dk/en/publications/modular-platform-for-commercial-mobile-robots(ae4b3c68-4b0c-4c46-b092-5aef70f65c23).html

Morten Kjærgaard

Modular Platform for

Commercial Mobile

Robots

PhD thesis, June 2013

Preface

This thesis is written as conclusion of my PhD project at the Techni-

cal University of Denmark, Department of Electrical Engineering. The

project period was from May 2010 to May 2013, including a six month

external stay at Willow Garage Inc. located in Menlo Park, California.

The project was carried out as an Industrial PhD through the The

Industrial PhD Program from the Danish Ministry of Science, Innovation

and Higher Education. The company sponsoring the project was Prevas

A/S.

The supervisors of the project at the Technical University of Denmark

were Ole Ravn and Nils Axel Andersen, and the supervisor at Prevas

A/S was Jakob Koed during the first year and Peter Aagaard Kristensen

during the last part of the project.

The main topic of the project was to understand the reasons why the

recent advances in robotic technology did not result on more commercial

products. The thesis addresses it in three ares. A survey of the existing

technologies used in robotics to understand the commercial potential. A

practical approach towards running the robot controllers on low cost and

low powered embedded hardware. And a theoretical and model driven

approach towards configuring and calibrating robot applications to gain

better reliability and faster bring-up time of new products.

Morten Kjærgaard

June 2013

i

0. PREFACE

ii

Summary

Despite a rapid development in computers and sensor technologies, sur-

prisingly few autonomous robot systems have successfully made it to the

consumer market and into people’s homes. Robotics is a popular topic in

research circles, but focus is often on ground-breaking technologies, and

not on putting the robots on the commercial market.

At the time when this research project was started in May 2010, the

amount of successful commercial applications based on mobile robots

was very limited. The most known applications were vacuum cleaners,

lawn mowers, and few examples of specialized transport robots used in

warehouses and hospitals.

At the same time, despite attempting to solve the same tasks and

applications, the resulting software and products of research groups was

very fragmented. Even if being open source, the software was based on

self-made frameworks and often only used internally by the individual

groups and perhaps a few close industrial partners.

This research project addresses the problem of increasing the poten-

tial for more commercial applications based on mobile wheeled robots.

Therefore the main focus is not on inventing new ground-breaking robotics

technology, but instead understanding why the existing technology and

algorithms are not ready for production.

One focus area of this project is an analysis of these existing technolo-

gies and algorithms for mobile robots. The most fundamental task for a

mobile robot is navigation, yet no generic and ready to use implementa-

tion for solving this exists. This project includes an effort towards such

iii

0. SUMMARY

a generic navigation system. It should provide a stable and easy-to-set-

up experience for robotics researcher and industry integrators who needs

navigation capability for a specific mobile robot. At the same time a

common package for navigation will provide a base for many researchers

to contribute to and mature over time.

The second focus area was to close the gap between research and in-

dustry by providing the necessary tools and motivation for researchers

to create more robust prototype applications. During the time of the

project period, a significant research community was created around one

specific robot control framework called ROS. From the very beginning,

this research project acknowledged the value of such a community, and

put a significant effort into influencing the ROS framework to become

usable also for industry and commercial applications. Based on a re-

quirement analysis for such a framework, a prototype implementation

of an industry ready component based ROS compatible middleware was

created.

The project also includes work towards a smart parameter framework,

assisting in configuring the individual components in a component based

control framework. The smart parameters adapt to the respective robot,

and makes it possible to reuse advanced software components, without ex-

pert knowledge about the underlying algorithms. The smart parameters

also assists in building a robot system, that can autonomously calibrate

and optimize itself.

iv

Resume

P̊a trods af en hastig udvikling indenfor computere og sensor-teknologier,

findes der overraskende f̊a autonome robot-systemer som kommercielle

produkter. Robotteknologi er et populært forskningsemne, men der fokuseres

ofte p̊a nye banebrydende teknologier og ikke p̊a at f̊a robotterne p̊a

markedet.

Da dette projekt blev p̊abegyndt i maj 2010 var det meget begrænset

hvad der fandtes a kommercielle autonome robotsystemer. De mest ud-

bredte var støvsuger-robotter, græssl̊amaskiner og specialdesignede transport-

robotter til hospitaler og lagre.

I samme periode var det meget begrænset hvad der blev delt af

software implementatationer mellem de forskellige forsknings-grupper.

Selvom funktionalitet blev implementeret som open-source, byggede det

ofte p̊a hjemmelavede frameworks, hvilket gjorde det svært at benytte

for andre.

Dette forskningsprojekt arbejder med at forbedre potentialet for at

skabe flere kommercielle produkter baseret p̊a autonome mobile robotter.

Hovedfokus er derfor ikke at opfinde ny banebrydende teknologi, men at

se p̊a den eksisterende teknologi og fjerne de forhindringer der er for at

den benyttes i flere kommercielle produkter.

Et af fokusomr̊aderne er en analyse af eksisterende teknologier og

algoritmer der benyttes til mobile robotter. P̊a trods af at navigatio-

nen er den mest grundlæggende opgave for s̊adan en robot, findes der

ikke en generisk og robust implementation der kan løse denne opgave.

Dette projekt arbejder hen imod s̊adan en implementation af et generisk

v

0. RESUME

navigations-system. Form̊alet er at gøre navigation til en let tilgængelig

egenskab for en vilk̊arlig robot, samt have en fælles implementation som

kan modnes og udvikles i fællesskab.

Et andet fokusomr̊ade var at mindske hullet mellem forskning og in-

dustri, ved at skabe motivation og levere værktøjer der gør forskere bedre

i stand til at udvikle deres algoritmer som robuste og genbrugelige mod-

uler. I løbet af projektperioden opstod der et betydeligt community

omkring ét specifik framework til robot control systemer kaldet ROS.

Værdien af s̊adan et community var tydelig set fra dette projekt, og

forsøgte derfor fra starten at p̊avirke ROS framework’et til at kunne

benyttes til industrielle og kommercielle produkter. Som resultat de-

raf, og efter en større krav-analyse, blev der udviklet en prototype af et

forbedret ROS kompatibelt komponent baseret control framework som

kunne benyttes industrielt.

I projektet blev der ogs̊a arbejdet p̊a en model-baseret konfiguration

af disse komponenter. Ved at benytte s̊akaldte “Smart Parameters” der

ud fra en model kan tilpasse sig til den p̊agældende robot, bliver det

meget simplere at benytte avancerede software komponenter, da man

ikke behøver at kende til detaljerne om hvordan algoritmerne fungerer

og konfigureres. Vha. disse parametre og tilhørende model, er det ogs̊a

muligt f̊a robotten til at starte med ukendte parametre og selv kalibrere

og løbende justere sig selv.

vi

Acknowledgement

First of all, I would like to thank the management team and my com-

pany supervisors at Prevas A/S Denmark for giving me the opportunity

to carry out this PhD project. Special thanks to Rune Domsten, Jakob

Koed and Peter Aagaard Kristensen for the support and inspiring dis-

cussion to help define and guide the project from the start to the very

end.

I would also like to thank my university supervisors Ole Ravn and

Nils Axel Andersen for the support and guidance, and for welcoming me

into the department. They always have an open door, a helpful attitude,

and their experience and knowledge about the robotics research has been

a great help during the project.

Also many thanks to my colleges and the other interns during my

external stay at Willow Garage Inc. Special thanks to my supervisor and

mentor at Willow Garage, Troy Straszheim, an exceptionally inspiring

person and software developer, from whom I have learned much more

than I would have thought would be possible.

Thanks to my colleges at both the Technical University of Denmark

and at Prevas A/S for making me feel welcome despite having to alternate

between so many different work places.

The greatest thanks are to Ida and Sigurd, for their love and support,

especially in the last hectic months of the project.

vii

0. ACKNOWLEDGEMENT

viii

Contents

Preface i

Summary iii

Resume v

Acknowledgement vii

1 Introduction 1

1.1 Background . 1

1.2 Hypothesis . 2

1.3 Goals . 3

1.3.1 Development Goals 3

1.3.2 Scientific Goals . 3

1.3.3 Commercial Goals 4

1.4 Contributions . 4

1.5 Contributions not covered in this thesis 6

1.6 Outline . 7

2 Wheeled Robots 9

2.1 Introduction . 9

2.1.1 Contribution . 10

2.2 General Notation . 10

2.2.1 Pose . 10

2.2.2 Velocity . 11

ix

CONTENTS

2.2.3 Curvature . 12

2.2.4 Polar Representation of Velocity Vector 13

2.3 General Constraint . 14

2.3.1 Driving Velocity Constraint 14

2.3.2 Centrifugal Force Constraint 15

2.4 Ackermann Robots . 17

2.4.1 Kinematic Model 18

2.4.2 Steering Angle Constraint 19

2.5 Differential Drive Robots 20

2.5.1 Kinematic Model 21

2.5.2 Drive Wheel Constraint 22

2.6 Higher Level Constraints 23

2.7 Handling Constraints . 24

2.8 Conclusion . 24

3 Technologies 25

3.1 Wheeled Robot Platforms 25

3.1.1 Willow Garage PR2 25

3.1.2 Care-O-bot . 27

3.1.3 KUKA youBot . 29

3.1.4 Turtlebot . 30

3.1.5 Pioneer P3-DX . 32

3.2 Sensor Technologies . 33

3.2.1 3D Vision . 33

3.2.2 Time-of-flight Cameras 34

3.2.3 Structured Light 36

3.3 Conclusion . 37

4 Generic Navigation 39

4.1 Introduction . 39

4.1.1 Contribution . 41

4.2 Survey . 42

4.2.1 Localization . 42

x

CONTENTS

4.2.2 Trajectory Following 43

4.2.3 Inevitable Collision States 46

4.3 Curve Theory . 48

4.3.1 Bézier Curves . 48

4.3.2 Calculating Curvature 49

4.4 Generic Trajectory Representation 49

4.4.1 Parameterization 50

4.4.2 Segments . 51

4.4.3 Curvature Matching 53

4.4.4 Example Trajectory 1 56

4.4.5 Example Trajectory 2 59

4.5 Generic Trajectory Following 60

4.5.1 Velocity Profile . 60

4.5.2 Example Trajectory 1 61

4.5.3 Example Trajectory 2 61

4.5.4 Controller . 63

4.6 Experimental Results . 65

4.7 Conclusion . 67

4.7.1 Future Work . 68

5 Robotics Middleware 69

5.1 Introduction . 69

5.2 Survey . 70

5.2.1 Orocos . 70

5.2.2 Player/Stage . 71

5.2.3 ROS . 72

5.3 Development Process . 73

5.3.1 Stakeholders . 74

5.3.2 Use Cases and Functionality 78

5.4 Conclusion . 81

5.4.1 Observed Issues . 82

xi

CONTENTS

6 “DARC” Middleware 85

6.1 The Catkin Build System 86

6.1.1 Motivation . 86

6.2 Design Considerations . 89

6.2.1 Fundamental Requirements 90

6.3 A Multi-paradigm Middleware 91

6.4 Design of DARC . 93

6.4.1 Programming Language 93

6.4.2 Architecture . 94

6.4.3 Peers . 96

6.4.4 Components . 97

6.4.5 Primitives . 98

6.4.6 Data types . 102

6.5 Real-time Support . 103

6.6 Performance Test . 103

6.6.1 Publish & Subscribe 104

6.6.2 Procedures & Actions 104

6.7 Conclusion . 105

7 Smart Parameter Framework 107

7.1 Introduction . 107

7.1.1 Problem Formulation 108

7.2 Smart Parameters . 110

7.3 Architecture . 110

7.3.1 Descriptive Models 111

7.3.2 Parameter Server 111

7.3.3 Dynamic Parameter Software Pattern 112

7.4 Configuration Example . 113

7.4.1 System Models . 114

7.4.2 Wheel Control Component Model 116

7.4.3 Odometry Component Model 118

7.5 Conclusion . 119

xii

CONTENTS

8 Conclusion 121

8.1 Conclusion . 121

8.2 Future Work . 124

xiii

CONTENTS

xiv

List of Figures

2.1 Frames and pose for a wheeled robot 11

2.2 Curvature represented by circle radius 12

2.3 Polar representation of velocity vector 13

2.4 Driving Velocity Constraint 14

2.5 Centrifugal Force . 16

2.6 Centrifugal Force Constraint 16

2.7 Ackermann Geometry . 17

2.8 Unicycle Geometry . 18

2.9 Steering Angle Constraint 20

2.10 Laser Powerbot . 21

2.11 Differential Drive Geometry 21

2.12 Drive Wheel Constraint 23

3.1 The Willow Garage PR2 Robot 26

3.2 The PR2 robot playing pool 27

3.3 Care-O-bot 3 . 28

3.4 Schunk Dextrous Hand . 28

3.5 KUKA youBot . 30

3.6 TurtleBot 1 . 31

3.7 TurtleBot 2 . 31

3.8 The Pioneer P3-DX . 32

3.9 Stereo cameras . 34

3.10 Swiss Ranger SR4000 . 35

3.11 ToF Cameras from SoftKinetic 36

xv

LIST OF FIGURES

3.12 PrimeSense . 37

4.1 Hilare Robot . 40

4.2 Pure Pursuit . 44

4.3 Dynamic Window Approach 44

4.4 ICS . 47

4.5 Connecting Knots . 53

4.6 Example Trajectory 1 . 57

4.7 Curvature of Example Trajectory 1 58

4.8 Example Trajectory 2 . 59

4.9 Curvature of Example Trajectory 2 60

4.10 Velocity Profile for Example Trajectory 1 62

4.11 Velocity Profile for Example Trajectory 2 62

4.12 The DTU SMR Robot used for the experiments 65

4.13 Experimental Results . 66

5.1 Orocos Logo . 71

5.2 Orocos Component Model 71

5.3 ROS Groovy Galapagos 73

6.1 DARC Architecture . 94

6.2 Peer Topology . 96

6.3 Internal Component State-Machine 98

6.4 Component Model . 99

6.5 Publisher & Subscribe Pattern 100

6.6 Procedure Call Sequence 100

7.1 Parameters for ROS AMCL package 109

7.2 Architecture Overview . 112

7.3 ATR-JR . 113

7.4 Model Relations . 114

7.5 ATRV-JR System Model 115

7.6 Wheel Control Component Model 117

7.7 Odometry Component Model 118

xvi

List of Tables

3.1 youBot Price . 29

4.1 Example Trajectory 1 . 58

6.1 DARC/ROS publisher/subscribe test results 104

6.2 DARC publisher/subscribe test results 104

6.3 DARC procedures and ROS actions test results 105

xvii

LIST OF TABLES

xviii

1

Introduction

1.1 Background

Robotics is a popular and challenging research topic at many universities

around the world. Often you experience these research groups showing

advanced robot applications capable of handling some specific work-task.

These projects are often based on a standard research platform modified

to the specific purpose and the functionality implemented using a robotics

software framework.

These numerous examples of advanced research robot applications

show that it is technically possible to construct quite advanced task-

handling robots, but the real deployment of robot applications in ev-

eryday life has however been quite limited to comparison. Moving and

maturing a robot application from a working laboratory research pro-

totype to a commercial real-life applications is challenging. Many new

requirements arise, such as safety, cost efficiency, and proper reliability

to run in longer periods without human assistance.

Prevas A/S is a development company who is often assisting in the

development and implementation of novel and innovative products. Mo-

bile and autonomous robot systems is an area where potential customers

often bring in ideas and request for product development, but where both

the risks and development costs turns out to be too high with the current

1

1. INTRODUCTION

state of technology. To overcome this limitation in the future Prevas A/S

has identified several main causes:

� The cost and risk associated with developing a specific autonomous

robot application from scratch are too high to make the project fea-

sible and profitable. One cause is the massive need for advanced

technology still in the research phase, and the complicated integra-

tion associated with such technology.

� Commercial robot applications deployed outside of an controlled

laboratory environment are subject to a high level of uncertainty.

Despite this, it should be capable of performing its task and run

stable for long periods without local human assistance. High down-

time or frequent need for technical on-site assistance is expensive

and gives a bad impression of the robot.

1.2 Hypothesis

The project is based on the following hypotheses:

� It will be possible to structure the implementation of an autonomous

mobile robot in a modular way such that: (1) Technology and im-

plementation can be shared between projects in both research and

industry. (2) The individual modules can be implemented, tested

and matured in an isolated way.

� It will be possible to create a parameterized model for an au-

tonomous mobile robot describing the physical configuration, in-

cluding kinematics, dynamics, sensors, and actuators.

� It will be possible to create a parameterized model for an au-

tonomous mobile robot describing the required behavior, including

actions, low level tasks, and high level tasks.

� It will be possible to initially run the robot system with unknown or

estimated parameter values for these models, and these parameters

2

1.3 Goals

can be adjusted autonomously by the robot by: (1) An initial self-

calibration when the robot is deployed in its working environment.

(2) An on-line self-optimization when the robot is performing its

work-tasks.

1.3 Goals

Since the project is being carried out as an IndustrialPhD project the

goals are specified for three areas. Development, scientific, and commer-

cial.

1.3.1 Development Goals

The overall goal is to decrease the distance between that is technologically

possible within research, and what is feasible and profitable to build as

a commercial mobile robot applications by:

� Developing tools and methods that will assist in the development

process of a robot application including: Reuse of implementation,

faster prototyping, and testing with the purpose of carry out de-

velopment projects with lower risk and cost.

� Contribute to, and influence the robotics research community, to

motivate other researchers to make their work more robust and

easier to use for commercial applications.

1.3.2 Scientific Goals

The goals are not to invent new ground-breaking technologies but instead:

� Analyzing the available technologies and algorithms used within the

field of autonomous mobile robots, and their potential maturity for

use in commercial products.

� Mature one or more technologies or algorithms for industrial use.

3

1. INTRODUCTION

Additionally the project approaches a series of scientific problems

concerning modeling, parameterization and self-calibration of a mobile

robot. The project focuses on methods to implement the functionality

of the robot application in a series of building blocks that are integrated

with a parameterized model. The main topics are:

� Create a parameterized model for describing the physical properties

and behavior of a robot.

� Self-calibration: Where the model-parameters are derived autonomously

by the robot with minimal human interaction.

� Self-optimization: Where the model-parameters are optimized au-

tonomously when the robot is performing its task.

1.3.3 Commercial Goals

The commercial goal of the project is to improve the capability of Prevas

A/S to develop profitable autonomous robot applications, thus position-

ing the company as an attractive partner within field. Prevas A/S has

previously had several request to develop high technology autonomous

robots, where the customer is hesitating due to the high development

cost and risk associated with such a product.

1.4 Contributions

The contributions covered by this thesis can be divided into the following

three areas:

1. Robotics Middleware for Industrial and Embedded Systems

To be able to implement the robot control system in a modular and

reusable way, it is required to use a robotics middleware. This thesis

presents an analysis of available robotics middleware used in research.

It also includes an in depth analysis of the additional requirements that

4

1.4 Contributions

arises, when using such a middleware for commercial and industrial ap-

plications. As a conclusion, the thesis presents a next-generation de-

centralized middleware named “DARC”, designed during the project. It

is capable of fulfilling the industrial requirements, replacing the popular

Robot Operating System (ROS) middleware, while still taking advantage

of the large library of ROS functionality.

The design of the “DARC” middleware is also presented in the fol-

lowing publication:

� M. Kjaergaard, N. A. Andersen, O. Ravn “DARC: Next Genera-

tion Decentralized Control Framework for Robot Applications” In:

2013, 10th IEEE International Conference on Control and Automa-

tion (ICCA 2013)

2. Generic Navigation for Mobile Wheeled Robots

This thesis presents several new methods towards a generally usable nav-

igation package for wheeled mobile robots. The work includes a novel

method to represent a trajectory based on fifth order Bézier curves, with

support for rotation on the spot and reverse motion. It also presents a

method to make the curvature continuous throughout the trajectory so

it can be driven in a smooth motion. In addition, a method to create

a velocity profile that complies with the robots dynamic constraints is

presented.

Practical experiments with a differential drive robot is carried out

using a custom designed control law. The custom control law is designed

to make the robot capable of following both forward, reverse and rotation

on the spot trajectory segments.

The work in this area is also presented in the following publication:

� M. Kjaergaard, N. A. Andersen, O. Ravn “Generic Trajectory Rep-

resentation and Trajectory Following For Wheeled Robots” Sub-

mitted to: 2014 IEEE International Conference on Robotics and

Automation (ICRA 2014)

5

1. INTRODUCTION

3. Parameterized Models for Configuring Robot Applications

This thesis presents a conceptual design towards a configuration frame-

work, that can be used to configure the individual components in a com-

ponent based robotics framework. The actual parameter values are ex-

tracted from easy to understand robot properties, defined in a robot

specific hierarchical configuration model. In addition, the parameters

include meta-information describing the origin of the value. With this

information, the control system can start up partially with uncertain or

even unknown parameter values, and perform calibration and optimiza-

tion procedures. The purpose is to achieve more robust self calibrating

robot application, and make it easier to reuse advanced robot algorithms

without expert knowledge.

The work in this area is also presented in the following publication:

� M. Kjaergaard, N. A. Andersen, O. Ravn, P. A. Kristensen “To-

wards Competitive Commercial Autonomous Robots: The Config-

uration Problem” In: 2011, 16th IEEE International Conference

on Emerging Technology and Factory Automation (ETFA 2011)

1.5 Contributions not covered in this thesis

The project also included work in the field of terrain mapping for outdoor

robots. A probabilistic method was considered for extracting the terrain

maps based on a point cloud measurement of the scene. The method uses

Gaussian process regression to predict a estimate function and its relative

uncertainty. The point cloud was extracted using a laser scanner and a

3D vision system. The work is covered by the following publication:

� M. Kjaergaard, A. S. Massaro, E. Bayramoglu, K. Jensen “Ter-

rain Mapping and Obstacle Detection using Gaussian Processes”

In: 2011, 10th International Conference on Machine Learning and

Applications and Workshops (ICMLA’11)

6

1.6 Outline

1.6 Outline

The rest of the thesis is structured as:

Chapter 2 presents the theoretical background for controlling wheeled

mobile robots. This includes representations for pose, velocity and mo-

tion curvature. Special focus is put on Ackermann and differential drive

robots, and includes a presentation of their geometrical properties and

the constraints that must be considered.

Chapter 3 includes an example based survey of available mobile

robot platforms and sensor technologies, with special focus on robustness,

cost, and their application in consumer products.

Chapter 4 presents the work towards a generic navigation package

based on the notion from chapter 2. The chapter includes a presentation

of robot navigation in general and a survey of the different available

methods. It presents a generic representation of a trajectory, a method

to provide continuous curvature, a method to create a velocity profile

and a controller for trajectory-following.

Chapter 5 presents an analysis of popular control middleware used

for robotics applications in research. It also includes a requirements

analysis, with the purpose of identifying the extra requirements that

arise when a middleware is to be used for industrial and commercial

applications.

Chapter 6 presents the design and functionality of a next generation

middleware called “DARC”. It is designed to be able to replace the ROS

middleware and to satisfy both industrial and research requirements.

Chapter 7 presents a conceptual design towards a configuration

framework, that can be used to configure the individual components in

a component based robotics framework. It is called “Smart Parameter

Framework” since it allows parameters to be smart and adapt to a new

system provided a descriptive model of the robot.

7

1. INTRODUCTION

Chapter 8 wraps up the work and contains the conclusion and future

work.

8

2

Wheeled Robots

2.1 Introduction

Wheeled robots are a subcategory of mobile robots where motorized

wheels in contact with the ground are used to drive the robot. They

are popular in both research and in the consumer market because they

are simple to control, and normally when equipped with a minimum of

three wheels, they are stable even without any control input. As often

simplicity comes with a price. Wheeled robots works best on a flat surface

with proper friction, and usually are not fit for navigating over obstacles,

on steep surfaces and soft and rocky terrain. Some of these limitations

can be helped by equipping the robot with large wheels and powerful

motors allowing the robot to navigate on fields and unstructured terrain,

but this increases the cost and decreases the precision of the robot.

Wheeled robots can be designed with many different wheel combina-

tions. Since the work in this project is focused towards consumer robots

the scope has been limited to two of the most popular and cost efficient

configurations.

1. Ackermann type robots with steerable front wheels and non-steerable

rear wheels, as found in most modern cars.

2. Differential drive robots, with two individually powered wheels, and

9

2. WHEELED ROBOTS

a number of passive wheels for stability.

These two wheel combinations are somehow related because neither

allows the robot to perform a sideways motion. The navigation strategy

must take this into account.

2.1.1 Contribution

This chapter provides a formalization of some of the theory behind con-

trolling wheeled robots with special focus on these two wheel configu-

rations. This includes an analysis of the constraints the wheel configu-

rations and other factors impede on the available velocity space for the

robot. The purpose is to provide a background analysis used for the

generic navigation in chapter 4.

Some wheel combinations does allow for full translational and ro-

tational motions, so called omni-directional robots. Omni-directional

robots can be built in several ways e.g. with Swedish wheels, or with

exclusively steerable wheels. Because one would often use a different

control strategy to take advantage of this capability, this type of robots

are not covered here.

The chapter also shows how representing the velocity vector in po-

lar coordinates makes it easier to represent rotation-on-the-spot motion,

where no forward motion is taking place, and the curvature is infinite.

2.2 General Notation

2.2.1 Pose

This thesis adopts a notation for the robot state similar to [SNS11],

changed slightly to fit better for both differential drive and Ackermann

steered robots.

The robot is modeled as a rigid body moving on a flat surface. The

robot frame R is orientated with the x-axis in forward direction, the y-

axis to the left, and the z-axis upwards, thus positive rotation results in

10

2.2 General Notation

counterclockwise rotation.

Figure 2.1: Frames and pose for a wheeled robot

The robot frame is defined by the pose of the robot, denoted ξ, which

is expressed relative to an inertial reference frame I.

ξ = (x, y, θ)T (2.1)

2.2.2 Velocity

The state of the robot futher includes the current velocity, expressed

relative to the inertial frame as:

ξ̇I = (ẋI , ẏI , θ̇I)
T (2.2)

The velocity without a suffix is expressed relative to the robot. The

velocity is transformed into the robot frame with the 3 dimensional ro-

tation matrix.

ξ̇ = R(θ) ξ̇I (2.3)

= (ẋ, ẏ, θ̇)T (2.4)

11

2. WHEELED ROBOTS

where

R(θ) =

 cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1

 (2.5)

2.2.3 Curvature

The kinematics constraints of both the Ackermann and the differential

drive robot does not allow for sideways motion. It is assumed that no

skid is taking place, thus:

ẏ = 0 (2.6)

Therefore the robot velocity can be expressed using only a forward

velocity and an angular velocity (ẋ, θ̇)T . With such a velocity the robot

will perform a curved motion corresponding to following a circle of radius

r given by (2.7). Figure 2.2 shows an example of how a point P follows a

circle of radius r when following a curve. The inverse of the circle radius

is the curvature κ which can be found using (2.9).

Figure 2.2: Example of how curvature is represented by a circle of radius r.

r =
ẋ

θ̇
(2.7)

12

2.2 General Notation

κ =
1

r
(2.8)

=
θ̇

ẋ
(2.9)

2.2.4 Polar Representation of Velocity Vector

As seen from (2.9), the curvature κ has the unfortunate property of

becoming infinite when the robot is rotation on the spot and the forward

velocity is zero. Rotation on the spot is a perfectly valid motion for a

differential drive robot. To overcome this limitation, the velocity vector

of (ẋ, θ̇)T is instead represented in polar coordinates (ρ, φ)T , as illustrated

in figure 2.3.

ρ =
√
θ̇2 + ẋ2) (2.10)

φ = atan2(θ̇, ẋ) (2.11)

Figure 2.3: Polar representation of velocity vector

While the value of ρ is independent of the curvature of the robot

motion, the value of φ relates directly to it with the following expression:

κ = tan(φ) (2.12)

Thus φ = 0 gives a straight motion, while φ = π
2 and φ = −π

2 is

rotation on the spot. For φ the range
]
−π

2 ,
π
2

[
represents forward motion,

13

2. WHEELED ROBOTS

while
]
−π,−π

2

[
and

]
π
2 , π

[
represents reversing. Planning with respect

to curvature constraints can thus be planned taking only the φ factor of

the velocity vector into account.

2.3 General Constraint

The motion of a wheeled robot is often constrained in several ways. Some

constraints are geometric constraints resulting from the geometry of the

robot, others are dynamic constraints limiting the velocity of the robot.

This section formalizes and investigates general constraints for all

types of robots, while later sections will describe the robot specific con-

straints.

Figure 2.4: Example of how the driving velocity constraint affects the available

velocity space. ẋmax,fwd = 0.8m
s and ẋmax,rvs = 0.3m

s

2.3.1 Driving Velocity Constraint

The maximum velocity of the robot is usually limited due to factors

such as safety or to controller characteristics. The optimal magnitude

14

2.3 General Constraint

can change dependent on the area the robot is driving in, the expected

surroundings, and the observing capabilities of the sensors. Often the

sensors are prioritized in the forward direction of the robot, so the maxi-

mum reversing velocity can be lower than the forward velocity. Assuming

the maximum forward and reverse velocity of the robot is constrained by

ẋmax,fwd and ẋmax,rvs respectively as defined in (2.13)-(2.15). Figure 2.4

illustrates how this constraint affects the available velocity space.

−ẋmax,rvs ≤ ẋ ≤ ẋmax,fwd (2.13)

ẋmax,rvs ≥ 0 (2.14)

ẋmax,fwd ≥ 0 (2.15)

Given these limits, the maximum allowed magnitude of ρ, during a

motion with a given curvature represented by φ can be found with the

function in (2.16).

fρmax,drive
(φ) =

{ ẋmax,fwd

cosφ when φ ∈ [−π
2 ; π2]

ẋmax,rvs

cosφ otherwise
(2.16)

2.3.2 Centrifugal Force Constraint

When driving in a curve the robot will be exposed to a centrifugal force

acting sideways on the robot. This force can make the wheels slide side-

ways, or even worse make the robot fall over or drop a load it is carrying.

The maximum centrifugal force the robot can handle depends on

many factors such as the wheels, floor friction or the weight of the current

load, and it is assumed that the maximum value has been determined.

The centrifugal acceleration ac acting on a robot with a given velocity

vector is:

ac =
ẋ2

r
(2.17)

= κ ẋ2 (2.18)

= ẋ θ̇ (2.19)

15

2. WHEELED ROBOTS

Figure 2.5: Centrifugal force making a car tilt in a curve

and similar when given a polar representation of the velocity vector:

ac =
1

2
sin(2φ)ρ2 (2.20)

Figure 2.6: Example of how the centrifugal force constraint affects the available

velocity space. ac = 0.1m
s2

Based on (2.20) the maximum allowed magnitude of ρ, during a mo-

tion with a given curvature represented by φ can be found with the

function in (2.21).

16

2.4 Ackermann Robots

fρmax,ac(φ) =

√
2ac

sin(2φ)
(2.21)

The centrifugal force constraints the magnitude of both ẋ and θ̇. Fig-

ure 2.6 illustrates how the centrifugal force constraint affects the available

velocity space.

2.4 Ackermann Robots

Studies in wheeled robotics are often based on differential drive robots or

omni-directional robots, since they have a much better maneuverability

than Ackermann robots. In addition, the Ackermann steering is mechan-

ically more complex to build.

Despite these limitations, the popularity of Ackermann steering in

other areas such as car design does make the platform quite interesting

to work with. It has a few noticeable advantages:

1. The configuration does not require any additional passive wheels

to obtain stability

2. Better stability at high velocity

3. Only one powerful drive motor required

Figure 2.7: Ackermann Geometry

17

2. WHEELED ROBOTS

A standard Ackermann wheel configuration consist of two steerable

front wheels and two powered rear wheels. To avoid making the front

wheels slide sideways when turning, the two front wheels should have a

slightly different steering angle. Figure 2.7 shows the outline and wheel

positions of an Ackermann robot. The robot frame is traditionally placed

between the two rear wheels. As the figure illustrates, the center of the

circle of rotation is located in the intersection between the line from the

rear-wheel axis, and the lines from the two steering wheel axes, which

should all intersect in a single point. In addition, the two rear wheels

should rotate with different velocity when turning. More details about

Ackermann steering geometry, and its use in wheeled robots can be found

in [DJ00].

Figure 2.8: Unicycle Geometry

In practice the complexity of the Ackermann steering geometry is

often handled mechanically or in the low level control. Therefore, for

simplicity and without loss of generality, the Ackermann geometry can

be modeled by the more simple bicycle-model illustrated in figure 2.8. In

this case, the robot is assumed to be controlled by a single steering angle

and a single rear wheel velocity.

2.4.1 Kinematic Model

The wheel configuration is parameterized by the length L between the

front wheel and the rear wheel, and the radius r of the drive wheel. The

18

2.4 Ackermann Robots

control state, denoted Φ, is the angular velocity of the drive wheel ϕ, and

the steering angle β.

Φ = (ϕ, β)T (2.22)

Given a control state and robot parameters, the curvature followed

by the robot is:

κ =
tan(β)

L
(2.23)

The following equation relates the control state and the parameters

to the velocity in the robot frame.

ξ̇ =

 ẋ
ẏ

θ̇

 =

 rϕ
0

rϕ tan(β)
L

 (2.24)

And similar, the inverse equations relates a desired robot velocity to

a control state.

ϕ =
ẋ

r
(2.25)

β = tan−1

(
θ̇

ẋ
L

)
(2.26)

2.4.2 Steering Angle Constraint

Due to mechanical constraints an Ackermann wheel configuration will

have a limited steering range defined as: β ∈ [−βmax, βmax]. The steer-

ing angle constraint results in a range of curvatures that the robot is

incapable of following. It is independent on the driving speed of the

robot, thus it can not be obeyed simply by limiting the driving speed

of the robot. Instead it should be considered at the planning level, only

creating trajectories with feasible curvatures.

As seen from (2.23) the range of possible curvatures, expressed by a

allowed range for φ is given by (2.27) and (2.28) and illustrated in figure

2.9.

19

2. WHEELED ROBOTS

φβ,max = tan−1
(

tan(βmax)

L

)
(2.27)

φ ∈ [−φβ,max ; φβ,max] (2.28)

The constraint maps into limits for ρ using the following function:

fρmax,steering(φ) =

{
0 when φ > φβ,max
∞ when φ ≤ φβ,max

(2.29)

Figure 2.9: Example of how the steering angle constraint affects the available

velocity space.

2.5 Differential Drive Robots

A standard differential drive robot has two separate drive wheels mounted

on each side. The speed of each of the wheels can be controller individ-

ually making forward, reverse, curved, and rotation-on-the-spot motions

possible. The center of rotation lies somewhere on the line extended

through the drive wheel axis. With only two wheels the robot would

have an unstable balance thus additional passive wheels such as caster

wheels are added for stability.

20

2.5 Differential Drive Robots

Figure 2.10: The Adept MobileRobots Laser Powerbot is an example of a dif-

ferential drive robot

Figure 2.11 shows a model of a differential drive robot, where the

robot frame is defined in the middle between the drive wheels.

Figure 2.11: Differential Drive Geometry

2.5.1 Kinematic Model

The differential drive robot is parameterized by the radius r of the drive

wheels and the length l from the robot frame and to each of the drive

wheels. The control state Φ is the angular velocity of the left and right

drive wheel respectively:

Φ = (ϕr, ϕl)
T (2.30)

21

2. WHEELED ROBOTS

The robot velocity, given robot parameters and a control state can

be found with the following linear equation:

R =

 r 0 0
0 r 0
0 0 1

 (2.31)

O =

 1
2

1
2 0

0 0 1
1
2l −

1
2l 0

 (2.32)

ξ̇ = O R

[
Φ
0

]
(2.33)

The inverse equation relates a desired robot velocity to a control state.

O−1 =

 1 0 l
1 0 −l
0 1 0

 (2.34)

[
Φ
0

]
= R−1 O−1 ξ̇ (2.35)

2.5.2 Drive Wheel Constraint

Since each of the drive wheels are controlled individually it is possible

that they each have a maximum allowed angular velocity, denoted ϕmax.

−ϕmax ≤ ϕr ≤ ϕmax (2.36)

−ϕmax ≤ ϕl ≤ ϕmax (2.37)

Using the kinematics model in (2.33), the drive wheel constraint limits

the magnitude of ρ given by (2.38) below.

fρmax,wheel(φ) = abs

(
r ϕmax

l sinφ+ cosφ

)
(2.38)

Figure 2.12 shows an example of how this constraint limits the velocity

space of a robot.

22

2.6 Higher Level Constraints

Figure 2.12: Example of how the drive wheel constant limits the available ve-

locity space.

2.6 Higher Level Constraints

The previous sections formalized some of the constraints that limits the

available velocity space for the two wheel configurations. In practice,

the robot is a dynamic system, and the feasible velocities and motions

will also be constrained by the dynamics of the robot and the temporal

state. Analyzing the dynamics in details is usually very system specific.

It depends on a several factors such as the motor characteristics, the

current to the motors, the weight of the robot and external factors such

as friction.

In this thesis I assume a very simple dynamic model for the robots,

and simply constrain the maximum acceleration to fixed values. The

translational acceleration is limited by a maximum acceleration adrive,max

when increasing speed and and a maximum acceleration for breaking

abrake,max. The angular acceleration is modeled as being independent

and limited by the value arot,max. The limits are defined below:

23

2. WHEELED ROBOTS

−abrake,max ≤ ẍ ≤ adrive,max when ẋ ≥ 0 (2.39)

−adrive,max ≤ ẍ ≤ abrake,max when ẋ < 0 (2.40)

−arot,max ≤ θ̈ ≤ arot,max (2.41)

2.7 Handling Constraints

The constraints described in the previous sections was formalized by a

constraint function, where the maximum length of the velocity vector

was found at a given curvature. Given a specific robot type, all these

constraints can therefore be combined in a single constraint function.

Below is a combined constraint function for a differential drive robot

(2.42) and for an Ackermann robot (2.43).

fρmax,differential(φ) = min


fρmax,drive(φ)
fρmax,ac(φ)
fρmax,wheel(φ)

(2.42)

fρmax,Ackermann(φ) = min


fρmax,drive(φ)
fρmax,ac(φ)
fρmax,steering(φ)

(2.43)

2.8 Conclusion

This section presented the notation used for wheeled robots in this the-

sis. It presented a way to represent a velocity vector in polar coordinates.

This representation enables a general way to describe robot constraints,

as a constraint function giving the maximum length ρ of the velocity vec-

tor at a given curvature φ. The different constraints for both differential

drive and Ackermann robots were described using this format.

24

3

Technologies

This chapter will provide an analysis of the different technologies that are

currently used, or can potentially be used to build autonomous robotics

solutions. Since autonomous robots often integrates many different tech-

nologies, the quality and robustness of a robot highly depends on the

state of each of these. Each subject will be briefly presented with fo-

cus on how it actually works, price, and future potential in relation to

robotics.

3.1 Wheeled Robot Platforms

3.1.1 Willow Garage PR2

The PR2 robot is a research and development platform created by Willow

Garage Inc. a robotics research lab located in Menlo Park, California.

It was developed through their Personal Robotics Program, and initially

released in 2010 through the PR2 Beta Program, where Willow Garage

lent out 11 Beta versions of the PR2 robots to selected research labs

around the world. The program included a two-year commitment to

pursue their research goal using the platform and open source software.

Later in 2010, the PR2 went officially for sale with a price of $400,000

for regular buyers, and $280.000 through an open source 30% discount.

25

3. TECHNOLOGIES

In 2011 they released a cheaper version with only one arm with a regular

price of $285.000 and $200.000 through the open source discount.

Figure 3.1: The Willow Garage PR2 Robot

Source: www.willowgarage.com

The PR2 is a large robot, about the height of a human, and a 68cm

square base. It includes two 7-DOF arms, a height adjustable spine, and a

omni-directional wheeled base. Several perception and depth sensors are

located in the tiltable head, in the gripper, and in the mobile base. It has

powerful on-board processing-power provided by two separate computer

systems each equipped with two Quad Core Xeon processors, 24GB ram,

and 500GB HD. It utilizes an EtherCat bus for real-time control and

also includes Gigabit Ethernet and WiFi. With the on-board 1.3kWH

battery the robot is capable of running for approximately two hours.

The mechanical hardware is higly modular, making it possible to swap

grippers, change sensors or even the arms. It is controlled by the open-

source Robot Operating System (ROS).

The aggressive roll out of PR2 robots through the PR2 Beta program

quickly resulted in a large community of robotics researchers based on

ROS and PR2 robots. Together with the aggressive development pace

26

3.1 Wheeled Robot Platforms

Figure 3.2: The PR2 robot playing pool

at Willow Garage, the ROS system now includes an impressive amount

of state-of-the-art functionality and libraries for perception, navigation

and manipulation for the PR2. Many novel demonstration applications

were built with the PR2, including one where the robot was playing pool

(Figure 3.2), or a setup where it was making pancakes. With the massive

specifications and price tag though, the PR2 is mainly useful as a research

platform and not for creating practical consumer products.

3.1.2 Care-O-bot

The Care-O-bot is a mobile robot assistant developed at the Fraunhofer

Institute for Manufacturing Engineering and Automation in Stuttgart,

Germany. It is a result of more than ten years of development. The

third generation version, the Care-O-bot 3, is built from industrial com-

ponents, has a product like design and is capable of working in everyday

environments. It has an omni-directional mobile base with four wheels,

an on-board computer, three laser scanners and a 300 kWh battery.

The torso has a rear mounted arm and a tray that can be shoved away

on the side. The torso can bend back and forth for simple user feedback or

27

3. TECHNOLOGIES

Figure 3.3: The Care-O-bot 3 developed by Fraunhofer IPA

for better positioning the sensor head. The sensor head is either equipped

with two cameras in a stereo setup, a time-of-flight camera, or a Microsoft

Kinect. The standard arm is a 7-DOF light weight arm equipped with a

three finger gripper with tactile sensors. Both produced by Schunk.

Figure 3.4: Schunk Dextrous Hand equipped with tactile sensors

These parts are off-the-shelf components from robotics hardware man-

ufacturer, thus highly mature and high quality. Other grippers or arms

can be mounted instead. A flexible casing can be attached to the body

28

3.1 Wheeled Robot Platforms

structure resulting in a more comfortable appearance.

The parts in the current version of the actual robot are handmade,

resulting in a very high cost in the same league as the PR2 robot. But

by moving production to more industrial manufacturing, the Fraunhofer

IPA hopes to lower the costs significantly opening up the potential to use

the Care-O-bot platform for consumer applications.

3.1.3 KUKA youBot

The KUKA youBot is a mobile manipulator platform designed for re-

search and education manufactured by the industrial robot manufacturer

KUKA. It is made up by two main parts, the mobile platform and a robot

arm.

The KUKA youBot mobile platform includes four motorized Swedish

wheels, making it omni-directional. The platform hosts the power and

also has an on-board PC, currently an Intel Atom Dual Core processor,

2GB Ram and 32GB SSD storage. The KUKA youBot arm is a 5 DOF

arm with a two finger gripper attached. From base to tip, the arm with

the gripper is 65.5 cm long. It is indented to be mounted on the mobile

platform, and controlled by the on-board PC, but alternatively it can

run stand-alone and controlled through an Ethernet cable.

Even if the two parts are designed to be used together, they can also

be bought individually, or in a version with two arms. The current list

price of the different configurations are listed in table 3.1, excluding a

10% discount eligible for universities and research.

Configuration List Price

Mobile platform only 11.990,00 EUR

Arm only 15.990,00 EUR

Mobile platform with one arm 23.990,00 EUR

Mobile platform with two arms 38.990,00 EUR

Table 3.1: List price of different youBot configurations Source: youbot-

store.com

29

3. TECHNOLOGIES

Figure 3.5: The KUKA youBot with omni-directional mobile platform and one

mounted arm

The robot is shipped with multiple open-source software that can

be used to control it. This includes a high level driver for the robot

implemented as a object oriented C++ API. In addition, they also include

a control system based on ROS, with ROS configuration models for the

youBot, a ROS wrapper for the youBot API, and a simulator setup.

3.1.4 Turtlebot

Turtlebot is a low cost mobile robot kit built using off-the-shelf robot

components. It is an open source hardware project, meaning the design

is publicly available and anyone are free to make, modify, or sell the

hardware based on the design. The first version of the Turtlebot (Figure

3.6) was built on top of an iRobot Create mobile base, while the newest

verion, the Turtilebot 2 (Figure 3.7), is built using a iClebo Kobuki from

Yujin Robot.

The iClebo Kobuki is a mobile base designed for education and re-

search. It includes a power supply for an external computer, provides

30

3.1 Wheeled Robot Platforms

Figure 3.6: The First Generation TurtleBot using an iRobot Create

precise odometry, and has a variety of sensors such as gyroscope, cliff

sensors, wheel drop sensor, and bumpers. The iClebo Kobuki can be

used individually, but the TurtleBot 2 kit provides a the Microsoft Kinect

and a mechanical frame for mounting the Kinect, mounting additional

sensors and actuators, and a platform for carrying a laptop.

Figure 3.7: The Turtlebot 2 using an iClebo Kobuki

The Turtlebot is originally designed at Willow Garage and thus from

the start a natively supported robot platform by ROS. Through ROS,

the TurtleBots comes with a complete development environment. This

including libraries for visualization, planning, perception, control and

many demo applications

31

3. TECHNOLOGIES

The Turtlebot 2 can be bought as a core kit with the base and the

mounting frame priced as 749.00 EUR. The complete kit includes also a

Laptop and the Kinect and is priced at 1299.00 EUR.

3.1.5 Pioneer P3-DX

The Pioneer P3-DX (Figure 3.8) is a popular mobile research robot that

have been used in research for many years, but has been updated with

a more powerful microcontroller and larger payload. It is a medium

sized, two-wheel differential drive robot, designed for indoor laboratory

or classroom use. It comes with 8 forward facing sonar sensors, wheel

encoders and hot-swappable batteries. It has a built in microcontroller

running the Adept ARCOS Firmware (Advanced Robotics Control and

Operations), which makes the robot controllable from the packaged Pio-

neer SDK. Optionally, the robot can be equipped with an industry-grade

computer with a Dual Core 2.26 GHz CPU, 8GB RAM and SSD hard

drive. The robot can reach speeds of 1.6 m
s and carry a payload of up to

23 kg.

Figure 3.8: The Pioneer P3-DX

The Pioneer P3-DX is sold by Adept MobileRobots 1, which has a

wide range of research robots for both indoor, outdoor and underwater

environments. The list price of the P3-DX robot is $4500, where univer-

1www.mobilerobots.com

32

3.2 Sensor Technologies

sities are subject to a reduced price of $4000.

3.2 Sensor Technologies

For a robot to be able to perform any autonomous behavior it must

be able to sense the environment. The information given by the sensor

should be fast and reliable enough to use them to decide proper actions.

Sensing should both be in relation to the actual task it is performing,

e.g. detecting and picking up a specific object, or the environment all

together to be able to navigate without collisions or generally stay out of

trouble.

This section will focus on sensor technologies capable of sensing the

environment i 3D, since it it an essential requirement for a mobile robot

to navigate.

Other sensing problems such as object recognition, are usually task

specific, and out of scope of this chapter.

3.2.1 3D Vision

Humans and animals have the ability to perceive the world in three di-

mensions using eye sight. In computer science a similar ability can be

implemented by performing advanced image analysis of images from dig-

ital cameras.

Passive 3D cameras make use of the fact that a 3D scene is seen

differently when observed from different viewpoints. By extracting the

same features from the two views of the scene, the depth can be extracted.

3D stereo can be coarsely classified in sparse and dense stereo. Sparse

stereo algorithms extracts few higher level features, resulting in fewer

depth measurements, but potentially providing higher level knowledge

about what is seen in the scene. Dense stereo extracts and compares

many low level features, giving a much more fine grained depth map.

Figure 3.9 shows two examples of stereo cameras in different price

ranges. Figure 3.9b shows a Bumblebee 2 produced by PointGrey. It

33

3. TECHNOLOGIES

is a fixed pair of cameras, pre-calibrated against mis-alignment and dis-

tortion, and interfaced through Firewire. It is sold in several different

configurations with varying focal length, and resolution with a list price

of either 1560 EUR (640x480) or 1990 EUR (1024x768).

A cheaper alternative is the Stereo Vision System (SVS) from Sur-

veyor shown in figure 3.9a. It consists of two Surveyor SRV-1 Blackfin

Cameras supporting up to 1280x1024 resolution, and also includes pro-

cessors for data-processing, motor controllers and Wifi connection. The

Surveyour SVS firmware is open source, and it is intended to be used by

researchers, educators and developers for enabling 3D vision to robotics.

The Survey SVS system costs $550.

(a) Surveyor SVS Source:

www.surveyor.com

(b) PointGrey Bumblebee®2

Source: www.ptgrey.com

Figure 3.9: Stereo cameras

3.2.2 Time-of-flight Cameras

A time-of-flight-camera (ToF) uses the known speed of light to measure

the depth in an image, by measuring the time an infrared light pulse

emitted from the camera takes to hit the object and return to the cam-

era sensor. Some types of cameras uses fast laser diodes or diodes behind

electronic shutters to emit very short pulses, other uses modulated light

and measures the phase change. Due to the fast speed of light, the mea-

surements can be obtained very fast, resulting in high frame rates. Since

the light is collected with a 2D image sensor, the distance is measured

simultaneously for each point in the image.

34

3.2 Sensor Technologies

Figure 3.10: Swiss Ranger SR4000 ToF Camera from Mesa Imaging

Traditionally ToF cameras have been very expensive. The Swiss

Ranger SR4000 (Figure 3.10) produced by Mesa Imaging2 costs approx-

imately 4000$.

Recently some cheaper alternatives have become available, driven by

the need for gesture recognition in games and consumer multimedia de-

vices. SoftKinetic3 is a company focused on gesture recognition. It

started in 2007 by a team of mathematicians, 3D imaging specialists,

software engineers and game enthusiasts. They produce two depth sense

cameras based on ToF technology. The DS325 (Figure 3.11a) is sold

for $249 and designed for a range measurement of 15cm to 1m, with a

resolution of 320x240, and running at up to 60fps. It is interfaced and

powered through a USB connection and has a power usage of maximum

2W. The related D311 (Figure 3.11b) camera is sold for $299 and the

depth measurements has a resolution of 160x120. This camera also has

a ”far” mode where it measures in a range of 1.5m to 4m.

2mesa-imaging.ch
3www.softkinetic.com

35

3. TECHNOLOGIES

(a) DS325 (b) DS311

Figure 3.11: ToF Cameras from SoftKinetic. Source: www.softkinetic.com

3.2.3 Structured Light

Light Coding is a 3D sensing technology provided by PrimeSense, an Is-

raeli company funded in 2005. It is mostly famous for being patented to

Microsoft to use in their motion sensing controller Kinect[Mis13] for the

Xbox 360 video game console. When the Kinect was released in Novem-

ber 2010, it delivered unseen 3D sensing performance in the consumer

price range. Today the technology has been implemented in many other

products such as:

� Asus Xtion, a motion sensor controller targeted at PC application

and games[Asu13]

� Matterport 3D Scanner, a portable scanner to build colored 3D

models of interior spaces[Mat13]

� iRobot AVA, a mobile tele-presence robot for use in medical envi-

ronments[iRo13]

A 3D sensor utilizing Light Coding technology consists of an infrared

light source, a CMOS image sensor capable of reading the infrared light,

and optionally a second CMOS image sensor to provide gray-scale or color

information about the scene (Figure 3.12). The light source projects

a pseudo-random light pattern into the scene invisible to the human

eye. Since the infrared CMOS sensor observes the scene from a slightly

different angle, the light pattern will appear distorted as a result of the

36

3.3 Conclusion

depth in the scene. Thus depth information can be derived from the

distorted light pattern.

Figure 3.12: PrimeSense Technical Overview Source: www.primesense.com

PrimeSense has patented the Light Coding technology, including the

pseudo-random pattern they use, and methods to recognize the move-

ment of human bodyparts from the depth information. PrimeSense also

supplies several SoC (System on a Chip) solutions implementing depth

sensing, human body part recognizing, and multimedia interfaces. The

SoC solution is clearly one of the strengths in the technology since it

makes it easy and low cost to use the technology in new products, and

enables PrimeSense to keep implementation details secret

3.3 Conclusion

This chapter described a list of examples within mobile robot platforms

and sensor technology. Most of the robot platform were designed for re-

search, very complex and therefore very expensive. Concerning the price

37

3. TECHNOLOGIES

of sensor technology, it is clear to see how powerful a factor the gaming

and consumer multimedia marked is. The Kinect based on PrimeSense,

and the SoftKinetic depth cameras, are examples of cheap and powerful

sensor technology driven by the consumer market.

38

4

Generic Navigation

4.1 Introduction

The most fundamental task for wheeled robots is navigation. In the

simplest form the task consist of moving the robot from one position to

another. In practice, navigation includes quite complex situations, such

as deciding a path, following it safely, detecting and handling unexpected

obstacles or following a moving target. In addition, the navigation algo-

rithm must take the geometric and dynamic constraints of the robot into

account.

Due to this large complexity, the navigation task is usually divided

into a set of subproblems such as:

� Localizing

� Trajectory Planning

� Trajectory Following

� Obstacle Detection and Avoidance

� Learning Maps

Mobile robot navigation has been the subject of research for decades.

An early example is a team at the LAAS laboratory in Toulouse, France

39

4. GENERIC NAVIGATION

who already in 1977 investigated the design and control of mobile robots

and built the Hilare robot. It was a three wheeled robot equipped with

camera and a laser-scanner mounted on a tiltable platform, in addi-

tion to several ultrasonic sensors. The robot platform was the base for

early work in autonomous navigation and obstacle avoidance such as

[Cha82][Mor80].

Figure 4.1: Hilare robot was build at LAAS laboratory in Toulouse, France.

The project started in 1977.

The author in [Cro85] presents a navigation system for an intelligent

mobile platform, called IMP built in 1984. It is based on a pre-learned

model of a finite global environment, as well as a dynamically maintained

model of the local environment integrating measurements from a rotating

range sensor and touch sensors. The estimated position is corrected based

on the pre-learned model and the current measurements. The system is

capable of global planning and local obstacle avoidance. Other examples

of work from the same period includes [Kha86] and [Sch87], both covering

planning and execution in dynamic environment.

Today, almost 30 years later, many consider the planning, mapping

and navigation problems for indoor robots somehow solved, and have

moved onto more challenging research areas such as robot swarms and

40

4.1 Introduction

aerial robots. Advancements in robotics, sensor technology and computer

hardware, means that much more advanced algorithms based on proba-

bility theory is used for navigation today. Implementations for localiza-

tion and mapping algorithms such as FastSlam [Hae+03] or GMapping

[GSB05][GSB06] are available1.

The Robot Operating System (ROS) includes a complete and some-

how general navigation package for omni-directional and differential drive

robots. It takes odometry information and sensor measurements, and

outputs velocity commands to send to a mobile base. The navigation

package in ROS has been used to control a variety of robots with mis-

cellaneous results, since it assumes many properties of the robot. The

robot should preferably to be close to round or squared, and capable of

rotating on the spot. The robot must be running ROS, the odometry

model is constrained, and it must have a laser scanner or other range

sensors mounted on the front of the robot base. The command interface

is limited to a target pose the robot should move to.

This example of a navigation algorithms with a lot of assumptions

about the robot is not atypical. The motivation to create something truly

generic seems to be missing. This most likely explains why novel and

advanced research in higher level problems in robotics navigation often is

based on easy to control wheel configurations such as omni-directional or

differential drive with the wheels in the middle. Such configurations are

easy to control because the orientation has little influence on planning and

collision checking. This choice makes many navigation implementations

simpler, but unfortunately also difficult to implement on more practical

shaped robots such as differential drives robots with wheels mounted in

the back, or rectangular Ackermann robots.

4.1.1 Contribution

This chapter presents the work towards a purely generic navigation so-

lution for wheeled mobile robots motivated by the following goals.

1openslam.org

41

4. GENERIC NAVIGATION

� Generic: Works for different types of robots

� Configurable: Parameters maps to geometric properties of the robot

� Predictable: Well defined where the robot will drive

� Safe: Avoid fatal collisions

Based on a survey of existing methods and algorithms the chapter

presents the following:

� A generic way to represent a trajectory

� A method to convert the trajectory so it can be driven in a smooth

motion

� A method to create a safe velocity profile for the robot

� A path following controller

4.2 Survey

4.2.1 Localization

Localizing is the problem of determining the the pose of the robot based

on available data such as sensor reading or control output. Most localiza-

tion methods are based on a mixture of 1) odometry calculations based

on input from wheel encoders and the known geometry of the robot and

2) periodic corrections based on sensors. Using odometry means that the

the position can be updated with low computational cost and high fre-

quency, but odometry results in cumulative errors that grow significantly

in short time. Further details about calculating odometry can be found

in [DJ00].

To be able to correct the cumulative odometry errors, robust local-

ization methods must implement additional sensors. A GPS sensor can

provide absolute positioning although with with a low update frequency

42

4.2 Survey

but with absolute errors of several meters. Sensor input from a laser-

scanner or camera vision can be matched to features in a known map to

derive the robot pose. Choosing the best localization method for a given

robot application depends highly on the available sensors, the required

precision, available computational time, and the environment where the

robot operates (indoor or outdoor). It is therefore difficult to design a

general software-only solution, thus the actual localization problem will

have low focus in this thesis. The further navigation study will assume

the following properties on the localizer:

� High frequency localization updates are available based on odome-

try, providing a single estimated pose and an estimated error.

� Low frequency corrections will occur, potentially resulting in sig-

nificant changes to the estimated pose.

4.2.2 Trajectory Following

Litterature has proposed several control strategies for making a robot

follow a specified trajectory.

One category is based on a look-ahead strategy where a point is cho-

sen somewhere in front of the robot on the trajectory, and the robot is

controlled to drive towards it. One of the earliest examples of a robust

implementation of the look-ahead strategy is the pure pursuit algorithm

in [Cou92]. It calculates the curve that will guide the robot back on track,

and was implemented on several outdoor vehicles. Several parameters de-

fines how the point is chosen, so the algorithm both can guide the robot

on the trajectory, and handle situations where the robot is far away from

the trajectory.

A slightly more recent example is the Dynamic Window Approach

[FBT97]. It limits the search space of velocities based on the dynamic

properties of the robot, and choses a most optimal solution based on

a mixture of objectives such as driving towards the goal and avoiding

obstacles. The Dynamic Window Approach has shown to work well in

43

4. GENERIC NAVIGATION

Figure 4.2: Pure pursuit calculates the curved motion that will drive the robot

towards a give target point (x, y) on the trajectory. Source: [Cou92]

practice and is used for the navigation implementation in ROS. It is

also based on a look-ahead strategy, where an immediate local goal is

chosen somewhere on the trajectory and used to guide to robot. Possible

velocities are analyzed and the best one is selected based on a weighted

objective function taking heading towards the goal, avoiding obstacles

and maximizing speed into account. Figure 4.3 shows the search space

in the velocity space.

Figure 4.3: The Dynamic Window Approach analyzed a limited window around

the current robot velocity in the velocity space. Selecting a optimal velocity

based on the target point and detected obstacles. Source: [FBT97]

The look-ahead strategy is very intuitive for humans, since it is similar

44

4.2 Survey

to how we drive a car, and results in what appear to be very smooth

motions. In practice, the strategy is not well suited for the requirements

listed in section 4.1 for the generic navigation because: (1) It allows the

robot to deviate from the planned trajectory when there are obstacles

nearby, thus the behavior is often unpredictable. (2) It has problems

handling sharp turns, rotation on the spot and also reverse motion, since

it relies on a target a certain distance in front of the current position.

Another widely used strategy is to control the robot to follow the

trajectory with a closed loop feedback controller. Following the trajec-

tory precisely and safely requires at minimum: (1) A control law that

minimizes the error and keeps the controller stable. (2) A trajectory

that is feasible to follow with respect to the robots kinematic and dy-

namic constraints. (3) A strategy to update the reference point on the

trajectory.

Such a controller will follow the specified trajectory even if it turns

out to be blocked by obstacles. Therefore the collision avoidance must be

handled at a higher level, and the trajectory updated on the fly to guide

the robot around obstacles. Assuming a proper localization method, it is

always predicable where the robot will drive, and where it will be guided

in the near future.

Trajectory following controllers are addressed in a lot of literature. A

linear control law that drives a robot towards a certain reference pose,

including the orientation, is found in [SNS11]. Based on the position error

ρ, the angle towards the target position α and the orientation error β the

control laws in (4.1) and (4.2) drives the robot towards the goal position.

ẋ = kρ ρ (4.1)

θ̇ = kα α+ kβ β (4.2)

A different approach is found in [Mic+93] where the authors derive a

control law for unicycle-type and two-steering-wheels robots. It controls

the angular velocity θ̇ to make the robot follow the path. The error

input is the current sideways distance to the path, and assumes that the

45

4. GENERIC NAVIGATION

forward velocity ẋ is decided elsewhere. This controller is extended by

[LL03] taking modeling uncertainties into account, and using a virtual

target that moves with a predefined velocity along the path as controller

reference point. In [GK08] the control law is used to guide a wheelchair,

where smooth and comfortable motions is important.

[VAP08] presents a set of control laws originally designed for guiding

marine vehicles in formation, but in [CAG08] it is generalized for wheeled

robots. One controller moves the virtual target along the trajectory to

make sure the vehicle can keep up, and the second guides the vehicle

towards the virtual target. A noticeable difference compared to the earlier

control law is that input to the second controller includes the current

velocity of the virtual frame. The control law corrects only the positional

error.

4.2.3 Inevitable Collision States

An inevitable collision state (ICS) describes an irrecoverable state for a

robot system, in which it is impossible to avoid a future collision. No

matter what the control input or future trajectory followed by the system

is, a collision with an obstacle will eventually occur. The term was first

mentioned in [LKJ01] and was later formally defined and investigated in

[AFF04].

Consider a wheeled robot driving with high speed towards a solid

wall. If the speed of the robot is too high for the robot to be able to

stop before reaching the wall, and it is also unable to steer away to avoid

colliding with the wall, the robot is in an ICS. Clearly, the ICS space is

dependent on several properties:

1. The current state of the robot including pose and velocity

2. The kinematic and dynamic properties of the robot

3. Obstacles in the environment

In [AFF04] it is claimed that studying the ICS space will help avoid-

ing collisions and result in safer robot systems. The strategy is of course

46

4.2 Survey

to avoid ever entering a ICS. Initially, taking the ICS space into account

when planning a trajectory for a wheeled robot will make sure the tra-

jectory is safe for the robot, with respect to all the obstacles known

beforehand. When driving the trajectory though, unexpected obstacles

might suddenly appear in front of the robot, e.g. when passing a corner,

making it enter a ICS and eventually collide. The solution mentioned

in [AFF04] is to assume the worst case scenario, and consider only the

field of view of the robot as obstacle free when planning. Thus the robot

will either drive slowly when passing corners closely, or drive far away

from the corner to optimize the field of view. Collisions with unexpected

obstacle appearing at execution time can thus be avoided. The method

is denoted ’safe motion planning’.

Figure 4.4 illustrates a simplified view of the different categories of

state space. If the robot enter an actual ICS state it will eventually end

up in one of the contained collision states. The method to assume the

worst-case-scenario will grow the unavailable state-space even further as

the figure illustrates.

Figure 4.4: ICS

47

4. GENERIC NAVIGATION

4.3 Curve Theory

4.3.1 Bézier Curves

A Bézier curve is a two dimensional polynomial curve, parameterized

by a series of two dimensional control points. The number of control

points minus one defines the order of the curve, thus an n-order curve is

parameterized by the points [P0, ..,Pn].

Definition

Let BP0P1...Pn denote the Bézier curve parameterized by [P0, ..,Pn].

Then a Bézier curve of order n can be defined recursively by two

Béizer curves of one lesser order:

BP0(t) = P0 (4.3)

BP0P1...Pn(t) = (1− t)BP0P1...Pn−1(t) + tBP1P1...Pn(t) (4.4)

t ∈ [0, 1] (4.5)

where t defines a point on the curve where t = 0 is the start and t = 1

the end.

A Bézier curve has several notizable properties:

Well defined start and end

The points P0 and Pn defines the start and the end point of the curve

respectively, thus this type of curve can be used to interpolate between

two points.

Easy derivatives

The derivative of a Bézier curve of order n, is a Bézier curve of order

n− 1 parameterized by the points:

48

4.4 Generic Trajectory Representation

P′0 = n(P1 −P0) (4.6)

P′1 = n(P2 −P1) (4.7)

. . . (4.8)

P′n−1 = n(Pn −Pn−1) (4.9)

Convex Hull Property

The Béizer curve will always be contained by the convex hull defined by

the control points.

Convertible to higher order

A Béizer curve of order n is equal to the order n+ 1 curve with control

points [P′0, ..,P
′
n+1] where:

P′k =
k

n+ 1
Pk−1 + (1− k

n+ 1
)Pk (4.10)

4.3.2 Calculating Curvature

The signed value of the curvature of a point t on a Bézier curve is found

by:

κ(t) =
det(P′(t),P′′(t))

||P′(t)||
(4.11)

4.4 Generic Trajectory Representation

The trajectory defines the path the robot must follow through space to

move from one pose to another. Often in previous work, such as in

[LSB09], the trajectory function denoted Q maps into only the position

of the robot Q(t) = (x, y)T which is adequate only if the orientation has

little influence on collision e.g. if the robot is round or square shaped. In

a generic navigation implementation this property can not be assumed

49

4. GENERIC NAVIGATION

so the trajectory function must map into the full 2D pose of the robot:

Q(t) = (x, y, θ)T .

4.4.1 Parameterization

When planning the initial collision-free path with respect to the static

obstacles in a map, the trajectory is independent of the time variable

t. Instead it is parameterized with a time independent variable. The

most popular methods is to use the Cartesian distance s traveled in the

forward direction by the robot from a starting point on the trajectory.

This method is used in [LSB09], [SG91] and [HK07].

A pose on the trajectory is thus given by a function Q(s) where:

s = fs(t1) =

t1∫
t=t0

ẋr(t) dt (4.12)

For the generic approach in this thesis the parameterization with

respect to Cartesian distance traveled showed to be inadequate. Tra-

jectories for some types of robots includes rotation on the spot, where

no Cartesian travel is happening. In addition, the navigation should ro-

bustly handle trajectory paths that include reverse robot motion where

ẋ < 0.

To solve this limitation the work in this thesis uses a more generic

parameterization. The solution is to parameterize the trajectory with

respect to the integrated length P of the velocity vector ρ (see (2.10)).

The resulting trajectory function is of the form Q(P) where:

P = fP (t1) =

t1∫
t=t0

ρ(t) dt (4.13)

The value of ρ is always positive, and only zero when neither Cartesian

or angular motion is taking place. Thus any value of P where Pstart ≤
P ≤ Pgoal uniquely identifies one and only one position on the trajectory.

50

4.4 Generic Trajectory Representation

4.4.2 Segments

In practice the complete trajectory can be a complex shape, some places

very curved and other consisting of straight line segments. Therefore it is

not feasible to represent the complete trajectory function mathematically

especially not for handling general cases.

A popular solution is to define the trajectory piecewise using individ-

ual segments connected together in places called knots. The parameters

of each of the segments can be adjusted independently, providing a high

degree of freedom in specifying the shape of the trajectory.

To create a closed trajectory the knots must at minimum connect

the segments in the same position and orientation. For a robot to be

able to follow the trajectory in a continuous motion, the line curvature

must also be continuous in the segments and in the connecting knots.

Non-continuous jumps in the curvature requires unlimited acceleration

to follow, thus in practice the robot will have a jerky motion, and result

in instability.

The simplest form for trajectory segments consists of straight line

segments between a series of intermediate poses. Many path planners for

mobile robots such as the one found in [Lik+05] returns a path based on

straight line segments. Straight lines can only interpolate the position

between the poses, not the orientation. Rotation only happens in the

actual knot points, thus following such a trajectory requires stopping in

each knot point.

In [FBT97] the trajectory is modeled with circular arcs, where each

segment has a constant curvature. Such a trajectory appears smooth,

but all the knots that connect segments of different curvature will have

non-continuous curvature.

The authors in [MF07] and [Sah+07] use cubic Bézier splines to model

the trajectory. These can be adjusted to provide first order continuity

(velocity) in the knots. As seen from (4.11) curvature also depends on the

second order derivative (acceleration), thus curvature continuity cannot

be guaranteed using cubic Bézier splines.

51

4. GENERIC NAVIGATION

The authors in [GK08], [SG91] uses fifth order B-splines to specify

the trajectory. B-splines is a generalization of a Bézier curve and they are

widely used to model smooth curves and surfaces in computer graphics,

where first order continuity is sufficient.

The additional requirement for continuous curvature can be fulfilled

using B-splines of proper order, but the method used by the authors

means that local changes in the trajectory affects up to six neighboring

segments.

The authors in [LSB09] uses fifth order Bézier splines to model the

trajectory segment. They present a method and a series of heuristics that

makes it possible to match both the first and second order derivative in

the knots, by only adjusting the two neighboring segments. The begin-

ning trajectory is a sparse series of positions without orientation that are

found to be collision-free when connected by a straight line. The method

iteratively optimizes the trajectory into a curved trajectory, while not

straying too much from the straight line shape.

The ability to modify the trajectory and still maintain a continu-

ous curvature by only local adjustments is an important property for

the generic navigation implementation. Many situations such as newly

discovered obstacles, large pose corrections by the localizer, or manual

overrides, can result in the need to constantly modify the trajectory.

The more local the changes can be kept, the fewer new poses have to be

collision checked, thus updates can be faster and occur more frequently.

This thesis adopts part of the method from [LSB09], with some mod-

ifications to increase generality:

� Extended to be able to model rotation-on-the-spot segments.

� Input is a collision-free, possibly curved trajectory with pose infor-

mation continuous in position and orientation.

� Knots are curvature-matched without the need for the second deriva-

tive to be the same value.

52

4.4 Generic Trajectory Representation

� Allow for knots where the robot is in full stop to be non-continuous

in curvature.

4.4.3 Curvature Matching

As mentioned in section 4.4.2 the curvature should generally be continu-

ous along the trajectory for the robot to be able to follow it in a smooth

motion. There are two special situations where continuity is not required:

(1) The knot connecting a segment with forward motion, and a segment

with reverse motion. The robot is at a complete halt in the knot so con-

tentious curvature is not required. (2) A rotation-on-the-spot (ROTS)

segment will have infinite curvature, thus a connecting segment will be

non-continuous. The robot is required to come to a complete halt in the

knot. Table 4.5 lists the different types of segments and whether they

must be connected by continuous curvature or by putting the robot in a

complete halt.

Forward Reverse ROTS

Forward Continous Halt Halt

Reverse Continous Halt

ROTS Continous (Always ∞)

Figure 4.5: Connecting Knots

This thesis proposes a method to convert a trajectory consisting of

3rd order Bézier curves with continuous position and orientation, into a

trajectory of 5th order Bézier curves with continuous curvature.

Initial Trajectory

It is assumed that the initial trajectory has been found and is:

1. Collision Free.

2. Continuous in the position and orientation.

53

4. GENERIC NAVIGATION

3. Modeled as 3rd order Bézier curves. (Except ROTS segments)

The scope is not to find the actual trajectory, it is assumed to be

planned beforehand. Approximating any curved trajectory by 3rd order

Bézier curves is trivial, since it is one of the most widely uses for third

order Bézier splines in computer graphics.

The initial trajectory, denoted Q(3) (4.14), consists of a series of seg-

ments Q̂
(3)
i . Each segments is either a curve segment, modeled by the

four points describing a 3rd order Bézier curve (4.15a), or a ROTS seg-

ment, modeled as a point, and a start and end orientation (4.15b). The

superscript “(3)” denotes that it is using third order Bézier curves.

Q(3) = < Q̂
(3)
0 ; Q̂

(3)
1 ; . . . ; Q̂(3)

n > (4.14)

Q̂
(3)
i =

{
< P

(3)
i,0 ;P

(3)
i,1 ;P

(3)
i,2 ;P

(3)
i,3 > Curve (a)

< Pi; θi,0; θi,1 > ROTS (b)
(4.15)

Curvature Matching Method

The method from [LSB09] matches two segments by setting both the first

and second order derivative to the same value. Because the initial trajec-

tory is continuous in the orientation, the direction of the first derivative

is continuous in the knots, while the magnitude may be different. The ve-

locity at which the trajectory is driven is independent of this magnitude,

so this discontinuity is not a problem. In this method, the value of the

first derivative is conserved, and only the second derivative is modified

to curvature-match the two segments. This better maintains the shape

of the original curve.

Denote the curvature in the start-point of segment Q̂i as κbegini , and

similar in the end-point of segment Q̂i−1 as κendi−1. The values of these

curvatures are found from (4.11). An average value for the curvature is

found by a weighed average, inverse proportional to the length l of each

of the segments respectively. The weighted average is used because the

second derivative of longer segments can be adjusted more without too

much differences in the original shape.

54

4.4 Generic Trajectory Representation

κavg =
li−1 κ

begin
i + li κ

end
i−1

2(li−1 + li)
(4.16)

The value of the second derivative of the two initial segments are

denoted aendi−1 and abegini . Since the second derivative is a two dimensional

vector, first a unit vector for the average direction is found by:

aunit =
aendi−1 + abegini

||aendi−1 + abegini ||
(4.17)

The length of the second derivative that will result in a curvature of

κavg is found by inversing (4.11) and isolating the length. This results in

the following expression:

alen =
||v||2 κavg
v
||v|| · aunit

(4.18)

where v denotes the first derivative in the respective end-point.

Continuous-Curve Trajectory

The continuous curvature trajectory Q(5) is similar to the initial coun-

terpart, except the curved segments is modeled by six points describing

a 5th order Bézier curve. The ROTS segments are not changed.

Q(5) = < Q̂
(5)
0 ; Q̂

(5)
1 ; . . . ; Q̂(5)

n > (4.19)

Q̂
(5)
i =

{
< P

(5)
i,0 ;P

(5)
i,1 ;P

(5)
i,2 ;P

(5)
i,3 ;P

(5)
i,4 ;P

(5)
i,5 > Curve (a)

< Pi; θi,0; θi,1 > ROTS (b)
(4.20)

The two control points in each end of the Bézier curve is found by

using (4.10) to imitate the initial curve as closely as possible.

P
(5)
0 = P

(3)
0 (4.21)

P
(5)
1 =

2

5
P

(3)
0 +

3

5
P

(3)
1 (4.22)

55

4. GENERIC NAVIGATION

P
(5)
4 =

3

5
P

(3)
2 +

2

5
P

(3)
3 (4.23)

P
(5)
5 = P 3

3 (4.24)

(4.25)

With this procedure the value of the first derivative in the end points

is not changed.

The two middle control point can be placed to control the value of

the second derivative denoted a0 and a1 in the two end points. The

expressions for the two middle control points are derived for the equations

for Bézier derivatives listed in section 4.3.1.

P
(5)
2 =

1

20
a0 + 2P

(5)
1 + P

(5)
0 (4.26)

P
(5)
3 =

1

20
a1 + 2P

(5)
4 + P

(5)
5 (4.27)

Using the above expression all the segments in the initial trajectory is

converted into a curvature-continuous set of fifth order Bézier segments.

4.4.4 Example Trajectory 1

Figure 4.6 shows a trajectory for a differential drive robot. The trajectory

is defined by six different poses, that put together results in the five

segments listed in table 4.1. The robot starts in the lower left corner,

drives forward for 60cm, rotates 90◦ clockwise on the spot and drives

forward 30cm. When it has passed the wall, it turns right while driving

forward, and comes to a halt in the lower right corner. From here it

reverses 60cm until it is parked with the back to the wall.

The trajectory is represented by third order Bézier segments and one

ROTS segments, thus includes all the possible types of segments and

knots.

The curvature of the initial trajectory is illustrated in figure 4.7 as a

blue curve. The knot connecting segment 3 and segment 4 is the only

one where the robot does not have to come to a complete halt, but from

56

4.4 Generic Trajectory Representation

Figure 4.6: Example Trajectory 1

the figure one can see than the curvature is non-continuous in this knot.

Using the above method, the trajectory is modified to apply continuous

curvature in this knot by modifying the two connecting segments. The

curvature of the modified trajectory is illustrated by the green line in the

figure, where one can see how the two connecting segments have been

modified, and the curvature is now continuous.

57

4. GENERIC NAVIGATION

Start Pose End Pose Segment Type

1 (0.15, 0.15, π
2) (0.15, 0.75, π

2) Forward

2 (0.15, 0.75, π
2) (0.15, 0.75, 0.0) ROTS

3 (0.15, 0.75, 0.0) (0.45, 0.75, 0.0) Forward

4 (0.45, 0.75, 0.0) (0.75, 0.15, −π
2) Forward Curve

5 (0.75, 0.15, −π
2) (0.75, 0.75, −π

2) Reverse

Table 4.1: Poses and Segments of Example Trajectory 1

Figure 4.7: Curvature of Example Trajectory 1

58

4.4 Generic Trajectory Representation

4.4.5 Example Trajectory 2

Figure 4.8 shows a trajectory for an Ackermann robot driving slalom

around a series of round obstacles. Due to the steering angle constraint

the last turn is too sharp to perform in a simple motion. Instead the

robot stops, reverses shortly, and continues around the obstacle.

The blue line in the figure illustrates the initial trajectory defined

by 3rd order Bézier curves. The curvature of the initial trajectory is

illustrated by the blue curve in figure 4.9. From the figure one can see

that the trajectory has several places with non-continuous curvature.

Figure 4.8: Example Trajectory 2

Therefore the above method is used to convert the trajectory into a

continuous curvature version with 5th order Bézier curves. The red line

in figure 4.8 shows the modified trajectory, and how it has been slightly

changed.

The green curve in figure 4.9 illustrates the curvature for the modified

trajectory. It can be see that is continuous, except in the two places

where the robot changes between forward and reverse motion and is at a

complete halt.

59

4. GENERIC NAVIGATION

Figure 4.9: Curvature of Example Trajectory 2

4.5 Generic Trajectory Following

4.5.1 Velocity Profile

The trajectory from section 4.4 is purely geometrical. It has been mod-

ified to be able to drive with only the required stops, but it contains no

information about the actual speed the robot should have.

When following the trajectory, the robot must obey the velocity and

acceleration constraints, and also brake in proper time before full stops

and curves. To be able to handle this, the trajectory is analyzed in a three

step process, resulting in a velocity profile (4.28) of the maximum allowed

velocity ρmax the robot can have at any location P on the trajectory. The

maximum velocity is defined as a maximum length ρ of the velocity vector

(2.10), thus limiting both the translational and the rotational velocity.

ρmax = fvel(P) (4.28)

For simplicity, each trajectory segment is split into 20 sub-segments

in which constant acceleration is assumed. A maximum velocity is calcu-

lated for each boundary point between two sub-segment. The three step

process is:

60

4.5 Generic Trajectory Following

1. Find the maximum velocity based on only the curvature at each

boundary point, using the constraint function (2.42) or (2.43).

2. Iterate forward through the trajectory. Find the maximum obtain-

able velocity from the previous boundary point and using maximum

acceleration. Limit it to the value from step 1.

3. Iterate backwards through the trajectory. Find the maximum al-

lowed velocity limited by the future sub-segment boundary and

with maximum deceleration. Limit it to the value from step 1.

4.5.2 Example Trajectory 1

The velocity profile for trajectory 1 in the previous section has been

calculated using the above method. The velocity profile after step 1 is

illustrated by the red curve in figure 4.10. It is seen how it follows the

magnitude of the curvature. The reason why the value of p is high in the

areas with high curvature is, that is also has a θ̇ component that makes

it larger even if the forward velocity ẋ is lower. The green curve shows

the profile after step 3, where the velocity is limited before and after the

robot has to drive slowly or come to a complete halt.

4.5.3 Example Trajectory 2

The velocity profile for trajectory 2 is illustrated in figure 4.11 and shows

a similar behavior. The maximum velocity after step 1 follows the mag-

nitude of the curvature, since it is purely derived from this curvature.

The velocity profile after step 3 now has a few places where the robot is

configured to drive slower, including the beginning acceleration, the end

stop, and the three-point turn.

61

4. GENERIC NAVIGATION

Figure 4.10: Velocity Profile for Example Trajectory 1

Figure 4.11: Velocity Profile for Example Trajectory 2

62

4.5 Generic Trajectory Following

4.5.4 Controller

Unfortunately, none of the trajectory following controllers mentioned in

section 4.2.2 handles the situation where the robot is reversing. In addi-

tion, even if they are designed to handle curved trajectories, most only

use the position error, and thus can not handle rotation on the spot situ-

ations. To support a generic navigation implementation, and to perform

the experimental tests in this thesis, a control law with both of these

properties was needed.

Fortunately most of the control laws adheres to the same interface.

They take the current robot pose and a moving virtual reference target,

and outputs a desired robot velocity.

Therefore the solution was to design a simple control law that sup-

ported reversing and rotation on the spot, and use it to show that a robot

can follow a trajectory based on the calculated velocity profile. It should

have the following properties:

1. It should correct both the position and orientation errors.

2. Be simple and tunable. It is only supposed to work as a start-

ing point and to show that following the trajectory based on the

velocity profile is possible.

3. Adhere to the common interface, where input is the robot pose and

a virtual target frame, and output is a robot velocity.

A control law was designed based on a mixture between the equations

from (4.1) and (4.2) and the more complex control law in [CAG08].

The input to the controller is the desired pose reference ξref given in

the same reference frame as the pose of the robot. The reference velocity

ξ̇ref is the local velocity of the reference point on the trajectory.

ξref =

 xref
yref
θref

 (4.29)

63

4. GENERIC NAVIGATION

ξ̇ref =

 ẋref
0

θ̇ref

 (4.30)

(4.31)

The error in the reference is transformed into the frame of the robot

using its currently known orientation.

e = R(θ)(ξref − ξ) (4.32)

=

 ex
ey
eθ

 (4.33)

The controller is designed to handle small errors, that means when

the robot is on track on the trajectory. It is not designed to guide the

robot back on the trajectory if it has lost track.

The controller equations (4.34) and (4.35) consists of four elements.

� The reference velocity ξ̇ref is mapped directly into the robot veloc-

ity.

� The correction of the positional ex error controller by a proportional

gain κρ.

� The correction of the sideways error ey controlled by the gain κα.

Since this error is corrected by turning the robot in the direction

towards the trajectory, the correction is also proportional to the ex-

pected positional velocity ẋref . This makes the robot turn towards

the trajectory even when reversing, and also avoids over correction

when the robot is driving slowly.

� The orientation error eθ is corrected with a proportional gain κβ.

ẋcontrol = ẋref + κρ ex (4.34)

θ̇control = θ̇ref + κα ey ẋref + κβ eθ (4.35)

64

4.6 Experimental Results

In case of cumulative position errors, the robot can appear to be on

track based on the current pose estimation but in reality be far from the

trajectory. When the localizer corrects the pose, the error will become

large, resulting in a desperate corrective velocity from the robot. To

have more control of the motion that guides the robot back on track,

the trajectory is modified when large localizer corrections occur with the

current robot pose as the starting point. This is the same method used

in [LSB09].

4.6 Experimental Results

An experiment was performed to verify that it is possible to follow the

continuous curvature trajectory with the analyzed velocity profile. The

robot used for the experiment is a small differential drive robot called

SMR (Small Mobile Robot) designed and used locally at the Department

of Electrical Engineering. The robot has two powered rear wheels (diam

= 65mm), and two free caster wheels in front. The dimensions of the

robot is 28cm× 32cm (w × l). The robot is seen in figure 4.12.

Figure 4.12: The DTU SMR Robot used for the experiments

The controller in section 4.5.4 was used to drive to robot to follow

the example 1 trajectory. The control loop was run at 100Hz on a local

65

4. GENERIC NAVIGATION

computer connected to the robot through a LAN cable. The gains used

for the controller were κρ = 2.5, κα = 10.0 and κβ = 4.0. Figure 4.13

shows the experiment results. It illustrates both the reference pose and

the actual path of the robot.

It is seen from the figure that the robot nicely follows the path, al-

though with slight oscillations. When following the curve, after approx-

imately 15 seconds it is seen that the robot is slightly off track both in

position and in orientation. These observations could be a result of the

simple controller, non-optimal parameters for the controller, or high de-

lays over the network. Despite these problems, the results show how the

robot nicely follows all parts of the trajectory including rotation on the

spot, full stops, reversing, and curved motion. The robot slows down

before the full stops and it drives slower during the curved motion as the

velocity profile dictates.

Figure 4.13: Experimental results for the SMR following Example Trajectory 1

66

4.7 Conclusion

4.7 Conclusion

In this chapter the initial work towards a generic navigation solution for

wheeled mobile robots was performed. The survey clearly showed that

such a generic solution was needed. For example, despite being branded

as generic, the navigation package in ROS is designed primarily for omni-

directional robots with round or square shape.

The survey showed that research with navigation genericity as the

primary motivation was very limited. Many different method and im-

plementations for navigation exists, but often they are designed for a

specific type of robot and motivated by higher level research goals. As

a result, the work towards a generic solution started on a very low level,

with trajectory representation and trajectory following.

Based on previous work in [LSB09], it was decided to represent curved

trajectories using fifth order Bézier curves. The work in this thesis

enhances the trajectory representation, so it is possible to represent

rotation-on-the-spot and reverse motion. A method to convert an exist-

ing curved trajectory into a drivable version with continuous curvature

was presented and verified with two example trajectories.

The chapter also presented a method to create a velocity profile for

such a trajectory. The velocity profile defines the maximum velocity

for both translational and angular velocity, the robot is allowed to have

at any point in the trajectory. This maximum velocity adheres to the

dynamic constraints of the robot, and also takes the future part of the

trajectory into account, so the robot will slow down in proper time. The

velocity profile was derived for the two example trajectories.

In the survey, no trajectory following controller was found that was

capable of guiding a robot through a trajectory with rotation-on-the-

spot and reverse motion. Therefore a custom control law was created

to exist as an initial example, and to perform experiments with a real

differential drive robot driving through one of the example trajectories.

During the experiment the robot followed the trajectory, braking before

full stops and driving slower through the curve. At the curved part of

67

4. GENERIC NAVIGATION

the trajectory the robot was slightly off track, showing that the controller

could potentially be improved.

The results shows that the methods are usable for implementing a

generic navigation solution for both differential drive and Ackermann

robots.

4.7.1 Future Work

The method to create a drivable trajectory assumes that a curved tra-

jectory adhering to the geometrical constraints of the robot is already

found. A navigation solution must also include the step of finding this

trajectory.

The method to make the trajectory curvature-continuous slightly al-

ters the trajectory. Even if the initial trajectory is feasible, the method

could therefore potentially generate a trajectory with collision, or increase

the curvature beyond the geometrical limits of the robot. One potential

solution is to allow the method to also move the knot points slightly, to

optimize the path and minimize the curvature in high-curvature areas

of the trajectory. When the trajectory is modified, the method should

perform collision checking. Moving the knots will also allow for other

optimization schemes, such as with respect to driving speed or higher

safety.

The controller for trajectory-following is designed as very simple. Fur-

ther work is intended to be put into analyzing the performance of the

controller, or potentially consider a more advanced version. It is also

possible that less generic controllers should be designed for the different

types of wheel combinations instead of a generic one. Doing so, will make

it possible to take the respective robot model further into account, and

potentially implement observers for detecting errors in the configured

robot parameters.

68

5

Robotics Middleware

5.1 Introduction

When designing control software for robot systems one often encounters

the concept of a control framework. Sometimes it is denoted a middle-

ware, since it is software with the purpose of connecting other software

implementation and libraries together. The different types of middleware

scales from simple support network libraries, to full scale ecosystems with

code generators, integrated test frameworks, visualizers and build tools.

The overall purpose of the framework is to support a user in the

development of his system. By taking care of low level responsibilities

such as data exchange and threading, he can focus on the functionality

implementation where his expertise is high. Many frameworks share the

optimistic vision of making functionality implementation sharable and

reusable between several users, departments or even on a global scale.

An optimal middleware should be able to support the developer in

his most optimal work-flow. It should provide enough support to free the

user from low-level tedious and error prone tasks, but still provide enough

freedom so he is not unnecessarily constrained when implementing his

solution.

69

5. ROBOTICS MIDDLEWARE

5.2 Survey

During the years a substantial number of control frameworks and mid-

dleware implementations have sprung out from the need of a better fun-

damental for building robots. Most projects have been an effort from

a single university and research group, and have never really expanded

beyond this border. The scope of this survey is not to cover all of them,

but to focus on a few of the more successful ones that have gained a large

group of users and are still in use today.

Several more extensive surveys of robot middlewares exists, such as

[KS07].

5.2.1 Orocos

The Orocos[Bru01] project (Open RObot COntrol Software) dates all the

way back to 2001 where it was started as a relatively small EU sponsored

project with the aim of creating an open source control framework for use

in the field of robotics research. The motivation was that the commercial

robot frameworks often used in research at that time didn’t expose the

lower level sensor data with high enough efficiency to be used in advanced

research.

Since then, Orocos has been through many release cycles, and has

matured into a respected and widely used framework in robot control.

It now consists of several sub-projects including RTT (The Realtime

Toolkit), KDL (Kinematics and Dynamics Library), and BFL (Bayesian

Filtering Library).

The Realtime Toolkit is the actual middleware, created in C++, and

supports the implementation of a real-time control system separated in

individual components. The component model allows several commu-

nication interfaces such as synchronous data flow, asynchronous events,

commands, and RPC calls (Figure 5.2). The data-exchange is setup by

creating connections between components, creating a network of com-

ponents with well defined dependencies and data-flow. This model fits

very well to implement control loops, but it also requires the user to deal

70

5.2 Survey

Figure 5.1: Orocos Logo Source: www.orocos.org

with the low level task of defining the connections. Practical experience

shows that control engineers find this level of control very suitable, while

non-control engineers prefer the connections to be handled in a more ab-

stract manner. Being a middleware for implementing control loops, RTT

supports hard real-time guarantees of timing when running components

on an operating system that supports it.

Figure 5.2: Orocos Component Model Source: www.orocos.org

5.2.2 Player/Stage

As the name implies, the Player/Stage [Ger+01][CM05] project consists

of two sub-projects. Player provides a server architecture, where a set

71

5. ROBOTICS MIDDLEWARE

of generic interfaces for e.g. sensors, actuators and higher level func-

tionality can be implemented by devices. Devices are independent on

each other, and by registering on the server, they functionality become

available to remote clients that connect to the server through a socket

interface. Since the server devices and the clients are separated by a

socket interface, it has been possible to make the client library available

in several programming languages such as C, C++, Python, and Ruby.

Stage is a graphical simulator for multiple mobile robots, and imple-

ments simulated versions of Player devices. Since the simulated devices

in Stage implements the same interface as the real hardware devices, they

can be easily exchanged.

The fact that Player is natively network based, and provides an easy

to use simulator, has made it very powerful for controlling multiple mo-

bile robots. They have been capable of targeting both advanced research

and educational applications, since clients are available in several pro-

gramming languages.

5.2.3 ROS

ROS was originally denoted a Robot Operating System, and includes

much more than just a middleware. It was designed to meet the chal-

lenges encountered when designing large-scale service robots in the STAIR

project [QBN07] and the Willow Garage Personal Robots Program [Wyr+08].

Some of the design goals were to be peer-to-peer, distributable on multi-

ple hosts, and support for multiple programming languages.

A ROS system consist of a series of asynchronous nodes which runs

as a separate process, and exchange data using network connections.

The data must be of the form of ROS messages which is a hierarchical

composition of a series of primitive data-types. They are defined in a ROS

specific IDL (Interface Descriptor Language), and there-after converted

into code implementations in the available languages. As such, data

exchange is platform and language independent, and ROS systems can

thus scale to large and complex distributed systems.

72

5.3 Development Process

Figure 5.3: ROS Groovy Galapagos Banner Source: www.willowgarage.com

ROS includes its own build environment, code generators, and a huge

variety of tools for visualization, debugging, logging and assisting the

user. The user-friendly tools, together with an ever growing library of

control functionality implemented in ROS, and a large effort into sup-

porting the users through an open source community, ROS has gained

an impressive user group and a very active community.

5.3 Development Process

Software is often designed by software engineers for other software en-

gineers. As a result, many libraries and middlewares are designed with

main focus on fixing the problems that the designed himself has expe-

rienced, or that he thinks other people are struggling with. In practice

the middleware will be used by a huge diversity of different people, with

different backgrounds, different expertise and focusing on different areas

of the value chain.

The choice between a simple to use middleware for unexperienced

developers, and a powerful and complex middleware for experts is not

strict. It is a challenge to find the best compromise between these two

choices, and there will always be arguments in both directions.

73

5. ROBOTICS MIDDLEWARE

5.3.1 Stakeholders

Being high technology with practical use, the use of robotics spans widely

from research to industry. Researchers are motivated by creating pub-

lishable results, or proof-of-concept systems to argue that their novel

methods are better than previous work. Industry are motivated by prac-

tical results, systems that are working and usable, and that can either

give them an advantage in contrast to competitors, or expand the market

potential. In practice, one often encounters that there is a big gap be-

tween the products from research and the products expected by industry.

To close this gap, a robotics middleware should be usable by both

research and industry. Making it easier, faster and require less resources

to use the results from a research project in a practical commercial ap-

plication.

The study has identified three overall categories of users. Technol-

ogy Researchers, Research Integrators and Industrial Users. In pracise

many people will have different responsibilities during a project, and this

might fit into several of these categories at different times, or in different

research areas.

Technology Researchers

A robot application consist of a wide diversity of technologies, such as

complex mechanical design, hardware integration, advanced low level

control and a wide range of intelligent high level autonomous behaviour.

Many of these technologies are unrelated, thus much research only fo-

cuses on one or few areas of interest where expertise is built and novel

research published.

For this user-group, having to use a robotics middleware can be a

unnecessary burden. Novel research and simulated tests, or tests based

on recorded experimental data is faster to perform in mathematical en-

vironments such as MATLAB1 or SciPy2. This frees the researcher from

1http://www.mathworks.com
2http://www.scipy.org

74

5.3 Development Process

practical problems such as programming complexity, timing issues and

deployment.

Researchers are motivated by being able to publish his results, which

requires description of his method and test results, but not necessarily a

reference implementation. Practical tests are often only performed on a

single or a small number of reference robot platforms that are available

to the research group, and for which they have experience. In the field

of his expertise the researcher will have the best knowledge of how his

algorithms or methods are adjusted and configured for a specific robot.

The technology researcher could optimally provide or assist in the

following:

� Detailed description of his algorithm or method, e.g. in a research

paper.

� A reference implementation.

� Information about whether his methods can be used for other robots

and how to modify and configure them for specific cases.

Research Integrators

Obviously, only running algorithms and tests in MATLAB or similar en-

vironments is of limited interest compared to controlling a real world

robot. Getting a robot running requires integration of many different

research technologies, and relying and using work provided by other re-

searchers. A user who needs to perform this integration of other peoples

work is denoted a technology integrator.

Integration in research can be a time-consuming and ungrateful job.

Time is spent on understanding other peoples work, and fighting tedious

and practical problems with few publishable results. Maintaining only a

few reference platforms in a research group can minimize the time spent

on integration, but neglecting a platform for only short periods can make

it very difficult to make it usable again.

75

5. ROBOTICS MIDDLEWARE

Experience has shown that unreasonable amount of time is spent

on integrating technologies into new robot applications. Even simple

problems with well known solutions such as simple control, odometry

calibration, sensor integration and simple localization are time consuming

to set up on a new robot. One often fights the same problem over and over

again, due to small differences, resulting in unnecessary cost of resources

but also an enormous source of errors.

A robot middleware can help with this, and the magic keyword that

is thrown around is “reuse”.

Discussions and arguments in favor of “reusability” often focuses on

implementation reuse, which can be reuse of actual source code, com-

piled libraries or installable packages. Fortunately the methods for code-

reuse has been very mature in other open source communities for many

years, and the procedure is quite straightforward. It requires a certain

amount of effort towards proper implementation, testing, documentation

and subsequent maintenance and support.

While code reuse can save the integrator a lot of precious time, he

is still left with a secondary task that can be equally time consuming

and error-prone. The algorithms and libraries must be configured for the

specific robot, task and environment, and integrated properly into the

rest of the system.

Traditional software libraries optimally provides a simplified interface

to the user, hiding unnecessary implementation specific details, thus the

user can focus on his specific use-case and not on how the underlying al-

gorithms work. Many hours of work spent of integrating reference imple-

mentations of control algorithms and different methods and technologies

provided by other research groups, into our own robot applications shows

that this is rarely the case for robotics software. The underlying algo-

rithms are highly advanced and based on many difficult to understand

properties such as probability. Important parameters relate directly to

core properties of the algorithms, and unless one know the algorithm

detail, it is impossible to choose the correct parameter values.

76

5.3 Development Process

A practical example is the ROS Navigation stack3, a software package

providing mapping and autonomous navigation for wheeled robots. It is

branded as a easy-to-use package and provides a well documented guide

explaining how to integrate it with your robot system running ROS. In

many aspects this package is a inspiring example in reuse, since it tries to

provide a solution to a very generic and common task in wheeled robots.

Experience has shown that in practice people find it much more difficult

to use than expected. Especially if they are using it for robots with

different properties than the Willow Garage PR24 robot it was originally

designed for. The following reasons have been identified:

� The guide describes how to modify your system to fit the very

strict interface of the navigation node, not the other way around.

� The package contains a huge amount of implementations for plan-

ning, control and mapping. It is difficult to get a overview of the

best choice for your application, and the quality of each.

� The parameters are very implementation specific. Such as map

dimension in pixels, or the number of particles for the Monte Carlo

localizer. Setup is covered by a “tuning” guide.

� Many things are hard-coded. Such a one specific odometry error

model.

� The external interface is very strict and simple. You simply provide

a goal.

� It internally includes too high level behavior, such as recovery be-

haviour and planning strategy. Thus you get little control over this

at runtime.

3http://www.ros.org/wiki/navigation
4http://www.willowgarage.com/pages/pr2/overview

77

5. ROBOTICS MIDDLEWARE

Industrial Integrators

Industrial integrators are users who require integration of the technology

for industrial or commercial applications. In addition to the same chal-

lenges as the Research Integration, they are usually more constrained in

relation to time, resources and the hardware the software should run on.

For this group, is is also important to know the quality and robustness of

the available implementation, since the requirements for robustness and

reliability is higher.

5.3.2 Use Cases and Functionality

The scope of this section is not to create an excaustive list of use cases and

requirements for a robotics middleware. Instead it will elaborate of a few

of the more exotic cases not supported very well by the existing frame-

works. Either because they are very specific for the robotics research

process, because inadequate solutions exist in the existing frameworks or

because they are new requirements from the industrial stakeholders.

Rapid Research Prototyping

As mentioned in section 5.3.1 technology researchers often prefer a more

practical and mathematical working environment such as MATLAB or

SciPy in Python. As such, the initial reference implementations occur

in these languages and not necessary in the native language of the mid-

dleware. Being able to interface these prototype implementations di-

rectly with the “real” control system of the robot has several advantages.

It avoids the need for tedious and error-prone re-implementations, and

makes it possible to perform experiments early in the research process.

Distribute on Multiple Hosts

Robot systems are very modular. Having to run the complete control

system on one single computer or microcontroller is a model that rarely

fit in practice. They often consists of different actuators e.g. robot arms,

78

5.3 Development Process

wheelbases or speakers, and a huge variety of sensors. This modular

approach also spans into the controller hardware, where different com-

puters control sub-parts of the systems. Prototype algorithms are easiest

run on a desktop PC, while the rest of the control system run on the

robot. Many ready-to-use implementations of network communication

exist that can be used to connect the different parts manually. But this

easily results in user-defined and undocumented protocols. Obviously,

the network communication and system distribution is a low level func-

tionality that most users should not have to worry about. Instead it

should be handled natively by the middleware.

Unconstrained Data-flow Abstraction

The core responsibility of middleware is to connect, synchronize and ex-

change data between the different components that make up the system.

The available patterns for connecting and synchronizing has a big impact

on how free the user is to split his functionality into components and ob-

tain a powerful architecture. The use case does not define any particular

pattern, only to stress that the available data-flow patterns should not

put unnecessary constraints on how the user can define and split up his

system.

Unconstrained Data-types

When designing a control system that is only used in a single software

group of research department, it is easy to dictate which libraries and

data-types the users should use. Some middlewares have tried to perform

the same dictation and limit the data-types that can be used. An example

is ROS that provide a set of data-types, so called ROS messages, that

must be used for data exchange. They do provide an IDL (Interface

description language) to create user defined data-types, but they can only

be built by a combination of their data-types. As a result, a running ROS

system often includes an enormous amount of data-type conversion.

Internally, components and libraries often use more complex data-

79

5. ROBOTICS MIDDLEWARE

types that are optimized for the given purpose and the implementation

language. Even if two components in ROS use the same internal represen-

tation of an image, it must be converted into the ROS message version of

an image to be transported, and then back again when delivered. Obvi-

ously, this constraint works against the user, instead of supporting him in

his work. Often several different implementations of data-types exists to

represent the same type of data. A middleware should be unconstrained

in what data-types it is capable of exchanging and provide transparent

conversion of different data-types that represents the same type of data.

Composition and Interfaces

While middleware can assist in splitting the control system into a mul-

titude of smaller reusable components, in most cases, the components

are only really usable in groups. Forcing the user to understand and

configure other peoples components individually to deploy a higher level

functionality is not optimal. With composition, many components can be

grouped together to externally appear as one single component. Internal

communication can be hidden and only the interface required to interact

has to be exposed, making them much easier to understand and use. By

defining a certain interface for a higher level functionality, several dif-

ferent component compositions can be used to implement the respective

functionality. As long as they match the interface they can be inter-

changed.

Deployment and Lifetime Management

A complex control system is a dynamic entity with an entanglement of

internal runtime dependencies. One part of the system needs a function-

ality or resource provided by a completely different part of the system to

be available, before it can perform its own function.

Users often only consider the steady state, where all components are

loaded and running. But it is not a straightforward process to go from

a non-running system, to the steady state in an asynchronous system

80

5.4 Conclusion

where dependencies and dependees can start up randomly.

Deployment and lifetime management should handle the dependen-

cies to provide a predictable startup and shutdown with respect to depen-

dencies. In case of crashing or components otherwise becoming available,

dependent parts of the system should also perform a controlled shutdown,

until the respective components are either restarted or again available.

Low-Cost and Low-Power Hardware Support

In research, it is less important what type of computational power that

is required to run the proposed methods and obtain usable results. The

argument is often that computers has, and always will, continue to grow

in power, and results that are difficult to obtain today will be generally

available in few years.

Industrial stakeholders on the other hand needs the robot control sys-

tem to run on todays hardware. They are much more constrained in cost,

power consumption and physical space. Keeping the processing overhead

and memory consumption low of both the middleware and its dependen-

cies are important to insure that systems built with the middleware or

small parts thereof, will be capable of running on low-end hardware.

5.4 Conclusion

The work in this project is focused towards being able to build consumer

products from the available robotics technology. This results in several

additional requirements on the middleware, compared to research only

work. Some of these requirements results from practical constraints such

as using embedded and low-power hardware. Others relate to increased

need for reliability and predictability in the running control system, since

industrial and consumer products will run for months and years, and

failures and downtime can be expensive. At the same time, it is not

desirable to use a middleware that is industry-only or proprietary, since

it hinders the cooperation with academia.

81

5. ROBOTICS MIDDLEWARE

The survey of existing middlewares showed several potential choices.

The Orocos RTT appears to be very mature, uses a powerful compo-

nent model that allows for code reuse and model-driven engineering. It

also supports predictable hard real-time control and has several available

models for connecting control systems over network. The synchronous

and connection driven nature of RTT components follow the normal way

of thinking in control theory, and it also appears that RTT is build for

control engineers.

A second viable option is ROS. It is not only a middleware but is

a complete eco-system with build system, release management, tools for

debugging and visualizing and a huge variety of existing robot control

implementations. The asynchronous network oriented model in ROS with

distributed nodes and the publisher & subscribe patterns is a little further

from regular control systems. But it appears many researchers finds this

model easier to use and understand, and the huge community of ROS

users is a very persuasive argument towards using it.

Based on these arguments, the choice fell on a mixture of Orocos

RTT and ROS. The Orocos RTT is used for implementing low level

control loops, and potentially run in realtime, while ROS is used for

higher level functionality. This gives access to the whole ROS community,

the powerful tools and the existing functionality.

5.4.1 Observed Issues

Unfortunately it was observed that several of the requirements mentioned

in section 5.3.2 are not supported optimally by the ROS middleware.

ROS is designed for research and high-end hardware running Ubuntu

Linux, and putting it on more exotic low power embedded hardware

turned out to be a challenge. Both due to performance issues, and be-

cause the very ROS-specific build system makes it difficult to cross com-

pile for other architectures. Data exchange in ROS is constrained to a

limited set of data-types, ROS-messages, or compositions thereof. Us-

ing the standard node model means all data will be pushed through the

82

5.4 Conclusion

network stack, even when transfered between two nodes on the same ma-

chine. This adds an enormous bottle-neck. Since ROS nodes exists as

individual executables, the bring-up process is difficult to control since

deployment happens by executing all these programs at once.

Due to all these limitations, mainly concerning lack of performance

and predictability, it was concluded that the ROS middleware should not

be used for serial industrial or commercial systems, unless they were only

demonstrations or prototypes. During this thesis a substantial amount

of work was therefore directed towards analyzing how the ROS middle-

ware could be improved or replaced. Chapter 6 presents the design of the

DARC middleware which is designed to be able to replace the ROS mid-

dleware in the ROS environment and fulfill the industrial requirements.

83

5. ROBOTICS MIDDLEWARE

84

6

“DARC” Middleware

The previous chapter included an introduction to middleware and exam-

ples of existing middleware used in robotics. While ROS appeared to be

the best choice, mainly due to high popularity in research, a large and

active community, and a large selection of available functionality imple-

mented in ROS, it had some disadvantages when used for commercial or

industrial products. The large community is something that took years

to build, and would not have happened if ROS was not a powerful system

to use for researchers. One of the reasons that ROS is easy to use for

researchers is that it is much more than a middleware. It includes a build

and release environment and tools for navigating it. It includes tools for

logging, visualization, and testing, and an environment for documenta-

tion and searching for assistance.

Within the scope of this project, two main components in the ROS

system showed to be inadequate. The first one was the custom build-

environment that meant it was very difficult to compile ROS systems for

embedded systems. The second was the performance of the middleware.

Instead of just trying to modify the current systems, and create hack-

ish workarounds, this project dug into the core problems and contributed

to provide next generation replacements of these two system components.

This resulted in a new build environment called “Catkin”, and a pro-

totype on a superior implementation of a ROS compatible middleware

85

6. “DARC” MIDDLEWARE

called “DARC”.

6.1 The Catkin Build System

“Catkin” is a build system first used in the ROS release named Fuerte

from April 23, 2012. It is based on CMake and Python to provide ad-

vanced dependency handling, and code generation in a native CMake

style. It will be briefly described here because it was created in coop-

eration of Willow Garage as part of my external PhD stay in 2011 at

Willow Garage, the company behind ROS. The effort this project put

into “Catkin” was to solve a series of fundamental practical problems

rather than research oriented. Despite this, it provides a very important

fundament that, among other things, made it possible to create “DARC”.

catkin
catkin is the official build system of ROS and the successor to the
original ROS build system, rosbuild. catkin combines CMake macros
and Python scripts to provide some functionality on top of CMake’s
normal work-flow. catkin was designed to be more conventional than
rosbuild, allowing for better distribution of packages, better cross-
compiling support, and better portability. catkin’s work-flow is very
similar to CMake’s but adds support for automatic ’find package’
infrastructure and building multiple, dependent projects at the same
time. The name catkin comes from the tail-shaped flower cluster
found on willow trees – a reference to Willow Garage where catkin
was created.

Source: http: // www. ros. org/ wiki/ catkin/ conceptual_

overview

6.1.1 Motivation

ROS is made up by a large amount of different software packages. Some

packages provide the core functionality, some include the tools, and the

majority is the actual control systems and functionality implemented in

ROS. The package model is essential to provide a high level of reusability,

86

6.1 The Catkin Build System

and allows users with different needs to pull in only the parts of the

system that they need. These packages dependends on each other, and

in a practical ROS systems there is an enormous amount of internal

dependencies to handle. Some are compile dependencies including C++

headers and libraries, some are tool dependencies, some are input to code

generators and some are run-time dependencies between Python scripts.

The majority of users do not want to worry about handling these low

level dependencies, therefore the initial ROS included a custom build

system called “rosbuild”. Each package is configured with: (1) A CMake

build file containing mostly rosbuild specific CMake-macros, specifying

how to compile the source files in the respective package. (2) An xml

file listing the packages it depends on, and build information exported to

dependent packages.

The initial “rosbuild” is very user-friendly for beginner programmers,

which also means it is designed mainly to standard build requirements.

The large amount of custom macros, and custom handling of dependen-

cies, means that non-standard build requirements are difficult to han-

dle. Cross compiling is the process of compiling a library or executable

with the intention of running it on a different system (the target) than

the one it is being compiled on (the host). Therefore it must also link

against target-specific versions of all binary dependencies instead of using

the ones installed on the host system. Cross compiling is the preferred

method to compile for small embedded systems, since it is unnecessary

and a waste of resources to put a complete compiler tool-chain on such a

small system. The internal dependency handling of rosbuild was not de-

signed to handle the separation of host and target dependencies, thus the

main requirement of running ROS on embedded systems was unnecessary

complex due to rosbuild.

87

6. “DARC” MIDDLEWARE

Cross Compiler

A cross compiler is a compiler capable of creating executable code
for a platform other than the one on which the compiler is running.
Cross compiler tools are used to generate executables for embedded
system or multiple platforms. It is used to compile for a platform
upon which it is not feasible to do the compiling, like microcontrollers
that don’t support an operating system. It has become more common
to use this tool for paravirtualization where a system may have one
or more platforms in use.

Source: http: // en. wikipedia. org/ wiki/ Cross_ compiler

With the introduction of catkin, the dependencies were handled in-

ternally by CMake in a much more optimal way. Advanced ROS specific

functionality such as sorting for dependencies, and code generation, were

done by CMake hooking into a series of platform independent Python

scripts. This resulted in:

1. Compilation times that were magnitudes faster compared to ros-

build.

2. Better cross-platform support that allowed for building on e.g. Mi-

crosoft Windows.

3. Made all CMake options available, including configuring for cross

compilation.

4. More powerful separation of package dependencies.

The last item, meant that it was possible to use smaller parts of the

ROS core library individually, e.g. ROS messages without the actual

ROS middleware. As a direct result, it was now possible to create a new

implementation of the ROS middleware, that would be compatible with

ROS messages. This is exactly what “DARC” is.

88

6.2 Design Considerations

6.2 Design Considerations

Attempting to create a complete replacement to the ROS middleware

is no easy task. Yet it gives a unique possibility to make fundamental

changes, and take many more requirements into account than just the

performance and predictability issues. When designing ROS, many de-

sign choices were taken with respect to the currently available libraries

and the requirements known at that given time. The current situation is

not much different, except there is a large amount of practical experience

and lessons learned from years of using ROS. There is a much more broad

variety of users, and use-case that can be taken into account.

But expecting to be able to design the perfect middleware that solves

the requirements of all users is still not possible. There is no single “cus-

tomer” to define the requirements, instead they must be gathered from

the community and from the users. This is an enormous task, and there

is no guarantee that all the right users will be heard, and new require-

ments and use-cases will most likely appear in the future. Traditional

requirement-driven software development processes that expects the re-

quirement to be well defined early in the process, are not well suited for

this situation.

Realizing this, the purpose of creating “DARC” is not to fulfill all

requirements at once. Instead, it is a showcase and a prototype of a

fundamentally different architecture for a control middleware based on

the following principles:

� Only fundamental requirements are locked early in the process.

These are defined as the requirements that have a fundamental

impact on the core architecture.

� Non-fundamental requirements are implemented as customizable

and loosely coupled. Thus the architecture is prepared to handle

newly discovered requirements and use-cases.

89

6. “DARC” MIDDLEWARE

6.2.1 Fundamental Requirements

Transparent Distribution

One of the powers of ROS is that nodes can be freely placed on different

hosts on the network, as long as the ROS network protocols are capable

of establishing a connection. This fundamental requirement is therefore

inherited from ROS.

Decentralized

Unfortunately, the topology in a ROS system is greatly constrained by

the need to have one central authority, the ROS master running on one

of the host. Due to this, the topology of nodes must grow from this

central point. It is difficult to connect two ROS control systems that have

been started separately, e.g. for multi-robot cases. A new fundamental

requirement is that the need for this central authority must be eliminated.

Instead the cooperation must be handled in a decentralized manner.

Multi Linguistic

A fundamental design choice in ROS was that it should be able to pro-

gram nodes in different programming languages, and these nodes should

be able to communicate. A great power of ROS is that it now support

several different programming languages such as C++, Python, Java and

Lisp. This fundamental requirement is therefore inherited from ROS.

Reliable and Predictable Behavior

The reliability requirement can be a little difficult to relate to for average

users. ROS is built for research, thus it is often enough to just get a

system up and running during an experiment or for a demonstration.

While ROS systems can appear to run fine for long periods, the system

is designed in such a way, that some errors are silent and allows the

system to continue running in an unpredicable manner.

90

6.3 A Multi-paradigm Middleware

Reliability is the ability of the system to perform its function even

during unexpected circumstances. Clearly, some hostile circumstances

such as network failures, program crashes or CPU congestion will prevent

the system from functioning. But in these cases it is important that

the error handling behavior is predicable, and the affected parts of the

system is prevented from running. This requirement is categorized as

fundamental because it is essential for building industrial and consumer

products and it affects all layers of the architecture.

Support for Low Power and Embedded Systems

Because ROS was originally designed for the Willow Garage PR2 robot

which includes two high performance computer systems, it has never

really been designed to run on low performance systems. To properly

support these embedded systems the middleware should use minimal re-

sources and cause minimal performance overhead. And the same should

apply for the dependencies it brings in. Therefore it is classified as a

fundamental requirement.

6.3 A Multi-paradigm Middleware

The first attempt to design a ROS middleware replacement resulted in

a prototype implementation in C++, where user functionality was im-

plemented in components that could be either local or distributed over

network. Components exchanged data using the ROS message format

through an high performance asynchronous publisher & subscriber mech-

anism, and bookkeeping was handled in a decentralized manner. There-

fore the name DARC was given, meaning “Decentralized Asynchronous

Reactive Components”.

From this version the middleware has evolved into much more, based

on initial feedback, and a extensive analysis of the requirements. The core

concept of performance and decentralized nature remains. The newest

version includes:

91

6. “DARC” MIDDLEWARE

� Decentralized peer-to-peer network, thus no central authority re-

quired.

� Full transparency between fast intraprocess communication, and

network communication.

� Easy to combine multiple control systems, e.g. for multi-robot

situations.

� Non intrusive supervision of the running system.

� No constraints on what data-types to use.

� Pluggable features.

The middleware is designed to be multi-paradigm, meaning that it

can be used in many different ways.

The component model is only one possible paradigm, that is intended

to be used for the customizable and mature parts of the control system,

being high performance and intended to be implemented in C++. Com-

ponents are very powerful, their lifetime can be managed and they can

potentially be configured with a model driven approach.

Another option is the scripting paradigm, intended to be prototype

implementations in a high level language like Python. The lifetime is

controlled manually by running and stopping the script, and performance

is less important.

A third paradigm is the source or sink paradigm, for exposing data

streams from sensors or receiving commands for actuators. These parts

of the system are independent from the actual control system. They

don’t need lifetime management, as they can ideally be running all the

time and be available for any control system that connects to them.

These are just the three current paradigms. Web interfaces, simula-

tors and miscellaneous user interfaces will probably be optimally designed

with other paradigms.

Since the bookkeeping is decentralized, control systems with different

paradigms and different lifetimes can be dynamically formed and torn

92

6.4 Design of DARC

apart again. At the lowest level they all speak the same platform in-

dependent protocol, so everything is DARC-native, there is no need for

bridges. Robots and sensors can potentially run their own local indepen-

dent DARC-system, thus exposing their data and receive commands in

a native way.

6.4 Design of DARC

This section is not intended to be a complete and exhaustive design spec-

ification. It is intended to explain how DARC is designed to include these

novel features and why it is claimed to be a next-generation middleware.

6.4.1 Programming Language

High flexibility, extendability and performance is obtained by creating

the reference implementation in Modern C++ using the C++03 stan-

dard. Modern C++ is a style of C++, where many error-prone features

inherited from C is avoided. Instead it utilizes a high use of standard

library algorithms, smart pointers and programming techniques based on

C++ templates.

Modern C++ can put some constraints on the compiler, but in prac-

tice only relatively simple template patterns are used, so most recent

versions of the popular compilers, also for embedded systems, are capa-

ble of handling it. Template programming techniques, such as the policy

pattern1 is used to inject customizations of central functionality either

at compile time or at runtime. This makes it possible to choose and

override serialization method, memory allocation strategy, and even add

new communications paradigms. The default choices are the most user-

friendly suitable for standard users, but expert users are not constrained

to these choices.

Support for multiple languages can be provided in two ways. (1)

1http://en.wikipedia.org/wiki/Policy-based design

93

6. “DARC” MIDDLEWARE

By using a wrapper library such as Swig2 or Boost Python3 to wrap

the reference C++ implementation by a higher level language. (2) By

implementing DARC, or a subset of DARC, natively in the respective

language using the language independent protocol. The protocol is based

on MessagePack4, which is a high performance library for data exchange

with support for a basically any modern programming language.

Figure 6.1: Architecture of DARC C++ Reference Implementation

6.4.2 Architecture

The architecture of the reference implementation is designed very strictly

to support the required customization and extensions. As illustrated in

figure 6.1 it is built up by four layers.

Network Layer

The transport protocol used for network distribution is abstracted by

the network layer. The reference implementation uses the TCP trans-

port from the ZeroMQ5 network library. It is chosen because it provides

platform independent socket connections, and among other things, adds

2http://www.swig.org
3http://www.boost.org/libs/python
4http://msgpack.org
5http://www.zeromq.org

94

6.4 Design of DARC

guaranteed delivery of large messages and automatic reconnection. Be-

cause the transport is separated from the higher layers, new protocols

such as broadcasted UDP, encrypted TCP or even RS232 serial links can

be added with no changes in the higher layers required.

Peer Layer

The peer layer implements a routable network that abstracts the un-

derlying network connections, described in more details in section 6.4.3

It implements supporting functionality for handling distributed records

that higher layers can take advantage on.

Primitives Layer

The primitives layer implements the higher level communication patterns

for data exchange, timer events and configuration, covered in more details

in section 6.4.5. Because they are well separated in this layer it is easy

to extend the middleware with new communication patterns if new use-

cases arise. Primitives uses zero-copy methods for exchanging data when

running on the same peer, while data to primitives located on other

peers is serialized and routed through the peer layer. In theory, some

communication patterns can also be constrained to run only on the same

peer, e.g. to support real-time constraints.

Component Layer / Interface Layer

While the primitives layer can be used directly by a user application, it

is often more advantageous to provide a more natural and user-friendly

interface. In the C++ reference implementation the component layer

provides a high performance, component based approach to implement

user functionality. The interface follows an easy to use and C++ nat-

ural programming style, designed for non-experts, and hides low level

functionality such as threading and deployment.

When wrapping the C++ reference implementation e.g. in Python,

the component layer can be replaced by a different interface layer that

95

6. “DARC” MIDDLEWARE

better supports the wrapper in providing a Python friendly programming

style. It has also been experimented with implementing a ROS-node

interface layer that is source compatible with ROS, so nodes written for

ROS can be directly compiled to instead use the DARC middleware.

6.4.3 Peers

DARC is designed to run as a decentralized peer-to-peer system, where

each peer runs as a separate process. The peers can be distributed on

different hosts, or even implemented in different programming languages.

Peers must be connected to form a DARC system. This can either be

done manually, or the peers can be configured to discover each other

automatically using the Zeroconf protocol.

Figure 6.2: Peer Topology

A group of connected peers form a routing capable network, thus a

peer needs only connect to one other peer and it is part of the control

system. This makes it easy to connect GUI’s, or combine two existing

DARC systems even through wireless networks or Internet tunnels, as it

can be done with a single connection.

The architecture is designed to be scalable in complexity. This makes

96

6.4 Design of DARC

it possible to create a category of peers called “leaf” peers. “Leaf” peers

can only be connected to one other peer and lack certain features such

as routing and internal shared memory transport. As such they can

only exist as leafs in the network topology. This type of peer works

well for components only receiving sensor data, translating commands

to actuators or GUI applications. Since they only need to implement a

subpart of the functionality they are easier to port to other languages

(e.g. Java for Android applications). Figure 6.2 shows the topology of

an example DARC system where the main control system is implemented

with normal peers and sensor data and GUI is handled by “leaf” peers.

6.4.4 Components

The user builds a control system by implementing her algorithms and

functionality in DARC components, or by utilizing existing component

implementations.

The component model is effective to decouple the different subparts

of the control system into reusable building blocks. High reusablity is

important since: (1) It minimizes the efforts required to create a control

system for a new robot. (2) Reused components tends to be more mature,

robust and throughly tested.

Components are compiled to a dynamic library and loaded into a peer.

From here they will be able to communicate with all other components

in the system, transparent whether they are running on the same peer or

on a remote peer. The framework takes care of loading and instantiating

the components and lower level functionality such as threading, error

handling and logging. The robustness of the control system is improved

by having the system state of all components being controlled by the

state machine in figure 6.3. The component will not start execution until

all prerequisites are available, such as remote resources, data ports are

connected or parameters are loaded.

97

6. “DARC” MIDDLEWARE

Figure 6.3: Internal Component State-Machine

6.4.5 Primitives

Components use a range of primitives to exchange data, synchronize with

each other, and for configuration. The following types are available:

� Publishers & Subscribers

� Procedures

� Functors

� Timers

� Passive Resources

� Parameters

The user implements callback functions triggered by the primitives in

case of events. Figure 6.4 shows the composition of a component.

98

6.4 Design of DARC

Figure 6.4: Component Model

Publishers & Subscribers

Components can publish data to a topic, making it directly avail-

able to any component subscribing to the same topic. This provides a

powerful communication model for both periodic data streams, or for

state information that should be globally available. At design time the

publisher do not need to know about the existence of subscribers. By de-

fault a publisher is non-unique, allowing several components to publish

to the same topic, implementing a many-to-many communication model.

A publisher can also be configured to be unique, allowing only one com-

ponent to publish to the topic, in situations where several sources is a

design violation.

Procedures

DARC procedures are implemented using two types of primitives, a pro-

cedure server and a procedure client. Together they provide a request/re-

ply communication model, useful for both:

1. Asynchronous requests for data which is expensive or otherwise

unsuitable to publish, e.g. map data

2. Controlling and supervising long running pre-emptible tasks, e.g.

commands to move a robot arm.

99

6. “DARC” MIDDLEWARE

Figure 6.5: Publisher & Subscribe Pattern

At completion, the server returns a message with the result. In case

of a longer running task, the server can return feedback messages with

intermediate results. The task can be restarted or stopped by the client

while it is running. Figure 6.6 shows an example sequence of a successful

procedure call.

Figure 6.6: Procedure Call Sequence

Functors

Functors provide a mechanism to perform a transformation to a list of

data of the same type, resulting in a list of result values. This model

100

6.4 Design of DARC

fits the case where the calling component has the source data and also

needs the result, but where the actual transformation is provided by an

external component.

In existing frameworks this model is difficult to implement optimally.

It is often emulated using publisher/subscribe or request/response models

adding unnecessary performance loss and complexity. The functor model

can improve the separation of concerns in a control system significantly.

y = f{p}(x) (6.1)


y0

y1

..
yn

 = f{p}




x0

x1

..
xn


 (6.2)

A functor must fit the model in (6.1) and (6.2), where x and y contains

vectorized data with the same data types respectively. The transforma-

tion f is parameterized with the parameters p, and should be purely

functional thus:

1. It should have no observable side effects.

2. It should yield the same result y for the same values of x and p.

Using a functor is a two step process. (1) Providing the parameters

p and acquiring a functor instance for fp. (2) Subsequent calls to the

functor object with values of y as argument.

Functors are suitable for problems such a collision checking a set of

poses, calculating state transitions e.g. odometry, or provide an abstract

representation of a distribution that can be used to draw samples. Com-

pared to procedures, functor calls are designed to be faster and easier to

parallelize.

101

6. “DARC” MIDDLEWARE

Timers

As DARC components are purely event based, reoccurring or delayed

events should be triggered with timers instead of using loops or wait

statements. Two types of timers exists. A periodic timers triggers the

event handler with a constant interval, for reoccurring events. A dead-

line timer triggers the event handler once after it has been started, for

delaying events or providing timeout supervision.

Passive Resources

Passive resources are purely used for synchronizing components and mod-

eling higher level dependencies between components. A component de-

pendent on a certain passive resource will not start before another com-

ponent is loaded providing the passive resource.

Parameters

For maximum reusability, any adjustable variable should be created as

a parameter. The actual parameter values are configured at load time,

or can be adjusted while the system is running. DARC is designed to

implement the “Smart Parameter Framework”, described in chapter 7,

which makes it possible to derive the actual parameter values based on

a robot model.

6.4.6 Data types

DARC supports, but is not limited to, the use of ROS data-types. Any

copyable C++ data can be transported between components by the prim-

itives. Large data can be passed using reference counted shared pointers,

resulting in zero copying of data if the components are loaded into the

same peer. To pass data between components located on network sep-

arated peers, the data structure must be serializable. DARC can use

any serializer method, such as ROS serializer, boost serializer or a user

defined method.

102

6.5 Real-time Support

6.5 Real-time Support

Some parts of the control loops must run at high frequency, with a com-

pletely guaranteed execution time, known as hard real-time. DARC is

not intended to support hard real-time execution, instead it is encouraged

to implement those subparts in a framework specially designed for this,

such as The Orocos Real-time Toolkit6. Instead DARC focuses on the

part of the control system which can run in soft real-time. Soft real-time

means execution and deadlines are allowed to have a certain slack, and

DARC provides tools to supervise that this slack is fulfilled.

6.6 Performance Test

Using frameworks such as DARC and ROS provide powerful ways to

split functionality into reusable subpart. But they will always result in

some amount of performance loss compared to raw C++ function calls.

Minimizing the performance loss is important since it allows the system

to be split into smaller parts.

Comparing the latency performance of DARC and ROS is done using

two test cases where two components(DARC case), or two nodes(ROS

case) communicate. In the DARC case the components are either loaded

into the same peer to make use of the intra-process communication op-

timizations, or into two peers located on the same host but connected

through TCP. In the ROS case the nodes are also located on the same

host and connected through TCP. Using Nodelets7 in ROS does allow

for zero-copy transport and lower latency. But while DARC components

supports both patterns out of the box, ROS Nodelets requires the node

to be specially implemented and thus not available to the average user.

Two test systems were used:

1. Beagleboard-xM with a 1GHz Arm® Cortex�-A8 CPU. Running

Ångström Linux.

6http://www.orocos.org/rtt
7http://www.ros.org/wiki/nodelet

103

6. “DARC” MIDDLEWARE

2. Laptop equipped with a 2.40GHz Intel® Core� i5 CPU. Running

Ubuntu 12.10.

The native supported system by ROS is Ubuntu, and compiling and

running the ROS nodes on Ångström Linux, at the time the tests were

run, turned out to be quite a challenge. Therefore all the DARC/ROS

comparison tests were performed on the Ubuntu system.

Instead only the Publisher & Subscribe test of DARC was run in the

Beagleboard to show the performance of DARC in an embedded system.

6.6.1 Publish & Subscribe

The speed of the publish & subscribe pattern is tested by “Component

A” publishing a small ping message received by “Component B”. Upon

receiving the ping, “Component B” publishes a small pong message re-

ceived by “Component A”. The average round trip time of the ping/pong

communication is measured over a period of several seconds. See table

6.1 and table 6.2 for results.

Same Peer/Node Distributed Peer/Node

DARC ∼ 1.0µs ∼ 50µs

ROS N/A ∼ 180µs

Table 6.1: Speed of DARC and ROS publisher/subscribe. (Ubuntu System)

Same Peer/Node Distributed Peer/Node

DARC ∼ 30µs ∼ 4ms

Table 6.2: Speed of DARC publisher/subscribe. (Beagleboard-xM Test System)

6.6.2 Procedures & Actions

“Component A” performs a call to the procedure or action provided by

“Component B” and waits for the result. Again the average round trip

104

6.7 Conclusion

time of the request is measured over a period of several seconds. See

table 6.3 for results.

Same Peer/Node Distributed Peer/Node

DARC 1.1µs ∼ 55µs

ROS N/A ∼ 1600µs

Table 6.3: Speed of DARC procedures and ROS actions. (Ubuntu Test System)

6.7 Conclusion

The design of DARC shows that it has been possible to improve several

areas of state-of-the-art robotics frameworks. Both concerning perfor-

mance and support for new use-cases. The component model improves

the ability to create reusable software. By exchanging data using DARC

communication primitives, it is transparent at design time whether com-

ponents are running on the same host or on network separated hosts.

The functor primitive further improves the ability to decouple the com-

ponents. Several tests show an enormous latency improvement, due to

DARC components running in the same peer utilizing zero copy data

transfer.

105

6. “DARC” MIDDLEWARE

106

7

Smart Parameter

Framework

7.1 Introduction

This chapter presents the “Smart Parameter Framework” that can be

used for configuring the individual components in component based robot

control systems. Using smart parameters that adapt to the respective

robot system makes it possible to obtain optimal parameter values while

reusing the software components, without expert knowledge about the

underlying algorithms. The framework derives algorithm specific param-

eters from more high level and understandable robot properties, which

can often be measured or calibrated. Therefore the framework also as-

sists in building robot systems that can autonomously calibrate itself,

resulting in higher stability of the robot and less tuning required.

The framework was initially designed to be general and usable in sev-

eral different robot middlewares, while the intended purpose has later

shifted towards being the core parameter system for the DARC middle-

ware. This chapter will describe the initial generic approach.

107

7. SMART PARAMETER FRAMEWORK

7.1.1 Problem Formulation

An autonomous robot system consists of many different technologies for

sensing and control, and as a result each system is often unique to some

extent. This requires the control software and control algorithms to be de-

signed or adapted for each particular robot system, leading to important

resources wasted on reinventing the wheel. Designing and integrating

these technologies can be complex, resource demanding and requires spe-

cialized knowledge. This which hinders the full potential for developing

commercial robot applications where development resources and project

risks should be kept at a minimum. Fortunately, much focus has been put

on creating robot control frameworks with modularity and reusability in

mind, using design patterns originating from traditional software design

such as active objects and data-flow patterns[Bru01][Ger+01][Qui+09].

Using such a framework can release the developer from much imple-

mentation work, but it still requires a considerable effort in integrating

the components. The task includes the complex job of configuring each

component, some of which contains advanced algorithms and control.

Traditionally, this configuring is performed with primitive methods such

as hardcoding constant values defined in the source code, or supplying

parameter values during deployment or runtime. Since each of these pa-

rameters must be adjusted to the specific robotic application, it again

requires deep insight to the underlying algorithms and also adds a po-

tential source of errors. Figure 7.1 shows a piece of the source code for

the AMCL localizer node1 in ROS, where parameters are defined in the

source code. The meaning of the parameters are difficult to understand

without knowing the AMCL algorithm. Ideally, the configuration should

be performed by the specialist who has designed and implemented the

component. In practice, this is not possible when using primitive parame-

ters, since the component designer can only set a default parameter value

and possibly an exhaustive description of each. It is still the responsibil-

ity of the integrator to verify that the parameter values are correct and

1http://www.ros.org/wiki/amcl

108

7.1 Introduction

optimal for the respective robot application.

private_nh_.param("odom_alpha1", alpha1_ , 0.2);

private_nh_.param("odom_alpha2", alpha2_ , 0.2);

private_nh_.param("odom_alpha3", alpha3_ , 0.2);

private_nh_.param("odom_alpha4", alpha4_ , 0.2);

private_nh_.param("odom_alpha5", alpha5_ , 0.2);

private_nh_.param("laser_z_hit", z_hit_ , 0.95);

private_nh_.param("laser_z_short", z_short_ , 0.1);

private_nh_.param("laser_z_max", z_max_ , 0.05);

private_nh_.param("laser_z_rand", z_rand_ , 0.05);

private_nh_.param("laser_sigma_hit", sigma_hit_ , 0.2);

private_nh_.param("laser_lambda_short", lambda_short_ , 0.1);

private_nh_.param("laser_likelihood_max_dist",

laser_likelihood_max_dist_ , 2.0);

Figure 7.1: C++ source code defining the primitive and difficult to understand

parameters for the AMCL localizer in the ROS Navigation Stack. Source:

https://github.com/ros-planning/navigation

Some properties of the robot or the environment might be expected

to change over time, or are unknown at design time. In such case it is not

possible for the integrator to fully configure the robot using only primitive

parameter values. Instead they must be calibrated by the robot itself us-

ing methods such as [Lar+98][RT98][SH07][SS04]. Integrating extensive

self calibration procedures in a complex robot system is not straightfor-

ward. The robot must often be allowed to perform certain actions to

perform the calibration, such as attempting to move or activating other

actuators. With unknown properties the result of the actions are un-

certain, and safety measures such as collision avoidance and compliance

to dynamic constraints can not be fully guaranteed. Instead the robot

must perform these actions with slow speed or other conservative safety

measures. Therefore the system must have access to meta information

about when some parameters are unknown or uncertain, and take the

proper precautions.

109

7. SMART PARAMETER FRAMEWORK

7.2 Smart Parameters

This article proposes the ”smart” parameters concept where the param-

eters are not configured to have a constant value, but instead described

as relationships and dependencies to other properties or parameters of

the robot system. This allows the component developer to perform meta

configuring of each component, by configuring the relations and require-

ments for each of the component parameters. The burden of configuring

can thus be handled in advance by the robotic expert who knows the

algorithms in detail, and the integration is performed by supplying a de-

scriptive model of the properties of the robot system. The components

can in most cases be easily and safely reused by a non-robotics expert,

without the need to adapt it manually.

The properties and parameters in the system includes meta informa-

tion about the source of the values. A property can thus be specified

as unknown, guessed, measured or calibrated, and the parameter values

derived from the respective property will be inherit the source informa-

tion. The control system can use this information to enter certain safe

modes or initiate the required calibration procedures. Due to the smart

parameters, each dependent component parameter will be updated based

on the calibrated properties.

This gives a configuration framework for fast prototyping and au-

tonomous calibrating robots, and allows for supervision of critical param-

eters in the robot system. The purpose of the framework is to improve

the development process and allow for more competitive and robust robot

applications to be developed for the commercial market.

7.3 Architecture

The architecture for supporting smart parameters is designed as an exten-

sion to a component-based robotics framework such as OROCOS[Bru01]

or ROS[Qui+09]. It consists of four main parts: The descriptive models,

the parameter server, the ”dynamic parameter” software pattern and the

110

7.3 Architecture

control GUI as illustrated in figure 7.2.

7.3.1 Descriptive Models

Two types of models are used to describe a system based on smart pa-

rameters.

The first type is the system models, which are the source of informa-

tion about the actual robot and environment properties such as physical

properties, mechanical configuration, available resources, sensors, etc.

The models are designed to be combined in a hierarchical structure to

easily integrate existing models for often used hardware and sensors. Sim-

ilar descriptive models, such as world files in the Player/Stage[Ger+01]

framework and URDF files in ROS[Qui+09], exists.

In addition, each software component must be accompanied by one

or more component models, describing the full list of parameters the

component expects, and how they should be derived. Using python as

scripting language, and bindings to access properties in the robot model

and other component models, makes it possible to set up complex rules

to derive the respective values for each parameter. Several prioritized

rules can exists for each parameter. The highest priority rules will be

tried first and skipped if any of the properties the rule depends on is

unavailable. The lowest priority ’default’ rule is to flag the parameter as

unknown. Allowing a component to start with an unknown parameter

value might be useful in certain situations e.g. if the value is expected

to be autonomously calibrated. Similar to object oriented programming,

the component models can inherit from each other and only extend or

override the rules required for the specific implementation. This makes

it possible to maintain several component models intended for different

purposes while keeping a single component implementation.

7.3.2 Parameter Server

The core of the architecture is the parameter server, which exists as

an individual component in the robot system. The parameter server is

111

7. SMART PARAMETER FRAMEWORK

responsible for parsing the rules configured in the component models and

dispatching the derived parameter values to the correct components, both

when the system is loaded, and when parameter changes are required.

The parameter server exists as a separate software library, and is not

dependent on the actual middleware used to create the robot control

system. It only have to be wrapped to uses the communication model

of the respective middleware to dispatch the parameter values to each of

the active software components in the system.

Figure 7.2: Architecture Overview

7.3.3 Dynamic Parameter Software Pattern

The implementation of each algorithm or software component in the sys-

tem must be designed to read the correct parameter values from the

parameter server before starting, and to handle dynamic parameter up-

dates properly. In practice this is supported by a series of existing soft-

ware classes the component can extend. This just requires the component

112

7.4 Configuration Example

to implement a number of callback methods to handle changes in the pa-

rameters. In addition, it adds a simple state control of the algorithm to

start only when valid parameters have been loaded, and to restart the

algorithm if the parameter updates require such an action.

7.4 Configuration Example

The robotics lab at the Technical University of Denmark includes several

mobile robots of varying size, and sensor configurations. Whenever a

new robot is adapted, or an existing robot configuration is changed, the

corresponding robot control system must be reconfigured accordingly.

The most basic configuration required is to define the actual physical

properties of the wheel base such as the size and position of the wheels.

Trivial as this task might seem, it is important to perform properly to

make the control system perform optimally.

The smart parameters framework has been used to configure a sub-

part of the control system for the differential drive mobile robot shown

in figure 7.3. The subpart includes the software component calculat-

ing odometry based on encoder data from the wheels, a component for

controlling the wheel speed, and the localization system.

Figure 7.3: The smart parameters framework has been used to configure a

subpart of the control system for a ATR-JR mobile robot

113

7. SMART PARAMETER FRAMEWORK

The setup is very simple and rather straightforward to configure for

the specific case, but it serves as a basic example for examine the potential

of the smart parameter framework. Many of the parameters for the

system are related to the geometric and dynamic properties of the robot,

and require adjustments if a different robot is used.

The system and component models required to configure the system

are illustrated in figure 7.4.

Figure 7.4: Relations between the system and component models used to con-

figure the example system

7.4.1 System Models

In the example the ’world’ model represents the root, which has a refer-

ence to one robot and a map model. The laser-scanner on the robot is

described in the ’sensor’ model and the wheel dimensions in the ’wheel-

base’ model. This model tree represents the physical robot and the

environment, and includes all the required properties for the example

system. Each component model is associated with one or more system

models, which are used for searching the tree for the required informa-

tion. Bottom-up search is used so that the nearest ancestor is always

related to the respective robot and the search will work also for incom-

114

7.4 Configuration Example

plete trees. If other robots exists in the model, they can be referenced

through the world model.

dtu_atrv.sm

System model file for DTU ATRV-JR robot

name: dtu_atrv

parent: local://models/mobile_robot.sm

size:

parent: system://boundingbox_3d

source: measured

value: { x: [-0.46, 0.56],

y: [-0.33, 0.33],

z: [0.00, 0.60] }

sensor1:

parent: local://models/sick-lms100.sm

pose:

parent: system://pose

position:

source: measured

value: { x: 0.43, y: 0, z: 0.39 }

orientation:

source: measured

value: { x: 0, y: 0, z: 0 }

wheelbase:

parent: local://models/diff_drive_4_wheel.sm

displacement:

source: measured

mean: 0.53

variance: 0.02^2

wheeldiameter:

source: ’unknown’ # <-- wheel size unknown

Figure 7.5: System model file for the ATRV-JR robot used in the experiment.

The file is created using YAML format, and specifies the physical size, the

available sensors, and the properties of the wheelbase.

Figure 7.5 shows the system model for the ATRV-JR robot used in the

experiment. The system model files are created using the extensive and

human readable YAML syntax. The YAML format allows a hierarchical

structure to be created. Any entry in the hierarchy can inherit and

extend an existing robot model entry using the parent keyword. It can

115

7. SMART PARAMETER FRAMEWORK

access system build-in models using “system://”, local model files using

“local://” or model files through the network using a variety of protocols

such as “http://”.

Special focus should be put on the wheelbase section of the model.

This section extends the “diff drive 4 wheel” system model, thus inherit-

ing some generic properties for a four wheel differential drive wheel base.

The wheel-diameter is configured as unknown, since it is expected to be

calibrated autonomously. The smart parameter framework will propa-

gate this information to any parameters in the system that expects to

use the wheel-diameter.

7.4.2 Wheel Control Component Model

A component model declares the requirements and parameters for a spe-

cific software component. It consists of constants, simple rules to derive

the values from the system model, or even small python programs for

handling advanced cases. Similar to the system models, the component

model use YAML format and support inheritance from other component

models. This allows several component models to exist for each software

component, adjusted to handle different purposes.

Figure 7.6 shows a part of the component model configuring the soft-

ware component controlling the wheels. The requirements section is

designed to catch situations the respective software component is not

designed to handle. E.g. a differential drive motor control component

used for a omni-directional robot. If the requirement is not fulfilled, the

component will not run and report to the system integrator that he has

chosen an incorrect component for its use. The parameter section con-

tains constants or rules to derive the values of the software component’s

parameters. The “update time” parameter is set to a constant, while the

wheel size and wheel displacement parameters are derived directly from

the respective robot model. These will thus adapt to changes in the robot

system model, including updates resulting from calibration.

The model also derives a value for the maximum safe velocity the

116

7.4 Configuration Example

robot is allowed to move with. The controller can only map this maxi-

mum velocity to a maximum angular wheel velocity if the wheel-size is

known. Before this value is calibrated, it must be excessively cautious.

This situation is handled by configuring the “max angular velocity” pa-

rameter with a small python script located. If the wheel-diameter is not

yet calibrated, a worst case value is calculated based on the mean and

standard deviation of the current guess.

dtu_wheel_ctrl.cm

Component model for WheelCtrl component

name: dtu_wheel_ctrl

requirements:

- condition: robot.wheelbase.type == ’differential’

parameters:

- name: update_time

type: float

value: 0.1

- name: displacement

parent: system://gaussian

derive: robot.wheelbase.displacement

- name: wheeldiameter

parent: system://gaussian

derive: robot.wheelbase.wheeldiameter

- name: max_safe_velocity

type: float

derive: robot.dynamics.max_safe_velocity

- name: max_angular_velocity

python: |

if wheeldiamater.source != ’calibrated’:

value = max_safe_velocity /

(wheeldiameter.mean +

wheeldiameter.std_dev * 2)

else:

value = max_safe_velocity /

wheeldiameter.mean

...

Figure 7.6: Part of the component model for the Wheel Ctrl component.

117

7. SMART PARAMETER FRAMEWORK

7.4.3 Odometry Component Model

The Odometry Component Model is associated with the model repre-

senting the robot in the system. It also requires the wheelbase of the

respective robot to be of type differential drive as shown in figure 7.7.

dtu_odometry.cm

Component model for odometry component

name: dtu_odometry

requirements:

- condition: robot.wheelbase.type == ’differential’

parameters:

- name: update_time

type: float

value: 0.1

- name: displacement

parent: system://gaussian

derive: robot.wheelbase.displacement

- name: wheeldiameter

parent: system://gaussian

derive: robot.wheelbase.wheeldiameter

- name: translational_error

type: float

python: |

if wheeldiamater.source != ’calibrated’:

[value,source] = [0.5, ’guess’]

else:

[value,source] = [0.05, ’guess’]

...

Figure 7.7: Part of the component model for the Odometry component. The

component requires a differential drive wheelbase, and derives a few parameters

from the robot system model shown in figure 7.5.

The value for the wheel displacement, and wheel size of the robot is

derived directly from the ’wheelbase’ model. The value of translational error

is set to a large value as long as the wheel-size has not been calibrated.

In both cases the value is guessed, and the meta-parameter source is set

to ’guess’ to clarify this.

118

7.5 Conclusion

7.5 Conclusion

Using ’smart’ parameters allows the robotics developer to perform meta

configuring of the software components she is implementing. Each soft-

ware component is accompanied by a component model describing the

requirements for the component to run and rules for deriving the opti-

mal parameter values. This makes it possible to reuse the components

without expert knowledge about the algorithms, by supplying a system

model describing the properties of the robot. The components will auto-

matically adapt to the new system.

Using meta information associated with each parameter allows the

system to take actions due to unknown of imprecise parameters, such as

running in safe mode or initialize calibration procedures.

This chapter presented a proof-of-concept system, where the ’smart’

parameters were successfully used to configure a control system where

a mobile robot should calibrate the size of the wheels and localize itself

in a known map using a laser scanner. Reusing the control system on a

different robot requires only changing the robot model, saving precious

development time and guaranteeing that the components are configured

optimally.

119

7. SMART PARAMETER FRAMEWORK

120

8

Conclusion

8.1 Conclusion

This research project was motivated by the overall goal of reducing the

cost and risk associated with developing commercial applications based

on mobile robots. The intended approach was to influence and contribute

to the research community to make the resulting work and implementa-

tion more ready to be used for industrial and commercial products. Dur-

ing the project, this contribution was shifted towards influencing the ROS

framework and the ROS community to focus on performance, quality and

provide support for embedded system.

1. Generic Navigation

A fundamental problem for robot applications based on mobile wheeled

robots is to be able to drive around and navigate the surrounding. Un-

fortunately no implementation of a generic and easy-to-use navigation

solution was found. Having to implement the navigation for each new

robot is not an optimal solution for either commercial or research appli-

cations. One of the scientific goals listed in chapter 1 was to mature one

or more algorithms for improved commercial use. Because a robust and

generic navigation solution is such a fundamental requirement, focus was

121

8. CONCLUSION

put on maturing this part.

During this project, a part of such a generic navigation solution was

designed and implemented, with focus on differential drive and Acker-

mann robots. The geometrical and dynamic constraints of these types

of robots were formalized and represented by a generic constraint func-

tion for calculating the maximum length of the robot velocity vector at

a given curvature.

The work included a generic representation for curved trajectories

with both position and orientation information, capable of representing

rotation-on-the-spot and reverse motion. Methods for making such a tra-

jectory drivable with continuous curvature, and for calculating a feasible

and safe velocity profile based on the constraint function, was presented

and verified with two example trajectories.

In addition, a trajectory-following controller capable of handling both

rotation-on-the-spot and reverse motion was designed. The controller was

verified with a practical experiment using a differential drive robot.

The experiments showed that the approach was capable of both repre-

senting and following a trajectory. A few problems was identified, namely

that the trajectory would be slightly altered when creating continuous

curvature, potentially resulting in too high curvature or a trajectory with

collision. A solution to this problem could be to allow for moving the

knot points while considering collision situations.

2. Robot Middleware

During the project, a compatible alternative to the ROS middleware

called DARC was designed and implemented. The design of DARC was

a result of a exhaustive collection of lessons learned from using ROS,

and newly identified requirements and use-cases resulting from industrial

stakeholders. It was argued why DARC is branded as a next generation

middleware. It is designed to be fully decentralized, scalable between

small low power hardware, and large complex control systems. Perfor-

mance tests showed how data-exchange using DARC was magnitudes

122

8.1 Conclusion

faster than the corresponding communication model in ROS

DARC now exists as a prototype implementation, and because it is

compatible with the ROS data-types, much of the existing ROS func-

tionality can be easily used. Because it is only a prototype, neither the

stability of the API, nor the documentation has been mature enough to

release it fully into the ROS community yet.

The development goal listed in chapter 1 was to contribute and influ-

ence the research community towards building higher quality software,

and to provide tools for supporting this. DARC has has been a success

in providing this influence, since the next version of ROS branded ROS

2.0 is highly inspired by the DARC prototype. It is planned to integrate

the component model, the high performance data-transport, the highly

modular architecture, and native support for embedded systems among

other things. The decentralized nature is also considered.

In addition, several companies and ROS user-groups have shown a

substantial interest in DARC, because is solves many of their problems

in ROS concerning performance, reliability and ease-of-use. Therefore

DARC has also potential to becoming an alternative to the ROS middle-

ware. Because DARC has very little requirement for backwards compat-

ibility with respect to old ROS functionality, it is much less-constrained

in the design and much easier to implement new powerful features.

3. Smart Parameters

During the project, a paradigm shift in how parameters are used to con-

figure component based control systems, was proposed. By using smart

parameters, that adapts to the respective robot based on a model descrip-

tion, it is possible to reuse software components without expert knowl-

edge about the underlying algorithms. A generic method and architec-

ture to integrate this type of parameters into a robot control system was

presented. The method was used to configure a differential drive robot

based on a series of models.

One of the scientific goals listed in chapter 1, was related to using

123

8. CONCLUSION

parameterized models for describing the physical properties and behavior

of a robot system, with the purpose of building self-calibrating and self-

optimizing robots. The Smart Parameter framework shows a potential

for solving this problem, but is still missing some efforts before it has been

throughly tested, matured and used for building self-calibrating robots.

8.2 Future Work

During the project, the three areas of contribution listed above has been

run separately. Future work is intended to properly integrate these three

areas.

The high interest the DARC middleware has received from both in-

dustry and research, shows a large potential for continuing the work on

maturing and documenting the prototype implementation. Future work

is planned to investigate these possibilities further, and decide whether

DARC should be developed as a high-performance and robust alternative

to ROS, or whether the effort should be put into ROS 2.0.

Concerning the Smart Parameter Framework, the generic method is

planned to be replaced by a native integration into the DARC middle-

ware. From this, DARC would implement the model based configuration

and smart parameters as the default configuration paradigm.

Only a part of a generic navigation solution was implemented dur-

ing the project. Future work is required for adding trajectory planning,

higher level obstacle avoidance based on inevitable collision states, and

a more throughly tested controller for trajectory-following. Designing a

controller that takes the respective robot models further into account, will

make it possible to implement observers for detecting errors in the config-

ured robot parameters. These observer values, together with the Smart

Parameter Framework, will make self-calibration and self-optimization of

the wheel configuration possible.

124

Bibliography

[AFF04] Hajime Asama, Thierry Fraichard, and Thierry Fraichard.

“Inevitable collision states - a step towards safer robots”. In:

Advanced Robotics 18 (2004), pp. 1001–1024.

[Asu13] Asus®. Asus XTion PRO product website. Jan. 2013. url:

http://www.asus.com/Multimedia/Xtion_PRO.

[Bru01] H. Bruyninckx. “Open robot control software: the OROCOS

project”. In: Robotics and Automation, 2001. Proceedings

2001 ICRA. IEEE International Conference on. Vol. 3. 2001,

2523 –2528 vol.3. doi: 10.1109/ROBOT.2001.933002.

[CAG08] Ricardo Carona, A. Pedro Aguiar, and José Gaspar. “Con-

trol of Unicycle Type Robots - Tracking, Path Following and

Point Stabilization”. In: Proceedings of IV Jornadas de En-

genharia Electrotécnica e de Computadores. 2008.

[Cha82] R. Chatila. “Path planning and environment learning in a

mobile robot system”. In: Proceedings of ECAZ, Orsay, France.

1982.

[CM05] Toby H. J. Collett and Bruce A. Macdonald. “Player 2.0:

Toward a practical robot programming framework”. In: Pro-

ceedings of the Australasian Conference on Robotics and Au-

tomation (ACRA). 2005.

125

BIBLIOGRAPHY

[Cou92] R. Craig Coulter. Implementation of the Pure Pursuit Path

Tracking Algorithm. Tech. rep. CMU-RI-TR-92-01. Pittsburgh,

PA: Robotics Institute, 1992.

[Cro85] J. L. Crowley. “Navigation for an Intelligent Mobile Robot”.

In: IEEE Journal on Robotics and Automation (Now known

as IEEE Transaction on Robotics and Automation) (1985).

[DJ00] Gregory Dudek and Michael Jenkin. Computational princi-

ples of mobile robotics. New York, NY, USA: Cambridge Uni-

versity Press, 2000. isbn: 0-521-56876-5.

[FBT97] D. Fox, W. Burgard, and S. Thrun. “The Dynamic Window

Approach to Collision Avoidance”. In: IEEERobotics & Au-

tomation Magazine 4.1 (1997).

[Ger+01] B.P. Gerkey et al. “Most valuable player: a robot device

server for distributed control”. In: Proceedings. 2001 IEEE/RSJ

International Conference on Intelligent Robots and Systems.

(IROS). Vol. 3. 2001, 1226 –1231 vol.3. doi: 10.1109/IROS.

2001.977150.

[GK08] Shilpa Gulati and Benjamin Kuipers. “High Performance

Control for Graceful Motion of an Intelligent Wheelchair”.

In: Proceedings of the IEEE International Conference on Robotics

and Automation (ICRA). 2008.

[GSB05] Giorgio Grisetti, Cyrill Stachniss, and Wolfram Burgard. “Im-

proving Grid-based SLAM with Rao-Blackwellized Particle

Filters by Adaptive Proposals and Selective Resampling”. In:

Proceedings of the IEEE International Conference on Robotics

and Automation (ICRA). 2005.

[GSB06] Giorgio Grisetti, Cyrill Stachniss, and Wolfram Burgard. “Im-

proved Techniques for Grid Mapping with Rao-Blackwellized

Particle Filters”. In: IEEE Transactions on Robotics (2006).

126

BIBLIOGRAPHY

[Hae+03] D. Haehnel et al. “A highly efficient FastSLAM algorithm for

generating cyclic maps of large-scale environments from raw

laser range measurements”. In: Proceedings of the Conference

on Intelligent Robots and Systems (IROS). 2003.

[HK07] Thomas M. Howard and Alonzo Kelly. “Optimal Rough Ter-

rain Trajectory Generation for Wheeled Mobile Robots”. In:

The International Journal of Robotics Research 26.2 (Feb.

2007), pp. 141–166. issn: 0278-3649. doi: 10.1177/0278364906075328.

[iRo13] iRobot®. iRobot Ava Mobile Robotics Platform product web-

site. Jan. 2013. url: http://www.irobot.com/ava.

[Kha86] O Khatib. “Real-time obstacle avoidance for manipulators

and mobile robots”. In: The International Journal of Robotics

Research 5.1 (Apr. 1986), pp. 90–98. issn: 0278-3649. doi:

10.1177/027836498600500106.

[KS07] James Kramer and Matthias Scheutz. “Development envi-

ronments for autonomous mobile robots: A survey”. In: Au-

tonomous Robots 22 (2007), p. 132.

[Lar+98] Thomas Dall Larsen et al. “Location Estimation for an Au-

tonomously Guided Vehicle using an Augmented Kalman Fil-

ter to Autocalibrate the Odometry”. In: Proceeding of FU-

SION’98, LasVegas, Nevada, U.S.A. 1998.

[Lik+05] Maxim Likhachev et al. “Anytime dynamic a*: An anytime,

replanning algorithm”. In: Proceedings of the International

Conference on Automated Planning and Scheduling (ICAPS).

2005.

[LKJ01] Steven M. LaValle, James J. Kuffner, and Jr. Randomized

Kinodynamic Planning. 2001.

[LL03] A. Pascoal L. Laperre D.Soetanto. “Non-singular Path-Following

Control of a Unicycle in the Precense of Parametric Model-

127

BIBLIOGRAPHY

ing Uncertainties”. In: International Journal of Robust and

Nonlinear Control (2003).

[LSB09] Boris Lau, Christoph Sprunk, and Wolfram Burgard. “Kino-

dynamic Motion Planning for Mobile Robots Using Splines”.

In: IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS 2009). 2009.

[Mat13] Matterport. Matterport 3D scanner product website. Jan. 2013.

url: http://matterport.com.

[MF07] Christian M and El Udo Frese. “Comparison of Wheelchair

User Interfaces for the Paralysed: Head-Joystick vs. Verbal

Path Selection from an offered Route-Set”. In: Proceedings

of the 3rd European Conference on Mobile Robots, EMCR

2007. 2007.

[Mic+93] Alain Micaelli et al. Trajectory Tracking for Unicycle-Type

and Two-Steering-Wheels Mobile Robots. Tech. rep. 1993.

[Mis13] Miscrosoft®. Kinect product website. Jan. 2013. url: http:

//www.xbox.com/da-DK/Kinect.

[Mor80] Hans Moravec. “Obstacle Avoidance and Navigation in the

Real World by a Seeing Robot Rover”. In: tech. report CMU-

RI-TR-80-03, Robotics Institute, Carnegie Mellon University

& doctoral dissertation, Stanford University. 1980.

[QBN07] Morgan Quigley, Eric Berger, and Andrew Y. Ng. STAIR:

Hardware and Software Architecture. 2007.

[Qui+09] Morgan Quigley et al. “ROS: an open-source Robot Operat-

ing System”. In: ICRA Workshop on Open Source Software.

2009.

[RT98] Nicholas Roy and Sebastian Thrun. “Online Self-Calibration

For Mobile Robots”. In: Proceeding of the IEEE International

Conference on Robotics and Automation. IEEE Computer

Society Press, 1998, pp. 2292–2297.

128

BIBLIOGRAPHY

[Sah+07] A. Sahraei et al. “Artificial Intelligence and Human-Oriented

Computing”. In: Springer, 2007. Chap. Real-Time Trajectory

Generation for Mobile Robots.

[Sch87] M.J. Schoppers. “Universal Plans for Reactive Robots in Un-

predictable Environments”. In: Proceedings of the Tenth In-

ternational Joint Conference on Artificial Intelligence (IJCAI-

87). 1987.

[SG91] Zvi Shiller and Yu rwei Gwo. “Dynamic Motion Planning of

Autonomous Vehicles”. In: IEEE Transactions on Robotics

and Automation 7 (1991), pp. 241–249.

[SH07] Davide Scaramuzza and Ahad Harati. “Extrinsic Self Cal-

ibration of a Camera and a 3D Laser Range Finder from

Natural Scenes”. In: IEEE International Conference on In-

telligent Robots and Systems (IROS 2007). 2007.

[SNS11] Roland Siegwart, Illah R. Nourbakhsh, and Davide Scara-

muzza. Introduction to Autonomous Mobile Robots. 2nd. The

MIT Press, 2011. isbn: 0262015358, 9780262015356.

[SS04] Daniel Stronger and Peter Stone. “Simultaneous Calibration

of Action and Sensor Models on a Mobile Robot”. In: IEEE

International Conference on Robotics and Automation. 2004.

[VAP08] Francesco Vanni, A. Pedro Aguiar, and Antonio M. Pascoal.

“Cooperative path-following of underactuated autonomous

marine vehicles with logic-based communication”. In: 2nd

IFAC Workshop Navigation, Guidance and Control of Un-

derwater Vehicles 2nd IFAC Workshop Navigation. 2008.

[Wyr+08] K. A. Wyrobek et al. “Towards a personal robotics devel-

opment platform: Rationale and design of an intrinsically

safe personal robot”. In: IEEE International Conference on

Robotics and Automation, 2008. ICRA 2008. 2008. doi: 10.

1109/ROBOT.2008.4543527.

129

www.elektro.dtu.dk
Department of Electrical Engineering

Automation and Control
Technical University of Denmark
Ørsteds Plads
Building 348
DK-2800 Kgs. Lyngby
Denmark
Tel: (+45) 45 25 38 00
Fax: (+45) 45 93 16 34
Email: info@elektro.dtu.dk

ISBN 978-87-92465-51-1

