
DESIGN AND IMPLEMENTATION OF A MODULAR HUMAN-ROBOT

INTERACTION FRAMEWORK

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Mechanical Engineering

by

Michael Juri

June 2021

c© 2021

Michael Juri

ALL RIGHTS RESERVED

ii

COMMITTEE MEMBERSHIP

TITLE: Design and Implementation of a Modular

Human-Robot Interaction Framework

AUTHOR: Michael Juri

DATE SUBMITTED: June 2021

COMMITTEE CHAIR: Eric Espinoza-Wade, Ph.D.

Professor of Mechanical Engineering

COMMITTEE MEMBER: Charlie T. Refvem

Lecturer of Mechanical Engineering

COMMITTEE MEMBER: William R. Murray, Ph.D.

Professor of Mechanical Engineering

iii

ABSTRACT

Design and Implementation of a Modular Human-Robot Interaction Framework

Michael Juri

With the increasing longevity that accompanies advances in medical technology comes

a host of other age-related disabilities. Among these are neuro-degenerative diseases

such as Alzheimer’s disease, Parkinson’s disease, and stroke, which significantly re-

duce the motor and cognitive ability of affected individuals. As these diseases become

more prevalent, there is a need for further research and innovation in the field of motor

rehabilitation therapy to accommodate these individuals in a cost-effective manner.

In recent years, the implementation of social agents has been proposed to alleviate the

burden on in-home human caregivers. Socially assistive robotics (SAR) is a new sub-

field of research derived from human-robot interaction that aims to provide hands-off

interventions for patients with an emphasis on social rather than physical interaction.

As these SAR systems are very new within the medical field, there is no standard-

ized approach to developing such systems for different populations and therapeutic

outcomes. The primary aim of this project is to provide a standardized method for

developing such systems by introducing a modular human-robot interaction software

framework upon which future implementations can be built.

The framework is modular in nature, allowing for a variety of hardware and soft-

ware additions and modifications, and is designed to provide a task-oriented training

structure with augmented feedback given to the user in a closed-loop format. The

framework utilizes the ROS (Robot Operating System) middleware suite which sup-

ports multiple hardware interfaces and runs primarily on Linux operating systems.

These design requirements are validated through testing and analysis of two unique

implementations of the framework: a keyboard input reaction task and a reaching-

iv

to-grasp task. These implementations serve as example use cases for the framework

and provide a template for future designs. This framework will provide a means to

streamline the development of future SAR systems for research and rehabilitation

therapy.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

CHAPTER

1 Introduction . 1

2 Background . 4

2.1 The Need for Rehabilitation . 4

2.2 Telehealth and Rehabilitation . 4

2.3 Socially Assistive Robotics . 6

2.3.1 Healthcare for Elderly, Dementia, and Alzheimer’s Patients . . 7

2.3.2 Mobility Training for Infants 9

2.3.3 Treatment of Children with Autism Spectrum Disorder 11

2.4 The Need for a SAR Framework . 11

3 System Design . 13

3.1 Introduction . 13

3.1.1 Task-Oriented Training . 14

3.1.2 Augmented Feedback . 15

3.1.3 Embodiment . 16

3.1.4 Modular Flexibility . 17

3.2 Methods . 18

3.2.1 Hardware Interfacing: Inputs and Outputs 19

3.2.2 Input Processing: Sensor Interface and Perception 19

3.2.3 Task Flow: Event Handler . 20

vi

3.2.4 Feedback: Action Center and Output Interfaces 21

3.2.5 Data Handling: Memory and Data Logging 21

3.3 Implementation with ROS . 22

4 System Implementation and Validation . 23

4.1 Introduction . 23

4.2 Implementation . 23

4.2.1 Implementation I: Keyboard Input Task 23

4.2.2 Implementation II: Reaching Task 27

4.3 Validation . 32

4.3.1 Task-Oriented Training . 33

4.3.2 Augmented Feedback . 33

4.3.3 Embodiment . 35

4.3.4 Modular Flexibility . 35

4.4 Results . 36

4.4.1 Task-Oriented Training . 36

4.4.2 Augmented Feedback . 38

4.4.3 Embodiment . 42

4.4.4 Modular Flexibility . 42

4.5 Conclusion . 44

5 Discussion . 45

5.1 Summary of Findings . 45

5.2 Developing Novel SAR Systems . 45

5.3 Discussion of Existing Frameworks and Libraries 48

5.4 Limitations of the Project and Future Work 49

BIBLIOGRAPHY . 51

vii

LIST OF TABLES

Table Page

4.1 Reach time and angular velocity amplitude for varying reach type. . 31

4.2 Summary of framework design requirements. 36

viii

LIST OF FIGURES

Figure Page

2.1 The tactile sensing social robot teddy bear, Rassle. 8

2.2 An exercise setup with user and robot facing each other. 9

2.3 An experimental setup in which an infant interacts with an NAO
robot. 10

2.4 The humanoid robot, Milo, developed by RoboKind. 11

3.1 Diagram of high level framework design. 18

4.1 Diagram of keyboard input implementation. 24

4.2 ROS-generated graph of keyboard input implementation. 25

4.3 Example of quantitative feedback given to the user. 26

4.4 Changing task difficulty for average user over twenty task attempts. 27

4.5 Diagram of reaching implementation. 28

4.6 ROS-generated graph of reaching implementation. 29

4.7 Image of IMU positioning and orientation on the back of a hand. . 30

4.8 Angular velocity data about the z-axis for varying reach types. . . . 31

4.9 Changing task difficulty for poor user over twenty task attempts. . 37

4.10 Changing task difficulty for competent user over twenty task attempts. 37

4.11 Augmented feedback for poor user over twenty task attempts. . . . 38

4.12 Augmented feedback for competent user over twenty task attempts. 39

4.13 Examples of qualitative and quantitative feedback given to the user. 40

4.14 Difference in augmented feedback frequency for competent user over
twenty task attempts. 41

ix

4.15 Visualization of the elements of the reaching task implementation
that were changed from the keyboard input implementation. 43

x

Chapter 1

INTRODUCTION

Lengthening lifespans have increasingly resulted in more people aging into and with

disabilities [1]. The resulting increased burden on health care systems has motivated

alternative approaches to the delivery of critical health services. One class of diseases

for which there is an increasing gap between individuals in need and available services

is neuro-degenerative diseases, including Alzheimer’s disease, Parkinson’s disease, and

stroke. According to the American Heart Association, stroke is a leading cause of se-

rious long-term disability in the United States, reducing mobility in more than half of

stroke survivors age 65 and over [2]. Many individuals worldwide suffer from motor

impairments due to stroke and other conditions, making daily life more challenging.

To improve their quality of life and regain motor function, these individuals must

undergo motor rehabilitation in the form of physical or occupational therapy. Ide-

ally, this therapy is personalized for each individual to maximize the efficiency and

effectiveness of their treatment. This optimization utilizes support and feedback that

adapts to the patient’s needs, providing an appropriate level of challenge to match

the patient’s physical and cognitive ability. Unfortunately, this specialized therapy

can be extremely resource intensive, costing a large amount of time and money for

in-home rehabilitation.

In recent years, the use of technology to alleviate caregiver burden has increased due

to advances in the fields of mobile health, wearable sensing, and the Internet of Things

(IoT). A more recent development for telehealth and in-home applications is socially-

assistive robotic (SAR) systems. SAR systems are generally applied in domains where

hands-off, social interaction may provide therapeutic benefits to the human user and

1

can be used to alleviate the cost of in-home therapy. For therapeutic interactions

requiring long-term, supervised care such as motor or neurological rehabilitation, an

SAR platform may be an ideal extension of care into a user’s home setting. By uti-

lizing software-driven feedback systems, SARs can facilitate current, evidence-based

strategies for such rehabilitation. SAR systems, coupled with environmental or wear-

able sensors for detecting human behavior, can essentially be treated as a closed-loop

feedback system in which the robot, through various forms of feedback, drives the

individual towards a desired state. Utilizing this robot feedback system can eliminate

the potential costs of having an in-home human clinician while providing the abil-

ity to specialize the patient’s therapy on an individual basis by altering the robot’s

software. Additionally, the modality of robot feedback can be adapted to the specific

communication needs of the user.

In spite of the potential merits of SAR systems, many unknown factors must be

resolved in order to ensure their applicability in the health care domain. These

unknown factors include, but are not limited to: how user performance and learning

are influenced by the design of the robot system; the independent variables associated

with therapy (e.g., time-on-task, practice intensity); the medium of feedback delivery;

and the adaptability of robot responses to user behaviors. Investigation of these

factors requires a system for which independent variables may be objectively adjusted.

The focus of this project is the design of a novel human-robot interaction framework

that can be used as a testbed for motor-neurological rehabilitation experiments. The

realization of this design requires definition of the need for ambient, telehealth sys-

tems and the underlying theoretical framework requirements of task-oriented training,

augmented feedback, embodiment, and modular flexibility (Ch. 2). In the upcoming

chapters, the specific design process of this system is discussed (Ch. 3) and its design

requirements are validated by presenting multiple implementations of the system and

2

their use cases (Ch. 4). Finally, the results of this project are contextualized and the

potential for future work and development of the framework is discussed (Ch. 5).

Through research, design, implementation, and testing, the novel human-robot inter-

action framework was successfully created and validated with respect to the design

requirements. The final products of this project consist of two working implementa-

tions of the framework that demonstrate its features and use cases, providing examples

of how future SAR systems may be constructed from the underlying framework. Test-

ing and analysis of these two implementations proves that the framework is robust

and easy to use. In addition, the framework has built-in support for many different

software libraries and drivers for interfacing with various hardware. Finally, all soft-

ware will be made available in a public repository at the completion of initial testing

and dissemination.

This framework is designed to be built upon for future SAR systems to facilitate

both SAR research and motor rehabilitation therapy. The novelty of this framework

is its structure, which provides a modular template for future implementations that

retain the work flow and feedback characteristics of the basic framework. By using

the framework and simply adding functionality to it, the development of SAR systems

should be far more streamlined as a large portion of the software development and

design is inherent to the framework and thus would not need to be modified or

redesigned. Ideally, this project will serve as a basis for future SAR research that

will move the medical industry a step closer towards normalizing SAR systems as an

extension of the clinician’s influence into the home setting for the administration of

rehabilitation therapy.

3

Chapter 2

BACKGROUND

2.1 The Need for Rehabilitation

Advances in healthcare have led to a drastic increase in life expectancy in developed

and developing nations [3]. However, increasing lifespans pose a challenge to the cur-

rent healthcare framework, with more adults living longer with chronic, or lifelong,

health conditions. In some cases, these conditions lead to decreased quality of life; a

subset of such conditions that are increasing in prevalence include neurodegenerative

diseases. Neurodegenerative diseases are characterized by a decline in neurological

function and comorbid impairments including motor, behavioral, or cognitive limi-

tations. According to the American Heart Association, stroke is a leading cause of

serious long-term disability in the United States, reducing mobility in more than half

of stroke survivors age 65 and over [2]. In addition, diseases such as muscular dystro-

phy or Parkinson’s disease, which affects almost 1 million people in the United States,

can severely inhibit motor control in individuals [4]. Overall, the Centers for Disease

Control (CDC) estimates that approximately 40.7 million adults in the United States

suffer from difficulties in physical function, over half of whom are under 65 years of

age [5].

2.2 Telehealth and Rehabilitation

For many of these physically limiting diseases and disorders, the best (and sometimes

only) treatment to improve the affected individual’s physical functionality is motor

4

rehabilitation in the form of physical or occupational therapy (PT or OT, respec-

tively) [6, 7]. PT and OT, when administered by trained professionals, generally

adapt to changes in user behavior and performance. This rehabilitation typically

requires consistent retraining of motor skills through various movement tasks. Un-

fortunately, PT and OT are time consuming and are typically prescribed only for a

limited duration of time for patients to resume basic level function and activities of

daily living (ADLs, e.g., bathing, dressing) according to user needs. Because these

conditions are chronic in nature, there remains an unmet need in the population for

continuous, adaptive rehabilitation therapy.

With the advent of various forms of telecommunication and the ‘internet of things’

(IoT), physical therapy is increasingly being administered via mobile communication

media such as video conferencing [8, 9, 10, 11]. This long-distance form of therapy can

save time and money for many health care companies and their respective clinicians

who would otherwise be required to meet their patients in person. Implementations

of this practice can be generally categorized as telehealth, which utilizes telecommu-

nications to distribute health-related services, or more specifically as mobile health

(mHealth), which provides patients with mobile health applications that may not

even require clinician interaction. Such applications include custom tools designed

for specific health care monitoring via cell phones, tablets, or other personal devices.

Examples of these applications are mobile software apps such as ‘MDLIVE’, ‘Live-

Health’, and ‘Doctor on Demand’, which all allow the user to interact directly with a

doctor. Other applications such as ‘Telehealth by SimplePractice’ or ‘Spruce’ provide

a means to easily organize medical information and keep track of appointments [12].

Despite the increasing number of applications used for these purposes, they are gen-

erally limited to monitoring of user status on an infrequent basis. Therefore, existing

tools suffer from various limitations: systems are open-loop (no participant feedback is

5

provided); systems do not adapt to changing health status; and systems are not easily

integrated into the existing health care framework or clinical workflow. These mobile

device applications are therefore insufficient for the complex, real-time, closed-loop

process of motor-neurorehabilitation. Such interventions require constant monitoring

of user task performance, provisioning of feedback, and adapting to changes in user

state.

2.3 Socially Assistive Robotics

In addition to telehealth via phone or video conferencing, a more recent, technology-

driven approach to in-home care is emerging in the research domain. Socially assistive

robotics (SAR) utilizes (typically embodied) software agents to assist humans through

hands-off, non-contact social interaction. SAR is a newer field derived from ongoing

research in the domains of human-computer and human-robot interaction (HCI and

HRI, respectively). These robots are increasingly being used to extend the reach

of clinicians into the ambient or home setting. Matarić defines socially assistive

robotics as, “the intersection of [assistive robotics] and [social interaction robotics].

SAR shares with assistive robotics the goal to provide assistance to human users,

but it specifies that the assistance is through social interaction.” [13]. Though there

exists significant variety in the design of such systems, the common components

include the human user, sensor modalities capable of measuring user behavior, and

the software/hardware agent. Such SAR systems have been used in research and

commercial settings to alleviate a range of conditions.

6

2.3.1 Healthcare for Elderly, Dementia, and Alzheimer’s Patients

Socially assistive robots have been utilized in multiple aspects of elderly care, espe-

cially to provide companionship and social interaction to individuals who live alone

and to provide physical exercise therapy to sedentary individuals [14, 15, 16]. The

lack of social interaction that frequently accompanies living alone has been shown

to be detrimental to these individuals’ physical and mental health. In many cases,

this loneliness, paired with conditions such as dementia and Alzheimer’s disease, can

directly lead to clinical depression [17]. In addition, many older adults benefit greatly

from physical therapy to encourage consistent exercise, which has been shown to be

effective at maintaining and improving the overall health of older adults [18].

SARs such as Rassle, the active teddy bear robot (shown in Figure 2.1), engage elderly

people and respond to tactile stimuli [17]. Rassle was used in a memory game for

older adults. Users were prompted to touch parts of the teddy bear in a specified

order, having to memorize the touch pattern and perform correctly multiple times

at increasing difficulties. The study found that the users were touching the robot

approximately 17% of the time throughout the duration of the interactions. The

physical and mental actions associate with this process may lead to significant gross

motor activities and mental stimuli for these elderly people [17].

7

Figure 2.1: The tactile sensing social robot teddy bear, Rassle (left) and
its robot skeleton (right). Adapted from [17].

In addition to social interaction, SARs have been used to provide physical exercise

therapy to sedentary older adults. Figure 2.2 shows an example of such a use case

in which an elderly individual is being instructed to perform simple exercises [18].

Throughout a session, the robot prompts the user to perform simple seated arm

gesture exercises. This type of seated exercise is commonly practiced in senior living

facilities for individuals with low mobility [18]. The robot acts autonomously without

the need for human intervention and the user can interact directly with the robot via

the button interface of a Bluetooth Wii remote.

8

Figure 2.2: An exercise setup with user and robot facing each other.
Adapted from [18].

This SAR system was used in a study in which 24 individuals were encouraged to

perform actions from three different game categories: workout, imitation, and mem-

ory [18]. In all cases, the feedback from the users was positive with respect to their

perception of the system.

2.3.2 Mobility Training for Infants

Another relatively unexplored application of SAR systems is mobility training for

infants with developmental limitations [19, 20]. An estimated 9% of infants born in

the United States are at risk of underdeveloped motor control and strength due to a

lack of movement or other developmental delays [21]. These infants could benefit from

early intervention to elicit extra movement that would improve this development.

Figure 2.3 shows an example of an infant interacting with a SAR system that con-

sists of a humanoid robot with multiple sensors [21]. This system was developed

9

to compliment human-delivered therapy for infants that would benefit from early

intervention.

Figure 2.3: An experimental setup in which an infant interacts with an
NAO robot while the labeled sensors (an eye tracker and inertial sensors)
and additional sensors (RGB cameras and a Kinect One RGB-D sensor,
which are not shown in the field of view of this image) capture information
about the infant–robot interaction. Adapted from [21].

Twelve six- to eight-month-old infants participated in this study that utilized different

feedback methods to encourage leg movement [21]. These feedback methods were

meant to encourage the infants to imitate the robot’s movement and move beyond

their normal range of motion. The study determined that the infants would move

more when trying to imitate the robot than they normally would when the robot

was stationary. This positive result further reinforces the value of this type of SAR

system in physical therapy applications.

10

2.3.3 Treatment of Children with Autism Spectrum Disorder

SARs have additionally been used to help children with autism spectrum disorder

who require special instruction in social behavior and emotional aspects. Humanoid

robots, such as Milo in Figure 2.4, are often used to interact with children as friendly

companions that teach various behavioral lessons.

Figure 2.4: The humanoid robot, Milo, developed by RoboKind. It can
walk, talk and model human facial expressions. It delivers lessons verbally
to teach social behavior and emotional aspects. Adapted from [22].

SARs such as these have successfully been used to help children with autism spec-

trum disorder, inspiring further research into applications of these systems for various

conditions.

2.4 The Need for a SAR Framework

In all cases, socially assistive robots are used to facilitate medical care that is directly

mapped to existing human-based interventions. These SAR tools are typically de-

11

signed to extend the limitations of intervention timing or treatment location (e.g., the

patient’s home) beyond the capability of the current healthcare model. If this prac-

tice were to become commonplace, SARs have the potential to save large amounts of

time and money for health care companies that can then better utilize their clinicians

for more essential medical cases.

Despite this potential, many questions regarding the design and implementation of

such systems remain, including the role of embodiment, the nature of feedback pro-

vided to users, and how best to design robot-based interventions. As socially assistive

robots become more prevalent, it is necessary to develop tools capable of systemat-

ically evaluating properties of SAR systems and their interactions with user per-

formance. Existing uses of SARs utilize software for each robot that is specifically

designed for a certain rehabilitation task, tracking a pre-specified performance metric

and providing feedback to the patient. While this approach works well on a case-by-

case basis, a more generalized software framework that allows for customizability and

modularity will be beneficial for testing and design of SARs, and for the systems that

will ultimately be deployed for many different types of rehabilitation tasks. Being

able to easily change the robot’s interaction parameters, such as the feedback type or

performance metric, would make such a system more versatile for various medical ap-

plications. The design and implementation of this modular human-robot interaction

(HRI) software framework is the focus of this project. If successful, the outcomes of

this project will be used in ongoing research and will be made publicly available for

other researchers in the domains of SAR and HRI.

12

Chapter 3

SYSTEM DESIGN

3.1 Introduction

The human-robot interaction framework described in this chapter is a software frame-

work that is developed as a tool to be utilized and adapted for future projects. There

are many existing examples of software frameworks with use cases for socially as-

sistive robots; however, they are generally built for use with specific hardware and

only support one specific type of motor task [23, 24]. The novelty of the framework

design described in this chapter is the generalized modular structure that will allow

for the development of a variety of SAR interactions. This framework will provide a

standardized structure for such systems in addition to providing support for a variety

of hardware interfaces and motor tasks. These future SAR systems will be used for

projects that will consist of human-robot interaction in an experimental setting that

is conducive to improving human motor performance. The generalized structure of

this experimental setting is described as follows:

A human test participant is required to perform a task that exercises their motor

control. The results of performing this task must be quantifiable and the human must

know the goal of the task and be incentivized to perform as well as possible. Once the

task is completed, an external feedback delivery medium, such as a speech module,

screen, or robot, provides feedback to the human regarding their performance on the

task. The human then continues to perform the task multiple times while receiving

performance-dependent feedback. After showing proficiency in the task, the difficulty

13

of the task may be increased to further test the human’s ability. Throughout the

experiment, task-specific performance data are collected and logged for analysis.

The framework is designed to facilitate this feedback system, taking input from the

human participant, analyzing it, and providing specialized feedback based on pre-

determined performance metrics. As it is necessary for the system to be easy to

understand and modify for any specific task, the focus of the framework design is on

its modularity and simplicity. The following are the specifications for this project.

3.1.1 Task-Oriented Training

Task-oriented training (TOT) consists of tasks that are specifically tailored to the

user’s needs. This type of training is necessary for motor rehabilitation as it uti-

lizes repetition and difficulty scaling that can be adapted to the current state of the

user [25, 26, 27]. TOT is meant to counter poor compliance with rehabilitation by

building intrinsic (as opposed to extrinsic) motivation, which results in increased en-

gagement and compliance with intervention. TOT generally relies on the performance

of meaningful tasks (e.g., lifting a weighted bag of groceries) for which the user can

clearly see the benefit in practicing. In order for this aspect of the system to be fully

developed, the system must be capable of administering tasks that have three distinct

properties within the context of a task-oriented training program.

The system must have a quantifiable outcome and performance metric that corre-

sponds to the task that the user is performing. For example, in one study that aimed

to improve upper-limb motor function in elderly patients who had mild post-stroke

impairment, multiple quantifiable performance measures were used, including The

Upper Extremity Performance Test, the Upper Extremity Fugl-Meyer Assessment

(UE-FMA), shoulder flexor and handgrip strength, shoulder active range of motion,

14

and muscle tone [26]. Though some of these instruments include rote, repeated tasks,

the UE-FMA includes tasks that are more closely tied to activities of daily living.

These metrics were successfully used in a task-oriented training program to improve

the motor functionality of these elderly individuals.

The system must also have a quantifiable level of difficulty that can be changed in

response to the user’s performance. Researchers have shown that learning occurs

when tasks are administered at an optimal difficulty level [25]. When the level of

difficulty is too low, no learning occurs. When the difficulty is too high, the user may

become frustrated and quit. In the aforementioned study, the greatest improvement

was seen in the group of individuals who received personalized resistance training

based on their ability and performance [26].

Finally, the system must have a formula with modifiable parameters for changing the

difficulty of the task according to the user’s performance. The complexity of this

formula (e.g., heuristic vs. algorithmic) will depend on the application.

3.1.2 Augmented Feedback

Augmented feedback consists of feedback that supplements the natural feedback that

a user receives when doing a task. This feedback can be classified as knowledge of

results (KR), in which the user is provided information regarding their achievement

of a specified goal, or knowledge of performance (KP), in which the user is informed

of the quality of their performance [28, 29]. For this aspect of the system to be fully

developed, the system must have a feedback element that has two distinct properties.

It must be possible to configure the system to provide feedback after a specified num-

ber of task attempts. Additionally, it must be possible to configure the system to

provide this feedback at varying levels of specificity and in different forms, being ei-

15

ther qualitative or quantitative in nature. A particularly useful study investigated

the role of KR and KP (provided by human researchers) for individuals post-stroke

learning a pointing task [30]. Participants were required to use their impaired arm

to point to a target. The KR group received quantitative feedback in the form of an

error value (the Euclidean distance from their finger-tip to the target) while the KP

group received feedback on the quality and smoothness of their joint motions dur-

ing the pointing process. Interestingly, this study found that participants in the KP

group demonstrated improved learning. This result suggested that humans preferred

more ‘human-like’ feedback (e.g., qualitative instead of quantitative) from a human

therapist. Another relevant study of augmented feedback for velocity training for

rugby players showed that the frequency and form of the feedback given had a sig-

nificant effect on the overall motor performance and retention of the individuals [29].

Individuals who were provided feedback immediately after each exercise tended to

perform better overall than those who received delayed or no feedback.

3.1.3 Embodiment

Human-robot interaction studies often place emphasis on the medium through which

feedback is provided to the user. The study of this concept of ‘embodiment’ aims to

evaluate the effects of the delivery medium on performance. Studies have generally

shown that a more human-like embodiment (e.g., a social robot, as compared to an

avatar on the screen) leads to better performance outcomes [31, 32].

To satisfy the use requirements of this framework with respect to possible embod-

iment, the system must be capable of running on a variety of hardware platforms,

including social robots, tablet/screens, and laptops. In each case, the system should

be capable of using all mechanisms of communication (e.g., gestures, visualization,

audio) available to the hardware. The importance of the embodiment aspect of a

16

SAR system has been studied in multiple environments and is understood to play a

major role in the user’s reception of feedback and engagement with the system. One

study in which a robot was used to help individuals lose weight and then retain their

progress showed that participants who interacted with this ‘robotic weight loss coach’

would typically track their caloric intake and exercise for twice as long as participants

who utilized other methods, such as standalone computer or paper logs [31]. It is also

conceivable that some audiences may respond differently depending on context. A

child participating with a robot may be more engaged if the robot exhibits ‘child-like’

features; alternatively, an older adult may limit engagement if the delivery medium

is deemed too juvenile. For these reasons, the current system must provide support

for a variety of feedback delivery media.

3.1.4 Modular Flexibility

The system must provide modular flexibility such that it is easy to change the type of

task that the user is expected to perform. This requires a basic ‘template’ framework

that is robust and structured such that it provides all necessary features for future

implementation. Additionally, this flexibility should ensure that only necessary parts

of the framework must be modified between implementations, leaving the basic struc-

tural elements of the system unchanged. In his analysis of a social robot interaction

platform, Michaud concluded that, ”Adopting a modular hardware/software design

approach facilitates the design of subsystems by allowing the reuse of microcontroller

boards and programs. It also facilitates debugging and subsequent designs and ex-

tensions of the platform” [33]. This design philosophy is a guiding principle in the

design of this human-robot interaction framework.

17

3.2 Methods

The following section describes the high-level conceptual design of the human-robot

interaction software framework. Figure 3.1 shows a visual representation of the frame-

work. The diagram is broken into sections that mimic a basic model of human cog-

nition in a therapeutic interaction.

Figure 3.1: Diagram of high level framework design.

In the figure, ovals represent nodes, or individual executable programs that perform a

function. Rounded boxes represent bases, or namespaces that contain user-changeable

constants and other information that are referenced by the nodes. The Inputs and

Outputs of the system represent possible interaction media with the real world. Inputs

generally represent physical sensors that interact with the user to collect data and

pass them to the system and Outputs represent the feedback mechanisms that interact

with the user.

The Software Framework portion of the system exists entirely in software and contains

all necessary elements to analyze input data and provide feedback to the user. The

Software Framework contains communication protocols between nodes, indicated by

18

solid and dashed arrows in the figure. Solid arrows indicate conditional direct commu-

nication between two nodes that is driven by the node that is passing data. Dashed

arrows indicate a conditional request for data from one node by another node, which

is prompted by the node that is receiving data. The following sections describe the

intended functionality of the different nodes.

3.2.1 Hardware Interfacing: Inputs and Outputs

The framework is designed to interface with hardware for both user input and feedback

output. In general, any combination of physical sensors can be used as inputs to the

system, acting as the primary data source that drives feedback. With respect to

outputs, the system is meant to interface with a screen for visual text output, a

speech module for auditory text-to-speech output, and/or motion hardware such as

motors for a humanoid robot to facilitate gesture or expression output.

3.2.2 Input Processing: Sensor Interface and Perception

On the software side, every sensor requires its own respective node to interface with

the sensor and extract data, called ‘Sensor Interface’ nodes. These various sensor

data can be fused or otherwise combined together in a ‘Perception’ node. Within

this node, the data are filtered and converted into a useful form that can be analyzed

by the system, ensuring that only apposite data are used to determine performance.

Once the data have been processed they can be passed through the system and used to

determine the appropriate feedback type or change in task difficulty. The concept of

this sensor-perception input structure is an abstraction of human sensory perception

that is commonly used in SAR feedback systems [34].

19

This design is meant to allow any combination of sensor data to be used in the

system, making it possible to have multiple sources of external information that

drive feedback. The ability to vary the input data types provides the modularity

necessary to implement the framework with any type of task that has a measurable

and quantifiable metric of user performance.

3.2.3 Task Flow: Event Handler

Once data are processed they are passed to the ‘Event Handler’ node. This node

controls everything to do with the task that the user is meant to perform, prompting

the user to perform certain actions when necessary. It accepts processed data from

the ‘Perception’ node and uses them to determine the user’s performance. It can

then trigger specific events accordingly, such as increasing task difficulty, informing

the user of their performance, or providing other forms of feedback. Increasing task

difficulty and calculating user performance are handled within the node, while any

triggering of qualitative or quantitative feedback in the form of speech or gesture is

passed to the ‘Action Center’ node. Additionally, user performance data is stored for

future conditional use in the ‘Memory’ node.

The ‘Event Handler’ node references a Task Base which contains constants and global

variables related to the task. This includes parameters to modify the timing of task

attempts, the frequency at which feedback is given to the user, and other constants

that alter the algorithm to determine feedback. In addition, performance data from

previous task attempts can be requested from the ‘Memory’ node for comparison with

the current task attempt to determine the user’s progress over time.

The structure of the ‘Event Handler’ node provides a means of easily changing the

task that the user must perform. The only significant differences when adapting

20

to another task are the data type that is used to determine performance and the

subsequent algorithm to determine difficulty and feedback.

3.2.4 Feedback: Action Center and Output Interfaces

Commands from the ‘Event Handler’ node are received and processed by the ‘Action

Center’ node to provide specific feedback to the user. This feedback can be either

qualitative or quantitative in nature and can consist of both visual (text, image, or

physical robot gesture) and auditory (speech) feedback types. In this node, the speci-

ficity of feedback (qualitative or quantitative) and degree of feedback are determined

and used to form the appropriate output. This output is then passed via commands

to the output interfaces (speech interface, gesture interface, etc.) which provide the

feedback to the user.

The ‘Action Center’ node references a Social-Behavioral Base which contains con-

stants and other information related to the social nature of the robot. This includes

parameters to change the type of feedback from qualitative to quantitative, which

is a necessary modular function. In addition, performance data from previous task

attempts can be requested from the ‘Memory’ node to be provided to the user as

feedback.

3.2.5 Data Handling: Memory and Data Logging

The ‘Memory’ node contains data structures for storing any necessary data that may

be used by the system. It receives data periodically from the ‘Event Handler’ node

and can send data to the ‘Event Handler’ or ‘Action Center’ nodes via specific request.

This node provides the means to store data as working or short-term memory and

ensures that the other processing nodes do not need to track data.

21

In addition to storing data as working and short-term memory, the system also con-

tains a logging feature that provides the ability to track any data passed through the

system and store the data in an external file as long-term memory. This data can be

subsequently imported into MATLAB for analysis.

3.3 Implementation with ROS

The final design of the system implements all of the elements listed above in a single

software framework within a middleware suite called ROS (Robot Operating System).

ROS is an open-source collection of software frameworks that are designed to make

robot software development simple. The ROS structure makes the implementation

of a node-based framework easy by providing two built-in types of communication

protocols between executable nodes of the framework. A node can either subscribe

to a topic on which another node publishes data, or it can send a request to another

node which will fulfill the request with a pre-specified service routine.

At the software level, all framework nodes are written in C++, but can be easily

modified to use Python as needed for adaptability. All ROS nodes are structured as

C++ classes with member variables and functions specific to the node’s functionality.

Within each node, executable code is triggered when a node receives data from a topic

to which it is subscribed. This is implemented via callback functions which act as the

main function in each node. When a node receives published data from another node,

the corresponding callback function is triggered and the appropriate code is executed

to utilize the given data and pass new data to the rest of the system. Utilizing this

ROS communication structure, the design of the framework has inherent modularity

for interchangeable nodes as well as a large amount of open-source support for plugins

and hardware interface libraries.

22

Chapter 4

SYSTEM IMPLEMENTATION AND VALIDATION

4.1 Introduction

The human-robot interaction framework described in the previous chapter is imple-

mented in two distinct systems for the purposes of this project. The first implemen-

tation, which serves as a ‘template’ for all other adaptations of the framework, is the

most basic example of an implementation that meets the first three design require-

ments: task-oriented training, augmented feedback, and embodiment. The second

implementation, which is an adapted form of the first, is the basis for demonstrating

the final design requirement of modular flexibility. This chapter describes these two

implementations as well as their use in validating the design requirements for the

framework.

4.2 Implementation

This section describes the two unique implementations of the framework that are

used for testing, validation, and development in future work. Both implementations

consist of the same structure built on top of the framework.

4.2.1 Implementation I: Keyboard Input Task

The first implementation is a purely software-based interaction system which consists

of a keyboard input task with text output as feedback. Key-pressing tasks have been

23

used in a variety of populations to measure motor and cognitive performance [35,

36, 37, 38]. Variations to the task (e.g., repeated vs. random sequences; performance

of tasks after experimental manipulations such as fatigue) can be used to extract

insight on motor learning and control. Typically, these tasks consist of an external

stimuli, a keyboard or a set of keys, and reaction time as a performance metric. The

user’s goal during this task is to react to on-screen prompts by pressing the correct

character key on the keyboard as quickly as possible. Figure 4.1 shows a high-level

visual representation of the keyboard input task implementation.

Figure 4.1: Diagram of keyboard input implementation.

Comparing this diagram to Figure 3.1, the structure of the implemented system is

identical to the conceptual design of the framework. In this case, the input is recorded

directly from the keyboard by the user interface node and all speech and gesture

output appears on a screen as text output. Figure 4.2 shows a ROS-generated graph

of the implementation as it exists at the software level within ROS.

24

Figure 4.2: ROS-generated graph of keyboard input implementation.

This diagram shows the executable nodes of the framework and the data that is trans-

ferred between them. Within the framework, all communication between nodes is

executed via subscription/publication protocols except for the ‘Memory’ node, which

works on a server/client basis, fulfilling services as they are requested. The User

Interface node reads the user’s keyboard inputs and passes them individually to the

Perception node where the key that is pressed and the time between key presses

are recorded and sent to the Event Handler node as a single data structure (per-

ceived data). The Event Handler then reads and writes data to and from the Memory

node while also passing commands (event data) to the Action Center node to trigger

feedback. The structure of this diagram matches the conceptual design from Figure

4.1, which indicates that the system’s structure is successfully implemented at the

software level with respect to its intended design.

In this system, each individual key press is sent through the system independently to

trigger an event. At the start of the task, pressing the return key will begin the next

task attempt. Once the attempt begins, each subsequent key press is compared to the

expected key that is prompted from the user to determine if they pressed the correct

key. The total elapsed time between each on-screen prompt and the subsequent key

press from the user and the accuracy of each key press are used to determine reaction

time performance for each task attempt.

Each attempt consists of a specific number of prompts (twenty by default) that are

issued to the user, from which an average overall score is derived based on the average

25

reaction time of key presses and the number of correct key presses. This performance

metric is compared to a baseline value to determine if the difficulty should be changed

and what type of feedback (positive, negative, or neutral) should be given for that

attempt. Figure 4.3 shows an example of quantitative feedback that is given to the

user after a successful attempt.

Figure 4.3: Example of quantitative feedback given to the user.

The number of consecutive successful or unsuccessful attempts necessary to cause a

difficulty change, as well as the frequency that feedback is provided to the user, can

be manually changed as a parameter of the system. Figure 4.4 shows data taken for

a typical average user after twenty task attempts.

26

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

1

2

3

600

800

1000

1200

1400

Figure 4.4: Changing task difficulty for average user over twenty task
attempts.

Over the course of the twenty task attempts shown in the figure, the difficulty is

changed whenever the user’s average reaction time is above or below the threshold

(1000ms in this case). When the user’s reaction time is faster than 1000ms the

difficulty is increased. As would be expected, the difficulty increase causes a worse

performance on the subsequent attempt, causing the difficulty to be decreased again.

To prevent the repeated increase and decrease of task difficulty, the system can be

configured to require a certain number of consistent attempts above or below the

threshold before the difficulty is changed.

4.2.2 Implementation II: Reaching Task

The second implementation builds on the first by utilizing an inertial measurement

unit as hardware input in addition to the keyboard input of the first implementation.

For this adapted system, the user’s goal is to reach their hand from a predetermined

starting position, touch a specific marker, and return their hand as quickly as possible.

27

This task is an example of ‘goal-directed reaching,’ which requires the user to move

the arm towards a target or an object within a specified amount of time [39, 40, 41].

Such tasks have been particularly useful in quantifying impairment in individuals

post-stroke [42, 43, 44]. Figure 4.5 shows a visual representation of the reaching task

implementation.

Figure 4.5: Diagram of reaching implementation.

The structure of the system matches that of the keyboard input task implementation,

with the addition of IMU input data. The IMU used in this system is the PhidgetSpa-

tial Precision 3/3/3 9-axis IMU (ID: 1044 1B). This hardware input is managed by

a new system (the IMU Manager) that constantly polls the IMU and extracts data

to be sent to the rest of the system. Figure 4.6 shows a ROS-generated graph of the

implementation as it exists at the software level within ROS.

28

Figure 4.6: ROS-generated graph of reaching implementation.

This diagram shows that the framework contains executable nodes that match the

intended conceptual design of Figure 4.5. As with the keyboard input task, all com-

munication between nodes is executed via subscription/publication protocols except

for the ‘Memory’ node, which works on a server/client basis, fulfilling services as they

are requested.

For this task, the user is outfitted with a wrist brace that secures the IMU to the back

of their hand with the y-axis aligned parallel to their fingers and the z-axis aligned

outward from the back of their hand as shown in Figure 4.7. In this system, key

presses from the keyboard are only used to mark the beginning and end of a reaching

motion. Similar to the keyboard input task, pressing the return key begins the next

task attempt. Once the attempt begins, the user presses the spacebar key with their

free hand when they are ready to begin their reach. At this point, the user reaches

their other hand as quickly as possible from a marked starting position to a marked

ending position some distance away from them, then back to the starting position.

Once the reach is complete, the user presses the spacebar key again with their free

hand to end the reaching motion.

29

Figure 4.7: Image of IMU positioning and orientation on the back of a
hand.

After each reach the system analyzes the data collected from the IMU to determine

the total time of the reach by detecting the beginning and end of the motion. The

beginning of motion is marked by angular velocity of the wrist in the z-axis that

exceeds a specified movement threshold (0.1rad/s by default). The end of motion is

marked by a period of no motion, or motion below the movement threshold, that lasts

for a certain period of time (800ms by default). These two time marks are used to

determine the total reach time, which is used as the performance metric to determine

difficulty changes and feedback in the same way as the keyboard input task. Figure

4.8 shows example angular velocity data about the z-axis from the IMU’s gyroscope

for different types of reaches performed in a test of the system. This data, taken from

30

the author, Michael Juri, when piloting the system, is representative of the data that

the system receives from the IMU.

0 5 10 15 20 25 30
-5

-4

-3

-2

-1

0

1

2

3

4

Figure 4.8: Angular velocity data about the z-axis for varying reach types.

The reaches performed in the test consist of four different types, performed twice each

for a total of eight reaches. These four reach types, in order, are a slow-moving reach

to a near target, a fast-moving reach to a near target, a slow-moving reach to a far

target, and a fast-moving reach to a far target. Each reach is depicted in the figure

as an elapsed period with a single large positive spike followed by a large negative

spike. Table 4.1 shows the reach time and amplitude for each reach type.

Table 4.1: Reach time and angular velocity amplitude for varying reach type.

Reach Type
Reach Time Amplitude [rad/s]

[ms] Extension Return

Slow, Near
1.3385 0.8622 -1.6876
1.4416 1.0226 -1.7875

Fast, Near
0.8117 2.4040 -3.4104
0.8239 2.8159 -3.2666

Slow, Far
1.4920 1.9187 -2.9641
1.5169 1.9366 -3.0210

Fast, Far
1.0922 3.3147 -4.4224
1.0792 3.9105 -4.4508

31

As seen in the table, the slow reaches had a greater reach time, but lower amplitude

compared to the respective fast reaches of the same distance. This difference in total

reach time and maximum velocity is an expected outcome as a fast reach to a target

would be expected to take less time, but require greater velocity. In addition, the

data show that reaches to farther targets incurred a higher amplitude than reaches

to closer targets. This difference in maximum velocity is also expected as a larger

reach distance will naturally draw a greater movement velocity due to the necessity

of making the movement as quickly as possible.

4.3 Validation

For both implementations of the framework, validation of design requirements con-

sists of stress and feature testing of each system separately. To consider the project a

success, the first three design requirements (task-oriented training, augmented feed-

back, and embodiment) must be satisfied by the the keyboard task implementation.

Additionally, inspection of the reaching task implementation must indicate sufficient

modularity of the framework to satisfy the final requirement of modular flexibility.

When testing to validate these requirements, the systems are run for two types of

users. The first user represents a poorly performing user while the second user rep-

resents a competent user. For the first two requirements, task-oriented training and

augmented feedback, validation is dependent on the system reacting properly to both

types of users. For all other requirements, validation is dependent on inspection and

analysis of the system’s structure and features.

32

4.3.1 Task-Oriented Training

Validation of the task-oriented training requirement consists of functional testing of

the first implementation of the framework. In general, this system and any subse-

quent implementations should follow the same task flow structure, and thus would

be considered a task-oriented training system. To confirm that the framework meets

this requirement, it must be shown via testing that the system has:

1. A quantifiable outcome and performance metric

2. A quantifiable level of difficulty that can be changed

3. An algorithm for increasing the difficulty

To test these requirements, the system is run once with each type of user for twenty

consecutive task attempts. For the poorly performing user, the system would be

expected to keep the user at lower task difficulties as their performance should not

often meet the requirements to be considered sufficient for higher difficulties. For the

competent user, the task difficulty would be expected to increase as the user performs

above the threshold of success at each difficulty. Throughout the trial, the reaction

time and task difficulty are recorded for each attempt in the same format that is

shown in Figure 4.4. For the task-oriented training requirement to be validated, the

data must show that the system modifies the level of difficulty based on the user’s

performance.

4.3.2 Augmented Feedback

Validation of the augmented feedback requirement consists of functional testing of the

first implementation of the framework. In general, this system and any subsequent

33

implementations must provide feedback to the user based on their performance. To

confirm that the framework meets this requirement, it must be shown via testing and

inspection that the system can:

1. Provide feedback after a specified number of task attempts

2. Provide feedback at varying levels of specificity, being either qualitative or quan-

titative in nature

To test this requirement, the system is run once with each type of user for twenty

consecutive task attempts. For both types of users, the system would be expected

to provide feedback indicating that the user’s performance is above, below, or ap-

proximately average. The poor user would be expected to receive negative feedback

more often as their performance is consistently inadequate, while the competent user

would be expected to receive positive feedback more often. Throughout the trial, the

reaction time and feedback type (positive, negative, or neutral) are recorded for each

attempt. For the augmented feedback requirement to be validated, the data must

show that the system provides the appropriate type of feedback based on the user’s

performance.

In addition to the above testing procedure, it must be shown by inspection that

the system can switch between qualitative and quantitative feedback. Qualitative

feedback should indicate the quality of the user’s performance without specifying

anything related to the result of the task, while quantitative feedback should indi-

cate the user’s performance including providing information regarding the result of

the task. Specifically for the keyboard input task, qualitative feedback may specify

whether the user is doing well or poorly for each task attempt, while quantitative

feedback may specify the average reaction time of the user on the previous attempt

relative to past attempts to indicate progress or regress.

34

Finally, it must also be shown that the system can provide feedback at a specified

frequency, independent of the type of feedback. If the system can be shown to pro-

vide feedback according to user performance in this manner, this would confirm that

the system properly administers augmented feedback, satisfying all aspects of the

requirement.

4.3.3 Embodiment

Validation of the embodiment requirement consists of inspection and analysis of the

structure of the framework, its existing features, and possible additional features

through future implementation. It must be shown that the framework can run on

many different platforms, including social robots, tablets/screens, and laptops. Ad-

ditionally, it must be shown that the framework has support to interface with various

types of hardware to provide feedback to the user, including motion output via motors

or other actuators, audio output such as sounds or speech, or text output on a screen.

For the embodiment requirement to be considered validated, it must be shown that

all of these features are supported by the structure of the framework.

4.3.4 Modular Flexibility

Validation of the modular flexibility requirement consists of inspection and analysis

of the reaching implementation of the framework as an adaptation of the keyboard

input implementation. The validation of this requirement requires that the adapted

implementation be structurally similar to the keyboard input implementation. It

must be shown that modifications to the keyboard input task are only necessary for

elements of the new implementation that are inherently unique. This would indicate

that the modularity of the framework allows for new implementations to retain the

35

same structure, proving that the framework is flexible and therefore validating the

requirement.

4.4 Results

Validation of the aforementioned requirements are presented in the following sections.

Due to limitations imposed by COVID-19, testing focused only on pilot evaluation

of system capability. All human interaction with the system was performed by the

author, Michael Juri, with author behavior being altered to simulate poor and com-

petent users. Table 4.2 summarizes the framework requirements and the means by

which they were validated.

Table 4.2: Summary of framework design requirements.

Requirement Motivation Validation

Task-Oriented
Training

Quantifiable performance;
quantifiable difficulty; difficulty
algorithm

Testing of Keyboard
Input Task

Augmented
Feedback

Provide feedback (variable types
and frequencies)

Testing of Keyboard
Input Task

Embodiment Multiple delivery media
Analysis of Keyboard
Input Task

Modular
Flexibility

Multiple task implementations
Analysis of Reaching
Task

4.4.1 Task-Oriented Training

Figures 4.9 and 4.10 present the recorded reaction time and task difficulty data for

the poor and competent users respectively.

36

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

1

2

3

600

800

1000

1200

1400

Figure 4.9: Changing task difficulty for poor user over twenty task at-
tempts.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

1

2

3

600

800

1000

1200

1400

Figure 4.10: Changing task difficulty for competent user over twenty task
attempts.

In these trials, when the reaction time of the task attempt (shown in orange) was

below the predetermined threshold (in this case, 1000ms), the difficulty of the task

was increased by one level (shown in blue). When the reaction time was above the

threshold, the difficulty was decreased by one level As expected, when compared to

37

the competent user, the poorly performing user tended to remain at lower difficulties

for longer and found it more challenging to perform consistently at higher difficulties.

From the figures, it is clear that the system modifies the difficulty of the task according

to the user’s performance. This indicates that the system successfully meets the task-

oriented training design requirement.

4.4.2 Augmented Feedback

Figures 4.11 and 4.12 present the recorded reaction time and feedback data for the

poor and competent user respectively.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Negative

Neutral

Positive

600

800

1000

1200

1400

Figure 4.11: Augmented feedback for poor user over twenty task attempts.

38

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Negative

Neutral

Positive

600

800

1000

1200

1400

Figure 4.12: Augmented feedback for competent user over twenty task
attempts.

In these trials, when the reaction time of the task attempt was below the threshold, the

user received positive feedback. When the reaction time was above the threshold, the

user received negative feedback. If the reaction time fell within ±10ms of the reaction

time threshold, the user received neutral feedback. As expected, when compared to

the competent user, the poorly performing user tended to receive negative feedback

more often due to the inconsistency of their performance.

From the figures, it is clear that the system provides the appropriate type of feedback

according to the user’s performance. Additionally, inspection and use of the sys-

tem shows that the framework provides the ability to provide both quantitative and

qualitative feedback at any frequency. Qualitative feedback that is provided to the

user consists of a simple statement of poor, adequate, or excellent performance (i.e.,

the attempt was not satisfactory). Quantitative feedback consists of a statement of

performance relative to past attempts, with a numeric comparison of reaction times

(i.e., reaction time was 30ms faster than the previous attempt). Examples of these

types of feedback given to the user by the system are shown in Figure 4.13.

39

Figure 4.13: Examples of qualitative (top) and quantitative (bottom) feed-
back given to the user.

Finally, the system was successfully run multiple times with different feedback fre-

quencies. The feedback was limited to be provided only after a specific number of

task attempts (three attempts in this case). Figure 4.14 shows a comparison between

feedback received every attempt and every three attempts.

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Negative

Neutral

Positive

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Negative

Neutral

Positive

600

800

1000

1200

1400

Figure 4.14: Difference in augmented feedback frequency for competent
user over twenty task attempts. The top figure shows feedback given every
attempt while the bottom shows feedback given every three attempts.

All of these results indicate that the augmented feedback design requirement is suc-

cessfully validated.

41

4.4.3 Embodiment

As of this project, text output on a laptop screen is the only feedback medium that is

implemented with the framework. Despite this, ROS has many open-source libraries

and packages for various devices, including text-to-speech modules, motor drivers,

and other robot drivers for feedback output and sensor drivers for data input. As

ROS has inherent support for these features, the framework includes this support as

it utilizes the ROS middleware suite. Therefore, the embodiment design requirement

for the framework is validated.

4.4.4 Modular Flexibility

As shown in the implementation section of this chapter, the structure of the adapted

reaching implementation is very similar to that of the keyboard input implementation

and, by extension, the framework itself. This indicates that the framework provides

an inherent structure that is easily adaptable for different systems. In developing

the reaching system, only the Event Handler and Memory nodes were significantly

modified from the keyboard input task to accommodate the new data from the IMU.

Additionally, an external library was added to the system to handle data collection

from the IMU. This library acts as the Sensor Interface node for the IMU and manages

the data that is exported by the sensor. Figure 4.15 shows the parts of the system

that required modification or addition.

42

Figure 4.15: Visualization of the aspects of the reaching task implemen-
tation that were changed from the keyboard input implementation. All
elements of the system that were added or changed are shown in green.

In general, the framework is structured in such a way that the only necessary modi-

fications between systems, barring additional features that may be added on a case-

by-case basis, are the data types passed through the system, the determination of

the performance metric for difficulty scaling and feedback, and the algorithm for an-

alyzing the data and comparing the performance metric to the appropriate baseline.

This consists of an estimated 20-30% of the total code that makes up these sys-

tems, indicating that the other 70-80% of the code in the framework is used in every

implementation and therefore does not require modification or rewriting. However,

depending on the type of system that is being developed, there may be more or less

content that must be modified. A thorough discussion of these possible changes will

be provided in the next chapter. For the purposes of this project, the ease with which

the reaching implementation was developed from the keyboard input implementation

validates the modular flexibility requirement.

43

4.5 Conclusion

In this chapter, the two implementations of the human-robot interaction framework

were discussed and shown to share the same underlying structure. These systems

were used to successfully validate each of the design requirements through testing

and analysis.

44

Chapter 5

DISCUSSION

5.1 Summary of Findings

The objective of this project was to develop and test a modular software frame-

work that can be used for motor-rehabilitation research and the development of SAR

systems. Three functional design requirements (support for task-oriented training;

delivery of augmented feedback; support for embodiment) and a qualitative design

requirement (modular flexibility) were used as constraints on and guidelines for the

framework. The high-level conceptual design was modeled after a basic model of

human cognition in therapeutic interactions. This design was implemented using the

ROS middleware suite which provided convenient tools for developing the individual

nodes of the framework and the communication protocols between these nodes. The

framework was then used to develop two implementations, a keyboard input task

system and a reaching motion task system. These implementations were used to

successfully validate the design requirements through testing and analysis.

5.2 Developing Novel SAR Systems

Two examples of full implementations of the human-robot interaction framework were

developed in this project. Though they are based on existing motor task paradigms,

the implementations serve as templates for the development of new systems for future

research. They contain the minimum required set of elements for a SAR system: a

functional task, task-dependent feedback, and a feedback delivery mechanism. Mod-

45

ifications of these elements for future implementations will depend on the relevant

study population. The source code and documentation for both of these implemen-

tations can be found online at https://bitbucket.org/juri017/hri_framework.

When developing an SAR system from the base framework, the developer can take

advantage of the modular structure and select which nodes to include and modify.

The framework is structured such that any aspect of the software can be rewritten by

a developer with general object-oriented programming experience and only a small

amount of necessary knowledge of ROS and the nodal structure of the framework.

For example, the algorithm that determines performance-dependent progression of

task difficulty can be modified within a single member function of the Event Handler

node. This modification exists only within this node and does not affect the func-

tionality of any other part of the system. In this way, each node of the system can

be developed and modified independently, which provides the ability to interchange

different versions of a node to alter node-specific behavior.

Despite the modular nature of the framework, there are certain elements that must

be modified between different implementations if a new task is introduced. These

necessary modifications are generally dependent on the type of input data used in the

system or the type of task that is administered. Modifications include:

1. Sensors and Peripherals: Novel sensor inputs (e.g., a webcam, IMU, etc.) re-

quire a ROS-compatible interface in conjunction with the Sensor Interface node

of the framework. This interface must extract raw data from the sensor and feed

them to the system. ROS has many open-source libraries that contain support

for various types of peripheral interfaces; however, it may be necessary for a

new ROS driver node to be written for a specific sensor if this is not the case.

46

https://bitbucket.org/juri017/hri_framework

2. Sensor Data and Signal Processing: If input data from the peripheral require

processing (e.g., filtering, modification, fusion) the Perception node must be

modified to provide this functionality. The role of this node should always be

to provide the rest of the system only with the data needed to analyze user

performance and provide feedback. Therefore, the Perception node may be

trivial (simply passing input data along to the system), or complex (fusing

data from multiple sensors into a single data structure to be analyzed by the

system) depending on the nature of the task. Incorporation of more complex

data processing (for instance, machine learning or statistical inference) may be

incorporated into the Perception node.

3. Data Types: Data type(s) used by the system depend on the output of the

Perception node. Inter-node communication protocols may need to be modified

accordingly. For example, if the Perception node fuses sensor data into one data

structure that contains a combination of integers, strings, and vector structures,

the Event Handler node will need to be modified to receive the data structure.

4. Feedback Media: The example implementations developed for this project pro-

vide feedback via on-screen text. To use alternative media (e.g., a humanoid

robot that gestures, a speech module, etc.) or wireless communication (e.g.,

Bluetooth communication to a mobile phone, Wifi communication to a Rasp-

berry Pi), the developer must utilize or create a novel hardware driver. As

was the case with sensor peripherals, ROS provides drivers and libraries for a

variety of hardware interfaces, including single-board computers and embed-

ded systems, smart devices, and a variety of commercial robots. Changing the

feedback medium will require modification of the Output Interface nodes (e.g.,

Speech Interface, Gesture Interface, etc.) to accommodate the hardware output

accordingly.

47

5. Other Modifications: All task-specific constants, variables, or functions (espe-

cially functions related to calculating performance or determining task diffi-

culty) must be modified to match the new task type. For example, a button-

pushing reaction time task will calculate user performance differently than a

task using analog performance metrics. These modifications will exist primarily

in the Event Handler node.

5.3 Discussion of Existing Frameworks and Libraries

There are many examples of existing SAR systems that incorporate all of the elements

that this framework provides [23, 24]. However, these software frameworks lack the

modularity and generalized structure that is necessary for easy modification of the

system with different hardware or feedback types. Despite this, these systems can be

referenced as good examples of complete SAR systems.

In addition to independent SAR systems, HRI researchers are continuously developing

more tools for use in SAR systems. One such tool is the “Social Behavior Library”,

which is a ROS library that is currently being developed by Edward T. Kaszubski at

University of Southern California [45]. This library “provides generic computational

models of social behavior; such social behaviors include proxemics (social spacing),

oculesics (eye gaze), kinesics (gesture), deixis (spatial referencing), prosodics (nonver-

bal speech cues), and speech.” In the future, open-source libraries such as this may

provide an easy means of integrating new functionality for implementations of the

framework.

48

5.4 Limitations of the Project and Future Work

The current framework will accommodate a wide range of SAR designs; however,

there are important limitations to the final system. Initial validation of SAR sys-

tems (particularly with younger or cognitively impaired participants) often involves

Wizard-of-Oz pilot studies [46, 47, 48]. These studies mimic social agent/autonomous

robot behavior by having an experimenter observe an interaction remotely (typically,

from an adjacent room out of participant sight). The social agent behavior is guided

by the experimenter and user responses are then incorporated into the final system

design. Wizard-of-Oz studies ensure social agent behaviors are appropriate for and

interpretable by the target population. The current framework is not designed for

real-time operation by an experimenter. In order to facilitate such an interaction in a

new implementation, the developer would need to include a new node or combination

of nodes to interface with the experimenter separately, which would control feedback

from the social agent directly.

Additionally, a range of SAR studies also incorporate multiple human users [49, 50,

51, 52]. These studies are typically used to evaluate joint attention, or to build social

and communication skills for participants. The current design does not incorporate

multiple human users; however, modification to do so would be relatively simple. The

current User Interface node can be used as it is currently structured or duplicated

to accept inputs from multiple users. In this case, only the Perception and Event

Handler nodes would need to be updated to properly adjust performance based on

the relevant human user(s).

Finally, full validation of the SAR system requires fault tolerancing. This process typ-

ically includes a pilot test of the system with a small sample (n = 10) of unimpaired,

adult users. Fault tolerancing exposes any design flaws (e.g., code errors, problems

49

with data transmission, inter-node communication) that may adversely affect even-

tual use with the target population [53, 54]. Due to requirements for social-distancing

and additional requirements with respect to institutional approval for human subjects

research, it was not possible to find human subjects to test the two implementations

of the framework for this project. Therefore, further testing of the system with unim-

paired participants, and participants from the target population, must be completed

once these regulations are lifted.

Future work on this project should focus on testing the system with a variety of users,

developing the framework further by incorporating additional features, and adding

more modular support for different types of hardware input and output.

50

BIBLIOGRAPHY

[1] “Average life expectancy in industrial and developing countries for those born

in 2020, by gender,” 2020. Accessed: 2020-5-26.

[2] S. Virani, A. Alonso, E. Benjamin, M. Bittencourt, C. Callaway, C. April,

et al., “Heart Disease and Stroke Statistics—2020 Update: A Report From

the American Heart Association,” Circulation, vol. 141, no. 9, pp. 139–596,

2020.

[3] J. Harris, “Geriatric Trends Facing Nursing with the Growing Aging,” Crit

Care Nurs Clin North Am, vol. 31, pp. 211–224, Jun 2019.

[4] C. Marras, J. Beck, et al., “Prevalence of Parkinson’s Disease across North

America,” npj Parkinson’s Disease, vol. 4, no. 21, 2018.

[5] “Table A-10. Difficulties in physical functioning among adults aged 18 and

over, by selected characteristics: United States, 2018,” 2018. Accessed:

2020-2-01.

[6] A. Thomas, F. Al Zoubi, N. E. Mayo, S. Ahmed, F. Amari, A. Bussières,

L. Letts, J. C. MacDermid, H. J. Polatajko, S. Rappolt, N. M. Salbach,

M. F. Valois, and A. Rochette, “Individual and organizational factors

associated with evidence-based practice among physical and occupational

therapy recent graduates: A cross-sectional national study,” J Eval Clin

Pract, Dec 2020.

[7] I. Livingstone, J. Hefele, and N. Leland, “Physical and Occupational Therapy

Staffing Patterns in Nursing Homes and Their Association with Long-stay

51

Resident Outcomes and Quality of Care,” J Aging Soc Policy, pp. 1–19,

Oct 2020.

[8] S. F. Atashzar, J. Carriere, and M. Tavakoli, “Review: How Can Intelligent

Robots and Smart Mechatronic Modules Facilitate Remote Assessment,

Assistance, and Rehabilitation for Isolated Adults With

Neuro-Musculoskeletal Conditions?,” Front Robot AI, vol. 8, p. 610529,

2021.

[9] M. E. Matsumoto, G. C. Wilske, and R. Tapia, “Innovative Approaches to

Delivering Telehealth,” Phys Med Rehabil Clin N Am, vol. 32, pp. 451–465,

May 2021.

[10] T. M. Annaswamy, G. N. Pradhan, K. Chakka, N. Khargonkar, A. Borresen,

and B. Prabhakaran, “Using Biometric Technology for Telehealth and

Telerehabilitation,” Phys Med Rehabil Clin N Am, vol. 32, pp. 437–449,

May 2021.

[11] A. H. Chan, “Logistics of Rehabilitation Telehealth: Documentation,

Reimbursement, and Health Insurance Portability and Accountability Act,”

Phys Med Rehabil Clin N Am, vol. 32, pp. 429–436, 05 2021.

[12] T. Jewell, “The Best Telemedicine Apps of 2020,” 2020. Accessed: 2021-4-23.

[13] D. Feil-Seifer and M. Matarić, “Defining Socially Assistive Robotics,” in

Proceedings of the IEEE 9th International Conference on Rehabilitation

Robotics, vol. 2005, pp. 465 – 468, 07 2005.

[14] J. Pirhonen, E. Tiilikainen, S. Pekkarinen, M. Lemivaara, and H. Melkas, “Can

robots tackle late-life loneliness? Scanning of future opportunities and

challenges in assisted living facilities,” Futures, vol. 124, p. 102640, Dec

2020.

52

[15] N. Chen, J. Song, and B. Li, “Providing Aging Adults Social Robots’

Companionship in Home-Based Elder Care,” J Healthc Eng, vol. 2019,

p. 2726837, 2019.

[16] F. O’Brolcháin, “Robots and people with dementia: Unintended consequences

and moral hazard,” Nurs Ethics, vol. 26, pp. 962–972, Jun 2019.

[17] Z. Zheng, J. Zhu, J. Fan, and N. Sarkar, “Design and System Validation of

Rassle: A Novel Active Socially Assistive Robot for Elderly with

Dementia,” in Proceedings of the 27th IEEE International Symposium on

Robot and Human Interactive Communication, pp. 1–4, 08 2018.

[18] J. Fasola and M. Matarić, “Using Socially Assistive Human–Robot Interaction

to Motivate Physical Exercise for Older Adults,” Proceedings of the IEEE,

vol. 100, pp. 2512–2526, 08 2012.

[19] T. T. Lewis, H. Kim, A. Darcy-Mahoney, M. Waldron, W. H. Lee, and C. H.

Park, “Robotic uses in pediatric care: A comprehensive review,” J Pediatr

Nurs, vol. 58, pp. 65–75, Dec 2020.

[20] A. Miguel Cruz, A. M. Ŕıos Rincón, W. R. Rodŕıguez Dueñas, D. A.

Quiroga Torres, and A. F. Bohórquez-Heredia, “What does the literature

say about using robots on children with disabilities?,” Disabil Rehabil

Assist Technol, vol. 12, pp. 429–440, 07 2017.

[21] N. Fitter, R. Funke, J. C. Pulido, L. Eisenman, W. Deng, M. Rosales,

N. Bradley, B. Sargent, B. Smith, and M. Mataric, “Socially Assistive

Infant-Robot Interaction: Using Robots to Encourage Infant Leg-Motion

Training,” IEEE Robotics & Automation Magazine, vol. PP, pp. 1–1, 04

2019.

53

[22] R. Krithiga, “Socially Assistive Robot for children with Autism Spectrum

Disorder,” in 2019 IEEE International WIE Conference on Electrical and

Computer Engineering (WIECON-ECE), pp. 1–4, 2019.

[23] S. Hajjaj and K. Sahari, “Developing portable HRI framework for open-source

outdoor robots, through Selective Compartmentalization,” 06 2019.

[24] Y. Mohamed and S. Lemaignan, “ROS for Human-Robot Interaction,” 12 2020.

[25] C. L. Pollock, L. A. Boyd, M. A. Hunt, and S. J. Garland, “Use of the

Challenge Point Framework to Guide Motor Learning of Stepping

Reactions for Improved Balance Control in People With Stroke: A Case

Series,” Physical Therapy, vol. 94, pp. 562–570, 04 2014.

[26] P. Silva, F. Antunes, P. Graef, F. Cechetti, and A. Pagnussat, “Strength

training associated with task-oriented training to enhance upper-limb

motor function in elderly patients with mild impairment after stroke a

randomized controlled trial,” American journal of physical medicine &

rehabilitation / Association of Academic Physiatrists, vol. 94, 08 2014.

[27] J.-H. Moon, J.-H. Jung, S.-C. Hahm, and H.-Y. Cho, “The effects of

task-oriented training on hand dexterity and strength in children with

spastic hemiplegic cerebral palsy: A preliminary study,” Journal of Physical

Therapy Science, vol. 29, pp. 1800–1802, 10 2017.

[28] M. Wälchli, J. Ruffieux, Y. Bourquin, M. Keller, and W. Taube, “Maximizing

Performance: Augmented Feedback, Focus of Attention, and/or Reward?,”

Medicine and science in sports and exercise, vol. 48, 11 2015.

[29] A. Nagata, K. Doma, D. Yamashita, H. Hasegawa, and S. Mori, “The effect of

augmented feedback type and frequency on velocity-based training-induced

54

adaptation and retention,” Journal of Strength and Conditioning Research,

vol. 34, p. 1, 02 2018.

[30] C. M. Cirstea, A. Ptito, and M. F. Levin, “Feedback and cognition in arm

motor skill reacquisition after stroke,” Stroke, vol. 37, pp. 1237–1242, May

2006.

[31] C. Breazeal and C. Kidd, “Designing for long-term human-robot interaction

and application to weight loss,” 2008.

[32] J. Wainer, D. J. Feil-seifer, D. A. Shell, and M. J. Mataric, “The role of

physical embodiment in human-robot interaction,” in ROMAN 2006 - The

15th IEEE International Symposium on Robot and Human Interactive

Communication, pp. 117–122, 2006.

[33] F. Michaud, Y. Brosseau, C. Côté, D. Létourneau, P. Moisan, A. Ponchon,

C. Räıevsky, J.-M. Valin, E. Beaudry, and F. Kabanza, “Modularity and

integration in the design of a socially interactive robot,” 09 2005.

[34] V. Rajendran, P. Carreno-Medrano, W. Fisher, A. Werner, and D. Kulić, “A

Framework for Human-Robot Interaction User Studies,” in 2020 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS),

pp. 6215–6222, 2020.

[35] P. Yeap Loh, W. Liang Yeoh, H. Nakashima, and S. Muraki, “Impact of

keyboard typing on the morphological changes of the median nerve,” J

Occup Health, vol. 59, pp. 408–417, Sep 2017.

[36] H. J. Chong, S. J. Kim, and G. E. Yoo, “Differential effects of type of keyboard

playing task and tempo on surface EMG amplitudes of forearm muscles,”

Front Psychol, vol. 6, p. 1277, 2015.

55

[37] M. A. Statton, M. Encarnacion, P. Celnik, and A. J. Bastian, “A Single Bout

of Moderate Aerobic Exercise Improves Motor Skill Acquisition,” PLoS

One, vol. 10, no. 10, p. e0141393, 2015.

[38] H. Stranda, M. Haga, H. Sigmundsson, and H. Lor̊as, “The Effect of Aerobic

Exercise on Speed and Accuracy Task Components in Motor Learning,”

Sports (Basel), vol. 7, Feb 2019.

[39] A. J. Chen and F. Loya, “Strengthening goal-directed functioning after

traumatic brain injury,” Handb Clin Neurol, vol. 163, pp. 435–456, 2019.

[40] D. Elliott and S. J. Bennett, “Intermittent Vision and Goal-Directed

Movement: A Review,” J Mot Behav, vol. 53, no. 4, pp. 523–543, 2021.

[41] D. Elliott, J. Lyons, S. J. Hayes, J. J. Burkitt, S. Hansen, L. E. M. Grierson,

N. C. Foster, J. W. Roberts, and S. J. Bennett, “The multiple process

model of goal-directed aiming/reaching: insights on limb control from

various special populations,” Exp Brain Res, vol. 238, pp. 2685–2699, Dec

2020.

[42] M. Alt Murphy, M. C. Baniña, and M. F. Levin, “Perceptuo-motor planning

during functional reaching after stroke,” Exp Brain Res, vol. 235,

pp. 3295–3306, 11 2017.

[43] C. L. Yang, R. A. Creath, L. Magder, M. W. Rogers, and S. McCombe Waller,

“Impaired posture, movement preparation, and execution during both

paretic and nonparetic reaching following stroke,” J Neurophysiol, vol. 121,

pp. 1465–1477, 04 2019.

[44] J. C. Stewart, R. Lewthwaite, J. Rocktashel, and C. J. Winstein, “Self-efficacy

and Reach Performance in Individuals With Mild Motor Impairment Due

to Stroke,” Neurorehabil Neural Repair, vol. 33, pp. 319–328, 04 2019.

56

[45] E. T. Kaszubski, “The social behavior library,” 2012.

[46] C. Sirithunge, A. G. B. P. Jayasekara, and D. P. Chandima, “An Evaluation of

Human Conversational Preferences in Social Human-Robot Interaction,”

Appl Bionics Biomech, vol. 2021, p. 3648479, 2021.

[47] E. A. Björling, K. Thomas, E. J. Rose, and M. Cakmak, “Exploring Teens as

Robot Operators, Users and Witnesses in the Wild,” Front Robot AI,

vol. 7, p. 5, 2020.

[48] G. Lakatos, M. Gácsi, V. Konok, I. Brúder, B. Bereczky, P. Korondi, and

A. Miklósi, “Emotion attribution to a non-humanoid robot in different

social situations,” PLoS One, vol. 9, no. 12, p. e114207, 2014.

[49] K. Kompatsiari, F. Bossi, and A. Wykowska, “Eye contact during joint

attention with a humanoid robot modulates oscillatory brain activity,” Soc

Cogn Affect Neurosci, vol. 16, pp. 383–392, Mar 2021.

[50] C. Willemse and A. Wykowska, “In natural interaction with embodied robots,

we prefer it when they follow our gaze: a gaze-contingent mobile

eyetracking study,” Philos Trans R Soc Lond B Biol Sci, vol. 374,

p. 20180036, 04 2019.

[51] P. Vogt, M. de Haas, C. de Jong, P. Baxter, and E. Krahmer, “Child-Robot

Interactions for Second Language Tutoring to Preschool Children,” Front

Hum Neurosci, vol. 11, p. 73, 2017.

[52] S. Ivaldi, S. M. Anzalone, W. Rousseau, O. Sigaud, and M. Chetouani, “Robot

initiative in a team learning task increases the rhythm of interaction but

not the perceived engagement,” Front Neurorobot, vol. 8, p. 5, 2014.

57

[53] A. Langer, R. Feingold-Polak, O. Mueller, P. Kellmeyer, and S. Levy-Tzedek,

“Trust in socially assistive robots: Considerations for use in rehabilitation,”

Neuroscience & Biobehavioral Reviews, vol. 104, pp. 231–239, 2019.

[54] A. Tapus, M. J. Mataric, and B. Scassellati, “Socially assistive robotics [grand

challenges of robotics],” IEEE Robotics Automation Magazine, vol. 14,

no. 1, pp. 35–42, 2007.

58

	LIST OF TABLES
	LIST OF FIGURES
	1 Introduction
	2 Background
	2.1 The Need for Rehabilitation
	2.2 Telehealth and Rehabilitation
	2.3 Socially Assistive Robotics
	2.3.1 Healthcare for Elderly, Dementia, and Alzheimer's Patients
	2.3.2 Mobility Training for Infants
	2.3.3 Treatment of Children with Autism Spectrum Disorder

	2.4 The Need for a SAR Framework

	3 System Design
	3.1 Introduction
	3.1.1 Task-Oriented Training
	3.1.2 Augmented Feedback
	3.1.3 Embodiment
	3.1.4 Modular Flexibility

	3.2 Methods
	3.2.1 Hardware Interfacing: Inputs and Outputs
	3.2.2 Input Processing: Sensor Interface and Perception
	3.2.3 Task Flow: Event Handler
	3.2.4 Feedback: Action Center and Output Interfaces
	3.2.5 Data Handling: Memory and Data Logging

	3.3 Implementation with ROS

	4 System Implementation and Validation
	4.1 Introduction
	4.2 Implementation
	4.2.1 Implementation I: Keyboard Input Task
	4.2.2 Implementation II: Reaching Task

	4.3 Validation
	4.3.1 Task-Oriented Training
	4.3.2 Augmented Feedback
	4.3.3 Embodiment
	4.3.4 Modular Flexibility

	4.4 Results
	4.4.1 Task-Oriented Training
	4.4.2 Augmented Feedback
	4.4.3 Embodiment
	4.4.4 Modular Flexibility

	4.5 Conclusion

	5 Discussion
	5.1 Summary of Findings
	5.2 Developing Novel SAR Systems
	5.3 Discussion of Existing Frameworks and Libraries
	5.4 Limitations of the Project and Future Work

	BIBLIOGRAPHY

