37,319 research outputs found

    Using stiffness to assess injury risk:comparison of methods for quantifying stiffness and their reliability in triathletes

    Get PDF
    Background: A review of the literature has indicated that lower body stiffness, defined as the extent to which the lower extremity joints resists deformation upon contact with the ground, may be a useful measure for assessing Achilles injury risk in triathletes. The nature of overuse injuries suggests that a variety of different movement patterns could conceivably contribute to the final injury outcome, any number and combination of which might be observed in a single individual. Measurements which incorporate both kinetics and kinematics (such as stiffness) of a movement may be better able to shed light on individuals at risk of injury, with further analysis then providing the exact mechanism of injury for the individual. Stiffness can be measured as vertical, leg or joint stiffness to model how the individual interacts with the environment upon landing. However, several issues with stiffness assessments limit the effectiveness of these measures to monitor athletes’ performance and/or injury risk. This may reflect the variety of common biomechanical stiffness calculations (dynamic, time, true leg and joint) that have been used to examine these three stiffness levels (vertical, leg and joint) across a variety of human movements (i.e. running or hopping) as well as potential issues with the reliability of these measures, especially joint stiffness. Therefore, the aims of this study were to provide a comparison of the various methods for measuring stiffness during two forms of human bouncing locomotion (running and hopping) along with the measurement reliability to determine the best methods to assess links with injury risk in triathletes. Methods: Vertical, leg and joint stiffness were estimated in 12 healthy male competitive triathletes on two occasions, 7 days apart, using both running at 5.0 ms−1 and hopping (2.2 Hz) tasks. Results: Inter-day reliability was good for vertical (ICC = 0.85) and leg (ICC = 0.98) stiffness using the time method. Joint stiffness reliability was poor when assessed individually. Reliability was improved when taken as the sum of the hip, knee and ankle (ICC = 0.86). The knee and ankle combination provided the best correlation with leg stiffness during running (Pearson’s Correlation = 0.82). Discussion: The dynamic and time methods of calculating leg stiffness had better reliability than the “true” method. The time and dynamic methods had the best correlation with the different combinations of joint stiffness, which suggests that they should be considered for biomechanical screening of triathletes. The knee and ankle combination had the best correlation with leg stiffness and is therefore proposed to provide the most information regarding lower limb mechanics during gait in triathletes

    Gait analysis methods in rehabilitation

    Get PDF
    Introduction: Brand's four reasons for clinical tests and his analysis of the characteristics of valid biomechanical tests for use in orthopaedics are taken as a basis for determining what methodologies are required for gait analysis in a clinical rehabilitation context. Measurement methods in clinical gait analysis: The state of the art of optical systems capable of measuring the positions of retro-reflective markers placed on the skin is sufficiently advanced that they are probably no longer a significant source of error in clinical gait analysis. Determining the anthropometry of the subject and compensating for soft tissue movement in relation to the under-lying bones are now the principal problems. Techniques for using functional tests to determine joint centres and axes of rotation are starting to be used successfully. Probably the last great challenge for optical systems is in using computational techniques to compensate for soft tissue measurements. In the long term future it is possible that direct imaging of bones and joints in three dimensions (using MRI or fluoroscopy) may replace marker based systems. Methods for interpreting gait analysis data: There is still not an accepted general theory of why we walk the way we do. In the absence of this, many explanations of walking address the mechanisms by which specific movements are achieved by particular muscles. A whole new methodology is developing to determine the functions of individual muscles. This needs further development and validation. A particular requirement is for subject specific models incorporating 3-dimensional imaging data of the musculo-skeletal anatomy with kinematic and kinetic data. Methods for understanding the effects of intervention: Clinical gait analysis is extremely limited if it does not allow clinicians to choose between alternative possible interventions or to predict outcomes. This can be achieved either by rigorously planned clinical trials or using theoretical models. The evidence base is generally poor partly because of the limited number of prospective clinical trials that have been completed and more such studies are essential. Very recent work has started to show the potential of using models of the mechanisms by which people with pathology walk in order to simulate different potential interventions. The development of these models offers considerable promise for new clinical applications of gait analysis

    Biomechanics

    Get PDF
    Biomechanics is a vast discipline within the field of Biomedical Engineering. It explores the underlying mechanics of how biological and physiological systems move. It encompasses important clinical applications to address questions related to medicine using engineering mechanics principles. Biomechanics includes interdisciplinary concepts from engineers, physicians, therapists, biologists, physicists, and mathematicians. Through their collaborative efforts, biomechanics research is ever changing and expanding, explaining new mechanisms and principles for dynamic human systems. Biomechanics is used to describe how the human body moves, walks, and breathes, in addition to how it responds to injury and rehabilitation. Advanced biomechanical modeling methods, such as inverse dynamics, finite element analysis, and musculoskeletal modeling are used to simulate and investigate human situations in regard to movement and injury. Biomechanical technologies are progressing to answer contemporary medical questions. The future of biomechanics is dependent on interdisciplinary research efforts and the education of tomorrow’s scientists

    Kinetic Analysis of Lower Body Resistance Training Exercises

    Get PDF
    This study evaluated and compared the peak vertical ground reaction force (GRF) and rate of force development (RFD) for the eccentric and concentric phases of 4 lower body resistance training exercises, including the back squat, deadlift, step-up, and forward lunge. Sixteen women performed 2 repetitions of each of the 4 exercises at a 6 repetition maximum load. Kinetic data were acquired using a force platform. A repeated measures ANOVA was used to evaluate the differences in GRF between the exercises. Results revealed significant main effects for GRF both the eccentric (p ≤ 0.001) and concentric (p ≤ 0.001) phases. Significant main effects were also found for RFD for the eccentric (p ≤ 0.001) and concentric phases (p ≤ 0.001). Force and power requirements and osteogenic potential differ between these resistance training exercises

    Full gait cycle analysis of lower limb and trunk kinematics and muscle activations during walking in participants with and without ankle instability

    Get PDF
    This document is the Accepted Manuscript version of the following article: Lynsey Northeast, Charlotte N. Gautrey, Lindsay Bottoms, Gerwyn Hughes, Andrew C. S. Mitchell, and Andrew Greenhalgh, ‘Full gait cycle analysis of lower limb and trunk kinematics and muscle activations during walking in participants with and without ankle instability’, Gait & Posture, Vol. 64: 114-118, July 2018. Under embargo until 7 June 2019. The final, definitive version is available online at doi: https://doi.org/10.1016/j.gaitpost.2018.06.001Background Chronic ankle instability (CAI) has previously been linked to altered lower limb kinematics and muscle activation characteristics during walking, though little research has been performed analysing the full time-series across the stance and swing phases of gait. Research Question The aim of this study was to compare trunk and lower limb kinematics and muscle activity between those with chronic ankle instability and healthy controls. Methods Kinematics and muscle activity were measured in 18 (14 males, 4 females) healthy controls (age 22.4 ± 3.6 years, height 177.8 ± 7.6 cm, mass 70.4 ± 11.9 kg, UK shoe size 8.4 ± 1.6), and 18 (13 males, 5 females) participants with chronic ankle instability (age 22.0 ± 2.7 years, height 176.8 ± 7.9 cm, mass 74.1 ± 9.6 kg, UK shoe size 8.1 ± 1.9) during barefoot walking trials, using a combined Helen Hayes and Oxford foot model. Surface electromyography (sEMG) was recorded for the tibialis anterior and gluteus medius. Full curve statistical parametric mapping was performed using independent and paired-samples T-tests. Results No significant differences were observed in kinematic or sEMG variables between or within groups for the duration of the swing phase of gait. A significantly increased forefoot-tibia inversion was seen in the CAI affected limb when compared to the CAI unaffected limb at 4–16% stance (p = 0.039). No other significant differences were observed. Significance There appears to be no differences in muscle activation and movement between CAI and healthy control groups. However, participants with CAI exhibited increased inversion patterns during the stance phase of gait in their affected limb compared to their unaffected limb. This may predispose those with CAI to episodes of giving way and further ankle sprains.Peer reviewedFinal Accepted Versio

    Three-dimensional kinematic correlates of ball velocity during maximal instep soccer kicking in males

    Get PDF
    This is an Accepted Manuscript of an article published by Taylor & Francis Group in European Journal of Sport Science, on 23 April 2014, available online at: https://www.tandfonline.com/doi/abs/10.1080/17461391.2014.908956.Achieving a high ball velocity is important during soccer shooting, as it gives the goalkeeper less time to react, thus improving a player's chance of scoring. This study aimed to identify important technical aspects of kicking linked to the generation of ball velocity using regression analyses. Maximal instep kicks were obtained from 22 academy-level soccer players using a 10-camera motion capture system sampling at 500 Hz. Three-dimensional kinematics of the lower extremity segments were obtained. Regression analysis was used to identify the kinematic parameters associated with the development of ball velocity. A single biomechanical parameter; knee extension velocity of the kicking limb at ball contact Adjusted R(2) = 0.39, p ≤ 0.01 was obtained as a significant predictor of ball-velocity. This study suggests that sagittal plane knee extension velocity is the strongest contributor to ball velocity and potentially overall kicking performance. It is conceivable therefore that players may benefit from exposure to coaching and strength techniques geared towards the improvement of knee extension angular velocity as highlighted in this study.Peer reviewedFinal Accepted Versio

    Vertical stiffness asymmetries during drop jumping are related to ankle stiffness asymmetries

    Get PDF
    Asymmetry in vertical stiffness has been associated with increased injury incidence and impaired performance. The determinants of vertical stiffness asymmetry have not been previously investigated. Eighteen healthy males performed three unilateral drop jumps during which vertical stiffness and joint stiffness of the ankle and knee were calculated. Reactive strength index was also determined during the jumps using the ratio of flight time to ground contact time. ‘Moderate’ differences in vertical stiffness (t17 = 5.49; P < 0.001), ‘small’ differences in centre of mass displacement (t17 = -2.19; P = 0.043) and ‘trivial’ differences in ankle stiffness (t17 = 2.68; P = 0.016) were observed between stiff and compliant limbs. A model including ankle stiffness and reactive strength index symmetry angles explained 79% of the variance in vertical stiffness asymmetry (R2 = 0.79; P < 0.001). None of the symmetry angles were correlated to jump height or reactive strength index. Results suggest that asymmetries in ankle stiffness may play an important role in modulating vertical stiffness asymmetry in recreationally trained males
    corecore