3,525 research outputs found

    Sensing and mapping for interactive performance

    Get PDF
    This paper describes a trans-domain mapping (TDM) framework for translating meaningful activities from one creative domain onto another. The multi-disciplinary framework is designed to facilitate an intuitive and non-intrusive interactive multimedia performance interface that offers the users or performers real-time control of multimedia events using their physical movements. It is intended to be a highly dynamic real-time performance tool, sensing and tracking activities and changes, in order to provide interactive multimedia performances. From a straightforward definition of the TDM framework, this paper reports several implementations and multi-disciplinary collaborative projects using the proposed framework, including a motion and colour-sensitive system, a sensor-based system for triggering musical events, and a distributed multimedia server for audio mapping of a real-time face tracker, and discusses different aspects of mapping strategies in their context. Plausible future directions, developments and exploration with the proposed framework, including stage augmenta tion, virtual and augmented reality, which involve sensing and mapping of physical and non-physical changes onto multimedia control events, are discussed

    Analysis of RGB-D camera technologies for supporting different facial usage scenarios

    Get PDF
    Recently a wide variety of applications has been developed integrating 3D functionalities. Advantages given by the possibility of relying on depth information allows the developers to design new algorithms and to improve the existing ones. In particular, for what concerns face morphology, 3D has led to the possibility to obtain face depth maps highly close to reality and consequently an improvement of the starting point for further analysis such as Face Detection, Face Authentication, Face Identification and Face Expression Recognition. The development of the aforementioned applications would have been impossible without the progress of sensor technologies for obtaining 3D information. Several solutions have been adopted over time. In this paper, emphasis is put on passive stereoscopy, structured light, time-of-flight (ToF) and active stereoscopy, namely the most used technologies for the cameras design and fulfilment according to the literature. The aim of this article is to investigate facial applications and to examine 3D camera technologies to suggest some guidelines for addressing the correct choice of a 3D sensor according to the application that has to be developed

    Dense 3D Facial Reconstruction from a Single Depth Image in Unconstrained Environment

    Get PDF
    With the increasing demands of applications in virtual reality such as 3D films, virtual Human-Machine Interactions and virtual agents, the analysis of 3D human face analysis is considered to be more and more important as a fundamental step for those virtual reality tasks. Due to information provided by an additional dimension, 3D facial reconstruction enables aforementioned tasks to be achieved with higher accuracy than those based on 2D facial analysis. The denser the 3D facial model is, the more information it could provide. However, most existing dense 3D facial reconstruction methods require complicated processing and high system cost. To this end, this paper presents a novel method that simplifies the process of dense 3D facial reconstruction by employing only one frame of depth data obtained with an off-the-shelf RGB-D sensor. The experiments showed competitive results with real world data

    Face recognition with the RGB-D sensor

    Get PDF
    Face recognition in unconstrained environments is still a challenge, because of the many variations of the facial appearance due to changes in head pose, lighting conditions, facial expression, age, etc. This work addresses the problem of face recognition in the presence of 2D facial appearance variations caused by 3D head rotations. It explores the advantages of the recently developed consumer-level RGB-D cameras (e.g. Kinect). These cameras provide color and depth images at the same rate. They are affordable and easy to use, but the depth images are noisy and in low resolution, unlike laser scanned depth images. The proposed approach to face recognition is able to deal with large head pose variations using RGB-D face images. The method uses the depth information to correct the pose of the face. It does not need to learn a generic face model or make complex 3D-2D registrations. It is simple and fast, yet able to deal with large pose variations and perform pose-invariant face recognition. Experiments on a public database show that the presented approach is effective and efficient under significant pose changes. Also, the idea is used to develop a face recognition software that is able to achieve real-time face recognition in the presence of large yaw rotations using the Kinect sensor. It is shown in real-time how this method improves recognition accuracy and confidence level. This study demonstrates that RGB-D sensors are a promising tool that can lead to the development of robust pose-invariant face recognition systems under large pose variations

    Analysis of RGB-D camera technologies for supporting different facial usage scenarios

    Get PDF
    AbstractRecently a wide variety of applications has been developed integrating 3D functionalities. Advantages given by the possibility of relying on depth information allows the developers to design new algorithms and to improve the existing ones. In particular, for what concerns face morphology, 3D has led to the possibility to obtain face depth maps highly close to reality and consequently an improvement of the starting point for further analysis such as Face Detection, Face Authentication, Face Identification and Face Expression Recognition. The development of the aforementioned applications would have been impossible without the progress of sensor technologies for obtaining 3D information. Several solutions have been adopted over time. In this paper, emphasis is put on passive stereoscopy, structured light, time-of-flight (ToF) and active stereoscopy, namely the most used technologies for the cameras design and fulfilment according to the literature. The aim of this article is to investigate facial applications and to examine 3D camera technologies to suggest some guidelines for addressing the correct choice of a 3D sensor according to the application that has to be developed
    • …
    corecore