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Abstract

Real-world face recognition systems face major challenges in unconstrained environments, due
to variations in pose, illumination, facial expression an disguises. Due to these challenges the
performance of the systems is limited, when using only RGB images.

The integration of 3D information as a complement to RGB can improve the robustness of
face recognition systems, diluting the performance losses in challenging environments.

In this dissertation, a new face recognition framework is proposed, highly focused in 3D-
low-cost images. The developed system uses a combination of FHOG and PHOW for feature
extraction, showing promising results in unconstrained environments.

With the appearance of the Intel® RealSense™ depth sensors, a new dataset was created,
the RealFace dataset, acquired with the Intel® RealSense™ R200 and F200 models, composed
by images characterized by variations in pose, illumination facial expression and disguise are in-
cluded. This dataset is designed for multimodal face-recognition systems performance assessment
in unconstrained environments.

The proposed 3D framework was extended to integrate other modalities - IR and RGB - using
the features extracted from VGG-Face as descriptors for these modalities. The proposed frame-
work has proven to be competitive with other state-of-the-art methodologies having good results
in unconstrained environments.

Finally, a prototype using Intel® RealSense™ F200 sensor was created for real-time face
recognition in challenging scenes.
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Chapter 1

Introduction

1.1 Motivation

The face is a natural, easily acquirable trait with a high degree of uniqueness, being capable of
discriminating a subject’s identity.

Real-world face recognition systems, based on 2D information, are still a challenging problem,
due to variations in illumination conditions, the presence of occlusions, pose variations, facial
expression changes and disguises. In uncontrolled environments, the problem is even bigger as
these factors increase due to non-collaborating failures of the identification process (Abate et al.,
2007).

Human beings are able to instinctively recognize hundreds of familiar faces using memory
as a support (Diamond and Carey, 1986). The face recognition task can be considered as a par-
ticular problem of general object recognition (Tsao and Livingstone, 2008), that could be solved
automatically by computer vision algorithms. It is known that face recognition capability has ear-
lier physiological development than object recognition and is more affected by orientation (Farah,
1996). Also, the neurological process involved in face recognition is different from the recognition
of other non-facial optical stimuli (Farah et al., 1999).

Biometric Recognition is a problem that has been strongly discussed and researched due to its
multiple real-world applications. Security biometric systems are the most important application
of this task, although homeland security, law enforcement and identity management are some of
other possible applications (Sang et al., 2015).

In this kind of systems the most common biometric traits are fingerprint and iris. These two
types of systems have a lot of drawbacks, as iris recognition systems are expensive (although
highly accurate) and fingerprints are not suitable for non-collaborative individuals. In real-time
systems, face recognition seems to be a good solution due to the fact that it can be less costly than
iris-based solutions and also work in non-collaborative conditions (Abate et al., 2007).

Variations in illumination, either due to skin reflectance properties in different environment
conditions, or due to internal camera controls, can affect the performance of some systems that

only perform consistently under moderate illumination variations. Pose variations, that introduce



2 Introduction

different views of the head and face, generally decrease the system’s accuracy, as most systems
are prepared for recognition mainly in frontal poses. Also, different facial expressions can gen-
erate variations in performance, although only extreme variations can lead to significant errors in
performance. Occlusions, especially if they occlude the upper half of the face, remove significant
discriminative information that drastically diminish the recognition rate (Abate et al., 2007). These
occlusions can occur due to a multiplicity of reasons and can be occasional or deliberate, owing to
accessories or facial hair. They may be present in criminal cases, but also can be due to religious
matters (burkas). A not least important factor, is the time delay (Bennamoun et al., 2015), which
is less explored in the state-of-the-art. Due to aging, the face varies in an unpredictable way, mak-
ing difficult to recognize an individual. Illness and massive changes in weight can also produce
alterations in the person face, posing a hard to solve problem on biometric face systems. All these
factors must be taken into account when building systems aimed for automatic face recognition.

Due to the inherent 3D structure of the face, changes in illumination conditions and non-frontal
pose from the individuals can lead to shadows that change some visual facial features, making
recognition systems less effective. To overcome the decrease in performance in these situations,
3D face recognition can be used to improve the recognition rate, yielding a more robust facial
description less affected by illumination variation, as well as compensating for the changes in
pose by making multiple views available to the face recognition system (Bennamoun et al. (2015),
Abate et al. (2007)).

In 3D face recognition we can have two main representations of the 3D facial structure: 2.5-
Depth images and 3D images (Abate et al., 2007). 3D images have a face and head representation,
retaining all the facial geometry information. On the other hand, 2.5D, or range images, are bi-
dimensional representations of a set of 3D points in which each pixel in the XY plane stores the
depth z value (that corresponds to the distance to the acquisition sensor). The disadvantage of this
representation is that it only takes information from one point of view, resulting only in a partial
facial model (and not the complete head). Using a group of 2.5D scans from different points of
view we can build a 3D model, though. Also, a 3D image depends only on internal anatomical
structure, while 2.5D scans are affected by environmental conditions (Abate et al., 2007) and
external appearance (it is partially affected by illumination).

The 3D model can be represented either as a Point Cloud or as a mesh image. A Point Cloud
can be considered as an unordered collection of the tridimensional coordinates, while a mesh is
an aggregate of vertices and edges (generally triangular) that are used for the representation of
the face (Bennamoun et al., 2015). The depth map can also be converted in a point cloud or in a
3D mesh. These 3D meshes can be fused with 2D-RGB information to obtain textured meshes.
Examples of all these 3D representations are shown on Figure 1.1.

All these representations could lead to an increase in performance of recognition algorithms,
especially when combined with RGB image information, as will be discussed in the next chapter,
where a review of the most common 3D sensors, public datasets, and state-of-the-art methodolo-
gies discussion will be presented.

This dissertation will focus on the development of a real-time system that can perform face
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(a) Depth map example obtained from the Eurecom (b) Point Cloud example obtained from the Eure-
dataset (Min et al., 2014). com dataset (Min et al., 2014).

(c) Mesh example obtained from the Florence Su-  (d) Textured Mesh example obtained from the Flo-
perface dataset (Berretti et al., 2012). rence Superface dataset (Berretti et al., 2012).

Figure 1.1: Some examples of the four different types of 3D face image representations.

recognition using 2D and 3D data, acquired with a low-cost sensor. The multimodal framework
should be competitive and robust across pose variation, uncontrolled illumination environments,

facial expression variations and occlusions.

1.2 Contributions

This dissertation has produced some scientific contributions, namely:

1. Creation of a framework for 3D and multimodal face recognition. The developed system
presented overall results superior to some state-of-the-art algorithms and showed to be ro-
bust to variations in pose, illumination, facial expression and disguises. The proposed sys-

tem was also extended for multi-modality, being able to integrate RGB and/or IR data.

2. Creation of a face dataset using the novel sensor Intel®) RealSense™, the RealFace Dataset,
designed for multimodal face recognition, providing three types of modalities (IR, RGB and
depth + Point Cloud) in controlled and uncontrolled environments. This dataset allowed to

evaluate RealSense™

sensors in face recognition systems, providing an alternative to the
more common Kinect-based databases. The presence of images in darkness conditions, pose
and facial expression variations, allow to provide a challenging dataset which can be used

by the scientific community for algorithm development and testing.

3. Construction of a real-time face recognition prototype that uses Intel®) RealSense™, capa-

ble of operating in diverse conditions and environments.
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The referred contributions resulted in a publication in U.Porto Journal of Engineering (Mon-
teiro et al., 2016), where a review of 3D-face recognition state-of-the art methods, sensors and
datasets is performed. Additionally, the article includes an extension of the framework developed
in Monteiro and Cardoso (2015) to integrate 2D and 3D data. The paper is on in the last stage of
revision.

The next section will lay out the structure of the rest of the dissertation.

1.3 Dissertation Structure

The rest of this dissertation is divided in six chapters. The motivation and introduction to 3D
acquisition has already been carried out in this first chapter.

Chapter 2 will include a brief review of 3D sensors used for face recognition, with special focus
on the low-cost alternatives. Additionally, the publicly available datasets for 3D face recognition,
that can be use in algorithm testing and refinement, will be detailed while also reviewing some of
the state-of-the-art approaches in 3D and multimodal face recognition.

Chapter 3 will describe the creation of a new dataset acquired with Intel® RealSense™ Sen-
sors, the RealFace Dataset.

Chapter 4 will include the testing setups as well as the corresponding results for a variety of
pre-processing, feature extractors and classifiers. The results will justify the proposal of a new
framework, which is presented with the correspondent results in Eurecom and RealFace datasets.

In Chapter 5 an initial real-time face recognition prototype developed with Intel®) RealSense™
will be described.

Finally, Chapter 6 will include the conclusions of this work as well as some suggestions for

future work.



Chapter 2

3D Face Recognition:
A State-Of-The-Art Review

2.1 Introduction

To assess the identity of a specific unknown query face, Automatic Face Recognition systems
(AFR) rely on previous knowledge gained from samples of a database of the subjects that need to
be identified. In scientific research, for robustness evaluation, public datasets are generally used,
allowing the comparison of performance of different approaches in the same conditions.

Face recognition systems can work in two different modes: identification / recognition and
authentication / verification (Abate et al., 2007). The verification problem consists in a compar-
ison between a query face against a specific template face image of the claimed identity. Face
identification is more complex, consisting in a multiclass classification problem that compares the
input face against all image templates in a database. Therefore in the first category we have a 1:1
problem whereas in the second one we have a 1:N, leading to a higher probability of incorrect
classification (Bowyer et al., 2000).

These systems have a typical pipeline design as shown in Figure 2.1 (Bennamoun et al., 2015),

generally including the following steps:

1. Data Acquisition: in this phase 2D and/or 3D images are captured using a camera, 3D
sensor or depth sensor (frames from video can also be acquired). The captured images serve

as input to the following blocks of the system.

2. Preprocessing: after acquisition, the images or video frames are preprocessed to reduce the
influence of noise in the image, improving the signal-to-noise ratio of acquired data. Due to
the noisy nature of depth images captured by low-cost sensors, preprocessing plays a major
role in the pipeline. This phase includes smoothing, spike and holes removal, but also the
detection of the Region of interest (ROI), which will include the face region, removing the
influence of surrounding uninformative pixels. Additionally, it can include normalization of

data against illumination, scale and orientation variations.
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3. Feature Extraction: this phase aims at extracting discriminant characteristics from the im-
age, allowing the system to assess the identity of the face image. In the end, the system
uses these features and not the whole images for identity assessment. The extracted features
can be divided in two categories: holistic features (describing the face) or local features (get

information from specific regions).

4. Classification: In the final procedure, one or more previously trained classifiers rely on
knowledge from previous data for the attribution of some identity to the query input (or

rejection of the image in real-time systems).

After classification, performance is assessed by different criteria for verification or identifica-
tion frameworks.

For verification systems, some of the most used criteria are based on receiver operating char-
acteristic curves (ROC), the equal error rate (EER) and the verification rate (VR) at a certain false
acceptance rate (FAR), generally at 0.1 % (VR@0.1%FAR). Using different thresholds, the ROC
curve can be plotted as the false rejection rate (FRR) versus the FAR or as the VR versus FAR.
The area under this curve is also one of the metrics used, being intrinsically dependent with the
system accuracy: a larger area under the ROC curve indicates a more robust system (Bennamoun
etal., 2015).

Regarding identification systems, the cumulative characteristic curves (CMC) and the rank—1
recognition rate (R1RR) are the most commonly used. The first one is a representation of the
samples correctly classified (in percentage) versus the rank at which the correct match is detected.
R1RR is represented as the percentage of all the dataset samples in which the best match corre-
sponds to the correct subject. Additionally, it is very common to use R5RR to verify how common

is that the true identity is included in the most 5 likely identities classified by the system (Ben-
namoun et al., 2015).

= i Sk

2D/3D Image 2D/3D Image Feature
Acquisition Preprocessing Extraction

Digital Camera Denoise (2D/3D) —
Active 3D Acquisition Spike Removal 3D) | | /| 55| geal Features

(e.g., Time-of-Flight, Hole filling (3D) 2D Holistic Feature

. ) Face Detection (2D/3D)
Triangulation, Nose Tip Detection (3D) 3D Local Features

Classification

K-Nearest Neighbors
Neural Networks
Support Vector Machines

Structured Light) Pose Correction (3D 3D Holistic Features Adaboost
Passive 3D Acquisition Resampling (QD,(3D)) Learning Algorithms

(e.g., Stereo Vision) Normalization (2D/3D)

Figure 2.1: Typical work flow of a Facial Recognition System. Obtained from Bennamoun et al.
(2015).
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Before discussing state-of-the-art approaches, it is important to first evaluate in which sensors

this type of 3D facial data can be acquired, with special consideration for the low-cost alternatives.

2.2 Low-Cost 3D Sensors

The trend in face recognition is the use of low-cost sensors that still allow the creation of facial
recognition frameworks capable of a high recognition performance. Although, in the past, sensors
with high precision like Minolta (Minolta, 2006), Inspeck (Savran et al., 2008), CyberWare (Cy-
berware, nd) and 3dMD (3dMD, nd) were used, their high prices led to the need for cheaper
alternatives. Additionally, these systems are usually not fast and it is desirable to have a real-time
system that performs identification as fast as possible. These limitations led to the appearance of
low-cost 3D sensors that offer a cheap solution, while also being able to work in real-time, most of
them being also portable. Low-cost devices, although offering a lower resolution, should present
information with enough quality to perform face recognition in adverse conditions.

These 3D sensors can be classified either as stereoscopic camera systems, structured light
systems or laser range systems, obtaining both 3D and RGB information. Some of the most

common 3D sensors used in face recognition systems are summarized in Table 2.1.

Table 2.1: List of some sensors used in 3D Facial Recognition

Sensor Type Resolution (mm) | Working Distance (m) Price ($)
Minolta Sensors (Minolta, 2006) 3D Laser Scanning 0.041-0.22 ~2.5 25000
3dMDface (3dMD, nd) Vision Cameras <0.2 —_— 10k - 20k
CyberWare 3030RGB/PS (Cyberware, nd) Low-Intensity Laser Light Source 0.08 - 0.3 0.35 ~ 72000
Inspeck Mega Capturer II (Savran et al., 2008) Structured-Light 0.7 1.1 Not Available
Kinect vl (Microsoft, 2010) IR laser Emitter ~15-0.5 0.5-45 Not Available
Kinect v2 (Microsoft, 2014) Time-of-Flight - ~05-8 149.99
SoftKinetic DS325 (SofKinetic, 2007) Diffused Laser 1.4 at 1 m distance ~0.15-1 259
Structure (Structure, 2013) IR Structured Light 0.5-30 3.5 379
PrimeSense Carmine (I3DU, nd) IR Laser Emitter 0.1-1.2 3.5 Not Available
ASUS Xtion Pro Live (Asus, 2011) IR Laser Emitter - 08-35 169.99
Intel RealSense (Intel, 2015a) Structured Light <1 ~0.2->10 99 -399

While the Minolta and Inspeck sensors are generic 3D sensors, CyberWare and 3dMD were
designed specifically to 3D face scanning. All these sensors were used for 3D face recognition,
but as referred before, have been replaced through time with low-cost alternatives.

The original Kinect (Microsoft, 2010), Kinect v1, is the most used sensor for depth acquisition.
It consists in an infra-red (IR) laser emitter, an IR camera and a RGB camera. The latter captures
color images directly, whereas a conjugation of the laser emitter and IR camera capture the depth
information, resulting in a final RGB-D map. This depth map is obtained using a triangulation
process based on these two sensors. Primarily the IR laser emitter, using a raster, projects a
predesigned pattern of spots in the scene, allowing the capture of the reflection of the pattern by
the IR camera.

Recently, a new version of this sensor was launched to replace the Kinect v1: the Kinect
v2 (Microsoft, 2014) (or Kinect for XBOX One) operates with a different principle, the time-of-
flight (TOF). With this methodology the depth images are obtained calculating the time between
emitted IR light and its reflections (Dal Mutto et al., 2012). The Kinect v2 offers the possibility
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of using IR images, which was not possible in the original Kinect. Due to being a recent sensor,
the specifications for depth resolution could not be obtained. Recent experiments have resulted
in an improved resolution and precision in this new sensor, as discussed in Amon et al. (2014)
and Lachat et al. (2015) .

Other low-cost sensors have been developed to compete with Kinect in depth map acqui-
sition. The SoftKinetic DS325 (SofKinetic, 2007), Structure sensor (mobile depth sensor in
tablets) (Structure, 2013), Intel ® RealSense™ (Intel, 2015a) , ASUS Xtion Pro Live (Asus, 2011)
and PrimeSense (I3DU, nd) (recently bought by Apple (Guardian, 2013) and currently not avail-
able) have also been used in depth acquisition systems.

From the previously referred sensors, one of the most promising is the Intel® RealSense™
family of depth sensors (Intel, 2015a). Intel®) provides two models, the SR300 (previously named
F200), for short range applications, and the R200 for long range acquisitions (Figure 2.2). This
sensor comes with a Software Developer Kit (SDK), with already implemented modules for facial
tracking and detection, and, similarly to Kinect v2, also provides IR images. Additionally, a
ZR300 camera, developed for smartphones is also available.

Both these models have the same technology, consisting in 3 cameras that provide RGB images
and stereoscopic IR that produce depth maps. With a laser projector, the sensors perform a scene
perception and enhanced photography (the depth map can be 3D filtered, allowing re-lighting,
re-focusing and background segmentation). More precisely, the R200 camera has two stereo cam-
eras, allowing improved outdoor acquisitions. Using stereoscopy photography, the depth images
are computed from the difference (pixel shift) between the two cameras using a triangulation
method (Intel, 2015b). The model developed for Android applications (ZR300) has an array of
six sensors: the R200 camera, a high-precision accelerometer, a gyroscope, a wide field-of-view
camera from motion and feature tracking and, additionally, a rear RGB camera (with 8MP) and a
frontal 2MP camera. This is currently the most expensive product, and can be acquired by 399 $.
The price of the models has changed along time, but currently the R200 model can be acquired by
99 $, while SR300 had its price increased to 129 $.

The main difference between these camera models is in the operating ranges. The R200 works
from 0.5 to 3.5 meters and has an outside range up to 10 meters, while the SR300 model only

operates from 0.2 meters to 1.2 meters.

(a) R200 Model. (b) SR300 Model.

Figure 2.2: Intel® RealSense™ depth camera models.

Intel®) provides a powerful SDK with some samples for possible applications of the Intel®)
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RealSense™, allowing the development of applications in 5 programming languages: C++, C#,
Unity, Java and JavaScript. It provides the user with 78 application samples for the most diverse
applications, whether for object recognition, face and hand tracking, eye tracking, facial emotion
detection, virtual reality, among others.

All the referred sensors provide powerful tools for face recognition frameworks and can be

used to build datasets for algorithm performance assessment.

2.3 Datasets

As discussed in the previous section, depth sensors can be used for the creation of public datasets,
which provide important material for algorithm testing and refinement. These databases should
try to mimic the main challenges faced in face recognition.

The ideal dataset should have unlimited samples and subjects while also including a large
variety of conditions (pose, facial expressions, illumination, occlusions, low resolution).

Publicly available 3D datasets can be included in two main classes: high-resolution scans
datasets that are acquired using expensive 3D scanners as Minolta or 3dMDface systems, and low-
resolution scans datasets that are obtained using the low-cost sensors mentioned in the previous
section.

Naturally, the first datasets created for the 3D facial recognition problem used the high pre-
cision sensors. Some of the most important datasets are the Bosphorus (Savran et al., 2008),
York (of York, nd), FRGC (Phillips et al., 2005), GavabDB (Moreno and Sanchez, 2004), Bing-
hamtonUniversity( Yin et al. (2006), Yin et al. (2008)), Texas-3D (Gupta et al., 2010), UMB-
DB (Colombo et al., 2011), 3D-RMA of Applied Sciences of the Royal Military Academy (nd)
and FRAV3D (Kussul et al., 2013)(not available anymore).

Alongside the evolution of sensors towards low-cost, lower resolution and faster acquisi-
tions, more recent databases were also built with this type of sensors. Although the number of
2D+3D datasets is still comparatively low in number to the 2D and high quality 3D datasets, these
databases are increasing in number and variety. The specifications of some of these datasets are

summarized in Table 2.2.

Table 2.2: Some of the available low-resolution depth maps datasets

Dataset RGB | 3D Sensor | Scans | Subjects | Expression | Illumination | Pose | Occlusion | Video
Aalborg University RGB-D Face Database (Hg et al., 2012) | Yes | Kinect vl 1581 31 Yes No Yes No No
Florence Superface dataset (Berretti et al., 2012) Yes | Kinectvl | > 14000 20 No No Yes No Yes
CurtinFaces (Li et al., 2013) Yes | Kinect vl >5000 52 Yes Yes Yes Yes No
UWA Kinect database (Hayat et al., 2015) Yes | Kinectvl | > 15000 48 Yes No Yes No No
NASK-StructureFacebase (Gutfeter and Pacut, 2015) Yes Structure 330 13 No No Yes No Yes
BIWI Kinect Head-Pose (Fanelli et al., 2013) Yes | Kinectvl | > 15000 20 No No Yes No No
UWA Kinect (Hayat et al., 2015) Yes | Kinectvl | > 15000 48 Yes No Yes No No
FaceWareHouse (Cao et al., 2014) Yes Kinect vl 3000 150 Yes No No No Yes
AVL-RGBD Face Database (Hsu et al., 2014) Yes | Kinect vl 1280 28 No No Yes No No
Eurecom (Min et al., 2014) Yes | Kinect vl > 450 52 Yes No Yes Yes Yes
IIIT-D face database (Goswami et al., 2014) Yes | Kinect vl 4605 104 Yes No Yes No No
Labeled Infrared-Depth Face database (Cao and Lu, 2015) No Kinect v2 918 17 Yes No Yes No No

Some examples of low-resolution databases are the Aalborg University RGB-D Face Database (Hg
et al., 2012), Florence Superface dataset (Berretti et al., 2012), CurtinFaces (Li et al., 2013),
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NASK-StructureFacebase (Gutfeter and Pacut, 2015) , BIWI Kinect Head Pose Dataset (Fanelli
et al., 2013), AVL-RGBD Face (Hsu et al., 2014), UWA Kinect dataset (Hayat et al., 2015), Face-
WareHouse (Cao et al., 2014), Eurecom dataset (Min et al., 2014) and IIIT-D face database (Goswami
et al., 2014). It is important to evaluate the frameworks in these datasets, in order to evaluate the

true robustness of the algorithms in challenging environments.

The Aalborg University RGB-D Face Database (Hg et al., 2012) was one of the first available
public datasets created. With 1581 samples from 31 different persons, 17 different poses and facial

expressions were captured for each subject using Kinect v1.

Florence Superface dataset (Berretti et al., 2012) includes RGB-D video for 20 subjects with
large pose variations. Additionally, this dataset also includes 3D high-resolution textured face

scans obtained with the 3dMD scanner.

BIWI Kinect Head-Pose dataset (Fanelli et al., 2013) consists in a large database specifically
created for head-pose estimation. With more than 15000 scans of 20 individuals, large pose varia-
tions are explored. Although not being designed for recognition purposes, it could be an important

tool to test algorithms performance across pose variations.

CurtinFaces (Li et al., 2013) contains over 5000 scans of 52 individuals, including variations

in pose, illumination, facial expression and occlusions (sunglasses).

The University of Western Australia Kinect Face database was also described by Hayat et al.
(2015), with 48 different subjects, each with between 289 to 500 scans. Variations in facial ex-

pression and pose were also included.

NASK-StructureFacebase (Gutfeter and Pacut, 2015) presents itself as the only dataset that
uses a sensor other than Kinect, using the Structure alternative. Although not being available for

public use, it can be considered as an important development in this type of datasets.

FaceWarehouse (Cao et al., 2014) was constructed using facial scans captured with Kinect
V1, with 20 different facial expressions, being important to assess the algorithm efficiency against

such variations. It is the most complete dataset in terms of variations of facial expression.

AVL-RGBD Face Database (Hsu et al., 2014) also explores pose variations with variation
in distances containing 13 different poses (only in one plane) at 5 different distances (with a

maximum distance of 2 meters).

Eurecom Kinect Face database seems to be the most balanced database, although the number
of scans is limited. It is likely the most used dataset in algorithm testing. It consists in a multimodal
RGB-Depth facial images of 52 individuals (38 males and 14 females), with two sessions acquired
with a time lapse of 5 to 14 days, captured with Kinect v1. It includes subjects from different
ethnicity (21 Caucasians, 11 from Middle East/Mahgreb, 10 East Asian, 4 Indian, 3 African-
American and 3 Hispanic) and all images were taken under controlled conditions. Each subject
has 9 different facial expressions or partial occlusions, and the dataset also includes video with

slow movements in the horizontal and vertical directions.

The HIT-D face database (Goswami et al., 2014) includes 4605 scans (both RGB and depth)
from 106 subjects, captured in two sessions with the Kinect v1 Sensor. The number of images per
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person varies from a minimum of 11 images and a maximum of 254 images. It includes variations
in pose and expression (in some cases, there are variations due to eyeglasses as well).

The Labeled Infrared-Depth Face database (Cao and Lu, 2015)is, to the extent of our knowl-
edge, the most recent dataset and was acquired with Kinect v2. It does not provide RGB data, but
it does provide the data from Infrared stream, aligned with depth data. It includes data from 17
individuals, with a total 918 scans. Each subject has scans in 9 different poses with 6 different
expressions (with a total of 54 scans per subject). The manually labeled keypoints for each image
are also provided.

A clear pattern is recognized in these datasets, as only Kinect sensor is used (except in NASK-
StructureFacebase). There is still not enough available relevant public data that uses the more
recent sensors like the Kinect v2 or the Intel® RealSense™ models, that would be useful for
advances in facial recognition. There’s clearly space for the creation of such datasets using more
recent sensors, as that would be scientifically relevant for the facial recognition research commu-
nity.

The use of these sensors and datasets serves as the main basis for creation of frameworks that
are capable of automatic facial recognition in unconstrained conditions.

The appearance of low-cost depth sensors and datasets leads to a necessary adaptation of the
2D-based image frameworks already implemented, for being capable of receiving 3D information
as input. A review of the state-of-the-art 3D face recognition methods will be performed in the

next section.

2.4 State-Of-The-Art Review

Although some authors tried to explore unimodal 3D recognition systems, the more interesting
and discriminating ones are the multimodal systems that combine 2D and 3D information.

Concerning the type of input information, 3D-facial recognition approaches can be classified
in three main types: 2D-Based, 3D-based and multimodal. The first uses synthetic 3D face mod-
els to increase the robustness of 2D images with respect to pose variations as well as changes
in illumination and facial expression. 3D-based methodologies do not use RGB or grayscale in-
formation, using only 3D or 2.5D data for the development of recognition algorithms. Finally,
multimodal approaches take advantage of information from both previous approaches in order to
obtain a better classification performance (Bowyer et al., 2006).

After analyzing the typical pipeline of recognition systems, previously shown on Figure 2.1, it
is important to define how the two types of information can be fused to perform a final decision in
multimodal systems (Bennamoun et al., 2015). If we perform fusion at the sensor level, a textured
mesh can be obtained, instead of two different inputs. At the feature level, modality fusion also
can be performed, fusing 2D and 3D features in a single feature representation. Score-level fusion,
occurs when the scores obtained from individual classifiers are combined to obtain a final global
score (sum rule, minimum rule and the product rule are some of these techniques). We can also

have a fusion at the rank level, where the ranks obtained from different feature classifications are
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fused using techniques like consensus voting, highest rank fusion or Borda count rank fusion.
Finally, decision-level fusion can be made using methodologies like majority voting or behavior

knowledge (Bennamoun et al., 2015).

After knowing the typical pipeline and how we can fuse different modalities, we are able to
discuss some of the most relevant algorithms available in the state-of-the-art. Hereinafter, will
be presented a review of some of the most important 3D approaches with high emphasis on low-

resolution depth systems.

2.4.1 2D-based Approaches

2D-based approaches were in the genesis of 3D facial recognition and, although they only use a
2D input query face, 3D models are used to improve the robustness of the system. In this category

a set of virtual 3D models are generated to simulate the variations in pose and facial expression.

One of the first works using this approach was described by Blanz and Vetter (2003), where
a morphable model is fitted to the input image, estimating the tridimensional shape and texture
of the face. The morphable model is based on a vectorized representation of the gallery faces
in a convex combination of texture and shape. Using manual feature point selection, the system
compares the faces using the coefficients obtained from the generated models. Despite the manual
selection, this paper presented a major step in the facial recognition field, introducing the potential
of 3D models to increase the robustness of 2D systems. The process of adaptation of the generic

morphable model to a specific individual is shown in Figure 2.3.

Lu et al. (2004) also used a 3D generic face model in conjugation with 2D face images to
generate facial and texture information. Using also manual feature points, a depth model is created
from which models with variations in pose, illumination and facial expression are generated to
increase the variability of the training dataset. Face images are classified using the minimum
Euclidean distance between the two affine spaces defined for the query face and each identity in
the database.

In the same year, Hu et al. (2004) proposed a similar approach. Using a frontal face image,
83 key points are automatically detected and aligned, sufficient for 3D face model reconstruction,
assisted by a generic tridimensional model. An orthogonal projection of the 2D intensity images
on the generated 3D model is then performed. From these models different pose and facial ex-
pression images are generated. Principal Component Analysis (PCA) and Linear Discriminant
Analysis (LDA) were tested for dimension reduction and the Nearest Neighbor method is used for

classification. Here, LDA dimension reduction achieves the best recognition rate.

The previous works have proven that 3D could have a major role in facial recognition, in-
troducing significant improvements in performance. These approaches generally generate non-
realistic models and additionally the generation of models from a single frame has several limita-
tions. This led to the research of 3D scanning methods for more accurate models (Bowyer et al.,
2006).
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2.4.2 3D-based Approaches

The use of 3D unimodal methodologies has shown to be a good alternative their RGB counterparts
in conditions of varying illumination, facial expression and pose. The main advantages of this type

of methodologies is the preservation of geometrical information about the face even with variation

QOriginal Features Starting Condition

4 _ L
Synthetic View  Real Front View  Synthetic View Real Profile

Figure 2.3: Adaptation of a generic 3D morphable model to a specific subject. Obtained
from Blanz and Vetter (2003).
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in illumination conditions.

Despite that, 3D scanning is not totally invariant to illumination (Bowyer et al., 2006). The
use of stereo or structured light sensors involves the capture of one or more RGB images, that can
be influenced by illumination, conditioning the quality of the obtained models. Although sensors
are less influenced by light than 2D images, this factor can still have a non-negligible effect.

The main problem of using 3D data is the need of a correct alignment of tridimensional data
between face surfaces. To help to solve this problem, in 1992, Besl and McKay (1992) introduced
the Iterative Closest Point (ICP) to perform alignment of facial 3D models. The ICP algorithm
can be used in two different manners: for reducing the volume difference between two point
clouds, and for calculating the volume difference between two models. This technique fails for
a misalignment superior to approximately 15°, leading to a non-convergence in the algorithm.
Despite that, this is still one of the most used algorithms for solving the alignment problem.

One of the first works with 3D facial recognition was introduced by Gordon (1991), in which
the author stated that some facial descriptors (like shape of forehead, jaw line, eye corner cavities
and cheeks) remain similar in different facial expressions. Here, principal curvatures are calculated
in the depth images, and are then used to detect feature points. Euclidean distance is used as the
similarity metric.

A few years later, Tanaka et al. (1998) proposed a different curvature-based approach. By
extracting the principal curvatures and their orientations in a facial model, some features were
extracted and mapped on two unit spheres, named Extended Gaussian Images (EGI). Finally, the
similarity match was performed using a Fisher spherical approximation on the obtained EGIs.

Similarly to Gordon (1991), Chua et al. (2000) defended that some rigid facial regions (nose,
eye socket and forehead) deform much less in case of facial expression. These ‘rigid regions’ are
found by a point signature two-by-two comparison among different facial expressions of the same
person, and similarity is measured and used by a rank vote process with a training indexed table.

The use of PCA in 3D models was introduced by Hesher et al. (2002), applying it directly
on depth maps. Then, Euclidean distance is used to match the resulting vectors. In two different
works, PCA was used on Eigenfaces (Heseltine et al., 2004b) and in Fisherfaces (Heseltine et al.,
2004a) representations of depth images. Euclidean and cosine distance measures were used for
classification, respectively.

Moreno et al. (2003) introduced a different methodology, segmenting regions according to
their median signs and their Gaussian curves. Regions with significant curvatures are then isolated.
From here, local features are extracted (areas, distances, angles, area ratios, mean of areas, mean
curvatures, variances, etc.). Different combinations of features were tested, resulting in a reduction
of the feature space from 85 to 35 features (the group of features with highest performance).
Finally, a classification based on Euclidean distance was performed.

Ansari et al. (2003) proposed a new acquisition method from a single frontal and a single pro-
file scan. A generic morphable 3D model is deformed to be adapted to the input query 3D model,
with a two-phase deformation. First there’s a scale adjustment and alignment of the model to the

real facial surface, and then a second local deformation tries to approximate the vertices of the
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model, using feature points. Using the Euclidean distance between 29 different point coordinates,
an identity for the query face is chosen.

A new free-form representation, the Sphere-Spin-Images (SSI), was introduced by Wang et al.
(2004). Here, an SSI is associated with a point in a face surface, consisting in a 2D histogram
constructed using the neighborhood surface of a point using position information (local shape).
Therefore, SSIs locally describe the shape of facial surface. Using a correlation coefficient, differ-
ent SSIs of specific keypoints were compared. Recognition is achieved by a SSI-comparison-based
voting method for each of the SSIs in each face.

In Cook et al. (2004), to avoid the problem of having a misalignment superior to 15° when
applying ICP, nose tip, nasal bridge and brow are first detected. From here, some depth and
curvature-based features were extracted from scans of the 3D_RMA dataset. A PCA feature space
reduction is performed, and a Gaussian Mixture Model (GMM) is used for statistical modeling of
the error distribution in facial surfaces, allowing to differentiate between intra- and inter-personal
comparisons of range images.

In 2012, Huang et al. (2012) proposed a hybrid system (both holistic and local feature-based),
based solely on depth information. Here, extended Local Binary Patterns (eLBP) are applied on
depth images, resulting in multiscale extended LBP Depth faces that contain all the 2D information
of range images. The SIFT methodology is also applied, using a classification based on three
similarity measurements. The main advantage of this work was not needing an alignment process,
and, although it has only good results in nearly frontal pose, it appears to be robust to facial
expression variations and partial occlusions.

In more recent works, Naveen and Moni (2015) tested their framework on the FRAV3D
dataset, using 2D-DWT (Discrete Wavelet Transform) and 2D-DCT (Discrete Cosine Transform)
for spectral representation of high resolution depth images. Feature dimension reduction is per-
formed by PCA, obtaining the corresponding weight vectors. These weight vectors are fed to a
classifier which uses Euclidean distance for classification. The score fusion of the two techniques
was performed at the score-level.

Tang et al. (2015) performed landmark detection using the three main principal curvatures,
obtained from the construction of asymptotic cones which describe the local geometry of the mesh
model. In the three main curvature faces, the Local Normal Patterns (LNP) is applied and then

classified by a Weighted sparse representation-based classifier (WSRC).

2.4.2.1 3D-based Approaches Using Low-Cost Sensors

3D-based methodologies that use low-cost scans have also been explored in the past. Min et al.
(2012) used low-cost sensor depth scans from PrimeSense. Using the depth discontinuity and an
empirical threshold, the head region is segmented and then subsampled. In the training phase, M
faces are randomly selected to form a set of canonical faces. Using a modified ICP, the EM-ICP
(faster), each face is aligned with the M canonical faces. The main problem with this approach
is that the nose tip detection is manual in order to segment a region of interest. The facial region

obtained is divided on nose, eye region, cheeks and the remaining parts (each region is associated
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with a respective weight). A feature vector is formed containing the L2 distances between each
facial region and their corresponding areas. The decision phase is made using the Euclidean dis-
tance between feature vectors. This system uses frontal poses and does not use RGB information,
although it introduces the use of a new sensor in this type of biometric systems, while also working
in real-time.

Cardia Neto and Marana (2015) proposed a new feature extraction method: the 3DLBP, de-
signed specifically for Kinect depth maps, based on the LBP (Local Binary Patterns). In this
method each pixel is described by 4 LBP values. Also a variant of HOG (Histogram of Ori-
ented Gradients) feature extractor was proposed: the Histogram of Averaged Oriented Gradients
(HAOG). First, the nose tip is detected automatically and a sphere is cropped around that point.
After this, to increase the quality of the depth model, symmetric filling is applied, improving the
robustness of the depth map mainly in high pose variations (profile views for example). 3DLBP is
applied on the cropped ROI and this region is divided in 8 x 8 sub-regions, obtaining 4 histograms
(one for each LBP value) that are concatenated in one global feature vector. The same histogram
procedure is applied in parallel with HAOG (where a single histogram per region is obtained). An
SVM (Support Vector Machine) classifier is applied independently to 3DLBP and HAOG feature
vectors, and a weighed score is used for the final decision. A summary of this approach can be
seen in Figure 2.4.

Bondi et al. (2015) also used real-time Kinect v1 video sequences to generate high resolution
models every time someone passes through the sensor. Iteratively, 3D low resolution frames are
aligned with a reference frame using a Coherent Point Drift (CPD) algorithm, filtering the 3D data
with a variant of the Lowess method. A combination of SIFT (Scale-Invariant Feature Transform)
and spatial clustering was used to detect stable keypoints on depth data. Facial curves were used
to model variations in depth between the pairs of keypoints detected. A random sample consen-
sus (RANSAC) algorithm is used for outlier removal in the keypoint matching phase. A match
between keypoints from different face models is performed using a new distance metric that takes
into account the saliency of the curvatures between keypoints.

Table 2.3 summarizes the most relevant information regarding the works described in this
section, focusing on a series of parameters (feature extraction, classifiers, datasets, etc.) used on
these 3D unimodal approaches.

Although these approaches are a good solution to the problems faced by 2D images, they do
not take fully advantage of all the information available, as RGB information is not used. The next
section will focus on multimodal approaches that attempt to fuse both sources of data in a single

classification.

2.4.3 Multimodal Approaches

The inclusion of two modalities has shown to be promising for real-world systems and uncon-
trolled environments, especially when high pose variations and low illumination environments
are a possibility. The fusion of 2D and 3D scans have always improved the performance of the

systems (Abate et al., 2007), when compared to the use of one unimodality.
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Figure 2.4: Process for Facial Recognition used by Cardia Neto and Marana (2015).

Table 2.3: Summary of the most relevant works concerning unimodal 3D face recognition

Author Feature Extraction Classifier Dataset r
Gordon (1991) Distance Measures Euclidean Distance 8 subjects (23 scans) 97.00
Tanaka et al. (1998) Curvature features Fisher Spherical Approximation 37 subjects 100
Hesher et al. (2002) PCA Euclidean Distance 37 subjects (222 scans) 100
Heseltine et al. (2004b) PCA on Eigenfaces Euclidean Distance York 3D Face 87.3
Heseltine et al. (2004a) PCA on Fisherfaces Cosine Distance York 3D Face 88.7
Chua et al. (2000) Point Signature Comparison Ranked vote 6 subjects (24 scans) 100
Moreno et al. (2003) Geometric statistics Euclidean Distance GavabDB 78.00
Ansari et al. (2003) 3D Coordinates Euclidean Distance 26 subjects (52 scans) 96.2
Wang et al. (2004) Sphere-Spin-Images SSI-Comparison-based Voting Method 6 subjects (31 scans) 91.68
Cook et al. (2004) Depth and Curvature Gaussian Mixture Model 3D_RMA 97.33
Huang et al. (2012) eLBP + SIFT 3 Different Similarity Measurements Bosphorus, Gavab DB, FGRC v2 | 97/95.49/97.6
Naveen and Moni (2015) 2D-DCT and 2D-DWT Euclidean Distance FRAV3D 96
Tang et al. (2015) Principal Curvatures + LNP WSRC FRGC v2 93.33
Min et al. (2012) L2 Distances Euclidean Distance 20 subjects 100
Cardia Neto and Marana (2015) 3D-LBP + HAOG SVM Eurecom 98
Bondi et al. (2015) SIFT and Curvatures RANSAC + Distance and Salience Metric Florence Superface Dataset 75

Two of the first works with multimodal facial recognition, (Chang et al. (2003), Chang et al.
(2005)) investigated the benefits of integrating 3D data (using a Minolta Vivid 900 sensor) with
2D images, using PCA separately on both modalities. The authors state that 2D and 3D individu-
ally get similar performances, but when combined (with a simple weighing system), a significant

increase in the performance is observed using the Mahalanobis cosine distance for the decision.
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Tsalakanidou also investigated the robustness of multimodal approaches in two of his works.
In his first work (Tsalakanidou et al., 2003), which is very similar to Chang et al. (2003), an
Eigenfaces extension to depth scans is used. The Eigenfaces are applied on both 2.5D and 2D scans
and Euclidean distance are computed separately. The final score is obtained through multiplication
of both individual results and assigning the query face to the smallest product template image.
Here the multimodal approach has shown significance improvements over the independent 2.5D
and 2D recognition. In his second work (Tsalakanidou et al., 2005), an embedded hidden Markov
model (EHMM) was used to combine 2.5D and intensity images. Two EHMM classifiers trained
with 2D-DCT coefficients are used for classification (one for each modality). To increase the
performance of the system and to augment the training dataset samples, scans with different poses
and variations are generated for each subject.

Papatheodorou and Rueckert (2004) proposed a simple 4D Euclidean Distance to measure
the facial similarity (calculating also the textural differences). The results were overall promising,
although with pose and facial expression variations, performance decreased.

In 2007, a new approach was proposed by Mian et al. (2007), where, first a pose correction
is performed using the Hotelling transform. Using a combination between 3D Spherical Face
Representation (SFR) and 2D Scale Invariant Feature Transform (SIFT), a large percentage of the
candidate faces is removed (SFR-SIFT-based rejection classifier). Then the eyes-forehead and the
nose regions are automatically segmented and matched using a modified ICP algorithm.

One year later the same author (Mian et al., 2008) proposed a new a 3D keypoint detection
using a PCA-based method, achieving results in terms of keypoint repeatability similar to SIFT.
Once a 3D point is identified, a tensor representation locally describes the keypoint. In parallel, in
2D images, a SIFT approach was implemented for keypoint detection. A feature-level fusion with
vector concatenation as well as a score level fusion (with 4 different similarity criteria) assesses
the best performing alternative. The higher performance was achieved with score level fusion.

Using high resolution face scans, Hiremath and Manjunatha (2013), used Radon transform on
both texture and depth images in order to obtain binary maps to crop the facial region. Gabor
features are extracted from both types of scans. PCA is applied to reduce dimensionality, and fea-
ture vectors are then inputted in an AdaBoost classifier that selects the most discriminant features.
Finally, Nearest Neighbor scheme decides the identity of query face.

Elaiwat et al. (2015) proposed a multimodal approach using 3D textured high-resolution face
models, in which Curvelet coefficients are used to represent facial geometrical features. Primarily,
curvelet transform is applied on textured faces in order to identify the keypoints in the curvelet
domain. Only repeatable keypoints (those appearing nearly in the same location) are saved. Using
both depth and textural information, each face is decomposed into multi-scale and multi-angle
decompositions. A local surface descriptor is applied around the keypoints considering all the
sub-bands of the scale in which the keypoints are detected. To compensate variance to rotation,
circular shift is applied to the keypoint orientation. Finally, 2D and 3D feature vectors are created
and a cosine distance metric is used for facial matching. The final results are obtained using a

confidence weighted sum rule.
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Naveen et al. (2015), used a Local Polynomial Approximation Filter (LPA) to obtain direc-
tional faces to each modality. These faces are optimized using the Intersection of Confidence
Interval Rule (ICI). For feature extraction a modified LBP (mLBP) is computed and concatenated
in a histogram, to which the Discrete Fourier Transform (DFT) is applied. Finally, Euclidean dis-
tance measure is applied on a PCA reduced feature vector, using score-level fusion to obtain the

final decision.

2.4.3.1 Multimodal Approaches Using Low-Cost Sensors

Similar to 3D approaches, some multimodal methods using low-cost sensor have also been pro-
posed. In 2013, Li et al. (2013) used Kinect v1 to develop a facial recognition system invariant
to pose, expression, illuminations and disguise. A query face is registered using a reference 3D
model (obtained from high resolution scans). In order to compensate the missing data from pose
variations, a symmetric filling step is carried out (an example of this process is shown on Fig-
ure 2.5). Although the human face is not entirely symmetrical, this approach proves to increase
the recognition rate of the systems when presented with high pose variations. The RGB scans
are transformed to the Discriminant Color Space and a Sparse Representation Classifier (SRC) is
applied in parallel to both types of scans. Then two sets of similarity scores are obtained based
on individual class reconstruction error for both depth and texture images. These two scores are
normalized using the z-score technique and summed for final decision.

Goswami et al. (2013), tested a new multimodal system in Eurecom and in III-TD datasets.
Here, the saliency and entropy maps for RGB is computed. In parallel, the entropy maps for depth
images is also computed. To the resulting images HOG is applied, concatenating the resulting
feature vectors to get the final descriptors. In this work a Random Forest Classifier is used for the
identity assessment.

Recently Ajmera et al. (2014) proposed the use of Speeded-Up Robust Features-based (SURF)
descriptors in Kinect scans (tested on EURECOM database and CurtinFaces dataset). Using a
Graph Based Iterative Hole filling interpolation, images with variation in pose are generated using
the depth model. In parallel, the RGB image is processed with an Adaptive Histogram Equal-
ization (low contrast enhancement), a non-local means filter (for pepper noise removal) and a
steerable filter. The SURF algorithm is computed, detecting keypoints that are then matched using
a nearest neighbor approach. A weighed score fusion for the three methods is applied for final
decision making. This methodology has the disadvantage of relying in manual face cropping and
not being robust to pose variations, occlusions and illumination variations. Depth images data are
not considered for feature extraction, only being used to generate images in different conditions.

Mracek et al. (2014) developed a work on low-cost sensors using Kinect v1 and SoftKinetic
DS325. A feature-preserving mesh denoising algorithm is applied to the depth images to deal with
noise and peak presence. All models were aligned using the Iterative Closest Point (ICP) and were
converted to six representations of depth texture and curvature. Gabor and Gauss-Laguerre filters
are then applied to the mesh, and an individual feature vector is obtained using z-score normalized

PCA projections. A correlation metric is used for making the final decision.
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Hsu et al. (2014) proposed a 3D face reconstruction using RGB-D images, performing the
generation of multiple 2D faces, to increase the gallery size. Additionally, a landmark detection to
perform face alignment is used. Sparse Representation was used for classification.

A multimodal approach has also been proposed by Dai et al. (2015), where a new local de-
scriptor is used for feature extraction: Enhanced Local Mixed Derivative Pattern (ELMDP). Gabor
features are extracted from RGB images. After this, ELMDP is applied independently on depth
and texture images leading to two histogram representations. For the matching phase a Nearest
Neighbor classifier is applied on both histograms, and the two modalities are combined with a
weighed score fusion methodology.

Hayat et al. (2015) proposed a new raw depth pose estimation and automatic crop of facial
region. The images are clustered based on their poses, resulting in a model for each cluster. Using
Riemannian manifold, a Block-based covariance matrix is applied and an SVM classifier is used
for each modality. The final decision is made by fusion of classification results for each of the
image subsets. This approach shows clear improvements of multimodal approaches over their
unimodal counterparts.

Krishnan and Naveen (2015) introduced a new multimodal framework. Entropy maps of depth

and RGB images were obtained and a saliency map is also constructed from RGB images. HOG is
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Figure 2.5: Symmetric Filling Process. Obtained from Li et al. (2013).
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applied on the three resulting maps and concatenated in three resulting histograms. A Tree Bagger
classifier is used for identity assessment.

Sang et al. (2015) proposed a new multimodal system, which included pose correction. ICP
is used for face alignment, also allowing the alignment of RGB images. To each modality HOG is
applied, and a Joint Bayesian Classifier is used for classification.

Table 2.4 summarizes the most relevant information extracted from the works described above,
regarding a series of parameters (feature extraction, classifiers, datasets, etc.) used for the devel-

opment of these multimodal approaches.

Table 2.4: Summary of the most relevant works concerning multimodal face recognition

Author Feature Extraction Classifier Dataset rn
Chang et al. (2003) PCA Mahalanobis Cosine Distance 275 subjects 98.8
Tsalakanidou et al. (2003) PCA Euclidean Distance 295 subjects (3540 scans) 98.75
Tsalakanidou et al. (2005) 2D-DCT EHMM 50 subjects 79.2
Papatheodorou and Rueckert (2004) - 4D Euclidean Distance 62 subjects 66 - 100
Mian et al. (2007) SIFT and SFR modified ICP FRGC v2 98.31-99.7
Mian et al. (2008) Tensor Representation+ SIFT | 4 Different Similarity Measurements FGRC v2 96.6-99.9
Hiremath and Manjunatha (2013) Gabor Nearest Neighbor Texas 3D + Bosphorus + CASIA 3D 99.5
Elaiwat et al. (2015) Curvelet Coefficients Cosine Distance FRGC, BU-3DFE, Bosphorus 99.2/95.1/91
Naveen et al. (2015) LPA + DFT Euclidean Distance FRAV3D 91.68
Lietal. (2013) - SRC CurtinFaces 96.7
Goswami et al. (2013) Saliency + Entropy HOG Random Decision Forest 1I-TD and Eurecom 80.0/88.0
Ajmera et al. (2014) SURF Nearest Neighbor Eurecom and CurtinFaces 89.28/98.07
Mracek et al. (2014) Gabor and Gauss-Laguerre Correlation Metric Kinect (9 subjects), Kinectic (26 subjects), FRGC v2 <89
Hsu et al. (2014) - SRC Curtin Faces, Eurecom, AVL-RGBD Face 972/ ~89/~76
Dai et al. (2015) ELMDP + Gabor Nearest Neighbor CurtinFaces ~95
Hayat et al. (2015) Riemannian manifold SVM BIWI, CurtinFaces, UWA 96.56 /96.42 / 96.56
Sang et al. (2015) HOG Joint Bayesian Bosphorus, BIWI, Eurecom, CurtinFaces ~97 /~84/ ~93 / ~98
Krishnan and Naveen (2015) Saliency + Entropy + HOG Tree Bagger CurtinFaces, FRAV3D ~ 65/~ 70

As a preliminary study regarding this dissertation, some tests have been carried in EURECOM
dataset, using an extension of a 2D framework developed by Monteiro and Cardoso (2015). This
work has been published in U.Porto Journal of Engineering (Monteiro et al., 2016) and, as this
framework will be one of the base-lines for this thesis development and results comparison, it will

be further detailed in the next section.

2.4.3.2 A Cognitively-Motivated Recognition Method

The framework was developed for 2D facial recognition using a UBM-based (Universal Back-
ground Model) hierarchical system modeled by GMM (Monteiro and Cardoso, 2015). Recogni-
tion is done in a hierarchical way, such that global models take precedence over more detailed
ones. A set of partial models is built and organized into levels, each one containing equal size
non-superimposing subregions (that are ordered in an arbitrary way), ;. The algorithm starts with
trying to assess an identity using the global image, only advancing to the next level if a decision
with a certain level of confidence cannot be made. Each decision made for each region in the same
level is independent and only the most relevant one is kept.

The UBM approach, originally proposed for voice recognition was introduced by Reynolds
et al. (2000). It can be interpreted as simple hypothesis test: given a query face image Yand a
claimed ID, S, the two hypothesis can be defined as:

Hp: Y belongs to S
H,: Y does not belong to S



3D Face Recognition:
22 A State-Of-The-Art Review

being Hy the null hypothesis and H; the alternative. A likelihood-ratio test can be used to achieve

the optimal decision:

p(Y|Ho) ) = 0 accept Hy

2.1
p(YH) | < ¢ accept H

in which 6 is the threshold of acceptance for a certain identity. For this decision to be made
p(Y|Hop) and p(Y|H) need to be computed. Hy will, therefore, represent a model Ay, that char-
acterizes the hypothesized identity, whereas H; will describe the model of all the alternatives to
the hypothesized identity, /l . For an unknown input sample, the most likely identity, Id,;4y, Will

correspond to the identity Wlth highest likelihood-ratio value for all possible identities.

GMMs are used to model both ).hy "

metric densities for these models. GMMs are trained using a variant of the original SIFT, the

and Ay, as they are capable of generating smooth para-

densely-sampled set of scale-invariant feature transform (dSIFT). Here, the original SIFT is ap-
plied on dense grids of locations at a fixed scales and orientations, allowing a decrease of detection
in non-interesting points. To simplify the complexity of the training, while not hurting the per-
formance, GMMs are simplified, by being trained using diagonal covariance matrices. Contrarily
to the original SIFT, PCA reduction is applied to the 128 resulting dimensions of the keypoints,
reducing the dimensionality to 32, leading to a reduced computation time in training phase, and
improving the distinctiveness and robustness of the extracted feature vectors. The dSIFT is used
to train the GMMs using all the keypoint descriptors obtained from all individuals (UBM), AW’

and specific subject data for modeling the individual-specific models, A;y,.

In UBM training, a set of extracted data from all the subjects, named the “impostor data”, is
modeled by a k-mixture GMM. Using this UBM, the genuine” specific model for each enrolled

user can be computed by adaptation of the global UBM parameters, using specific subject data.

The UBM adaptation for each specific model is done by tuning of the parameters in a maxi-
mum a posteriori (MAP) sense. For each component of the UBM, a set of statistics is obtained

from M individual-specific feature vectors, X = {xj,...,Xp }:

M
ni=Y p(ilxm) (2.2)
m=1
1 M
- Z P |Xm Xm (23)
nl m=1
Ei(xx') = Z (A% ) XX, 2.4)
n; m=1

where p(i|x,,) represents the probabilistic alignment of x,, into each UBM component i. This

allows each component to be adapted using the diagonal of the covariance matrices.
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Knowing the UBM parameters, {w;, i4;, G;} , the adaptations for each specific user, {W;, fi;, 6;}
can be computed as:

w; = [Ocini/M—i— (1— Oll')Wi]é (2.5)

B; = oEi(x)+ (1 - a)p; (2.6)

i = aEi(xx') + (1 — o) (00} + p; i) — 4 2.7)
c; = diag(%)) (2.8)

To assure that Y, w; = 1, a weighting parameter & is introduced. The o parameter is an adap-
tation coefficient, which depends on a relevance factor r, which measures the relative weight of

the original values. Formally, it can be defined as:

n;
r—+n;

(2.9)

(047

The relevance factor, r, has been defined as r = 16 (Monteiro and Cardoso, 2015). This training
is repeated 14 times, for each of the subregions shown in Figure 2.6. For testing a query face, the
dSIFT method is applied and PCA is applied to each of the keypoints detected. A vector of features
is obtained, X;os = {X1,...,X; n}, Where X; ; is the i-th PCA-reduced SIFT vector extracted from
a given subregion m. X, is projected into the UBM and the individual specific models. The
final score, s; ,, is calculated as the mean likelihood-ratio of all keypoint descriptors obtained, X; ;,
Stm = %Zi\; 1 st(’,)n The assigned subject’s identity is computed by maximum likelihood-ratio.

The hierarchical scheme is depicted in Figure 2.6c, in which holistic representations precede
to more specific ones, only advancing to the next level if necessary. After obtaining the recognition
scores for each possible identity, using the full-face image, a certainty index, c¢,,, is computed for
measuring the certainty of the match obtained with the likelihood ratios vector, s; ,,. This index is

calculated using the following expression:

Cm =S8t'm— 77 7 Z St.m (2.10)

where §; m = {S1.m,.--,ST.m} corresponds to the scores of all the T enrolled users. With no false
positive corruption in the vector s, ,,, there should be a significant difference between the highest
value (true identity), s« ,,, and the average impostor score, ﬁ Z,T:Lt#t* St m-

If the ¢, value is greater than a previously defined threshold, 6;, the decision is accepted and
the algorithm will not advance to the next level. Otherwise, the system advances to the next level of

the hierarchy, meaning that a more detailed analysis needs to be carried out for identity assessment
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to be performed with a higher degree of confidence. The algorithm advances to the subregions /;_»
(corresponding to the second level), and the process is repeated. In levels with multiple regions
only the maximum c,, among these regions is considered for the decision criterion. If, in the
end, no level achieved a decision with significant confidence, the decision will correspond to the
highest ¢,, score among all levels.

Another alternative for real-time applications, if no level is capable of making a decision, is

that images can be considered doubtful and no decision made.

2.4.3.3 Extension of the Framework to 3D and EURECOM dataset testing

The framework described before was extended to deal with depth map image inputs (Monteiro

et al., 2016). The extension was made by applying the pipeline in parallel to depth images. For

A large pool from all subjects: .
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(a) UBM training. (b) Maximum a posteriori (MAP) adaptation of the
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(c) Testing block for input query face.

Figure 2.6: Representation of the main blocks of the UBM-based framework (Monteiro and Car-
doso, 2015).
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this, two feature extractors were tested: the original dSIFT approach (similar to the used in the
original 2D) and LBP description (dividing the image in 4 x 4 subregions). The LBP results
in a histogram for each region, that are concatenated in one single vector. This results in two

hierarchical models that operate in parallel for each modality, 2D and 3D.

The fusion of modalities was performed at the score level, using the likelihood-ratio values
from the two hierarchical pipelines. The final score is obtained using a simple weighted mean,
averaging the two scores. The optimal values for the weights were found by grid search, under the

constraint that the sum of the weights is unitary.

The framework extension was tested on the Eurecom dataset (Min et al., 2014). For train-
ing, the neutral images (with no facial expression and pose variation) were used, while the other
conditions were used for testing. The profile images were not used, and the faces were manually

cropped in order to only analyze the facial region.

The main results obtained with the framework are presented in Table 2.5. For each tested
scenario the individual performance observed for each condition present in the EURECOM dataset
is presented: light on (LO), occluded eyes (OE), occluded mouth (OM), occluded paper (OP),
open mouth (OPM) and smile (S). The obtained results were compared with the baseline results

in Eurecom dataset presented in Min et al. (2014).

Table 2.5: Accuracy Results Obtained in the Eurecom dataset.

Modality: Methodology LO OE OM | OP OPM | S

RGB: SIFT (Monteiro and Cardoso, 2015) 0,990 | 0.962 | 0.952 | 0,625 | 0,913 | 0,990
RGB: SIFT (Min et al., 2014) 0.837 | 0.712 | 0.885 | 0.375 | 0.913 | 0.990
RGB: LGBP (Min et al., 2014) 0.990 | 0.904 | 0.990 | 0.817 | 0.952 | 1.000
3D: SIFT (Monteiro and Cardoso, 2015) 0.721 | 0.615 | 0.308 | 0.048 | 0.490 | 0.731
3D: LBP (Monteiro and Cardoso, 2015) 0.798 | 0.635 | 0.433 | 0.106 | 0.538 | 0.788
3D: SIFT (Min et al., 2014) 0.049 | 0.020 | 0.020 | 0.029 | 0.029 | 0.249
3D: LBP (Min et al., 2014) 0.952 | 0.789 | 0.519 | 0.125 | 0.817 | 0.837
MM: 2D-SIFT + 3D-LBP (Monteiro and Cardoso, 2015) | 1.000 | 0.981 | 0.952 | 0.625 | 0.933 | 0.990
MM: LGBP (Min et al., 2014) 1.000 | 0.894 | 0.981 | 0.846 | 0.981 | 1.000
MM: LBP (Min et al., 2014) 0.990 | 0.934 | 0.981 | 0.817 | 0.962 | 1.000

In RGB images, the results obtained had similar or higher performance in all tested conditions,
even though a fair comparison can only be performed between the framework results and the
SIFT approach presented in (Min et al., 2014). The LGBP, Local Gabor Binary Patterns, was
the approach with the best results. The hierarchical model by Monteiro and Cardoso (2015)
outperformed the SIFT by Min et al. (2014) in all conditions except for occlusion with paper.

In range images, the SIFT approach presented by Min et al. (2014), achieved considerably
worse performance than the hierarchical framework. Concerning the results from the extension of
the hierarchical framework with LBP in depth images, all the results are considerably better than
the ones obtained by SIFT, corroborating the conclusions presented in Min et al. (2014). For that
reason, for multimodal results assessment of the UBM, the original 2D formulation with dSIFT

was used in parallel with the LBP extension for depth images.
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When analyzing the multimodal results, significant improvements were obtaining when com-
paring to their unimodal counterparts. The occlusion with paper (OP) was an exception, where the
results were not improved. When comparing with the state-of-the-art results in Min et al. (2014),
the obtained performance was either in the same range or slightly better than the ones reported in
literature (except again for OP).

It can be concluded that for the extended version of the Monteiro and Cardoso (2015) results
follow the trend observed in previous works, where multimodal fusion with multiple sources of
information leads to an improvement over all individual performances. An improvement in depth
results would lead to an improved multimodal performance. For this reason, the focus of the
current dissertation will be, mainly, on improving depth description and classification, to benefit
the joint classification with RGB data.

As we verified, there is clearly space and need for a creation of a new dataset, that uses a
different sensor than Kinect. To help in the development of the framework, a new dataset was

built, with its detailed analysis being the focus of the next chapter.



Chapter 3

A New Dataset for Multimodal Face
Recognition: The RealFace Dataset

After the analysis of the publicly available datasets for 3D facial recognition, and with the appear-
ance of the Intel® RealSense™ depth sensors, it was clear that the creation a new dataset was
needed. This contribution would be important, not only for evaluating these sensors in face recog-

nition systems, but also to offer alternatives to available databases based on Microsoft Kinect.

Although there are no databases for facial recognition using sensors like Asus Xtion or Intel®)

™

RealSense" ™, a recent publication revealed a RGB-D Scene Understanding Benchmark Suite (Song

et al., 2015) that has depth data from Kinect v1, Kinect v2, Intel Realsense R200 and Asus Xtion.
When compared to the remaining sensors, the authors refer that the quality of Intel®) RealSense™
R200 model is too low for accurate object recognition. The raw depth images appear to be worse
than the other sensors. Nevertheless, they refer that the RealSense™ R200 sensor is the most
portable sensor and also the one that consumes less power, which can be both advantages for most
applications (Song et al., 2015). In Figure 3.1 we can see a comparison between these sensors,
where clearly the R200 model presents the noisier depth image. Although the improved depth
image (using information from multiple consecutive frames) corrects some of the noise, the depth

image quality never comes closer to the remaining sensors.

It important to realize that RealSense™

sensors are still in the development phase, changing
very quickly. The new versions of the sensors seem to be improving the overall quality of the
images. During the development of this dissertation the models of the sensors have changed many

times, as has the SDK.

Although the quality of R200 sensor seems to be indicative of poor performance in recognition,
a face recognition acquisition protocol was built using both R200 and F200 models, as will be

outlined in the following sections.

27
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Figure 3.1: Comparison of image quality, weight and power consumption in different sensors.
Also the raw depth images and the corresponding improved depth images by using multiple frames
are displayed. Images acquired in Song et al. (2015).
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3.1 Data Acquisition Protocol

Several variations in pose, facial expression, disguises and different illumination conditions were
considered to simulate, as much as possible, the conditions that characterize unconstrained acqui-
sition environments. It was also important to ensure that the acquisition time would not be too
long for the volunteers. Finally it was important to create a dataset that would differ from the
datasets presented in Section 2.3.

To evaluate the performance of algorithms in different illumination conditions, images were
captured in three illumination modes: natural, artificial and no illumination. Obviously, it is im-
possible to maintain constant natural illumination, but the focus was on testing various situations
and not constant ones. Additionally, the three modes of lighting allow to understand if image
quality of the depth sensor is, in fact, independent of the illumination. The darkness condition,
was achieved closing the blinds of the room and using a black cloth that prevented the presence of
most illumination in the room during the acquisition.

Concerning pose variations, only 5 poses were tested: frontal pose, profile poses (right and left)
and +45° pose in the lateral plane. For each pose variation, and in each illumination condition, 4
additional variations were tested concerning facial expression/disguise: neutral expression, open
mouth, occlusion by a handkerchief and presence of glasses.

In each condition the user goes sequentially from frontal pose to 45° to the right and then

profile. Then another acquisition is done with frontal pose and the subject repeats the movement
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to the left. In Figure 3.2 we can see an example of the visited poses in each condition in natural

illumination with neutral facial expression.

= A2

(d) Pose 4: frontal pose. (f) Pose 6: Left Profile.

Figure 3.2: Representative scheme of the poses visited by each subject in each of the conditions
during enrollment (in this case neutral expression with natural illumination is represented).

The whole process resulted in a total of 72 different conditions for each volunteer. Ideally
we would have tested a lot more conditions, but it was important not making the acquisition too
tedious for the subjects.

The selected conditions are thought to be enough to create a complete dataset adequate to
evaluate the sensor performance, while also creating challenging conditions to face recognition
systems. The occlusion by scarf, which in some cases occludes most of the subject’s face, is
clearly the most challenging condition, even for the human eye. Also, the presence of natural hair
occlusions in profile views, mainly in female subjects, also makes it difficult to identify subjects in
some images. Two examples of such conditions are presented in Figure 3.3, where, most probably,
the algorithms will have difficulties to assess the identity of some volunteers.

Due to the different optimal operating ranges, the acquisition could not be done with the two
sensors simultaneously, since the F200 model works well for closer ranges (optimal range of
approximately 0.2 m) and the R200 model does not work optimally at close range (no depth
measurements for distances smaller than 0.5 meters). Therefore, it was decided that the acquisition
process would be repeated for each sensor (for logistic reasons the illumination conditions order
was inverted when passing from the F200 model to the R200 model). The distance of acquisition
was approximately 0.5 meters for the F200 model and 1.3 meters for R200.

To take advantage of all the modalities of Intel® RealSense™ it was decided to acquire all
streams of each sensor. Therefore, for the R200 model, the two IR images provided by the two
IR sensors were captured as well as the depth stream, the RGB stream and the respective Point

Cloud. As for the F200 model the same streams were captured, with the difference that this sensor



30 A New Dataset for Multimodal Face Recognition: The RealFace Dataset

Yj;ﬂ“

I;;:

(a) Profile case where we can see a natural oc- (b) Situation where scarf occlusion and pose
clusion by hair. variation are combined.

Figure 3.3: Two examples of difficult cases, where, additionally to pose variation, natural occlu-
sion by hair in (a) and occlusion by handkerchief in (b) are also present.

only provides one IR stream. In Figures 3.4 and 3.5, examples of all the modalities captured with

the F200 and R200 sensors are depicted, respectively.

Since the Intel® RealSense™ SDK does not provide a tool to efficiently record and save
frames from the sensor, a simple program for the dataset acquisition was built using C++ scripts
with the Librealsense database (Intel®), 2015). Although not being an official product by Intel®)
(it is maintained by developers), Librealsense appears as an alternative for the SDK, for all operat-
ing systems, allowing the users to have direct access to all the camera streams, access to calibration
information, having some additional features as multi-camera simultaneous use. This allowed the

creation of a C++ script to capture all the streams referred previously.

The depth and IR images are captured in 16 bits (in F200 model the depth is provided as a 8
bit image due to different range image scale), the color image is provided in three channels (RGB)
and the point cloud is presented in real-world coordinates in meters, where the sensor serves as

the origin for the coordinate system.

Clearly, it is noted that the R200 sensor, as referred in (Song et al., 2015), is a noisy sensor,
which will probably result in a poor performance in face recognition. Additionally, the presence of
the IR laser pattern in the infra-red images may lead to poor performance in IR facial recognition.
One could disable the IR emitter, but this would lead to no depth image formation in indoor
environments. Contrarily, the F200 model seems to have a cleaner depth image and could be very
useful for face recognition, as all modalities seem to provide relevant information. Additionally,
the R200 sensor has shown to be a lot slower in the acquisition process, although fast enough for
real-time acquisitions. The resulting mean time of acquisition per subject was approximately 12

minutes.



3.2 Dataset Composition 31

(a) Color Image. (b) Depth Image.
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(c) Point Cloud. (d) Infra-red Image.

Figure 3.4: Example of the 4 types of streams acquired with the sensor F200.

3.2 Dataset Composition

The dataset includes data from 42 individuals, with ages ranging from 18 to 40 years. The genre
distribution was 20 females and 22 males, while the nationalities included 41 Portuguese subjects

and one Venezuelan.

Additionally to the raw streams, manually cropped images are also provided for each modality,
as well as manually selected keypoints, that can be used in the assessment of keypoint detection
algorithms. For profile and 45° images 5 keypoints are marked, namely the eye center, nose tip,
mouth corner, chin and ear lobe. For frontal images, the 6 keypoints provided are left and right
eyes centers, the nose tip, left and right mouth corners and the chin. For the F200 model images,
the keypoints were selected in color images and IR images (since the coordinate system is the
same between IR and depth, the keypoints can be used in both streams). As for the R200 model,
the keypoints were manually annotated in both IR images and color, since the two IR cameras

offer different views. In the case of darkness, no points were marked in RGB images.

For each subject, 72 different conditions were captured in each of the cameras, which resulted
in 648 different scans per individual (72 in each of the modalities). Table 3.1 summarizes the

number of images captured in each of the considered conditions.
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(a) Color Image. (b) Depth Image.

(c) Infra-Red Image 1. (d) Infra-red Image 2.
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(e) Point Cloud.

Figure 3.5: Example of the 5 types of streams acquired with the sensor R200.
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Table 3.1: Number of images for each of the modalities captured in each condition. In the table N
stands for Neutral Expression, MO for Mouth Open, S for Scarf and G for Eye Glasses.

Illumination Conditions
Pose Natural Artificial Darkness
N IMO|IS|IGIN/IMO|S|G|N|MO|S|G
-90° | 1 1 11111 1 1111 1 1)1
-45° | 1 1 11111 1 11111 1 1)1
0° |2 2 121212 2 21212 2 |22
+45° | 1 1 11111 1 11111 1 1)1
+45° | 1 1 11111 1 1111 1 1|1
Total 72

3.3 Conclusions

This face recognition dataset offers a positive contribution for the scientific community, as an
alternative to the available traditional Kinect datasets.

The created database offers difficult challenges for multimodal facial recognition systems, pro-
moting the creation of systems that are intelligent enough to distinguish from different illumination
conditions, and can adapt to the environment. This is crucial in the darkness illumination case,
where RGB images provide almost none relevant information, which can be the case in night time
face recognition systems, where the 3D and IR images should present more relevant information.

It is important, in the future, to increase the number of subjects of the dataset in order to
increase the variability of the dataset and the number of identities. The dataset should be made
available for the scientific community in the future.

This dataset, together with the ones presented in the Section 2.3, provides important founda-
tions for algorithm performance testing. In the next chapter, these databases will be used for the
development and assessment of the framework used for a new 3D/multimodal facial recognition

system.
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Chapter 4

A New Multimodal Face Recognition
Framework For Unconstrained

Scenarios

The dataset presented in Chapter 3 and the ones discussed in Section 2.3 offer proper testing
conditions for performance assessment of face recognition systems. This chapter will focus on
experiments on the aforementioned datasets, where some different approaches will be tested, for
the creation of a new framework capable of multimodal face recognition. Most of this framework

will focus on 3D, since that was the main topic of this dissertation.

As depicted in Figure 2.1, face recognition systems follow a standard work-flow. The data
acquisition phase has already been performed, in the acquisition of each tested databases, leaving
only preprocessing, feature extraction and classification. In the next sections these topics will be

analyzed, describing the setups done to verify the best approaches.

First, some experiments will be carried out to find which method for preprocessing depth
data presents the biggest performance boost, using a fixed combination of feature extraction and
classification. Then a similar setup will try to assess the best feature extraction methods, where,
using no preprocessing, the classifier is not varied. Combining the knowledge gained from the
previous experiments, the classifier will be chosen to verify which method of classification has
a more positive impact in the overall performance of the system. Finally, an extension of the 3D
unimodal system is created, including other modalities (RGB+IR), testing the proposed framework

for diverse conditions.

During the chapter the evaluation of the framework will be performed using some of the met-
rics referred in Chapter 2, namely the global accuracy and the CMC curve, to compare recognition

rates at different ranks.

35
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Figure 4.1: An example of the pairs RGB-Depth in all the conditions presented in Eurecom dataset
(Min et al., 2014).

4.1 Datasets

To assess the performance of different approaches using different sensors, two main datasets were
chosen to get the results: Eurecom (Min et al., 2014) Kinect Dataset and the RealFace Dataset
described in the previous chapter.

The Eurecom dataset was chosen due to its variability of test conditions and also due to being
one of the most cited and tested datasets in the state-of-the-art.

This dataset offers the following different conditions: neutral expression (NE), light on (LO),
occluded Eyes with sunglasses (OE), occluded Mouth with hand (OM), half-occluded face with
paper (OP), mouth open (MO), smile (SM), left profile (LP) and Right Profile (RP). These condi-
tions have been captured in two sessions, having one pair RGB-Depth for each condition in each
session (the Point Cloud is also provided, as well as manually annotated face keypoints). An ex-
ample of each one of these conditions, for one of the subjects, is shown in Figure 4.1. In this
dataset, profile poses were not taken into account.

The RealFace Dataset, discussed in the previous Chapter, was also assessed, using only the
frontal poses. Pose variations introduce a new challenge for the recognition systems, and before
trying to deal with these variations it is important to have a good recognition in frontal poses. The
pose variations will be discussed later in this chapter. Due to the fact that the sensor model R200
is still not of enough quality to be used in face recognition applications, only the images from the
F200 model were used.

The next section will focus on the analysis of the performance in response to different types

of preprocessing.

4.2 Preprocessing

Preprocessing of depth images, due to its intrinsic noise, assumes a major importance in recogni-
tion systems built on this type of data.

Some of the most common methods for this purpose are the noise/spike removal and hole
filling algorithms (Bennamoun et al., 2015). The noise/spike removal methods should preserve

the relevant and discriminative depth information, while reducing the influence of noise. The hole
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filling algorithms try to compensate the holes created in the middle of depth maps, generally in

points where the sensor does not measure depth due to noise or motion.

A few of the most common smoothing methods are Wiener filtering, bilateral filtering, and bi-
lateral mesh denoising. Spike removal can be performed using a median filtering or using a simple
thresholding technique. Hole filling techniques can be compensated with interpolation techniques,
morphable models, symmetric filling (Bennamoun et al., 2015) and closing operations (Huynh
et al., 2013).

Other approaches have been explored. Tepper and Sapiro (2012) described the use of L1
splines for enhancement of depth maps, increasing the Signal-to-Noise ratio (SNR) of the im-
ages. Le et al. (2014) proposed a more complex approach. Here a Directional Joint Bilateral Filter
(DJBF) has been proposed, where different filters are used for hole and non-hole regions. Li et al.
(2013) used a gridfit smoothing method (non interpolant) with a modified ridge estimator to gen-
erate the surface. Mracek et al. (2014), for depth model improvement, used a fast and effective
feature preserving mesh denoising algorithm. Vijayanagar et al. (2014) implemented a real time
multi-resolution anisotropic diffusion-based filtering scheme that only filters hole regions and ob-
ject edges. Hsia (2015) proposed a different methodology for depth enhancement, depending on
the region of the depth map. Different methodologies were applied to non-hole regions, small hole

regions and big hole regions.

To determine the best preprocessing approach, some preprocessing methods were tested in
Eurecom dataset: average filter, morphological close, Gaussian filtering, Median Filtering, Joint
Bilateral Filtering (JBF), L1 Splines Filtering and Wiener Filtering. The baseline for this setups is

the setting with no preprocessing.

L1 Splines Filtering (Tepper and Sapiro, 2012) involves minimizing a function that is a linear
combination of regularizing and fitting terms, combining DCT to allow the use on grid data. The
classical splines usually use L2 weighed norm, while this implementation uses L1 norm, which is
shown to respond better to outliers. The DCT (which controls the complexity of the problem) is
then combined with a split-Bregman iterative method to solve the numerical problem. The tested
parameters used for L1 Splines Filtering were a main smoothing parameter of s =0.02, A = 1 and

100 split-Bregman iterations.

Although being also used in Le et al. (2014), JBF was initially proposed by Tomasi and Man-
duchi (1998), where this local non-iterative method is presented as a smoothing filter that preserves
edges, using a non-linear combination of the local pixel values. It is controlled by two parameters:
the geometric spread, o, which controls the blur, and the photometric spread, o, that controls the

range actuation of the filter. In the experiments, 6, was chosen to be 9 and o, as 0.2.

Wiener filtering in depth images was proposed by Mohammadzade and Hatzinakos (2013), and
involves filtering the image with a low-pass filter. The chosen neighborhood in these experiments

was 3 x 3.

Gaussian, median and average filtering were used with a 3 x 3 window. Morphological close,

was used with a disk structuring element of radius 5.
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To evaluate the effects in performance, 3DLBP (Huang et al., 2006) and HAOG (Galoogahi
and Sim, 2012) were used as feature extractors, using an SVM (with RBF - Radial Basis Function
- kernel) as a classifier. These two descriptors have shown to have good accuracy for recognition
using depth maps (Cardia Neto and Marana, 2015), and will be further discussed later in this
chapter. The SVM was optimized using grid search, with C and 7 being optimized in the range of
[2715;215] and [2713;29], respectively.

To have a fair comparison of all conditions, neutral images from both sessions were used as
training, while the remaining ones were used as test, which means 2 images/subject were used for
training and 12 images/subject served for testing. The images were manually cropped to include

the face region, without any type of alignment.

Table 4.1: Accuracy Results (%) under different preprocessing approaches in the Eurecom dataset.

Preprocessing Method | Feature Extractor | LO | OE | OM | OP | MO S Global
No Preprocessing 3DLBP 356 | 7.7 | 87 | 183 | 03 | 194 | 18.6
HAOG 519 | 365|173 | 87 | 289|404 | 284
Average 3DLBP 46.2 | 29.8 | 154 | 6.7 | 22.1 | 24 23.7
HAOG 529 269 | 144 | 87 | 269|385 | 26.1
Morphological Closing 3DLBP 404 | 375 | 5.8 | 10.6 | 20.2 | 23.1 | 22.0
HAOG 58.7 | 51.0 | 20.2 | 9.6 | 38.5| 423 | 35.6
Gaussian 3DLBP 423 | 30.8 | 144 | 87 | 20.2 | 21.2 | 22.6
HAOG 50.0 | 31.7 | 11.5 | 12.5| 279 | 35.6 | 26.9
IBE 3DLBP 375|356 | 7.7 | 87 | 183|250 | 21.8
HAOG 519 1365|173 | 87 | 289|404 | 284
L1 Splines 3DLBP 3751356 | 7.7 | 87 | 183 | 25 21.8
HAOG 519 1365|173 | 87 | 289|404 | 284
Median 3DLBP 423|356 | 9.6 | 10.6 | 24.0 | 23.1 | 23.9
HAOG 50.0 | 29.8 | 16.4 | 10.6 | 31.7 | 43.3 | 29.0
Wiener 3DLBP 48.1 | 33.7 | 12.5 | 3.7 | 22.1 | 240 | 244
HAOG 55.8 1356|173 | 125|298 | 442 | 306

The accuracy results in the Eurecom dataset are shown in Table 4.1, where are displayed the
best results obtained for each subset using each type of preprocessing. The preliminary results
were clearly not promising, since the maximum global performance achieved was 35.6% using
HAOG and with Morphological Closing, followed by a 30.6% performance by Wiener Filtering.
This clearly is not good enough for a face recognition system. Morphological closing offers a big
boost in performance, due to the clear intrinsic hole presence in the depth maps.

These results led to the possibility that non-normalization in size and non-centering of the
depth image could possibly result in a break in performance using these descriptors.

Therefore, additional tests were performed: using the keypoints provided by the Eurecom
Dataset, the depth image was cropped and aligned, being also resized to 96 x96. Additionally, this
was also done using the Point Cloud provided by the dataset (instead of the depth map), applying
the Morphological Closing, Symmetric Filling (Li et al., 2013) and Gridfit smoothing (Li et al.,
2013). The use of Point Clouds in this case was tested because the depth images were provided in
8 bit images, and therefore the Point Clouds should present a more detailed representation of the

face. The alignment of the face in the Point Clouds was performed using the provided keypoints
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and maintaining only the Cloud points in the neighborhood of the nose. The Point Cloud is then
converted to a depth image, for feature extraction.

Described in Li et al. (2013), Symmetric Filling is a process which demands an almost per-
fect alignment and a previous pose correction method. The correctly aligned face Point Cloud is
centered in the position (0, 0, 0), and a symmetric Point Cloud is created where the x coordinates
are replaced by their negative values. Trying to fill only the missing data, namely the holes, the
Euclidean distance to the closest point of the original Point Cloud is calculated. All the points
with a distance smaller than a threshold 6 are removed.

Also in Li et al. (2013) Gridfit algorithm is used to smooth the resulting Point Cloud and to
convert it to a depth image. Gridfit is a non-interpolant algorithm that tries to find the approximate
surface that fits the supplied data as closely as possible. It deals well with noise and replicated
data.

The symmetric filling process demands a correct alignment and normalization, being that the
reason that why it was not tested before under the same conditions. With the provided keypoints
the Point Cloud was aligned, allowing the use of this algorithm for the assessments presented
below.

Table 4.2 summarizes the accuracy results for these preprocessing methodologies, where are
displayed the best results obtained for each subset using each type of preprocessing. The alignment
of the face and size normalization, led to a boost in performance of approximately 20 % in global
accuracy. Since the used descriptors are based on local features, this enhancement is justified.
This increase of performance is, however, not observed in some occluded scenarios. Despite that,
performance is obviously upgraded in almost symmetric situation, namely in the Light On, Mouth
Open, Smile and Occluded Eyes. Additionally, it is important to notice that the use of Point Cloud
values instead of depth map 8 bit images significantly improves the results.

Wiener filtering and Symmetric Fill are the processing strategies that achieved better results.
Gridfit, although when applied by itself does not cause a significant improvement in performance,
when combined with Symmetric Filling and Wiener Filtering leads to good performances for
HAOG feature extractor, leading to accuracies bigger than 90% in LO, SM and OE. Despite that,
the global results are still worse than with Winner filtering and no preprocessing with Point Cloud
representation.

Due to the fact that Symmetric Filling demands an almost perfect pose correction and align-
ment, and that it can result in unrealistic Point Clouds in the presence of occlusions, Wiener
Filtering seems to be the best approach. It presents a fair performance boost, while not being
dependent on pose correction. It is important to notice that the Occlusion with paper is definitely
the most difficult circumstance in this dataset.

To confirm these conclusions, some additional tests were done in the RealFace dataset, using
solely frontal poses. Therefore, 24 images per subject were used. The manually cropped images
provided in the dataset were used and resized to 96x96. Contrarily to the Eurecom dataset, the
images were not centered due to the fact that some images had no manually annotated keypoints

in depth. This, though, will allow us to conclude the performance of the algorithms in non-aligned
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Table 4.2: Accuracy Results (%) for different preprocessing approaches in the Eurecom dataset,
with normalization for a size of 96 x 96 and alignment using keypoints provided in the dataset.

Preprocessing Method Feature Extractor | LO OE oM OoP | MO S Global

Nop _ 3DLBP 789 | 558 | 212 | 125 | 462 | 846 | 49.0

o Freprocessing HAOG 779 | 510 | 231 | 202 | 279 | 587 | 41.4

Point Cloud No Prenrocessin 3DLBP 875 | 837 | 192 | 385 | 837 | 952 | 622
ot Lloud o Freprocessing HAOG 856 | 79.9 | 135 | 48 | 72.1 | 962 | 575
point Cloud Closin 3DLBP 865 | 808 | 106 | 96 | 385 | 827 | 503

& HAOG 80.8 | 654 | 173 | 67 | 317 | 798 | 458

Point Cloud Wi 3DLBP 86.54 | 88.46 | 1731 | 1.92 | 85.58 | 96.15 | 62.7

omt Lloud Wiener HAOG 84.6 | 846 | 135 | 288 | 673 | 99.0 | 587

. o 3DLBP 856 | 789 | 106 | 48 | 47.1 | 914 | 524
Point Cloud Symmetric Filling HAOG 87.5 | 73.1 | 202 | 87 | 48.1 | 817 | 505

. . 3DLBP 760 | 606 | 77 | 87 | 3558 | 789 | 433

Point Cloud Gridfit HAOG 817 | 654 | 164 | 67 | 317 | 798 | 460

. . . 3DLBP 692 | 636 | 96 | 58 | 51.0 | 798 | 446
Point Cloud Symmetric Filling + Gridfit HAOG 93.3 042 192 6.7 50.6 933 506
. . . 3DLBP 692 | 683 | 135 | 48 | 394 | 81.7 | 441
Point Cloud Wiener + Gridfit HAOG 923 | 923 | 231 | 58 | 558 | 942 | 59.4

conditions. In this case the Point Cloud was not used since the 16 bit depth images already give a
good representation of the depth values.

To maintain the conditions tested in the Eurecom database, two images with neutral expres-
sion, using artificial illumination, were used as training. Despite that, the images are not perfectly
aligned in the image as were those used in the Eurecom database. Neutral images in artificial
illumination were used as training because it was the only illumination condition that was con-
trolled in the acquisition. For testing without pose variations, 11 different conditions were tested
for each subject: Natural illumination with neutral expression (NN), Natural illumination with
Mouth Open (NMO), Natural illumination with scarf occlusion (NS), Natural illumination with
eyeglasses (NG), Artificial Illumination with Mouth Open (AMO), Artificial lllumination with
Scarf Occlusion (AS), Atrtificial Illumination with eyeglasses (AG), Darkness with Neutral Ex-
pression (DN), Darkness with Mouth Open (DMO), Darkness with Scarf Occlusion (DS) and
finally Darkness with eyeglasses (DG). Morphological Closing and Wiener filtering were tested
with HAOG and 3DLBP using an SVM with RBF kernel as a classifier, with grid search for opti-
mization using the ranges referred before. Table 4.3 summarizes the results in these conditions.

Table 4.3: Accuracy Results (%) for different preprocessing approaches in the RealFace Dataset,
with manual cropping a normalization to size of 96 x 96

Preprocessing Method | Feature Extractor | NN | NMO | NS | NG | AMO | AS | AG | DN | DMO | DS | DG | Global
No Preprocessing 3DLBP 500 | 452 | 298|643 | 750 | 250|595 |73.8| 57.1 |23.8|44.1| 49.78
HAOG 643 | 464 | 23.8 | 524 | 679 | 274|548 |73.8| 50.0 | 262 |40.5 | 47.94

Closing 3DLBP 50.0 | 369 | 202 |73.8 | 7738 |22.6|67.1|69.1 | 59.5 | 11.9 | 57.1 | 49.68
HAOG 69.1 | 524 | 274|726 | 821 |238|72.6 833 | 57.1 | 202|548 | 55.95

Wiener 3DLBP 48.8 | 44.1 | 298 | 63.1 | 750 |262|619 | 750 | 57.1 | 250 |44.1 | 50.00
HAOG 59.5| 500 |23.8|53.6| 702 | 298|548 | 750 | 51.2 |27.4 | 41.7 | 4881

Both preprocessing methods seem to have good influence in the accuracy, although Morpho-

logical Closing led to a improvement of approximately 8%, using the HAOG feature extractor,
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being the only method that significantly improves the results in global performance, as 3DLBP
seems to keep it constant, although suffering a small improvement with Wiener filtering.

Wiener filtering still has a small improvement in both extractors, and seems to be a good fit in
this dataset, despite the good performance of morphological closing with HAOG.

After this analysis of some preprocessing methods, an even more extensive analysis of some
feature extraction methods is necessary, to evaluate which approaches achieve better representation

and results for depth images.

4.3 Feature Extraction

Feature Extraction plays a major role in biometric systems. A good extractor should be able to
get discriminant features that can be used to classify the identity of each subject. As seen on
Chapter 2, different approaches can be used for feature extraction. To find which presents better
performance, different approaches were tested in both datasets.

To evaluate solely the effect of feature extraction, no preprocessing was applied on depth
images and, similarly, a SVM was used as classifier, using a RBF kernel, which was optimized
using grid search with C and 7y being optimized in the ranges used in the previous section.

In Eurecom, the Point Clouds were used to align the image and crop the face region, similarly
to the process described in Section 4.2. As for RealFace Dataset, the manually cropped images
were used. Both dataset images were resized for 96 x 96.

Despite the high number of tested feature extractors, only the 6 with best performance will
be presented. Many methods, similar to the ones presented in Chapter 2, were tested, but the
ones with better performance were: HOG, HAOG, 3DLBP, PHOW (Pyramid Histogram Of visual
Words), FHOG (Felzenszwalb’s HOG) and LDP (Local Derivative Patterns). Before presenting
the results, a brief description of each of these methods is in order.

Originally being described for Human Detection (Dalal and Triggs, 2005), HOG is a descriptor
that has been used in many applications, such as face detection (Cerna et al., 2013) and face
recognition (Albiol et al., 2008). This approach divides the image in small regions, and for each of
these regions, a histogram of the gradient orientations is computed. The bins correspond to each of
the orientations and the intensity of the bins is increased by its magnitude and not its occurrence.

In Galoogahi and Sim (2012), a variation of HOG has been presented, which has been used
in depth images by Cardia Neto and Marana (2015), named Histogram of Averaged Oriented
Gradients (HAOG). This variation uses the same principle as HOG, but it averages the gradients
and the orientation of the gradients.

Another variation of HOG, the Felzenszwalb’s HOG (FHOG) has been described in Felzen-
szwalb et al. (2010) for object detection. Here a feature pyramid is calculated for a finite number
of scales, using repeated smoothing and sub-sampling. A parameter A is used for defining the
number of levels in each octave.

Presented in Huang et al. (2006), 3DLBP was described as a variation of traditional LBP, for
depth images. The authors state that, statistically, 93 % of the depth differences are smaller than



42 A New Multimodal Face Recognition Framework For Unconstrained Scenarios

7. For each pixel, a neighborhood of 8 is presented, and, for each neighbor pixel, the difference
between that neighbor and the central pixel is calculated. If any of this differences is greater than 7
or smaller than -7, they are set to 7 and -7, respectively. From these values, 4 codes are created. The
first is equal to the traditional LBP, where a 8 bit binary number is created, in which subtractions
equal or greater than O being set to 1, or to O if the opposite happens. The resultant 8-bit binary
number is then converted to a decimal number, getting the first LBP code. The difference values
in each neighbor pixel is then converted into a 3 bit binary number. The bits are concatenated
for each of the neighbors, resulting in 3 8-bit numbers that are converted to decimal to form the
remaining 3 LBP codes. An example of this method is presented in Figure 4.2, where a case in
which traditional LBP would have poor description of the depth image is improved by 3DLBP.
Using this method, 4 LBP values are calculated to each pixel, generating 4 different LBP images.
For each image a 14 bin histogram is obtained for each 8 x 8 regions. The histograms are then

concatenated for the final descriptor.
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Figure 4.2: Comparison between the traditional LBP and 3DLBP. The image was obtained
from Huang et al. (2006).

Another variation of LBP has been described for face recognition: the LDP - Local Derivative
Patterns (Zhang et al., 2010). Since the traditional LBP is incapable of describing more detailed
information than the first order derivative among local neighbors, the LDP tries to describe the
(n— 1)”’ order derivative in various directions, namely 0°, 45°, 90° and 135°. For each direction

a binary coding function is defined for encoding the co-occurrence of two derivative directions
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at different neighboring pixels. This encoding method results in a 32-bit binary sequence by
concatenating the 8-bit binary numbers resultant from the 4 directions. The method is extended to

the nth-derivative. The final descriptor consists in a histogram of all the generated codes.

Finally, PHOW (Bosch et al., 2007) consists in a variation of dense-SIFT, which has been
briefly described in Section 2.4.3.2. Here, dense-SIFT is extended at multiple scales. SIFT is ap-
plied on dense grids at multiple scales and orientations for extraction of the interesting keypoints.
SIFT keypoints represent local extrema on different DoG (Difference of Gaussians) spaces. From
these extrema, candidates with low contrast and edge responses are eliminated, remaining only

dominant orientation keypoints.

All these feature extractors were applied on both datasets, for performance assessment. HOG
and HAOG were applied in 12 x 12 blocks of the image, resulting in 64 histograms of 7 bins.
FHOG was computed for 9 orientation bins, 8 for spatial bin size. Additionally, the value at which
to clip histogram bins was set to 0.2. 3DLBP was also applied on 12 x 12 regions, with 14 bins in
each histogram. LDP was used with order 2 (it had better performance than other orders), being
also calculated for 12 x 12 blocks. Finally, PHOW was used at scales 4, 6, 8 and 10 and the
step of the grid was set to 5. After the keypoints are extracted, a k-means clustering is applied to
the training keypoints, using 300 clusters. After that a Vector of Linearly Aggregated Descriptor,
VLAD (Jégou et al., 2010), is applied and used as a final descriptor. The descriptors are then
classified using an SVM with RBF kernel, as previously described.

A summary of the obtained results is shown on Tables 4.4 and 4.5. We can see that PHOW
and FHOG are the two methods that present better performance. In the Eurecom dataset, PHOW
outperforms all the other approaches in 5 of 6 subsets, getting, by far, the best results in occlusion
conditions. FHOG results show that this variant of HOG has potential for recognition in depth
images, outperforming HOG and HAOG. These two algorithms also are the two best methods
performing in the RealFace dataset, presenting the top results in all subsets. Similarly to Eurecom,
the occlusion with scarf (the most difficult condition) shows that PHOW consistently presents the

best results in the presence of occlusions.

3DLBP also showed good results in Eurecom, although not outperforming other approaches
in RealSense™ dataset. This may happen due to the fact that these images are not aligned leading

to a decrease in performance (which was already discussed in previous section).

Table 4.4: Accuracy Results (%) using different feature extractors in the Eurecom dataset, with
Point Cloud representation and normalization for a size of 96 x 96 and aligned using keypoints
provided in the dataset.

Feature Extractor | LO OE OM OP MO S Global
HOG 85.58 | 76.92 | 13.46 | 4.81 | 72.12 | 96.15 | 58.17
HAOG 83.65 | 82.69 | 12.50 | 3.85 | 83.70 | 97.12 | 57.86
FHOG 88.46 | 86.54 | 14.42 | 3.85 | 79.81 | 100 62.18
3DLBP 87.50 | 83.70 | 19.20 | 3.85 | 83.7 | 952 | 62.18
LDP 86.54 | 78.85 | 15.38 | 4.81 | 71.15 | 91.35 | 58.01
PHOW 96.15 | 92.31 | 58.65 | 18.27 | 90.38 | 99.04 | 75.80
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Table 4.5: Accuracy Results (%) for different feature extractors in the RealSense™ Dataset, with
manual cropping a normalized to a size of 96 x 96.

Feature Extractor | NN | NMO | NS NG | AMO | AS AG DN | DMO | DS DG | Global
HOG 57.14 | 48.81 | 35.71 | 70.24 | 75.00 | 29.76 | 54.76 | 79.76 | 54.76 | 25.00 | 53.57 | 53.14
HAOG 64.29 | 46.43 | 23.81 | 53.38 | 67.86 | 27.38 | 54.76 | 73.81 | 50.00 | 26.19 | 40.48 | 47.94
FHOG 64.29 | 46.43 | 34.52 | 82.14 | 79.76 | 32.14 | 73.81 | 86.90 | 66.67 | 29.76 | 64.29 | 60.06
3DLBP 50.00 | 45.24 | 29.76 | 64.29 | 75.00 | 25.00 | 59.52 | 73.81 | 57.14 | 23.81 | 44.05 | 49.78
LDP 53.57 | 40.48 | 28.57 | 72.62 | 77.38 | 22.62 | 64.29 | 70.24 | 63.10 | 15.48 | 48.81 | 50.65
PHOW 75.00 | 66.67 | 48.81 | 66.67 | 84.52 | 41.67 | 70.24 | 89.29 | 72.62 | 36.9 | 51.19 | 63.96

Although PHOW and FHOG were not designed for depth images, they still can extract relevant
information in this type of modality. These two methods and 3DLBP, were then selected for the

assessment of different classification methods, which will be discussed in the next section.

4.4 Classification

Different classifiers can be used in a supervised learning problem like face recognition. For evalu-
ating the robustness of different classifiers, similar conditions to the used before were considered
with no preprocessing, and only varying the classifier with FHOG, PHOW and 3DLBP.

Tests were performed for SVM with RBF kernel, Linear-SVM, Logistic Regression Clas-
sifier, K-Nearest Neighbor Classifier (in this case with k = 1), Naive-Bayes Classifier, GMM-
UBM (Monteiro and Cardoso, 2015), Sparse Representation Classifier (Wright et al., 2009), Weighed-
Sparse-Representation Classifier (Lu et al., 2013), and Random-Forest Classifier. The three clas-
sifiers with best results were Linear-SVM, RBF-SVM and Logistic Regression, whose results are
shown in Tables 4.6 and 4.7.

Table 4.6: Accuracy Results (%) under different classifiers using FHOG, PHOW and 3DLBP
in the Eurecom dataset, with normalization for a size of 96 x 96 and centering using keypoints
provided in the dataset.

Classifier Feature Extractor | LO OE oM OoP MO S Global
PHOW 96.15 | 92.31 | 58.65 | 18.27 | 90.38 | 99.04 | 75.80

SVM-RBF FHOG 88.46 | 86.54 | 14.42 | 3.85 | 79.81 | 100.00 | 62.18
3DLBP 87.50 | 83.70 | 19.20 | 3.85 | 83.70 | 95.20 | 62.18

PHOW 97.12 | 89.42 | 49.04 | 19.23 | 83.65 | 98.08 | 72.76

Linear-SVM FHOG 88.46 | 86.54 | 13.46 | 3.85 | 79.81 100 62.02
3DLBP 88.46 | 88.46 | 12.5 | 2.88 | 83.65 | 97.12 | 62.18

PHOW 98.08 | 89.42 | 52.88 | 26.92 | 88.46 | 99.04 | 75.80

Logistic Regression FHOG 89.42 | 90.38 | 19.23 | 5.77 | 87.50 100 65.38
3DLBP 90.38 | 93.27 | 15.38 | 4.81 | 89.48 100 65.54

With only two samples/subject for training, logistic regression classifier outperforms the re-

maining alternatives. Therefore, this classifier has been the chosen for the final framework.

PHOW has a performance significantly superior to the other feature extractors, but it is im-

portant to study if the fusion of these three features can increase further the recognition rates.
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Table 4.7: Accuracy Results (%) under different classifiers, using FHOG, PHOW and 3DLBP in
the RealSense™ Dataset, with manual cropping a resize size of 96 x 96.

Classifier Feature Extractor | NN | NMO | NS NG | AMO | AS AG DN | DMO | DS DG | Global
PHOW 75.00 | 66.67 | 48.81 | 66.67 | 84.52 | 41.67 | 70.24 | 89.29 | 72.62 | 36.90 | 51.19 | 63.96
SVM-RBF FHOG 64.29 | 46.43 | 34.52 | 82.14 | 79.76 | 32.14 | 73.81 | 86.9 | 66.67 | 29.76 | 64.29 | 60.06
3DLBP 50.00 | 45.24 | 29.76 | 64.29 | 75.00 | 25.00 | 59.52 | 73.81 | 57.14 | 23.81 | 44.05 | 49.78
PHOW 619 | 41.67 | 27.38'| 77.38 | 77.38 | 30.95 | 72.62 | 85.71 | 60.71 | 29.76 | 61.90 | 61.58
Linear-SVM FHOG 61.90 | 41.67 | 27.38 | 77.38 | 77.38 | 30.95 | 72.62 | 85.71 | 60.71 | 29.76 | 61.90 | 57.03
3DLBP 50.00 | 42.86 | 28.57 | 65.48 | 73.81 | 23.81 | 58.33 | 72.62 | 57.14 | 21.43 | 45.24 | 49.03
PHOW 7738 | 73.81 | 48.81 | 69.05 | 88.10 | 42.86 | 72.62 | 92.86 | 75.00 | 39.29 | 57.14 | 66.99
Logistic Regression FHOG 67.86 | 47.62 | 33.33 | 78.57 | 78.57 | 32.14 | 76.19 | 91.67 | 65.48 | 30.95 | 70.24 | 61.15
3DLBP 54.76 | 45.24 | 26.19 | 66.67 | 76.19 | 19.05 | 63.10 | 83.33 | 61.90 | 20.24 | 54.76 | 51.95

Therefore, the three built logistic regression output probabilities were combined with different

weights, yielding a final global probability, as described below:

Global .., = w1 X probiprsp +w X probrppoc + w3 X probprow 4.1)

Here we force the sum of the weights to be unitary. Since PHOW always outperforms the other
methods, a minimum weight of 0.4 was considered, and Wiener filtering was used for preprocess-
ing. The final weights were chosen according to the global accuracy. In both datasets 3DLBP
did not contribute positively for the highest classification, leading the final descriptor to a simple
combination of PHOW and FHOG. A representative scheme of this approach is shown in Figure
4.3.

PHOW

FHOG

Figure 4.3: Scheme that resumes the pipeline of the proposed framework for 3D face recognition.
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The CMC curves for the two datasets are displayed in Figures 4.4 and 4.5, respectively. Al-
though in Eurecom the fusion combined with preprocessing did not significantly increase the re-
sults, in RealFace dataset, on the other hand, fusion improved the results despite high dependence

of fusion performance on the PHOW descriptor alone.

M gensors have different modalities, the next intu-

Knowing that both Kinect and RealSense”
itive step is to use those different data sources provided by these sensors, to increase the robustness

of the face recognition framework. In the next section this framework will be extended to different

modalities.
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Figure 4.4: CMC curve for different descriptors in Eurecom dataset: 3DLBP (green), FHOG
(blue), PHOW (red) and Fusion between FHOG + PHOW (black).

4.5 Multimodal Face Recognition Framework

Both Kinect and RealSense™ sensors provide color and infra-red streams that can also provide
important information for face recognition. Therefore, the developed 3D framework will be ex-
panded to include these modalities, to provide an increase in performance. As we saw in Chapter 2,
multi-modality proves to improve the robustness of face recognition systems, and should be impor-
tant in cases like complete darkness, where one of the modalities (RGB) does not provide relevant

information.
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Figure 4.5: CMC curve for different descriptors in RealFace dataset: 3DLBP (green), FHOG
(blue), PHOW (red) and Fusion between FHOG + PHOW (black).

The Eurecom Dataset only provides RGB information, while RealFace dataset provides RGB
and IR images. It is important, then, to define which strategy to use in order to integrate IR and
RGB modalities in the developed framework.

Some of the most promising works in Computer Vision have explored Convolutional Neural
Networks (CNNs) in diverse applications, thanks to the appearance of large datasets and more
powerful and faster GPUs (Krizhevsky et al. (2012), Simonyan and Zisserman (2014)). More
recent works extended CNNs to deep face recognition, elevating the performance of face recogni-
tion systems. Some of the most popular approaches are DeepFace (Taigman et al., 2014), VGG-
Face (Parkhi et al., 2015) and DeepID3 (Sun et al., 2015). These CNNs were trained in millions
of images, to allow the creation of powerful classifiers for face recognition. The constructed deep
classifiers are able to extract robust features for face recognition. Using pre-trained CNNs, one
could use a CNN for feature extraction instead of classification (Razavian et al., 2014), and use
such robust features to train new models for different datasets.

Using the pre-trained model provided by Parkhi et al. (2015), we have tested the robustness
of the VGG-Face CNN for both RGB and IR modalities. The resulting feature vectors of length
4096 are L2-normalized and trained using a logistic regression classifier, with similar conditions
to the ones used for 3D images. The RGB images of Eurecom dataset were cropped accordingly
to the keypoints provided by the dataset, whereas in RealFace, images were manually cropped.

Since RGB images and IR-images are visually similar, one could think of a direct adaptation
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of the VGG-Face CNN to IR images. Since VGG-Face is expecting RGB-images, the IR image
is replicated for the three-channels. One could also think that this approach would lead to similar
redundant features, but since the CNN subtracts the mean intensity of the images used in training
of the CNN, the features are different, since the inputs in each channel are also different.

The results, shown on Tables 4.8 and 4.9, were promising and showed that the features ex-
tracted by VGG-Face, were robust enough to deal with occlusion, facial expression and disguises.
In the RealFace dataset, the results for darkness images in the RGB modality were not considered
due to their low performance in this conditions. Even being designed for RGB, when applied on
IR-images, the VGG-Face CNN is able to extract relevant features that allow a good performance

in such images.

Table 4.8: Accuracy Results (%) on 3D (using PHOW+FHOG) and RGB (using VGG-Face fea-
tures) in the Eurecom dataset.

Modality | LO OE oM OP MO S | Global
3D 97.12 | 93.27 | 50.96 | 24.04 | 93.27 | 100 | 76.44
RGB 100 | 98.08 | 95.19 | 96.16 | 100 | 100 | 98.24

Table 4.9: Accuracy Results (%) on 3D (using PHOW+FHOG), IR (using VGG-Face features)
and RGB (using VGG-Face features) in the RealFace Dataset.

Modality | NN | NMO | NS NG | AMO | AS AG DN | DMO | DS DG | Global
3D 78.57 | 69.05 | 47.62 | 71.43 | 89.29 | 44.05 | 73.81 | 91.67 | 73.81 | 48.81 | 59.52 | 67.97
IR 100 | 96.43 | 76.19 | 78.57 | 96.43 | 75.00 | 73.81 | 98.81 | 95.24 | 61.90 | 71.43 | 83.98

RGB 98.81 | 96.43 | 80.95 | 89.29 | 100 | 88.10 | 95.24 - - - - 92.69

To evaluate the performance of the system with multiple modalities, the individual logistic

regression probabilities were combined using an analogous formula to Equation 4.1:

Global ., = w1 X probsp +wy X probig +w3 X probrgp 4.2)

The sum of the weights is forced to be unitary. In Figure 4.6 is shown the proposed multi-
modal framework. IR images are only used in sensors which this modality is provided.

To overcome the loss of performance in the case of RGB in darkness conditions, particularly in
the RealFace, a new method is suggested to deal with illumination conditions: for all test images
the mean intensity of gray-scale converted RGB image is calculated, and, depending on this value,

a weight for RGB-modality is calculated, using a logistic function:

1
—0.5(—20+meaninensiry)

Weight = 4.3
ghtrp = (4.3)

el

Figure 4.7 represents this function. The value of 20 was set empirically accordingly with the
RealFace dataset images, and was set as the mean transition intensity between fair and poor illumi-
nation conditions. This adaptation allows the algorithm to self-adapt its performance by adjusting
the RGB-weight to be higher in higher illumination, and lower in less ideal low illumination con-

ditions.
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Figure 4.6: Scheme that resumes the pipeline of the multimodal proposed framework.

Therefore, Equation 4.2 is used, being combined with the proposed sigmoid function. In
cases where illumination conditions are good enough, w3 is maintained, in poor conditions, w3 =
Weightrgp X wi. The weight loss from the original w3 is then divided equally between the other
available modalities.

The performance results for all combinations with 3D modality are presented in Tables 4.10
and 4.11. Additionally, Cumulative Match Curves are also presented in Figures 4.8 and 4.9.

In Eurecom, multi-modality does not have a big impact in performance with an improvement
of only 0.15% in global performance. Despite that, we can see that the results were improved
when compared to the preliminary results using the extension proposed by Monteiro and Cardoso
(2015), in both 3D and multimodal (presented in Table 2.5 in Chapter 2).

Due to its severe variation in illumination conditions, in RealFace dataset, the use of all the
modalities outperforms their single modality counterparts. We can also see that, with the proposed
logistic function for dealing illumination, the performance boost is above to 5% when compared to
other combinations. This proves the advantage of using this technique, taking advantage of all the
modalities even with varying illumination. Therefore, this method allows us to take full advantage

of RGB robust features in good illumination conditions, and discard them in poor illumination
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Figure 4.7: Sigmoid function which determines the weight for RGB modality depending on its
mean illumination.

conditions.
We can also conclude that, even when one of the extra-modalities (RGB or IR) is missing, the
fusion performance is still superior to all the single modalities. Despite that, the best performance

is when all the 3 modalities are combined.

Table 4.10: Accuracy Results (%) on 3D (using PHOW+FHOG), RGB (using VGG-Face features)
and Multi-modality in the Eurecom dataset.

Modality LO OE oM (0) MO S | Global
3D 97.12 | 93.27 | 50.96 | 24.04 | 93.27 | 100 | 76.44
RGB 100 | 98.08 | 95.19 | 96.16 | 100 | 100 | 98.24
RGB +3D | 100 | 98.08 | 96.15 | 96.15 | 100 | 100 | 98.39

Table 4.11: Accuracy Results (%) on 3D (using PHOW+FHOG), IR (using VGG-Face fea-
tures), RGB (using VGG-Face features) and Different Multi-modal combinations in the RealFace
Dataset.

Modality NN | NMO | NS NG | AMO | AS AG DN | DMO | DS DG | Global
3D 78.57 | 69.05 | 47.62 | 71.43 | 89.29 | 44.05 | 73.81 | 91.67 | 73.81 | 48.81 | 59.52 | 67.97

IR 100 | 96.43 | 76.19 | 78.57 | 96.43 | 75.00 | 73.81 | 98.81 | 95.24 | 61.90 | 71.43 | 83.98

RGB 98.81 | 96.43 | 80.95 | 89.29 | 100 | 88.10 | 95.24 - - - - 92.69

IR + 3D 100 | 96.43 | 78.57 | 80.95 | 96.43 | 75.00 | 76.19 | 98.81 | 95.24 | 61.90 | 75.00 | 84.96
RGB + 3D 100 | 97.62 | 80.95 | 90.48 | 100 | 88.10 | 95.24 | 95.24 | 75.00 | 47.62 | 59.52 | 84.52
IR+3D+RGB | 100 100 | 89.29 | 91.67 | 98.81 | 90.48 | 95.24 | 98.81 | 95.24 | 63.1 | 76.19 | 90.80

The 3D results show that similar conditions in occlusion and facial expression lead to different
performances in different illumination conditions. Although the system is still able to assess the

subject identities in different conditions, the depth map seems to differ in different illumination
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Figure 4.8: Recognition Rates at different Ranks in Eurecom dataset in different modalities: RGB
(using VGG-Face features) in green, 3D (using PHOW+FHOG) in blue and 3D + RGB in red.

conditions. The depth estimation depends on the IR emitter, and we can observe that the IR perfor-
mance also varies in different illumination conditions, where in high illumination the performance
seems to increase. Since both streams are correlated, this variation in illumination performance
could justify the variations of depth face recognition in different illumination environments.

To evaluate the robustness of the final system we should also test the system to pose variations,

which will be the focus of the next section.

4.6 Evaluation of the framework against pose variations

To evaluate the robustness of the developed 3D and multimodal framework, some additional expe-
riences were performed in the RealFace dataset. This dataset offers more images of pose variations
(in Eurecom only 4 profile images/per subject are provided), and thus presents a more complete
challenge to the developed algorithms. Therefore, maintaining 2 neutral images in artificial illu-
mination for training, the framework was assessed for all the remaining 70 test images/subject.
Figure 4.10 shows the performance of individual modalities compared to the multimodal frame-
work in the tested poses (-90°, -45°, 0°, 45° and 90°).

It can be seen that, for pose variations, the 3D framework is the one with lower generalization
capability to different pose variations, not being able to extrapolate to new conditions. In both IR

and RGB modalities, VGG-Face seem to be robust to pose variations, although, naturally, it exists
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Figure 4.9: Recognition Rates at different Ranks in RealFace dataset in different modalities: RGB
(using VGG-Face features) in green, 3D (using PHOW+FHOG) in blue, IR (using VGG-Face
features) in red, 3D + IR in cyan, 3D + RGB in yellow and finally 3D + IR + RGB in black.

some decrease in accuracy when profile images are tested. Multi-modality seems to increase the
performance in all pose conditions thus improving the robustness of the system.

It is interesting to evaluate whether performance results would be improved if profile images
were added to training data. Therefore, additionally to the 2 neutral images, one left and one
right profile image in artificial illumination with neutral expression were added to the training set,
leading to 4 training images and 68 testing images for each individual. The results for each of the
modalities in these conditions are presented in Figure 4.11.

Interestingly, the 3D framework seems to be the one which is able to get better performance
in this setup, although it clearly is not robust enough to classify the intermediate case between
profile and frontal images, by a margin of approximately 20%. In 3D, the trained models seem
to be overfitted to the training data, not being able to generalize to intermediate positions. The
remaining modalities seem to increase the robustness in profile poses while maintaining similar
performances when compared to the results with only frontal training images. Multi-modality,
although getting similar performance for frontal and 45° poses, doubles the performance for pro-
file poses. We can also see that multimodality, although globally better in terms of performance,
presents a small performance drop, relatively to the 3D results. This may occur due to big differ-
ences in individual modalities performances in this scenario. In frontal poses, RGB and IR seem to

have better performance after adding profile training images, which results in higher performance
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Figure 4.10: Global Accuracy in RealFace dataset in different pose angles using neutral images as
training: RGB (using VGG-Face features) in green, 3D (using PHOW+FHOG) in red, IR (using
VGG-Face features) in blue, 3D + IR in cyan, 3D + RGB in yellow and finally 3D + IR + RGB in
black.

in this modalities, and an improvement of 4% in multimodal framework.

Training with profile poses seems to improve the global accuracy, but it still does not solve all
the problems. It important to refer that, additional to performance losses due to pose variations,
there is also the decrease of performance due to natural occlusions (hair mainly), facial expression
and disguises. Therefore, the recognition task in these conditions is not trivial and the obtained
global performance of 77.38 % is a fair value in these conditions. Despite that, a pose correction
or a face alignment algorithm introduced in 3D, could significantly improve the results and should
be able to attenuate losses in performance. Additionally, due to its potential, it would be a consid-
erable improvement to create a CNN for depth face recognition, although this is a difficult task due
to the lack of available data. Even for IR, a fine adaptation of the pre-trained VGG-face network
adapted to IR images, could result in a good improvement in performance, since this CNN was

not specifically designed for this type of images.

4.7 Comparison With Other State-Of-The-Art Methodologies

To end the analysis of the proposed framework it is important to compare the results with some

state of the art methods in the Eurecom dataset. Therefore, a comparison in terms of performance
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Figure 4.11: Global Accuracy in RealFace dataset in different pose angles using neutral and profile
images as training: RGB (using VGG-Face features) in green, 3D (using PHOW+FHOG) in red,
IR (using VGG-Face features) in blue, 3D + IR in cyan, 3D + RGB in yellow and finally 3D + IR
+ RGB in black.
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with some methods are presented in Table 4.12.

Table 4.12: Comparison of the obtained Accuracy Results (%) with some state-of-the art method-
ologies performances in the Eurecom dataset.

Methodology Modality | LO | OE | OM | OP | MO S | Global
LBP (Min et al., 2014) 3D 952|789 |519 | 125 | 81.7 | 83.7 | 67.3
LBP (Monteiro and Cardoso, 2015) 3D 79.8 | 63.5 | 43.3 | 10.6 | 53.8 | 78.8 | 55.0
Cardia Neto and Marana (2015) 3D - - - - - - 98.0
Proposed 3D 97.1 {933 | 51.0 | 24.0 | 93.3 | 100 | 76.4
LGBP (Min et al., 2014) 3D+RGB | 100 | 89.4 | 98.1 | 84.6 | 98.1 | 100 | 95.0
LBP (Min et al., 2014) 3)D+RGB | 99 |93.4 |98.1|81.7|96.2 | 100 | 94.7
2D-SIFT + 3D-LBP (Monteiro and Cardoso, 2015) | 3D+ RGB | 100 | 98.1 | 95.2 | 62.5 | 93.3 | 99.0 | 914
Ajmera et al. (2014) 3D + RGB - - - - - - 89.3
Goswami et al. (2013) 3D + RGB - - - - - - 88.0
Hsu et al. (2014) 3D+RGB | 100 | 84 99 86 96 | 100 | ~94
Sang et al. (2015) 3D+RGB | 100 | 85 99 86 97 | 100 | ~95
Proposed 3)D+RGB | 100 | 98.1 | 96.2 | 96.2 | 100 | 100 | 98.4

Before taking conclusions, is important to refer that these results were assessed using differ-
ent experimental setups. Min et al. (2014) and Hsu et al. (2014) only used one neutral image for
training, and the remaining for testing. Cardia Neto and Marana (2015) tested only neutral im-
ages, training the models with ope mouth, smile and light on images. Ajmera et al. (2014) uses
4 randomly training images and the remaining for testing. Finally, Sang et al. (2015) used smile,
open mouth, light on and neutral images from session 1 as training, and the remaining were used
for testing. The remaining methods, used a setup analogous to the previously referred in this

dissertation.

Analyzing the 3D methodologies, it is clear that the proposed framework outperforms the state-
of-the-art, except for Occlusion Mouth scenario, where Min et al. (2014) seems to outperform our
method. A fair comparison could not be totally made since the results for Min et al. (2014)
and Cardia Neto and Marana (2015) were assessed in different setups. Despite that, the proposed
3D framework seems to represent a good contribution when compared to the remaining state-of-
the-art methods.

As for the multimodal works, our system seems overall to be the more robust and with best
performing methodology in Eurecom. Despite that, Hsu et al. (2014) and Min et al. (2014), using
less gallery images for training, present a good performance and could come closer to the perfor-
mance achieved in this dissertation, if the number of training images was 2, as in the proposed
experimental. Hsu et al. (2014) also includes an automatic pose correction method, that also is an
advantage relatively to the proposed methodology.

The presented results proven that the proposed framework is competitive with the rest of the
state-of-the-art methods, achieving good performance in unconstrained environments.

Globally, the proposed framework got good results in both tested databases and showed to be
robust to variations in occlusion, facial expression and disguises, while also getting interesting
results with pose variations. In unconstrained conditions, the system is able to assess the identity

of the query subjects with good performance. The use of different modalities seems to always
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improve the robustness of the framework, leading to higher performances in the wide array of
tested image variations.
The developed framework allowed the creation of a multimodal face recognition prototype,

using Intel® RealSense™ F200 model. This prototype will be the focus of the next chapter.



Chapter 5
Prototype Development

During this dissertation, a prototype for face recognition using the new Intel® RealSense™ F200
model was developed.

The prototype was created using the same library used for RealFace dataset acquisition, Li-
brealSense (Intel®), 2015) and was built in C++ language, using the OpenCYV library (Cosenza,
2016). This library was used due to its already implemented functionalities designed for real-time
computer vision application systems. Additionally to Librealsense and OpenCYV, Caffe (Jia et al.,
2014), a deep learning framework, was used for the integration of the VGG-Face CNN in the
prototype.

Taking advantage of IR, Depth an RGB streams, a preliminary multimodal framework has
been built using a similar approach as the described in the previous Chapter.

To develop this prototype a small dataset was acquired for 7 subjects in which 6 images were
captured: two frontal, two image taken while looking slightly to the right and left, and two other
taken while looking slightly upwards and downwards. This small dataset was acquired to create
the first subject models for the real-time system to work with. An example of these six images for
one of the subjects is shown in Figure 5.1.

By capturing 30 frames/second, the system starts by detecting the face region in IR and RGB
images, using a Viola-Jones cascade face detector (included in OpenCV). To improve the detection
in IR images, contrast is improved using CLAHE (Contrast Limited Adaptive Histogram Equal-
ization (Zuiderveld, 1994)). Since the Depth and IR images are aligned, the detected face region
in IR image is also used in depth images. If no face is detected in the IR image, the corresponding
frame is not used. It is important to refer that only the biggest face in the image is used by the
system, and therefore, no multi-person identification at the same time is possible in this prototype
version.

The detected face depth regions are then resized for 96 x 96, before feature extraction. IR
and RGB are resized to 224 x 224 and inputted in two parallel VGG-Face CNNs for feature
extraction, while for the depth image 3DLBP is used. The three acquired feature vectors are,
then, compared individually with all the feature vectors of the all images of the dataset (whose

feature have been extracted and saved offline), using an Euclidean distance classifier, resulting in

57
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Figure 5.1: Representative scheme of the poses visited by each subject in each of the conditions
for enrollment in the prototype.

a minimum distance to each enrolled individual data. This classifier was used due to its simplicity

and to some preliminary tests with good results, while also being able to work in real-time.

The mean intensity of the image is then calculated and, using the Equation 4.3, the weight
of RGB modality is calculated. In optimal conditions, the RGB stream will have 50% of weight,
while in very poor illumination conditions this weight will be reduced with an asymptotic tendency
to 0%. The distances from each of the classifiers are then weighed, for each of the subjects in the
database for the current frame. The decision for the correspondent identity is not made using solely
the current frame, with the mean of the distances of the last 100 frames being used to increase the
robustness of the system. It is expected that the percentage of errors is diluted by using data from
multiple frames.

Furthermore, the distance between the extracted descriptors relative to the previous frame is
also computed. If this distance is above a certain threshold, the distances from the last 100 frames
are reset. This allows us to deal with the cases where a new subject appears suddenly in the image.
To deal with the presence of no subjects in the image, if no face is detected in 5 consecutive frames,
the system also resets the saved distances from the last frames.

The prototype was designed for demonstration purposes. The interface displayed to the user,
depicted on Figure 5.2, displays the 3 real-time streams, while displaying the 5 most likely identi-
ties, allowing to the users to see the real-time performance of the system. The interface is console-
based, informing the user which controls should be used for each interaction, before starting. A
display message indicates when no face is detected in the images.

One thing that was crucial for demonstration purposes was online enrollment of new users.
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Anytime, new users are allowed to add themselves to the database. The user receives indications
to take six images in the same previously described conditions of the individuals of the original
database. From the acquired images, feature extraction is performed, and the resulting feature
vectors are then added to the original dataset, allowing future identification of the user. Therefore,
the system does not save the images, only the extracted feature vectors. The user is added with the

desired user name, and all the data is saved in XML files.

The tests performed with the prototype showed that the system is able to assess the identity
of different subjects, even when we face fast transitions between subjects in the image and in
different illumination conditions. The tests were carried out at INESC-TEC Open Day CTM 2016
(INESC-TEC, 2016), where different users were added to the database and tested the framework.

Despite the positive results there are several improvements that need to be made in order to
create a more robust system, closer to a deployable product. First of all, the 3D feature extrac-
tion should be changed to a more fit framework than the currently used, replacing 3DLBP by a
combination of PHOW and FHOG.

Additionally, it is important to include the possibility of automatically detecting when a user is
not included in the dataset, a functionality which is not yet implemented in the current prototype.
Simultaneously real-time face recognition of multiple individuals would also be a good feature.
Improvements should also be made in terms of face detection, where in high pose variations, the
current used face detector does not perform well enough. The creation of a face detector for depth
and IR images should resolve this problem. Also, as referred in the previous chapter, the inclusion

of pose correction in depth images could also be a good addition.

Figure 5.2: Console-Based interface of the prototype.
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For a real-time system, a log with the detected subjects should be implemented, while also
saving the video streams in a live server for security purposes.
Obviously, the interface could be improved to be more user-friendly. Despite not being yet in

M gensors (at

its final stage, this prototype serves well as a proof of concept that Intel® RealSense™
least the short distance one) could be used for real-time face recognition. It would be interesting,
in the future, to develop the same prototype in the long range sensor taking advantage of the longer
ranges at which the sensor operates. The long range model is still in its birth stage and needs some
improvements to allow this implementation, though.

The developed multimodal framework combined with this prototype allowed to idealize some
suggestions to follow up the work developed in this dissertation. In the next chapter we will talk

about these suggestions and about the global conclusions of the present work.



Chapter 6

Conclusions and Future Work

This dissertation allowed the investigation of new methods in 3D face recognition, using low-cost
sensors. In unconstrained environments, the presence of 3D information could be important to
increase the robustness of real-time systems. The integration of depth information with RGB,
has proven to always increase the performance of face recognition systems, as is referred in the
state-of-the-art (Abate et al., 2007).

With the emergence of the Intel® RealSense™ depth sensors, and verifying that the current
available 3D face recognition datasets using low-cost sensors were all acquired with Kinect Sen-
sors, a new dataset, the RealFace dataset, was created. This dataset comes as an alternative to the
scientific community, providing challenging conditions for multimodal face-recognition systems.
Additionally, it can be used in other applications, such as face alignment experiences, gender and
age prediction as well as face detection experiments in depth and IR modalities. The creation of a
real-time face recognition prototype using the F200 model, showed that this sensor is fast enough
for real-time applications and can be implemented in real-time systems for 3D and multimodal
face recognition.

RealFace dataset allowed the assessment of Intel® RealSense™ F200 (currently re-named for
SR300) in face recognition systems, being robust enough to compete with Kinect sensor. Despite
that, the long range R200 model proved to be too noisy for this type of applications. In the
captured dataset, the sensor did not perform well enough and still needs to undergo improvements
to compete with the remaining sensors (a similar observation was also presented in Song et al.
(2015)).

The dataset also allows testing face recognition methodologies in different illumination con-
ditions, evaluating if the developed multimodal algorithms are robust enough to adapt to these
variations. Additionally, the created database allowed to verify if 3D face recognition was, in fact,
totally independent of the illumination conditions. Notwithstanding the fact that 3D face recog-
nition can be performed in extreme conditions of darkness, the performance did vary in different
illumination conditions, not being fully invariant to this factor.

Among the various feature extractors tested, FHOG and PHOW seem to outperform all the

remaining tested alternatives, even though they were not designed for depth images. Despite
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that, the performance in 3D are still not close enough to their RGB counterparts. The developed
framework showed to be robust to variations in facial expression, disguises, natural and artificial
occlusions and partially to pose variations. The proposed system can be applied with any low-
cost depth sensor, being able to integrate additional modalities. The framework seems to be able
to compete with other state-of-the art methods, getting similar or superior performances in the
Eurecom dataset.

The use of the VGG-Face as a feature extractor in IR images, has proven to be capable of
extracting robust features, can be used in face recognition using this modality. Compared to the
results in RGB images, in similar conditions, a small drop in performance was noted, as expected,
since this CNN was trained with RGB images, not being designed for IR images.

Despite the overall good capability of the developed system to perform 3D and multimodal
face recognition in unconstrained environments, some suggestions for improvements and future

work have been identified and will be outlined in the next section.

6.1 Future Work

In terms of the developed framework, some improvements can be made, namely the inclusion of a
pose normalization and face alignment algorithms, in order to increase performance in scenarios
of high pose variation. To improve the recognition in occlusion cases, a good addition would be to
adapt the developed framework to include a hierarchical model, similar to the proposed by Mon-
teiro and Cardoso (2015). Since this method depends on a correct face alignment, the previously
referred pose normalization and face alignment inclusion would be crucial to this adaptation.

To improve the adaptation of the system to challenging environments, it would be interesting
to create a more robust manner to choose the different modality weights, possibly by training a
model that receives image quality and illumination features.

The RealFace dataset should also be improved to include more subjects, in order to increase
its variability, before being made public to the scientific community.

The developed prototype can be improved in many ways. As referred in the previous chapter,
the inclusion of a 3D system similar to the proposed in Chapter 4, should improve its robustness.
The inclusion of pose normalization and face alignment system should also be a good addition.
The creation of a new face detector, both for depth and for IR, combined with a keypoint detector,
could improve the currently used face detection method, based in traditional Viola-Jones.

When the long range depth sensor increases its quality in depth data, it would be also interest-
ing to create a similar prototype for the long range model. It would be positive too to study if one
could adapt the trained models in the short sensor, to images acquired with a different sensor like
the long range model or even Kinect.

Taking into account the high performances of CNN-based works in computer vision, especially
in face recognition, it would be interesting to create a CNN, similar to VGG-Face designed for
face recognition in depth images. Although, still not being available for face recognition, some

recent works tried to implement this idea to object recognition ( Cheng et al. (2015), Gupta et al.
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(2014), Sun et al. (2015)). This CNN could be trained from scratch or by fine-tuning the original
VGG-Face. The problem, when compared to the RGB CNN, is the lack of data, since the total
images in all available databases, does not come even closer to the number of images used in the
VGG-Face training (approximately 60 thousand vs 1 million images). Nevertheless, preliminary
developments are already being carried out to train such CNN. Using all the data from the referred
datasets in Chapter 2 (except Eurecom), the number of images were augmented by flipping,
rotating and generating new views of faces by Point Cloud rotations and posterior conversion to
depth images. Until this time, the results are not yet conclusive, but some promising results were
accomplished in small subsets of the augmented data. Currently, the CNN has not yet been fully
trained with good performances for the entire augmented dataset. If a similar CNN is terms of
robustness is created, depth recognition rates could come closer to RGB values, which is yet not
possible. Additionally, a similar adaptation of VGG-Face to IR images could represent an equally
important contribution.

The referred suggestions for future research could complement the developed work in this
dissertation, making the developed system more robust for unconstrained 3D face recognition

applications.
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