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Abstract 

Asymmetry in vertical stiffness has been associated with increased injury incidence 

and impaired performance. The determinants of vertical stiffness asymmetry have not 

been previously investigated. Eighteen healthy males performed three unilateral drop 

jumps during which vertical stiffness and joint stiffness of the ankle and knee were 

calculated. Reactive strength index was also determined during the jumps using the 

ratio of flight time to ground contact time. ‘Moderate’ differences in vertical stiffness 

(t17 = 5.49; P < 0.001), ‘small’ differences in centre of mass displacement (t17 = -2.19; 

P = 0.043) and ‘trivial’ differences in ankle stiffness (t17 = 2.68; P = 0.016) were 

observed between stiff and compliant limbs. A model including ankle stiffness and 

reactive strength index symmetry angles explained 79% of the variance in vertical 

stiffness asymmetry (R2 = 0.79; P < 0.001). None of the symmetry angles were 

correlated to jump height or reactive strength index. Results suggest that asymmetries 

in ankle stiffness may play an important role in modulating vertical stiffness asymmetry 

in recreationally trained males. 

 

  



Introduction 

Vertical stiffness aims to approximate the extent to which the leg compresses in 

response to ground reaction forces (McMahon & Cheng, 1990) and, relative to other 

approximations of stiffness, is a quick and easy method by which to assess the 

viscoelastic properties of the lower limb (Butler et al., 2003). Given the proposed role 

of vertical stiffness in the modulation of injury risk and athletic performance (Butler et 

al., 2003; Pearson & McMahon, 2012), the measurement of vertical stiffness is an 

important consideration for athletes and practitioners. Vertical stiffness is modifiable 

through both acute (Comyns et al., 2007; Moir et al., 2011) and chronic (Pearson & 

McMahon, 2012) exercise interventions and the results of any assessment can 

therefore be used to directly inform the training process. 

Vertical stiffness is based on the premise that the legs function as a global spring-

mass system (Butler et al., 2003) and do not take into consideration how the ankle, 

knee and hip joints contribute to the summative stiffness of the overall system  

(Pearson & McMahon, 2012). In order to elucidate the potential determinants of 

asymmetries in stiffness properties, it is important to consider the respective 

contribution of the stiffness of individual joints as well as vertical stiffness. Two-

dimensional computer simulation models created by Farley et al. (1998) and Farley 

and Morgenroth (1999) demonstrated that leg stiffness during bilateral hopping was 

modulated as a consequence of changes in ankle stiffness and was not affected by 

changes in knee stiffness. This proposition has been supported in hopping 

investigations by Kuitunen et al. (2011) and Kim et al. (2013) and in drop jumping by 

Arampatzis et al. (2001). Such a relationship would suggest that asymmetries in ankle 

stiffness are likely to lead to asymmetries in vertical stiffness. In contrast, Hobara et 

al. (2009) reported that knee stiffness, but not ankle stiffness, explained variance in 



vertical stiffness during maximal bilateral hopping. In addition, Horita et al. (2002) and 

Kuitunen et al. (2011) demonstrate that knee stiffness, whilst not affecting vertical 

stiffness, plays an important role in modulating mechanical output and overall 

performance. For these reasons, the role of the knee joint in modulating vertical 

stiffness asymmetries should not be discounted. To the authors’ knowledge, no 

investigations have examined how asymmetries in joint stiffness may affect 

asymmetries in vertical stiffness.  

Watsford et al. (2010) reported that pre-season asymmetries in vertical stiffness 

between Australian Rules football players that went on to sustain (asymmetry 

percentage: 7.3 ± 6.1%) or not sustain (7.4 ± 5.7%) hamstring injuries were not 

significantly different. However, Watsford et al. (2010) did demonstrate  that vertical 

leg stiffness of the affected limb in the injured group was significantly greater than the 

unaffected limb; no between-limb differences were observed in the non-injured group. 

A subsequent investigation from the same research group (Pruyn et al., 2012) found 

that mean vertical leg stiffness asymmetries recorded during the in-season 

competition period were higher in Australian rules footballers that experienced 

(asymmetry percentage: 7.5 ± 3.0%) lower body soft tissue injury than those that did 

not (5.5 ± 1.3; P < 0.05). Given that several investigations have reported that 

asymmetries in force/power qualities may be  detrimental to athletic performance 

(Bailey et al., 2013; Bazyler et al., 2014; Bell et al., 2014; Hart et al., 2014; Bailey et 

al., 2015), it may seem reasonable to hypothesise that asymmetries in leg stiffness 

may be similarly detrimental to performance as deformation of the lower limb will affect 

the transmission of force. Therefore, understanding the determinants of vertical 

stiffness asymmetries is likely to be an important factor for athletes and practitioners 

seeking to both reduce injury incidence and improve athletic performance. 



Stiffness of the ankle is likely to be of particular importance to the performance of 

stretch-shortening cycle activities such as drop jumping. Marshall et al. (2014) did not 

examine ankle stiffness, but correlated ankle power (r = 0.77; P < 0.01), plantar flexion 

moment (r = 0.65; P < 0.01) and ground contact time (r = -0.48; P = 0.01) with faster 

change of direction test times. More specifically, Pruyn et al. (2014) reported 

significant relationships between stiffness of the musculature surrounding the ankle 

(medial gastrocnemius: R = 0.53, soleus: R = 0.47; both P < 0.05) and faster change 

of direction performance. Whilst the role of true ‘ankle stiffness’ in modulating athletic 

performance requires further investigation, it is clear the kinetics and kinematics of the 

ankle joint are of particular importance. 

Sugiyama et al. (2014) compared asymmetries during single leg approach jumping in 

basketball and reported greater jump heights and shorter ground contact times on the 

dominant limb. The investigators found that the symmetry index for jump height was 

not significantly correlated to the symmetry index of running velocity (r = 0.38; P = 

0.08) or contact time (r = 0.32; P = 0.11), but was positively correlated with angular 

velocity (r = 0.41; P < 0.05) and various parameters of angular displacement (r = 0.41-

0.52; P < 0.05) of the ankle. The results of Sugiyama et al. (2014) not only highlight 

the importance of ankle kinematics in athletic performance, but suggest that 

asymmetries in ankle stiffness may negatively influence performance outcomes. 

Further research is required to examine the interaction between ankle stiffness and 

vertical stiffness asymmetry.  

The aim of the current study was to ascertain the determinants of vertical stiffness 

asymmetry during unilateral drop jumping. Previous research has shown that 

asymmetries may be differently expressed in different types of performance task, for 

example, cyclic versus acyclic (Flanagan & Harrison, 2007) and bilateral versus 



unilateral (Benjanuvatra et al., 2013). Indeed, it has been shown that the expression 

of vertical stiffness asymmetry is different in bilateral hopping, bilateral drop jumping 

and unilateral drop jumping (Maloney et al., 2015). The unilateral drop jump may be 

the most appropriate task by which to assess vertical stiffness asymmetry in athletes 

required to perform maximal ballistic movements, such as jumps and changes of 

direction, within their sport as this demonstrates the greatest correspondence to these 

types of activity. As it has been shown that ankle stiffness is a strong determinant of 

vertical stiffness during hopping and may also explain asymmetries in jumping 

performance, it was hypothesised that asymmetries in vertical stiffness would be 

strongly related to asymmetries in ankle stiffness. 

 

 

  



Materials and method 

Participants 

Eighteen healthy males (age: 22 ± 4 years; height: 1.80 ± 0.08 m; body mass: 81.7 ± 

14.9 kg) volunteered to participate in the study. A minimum sample size of eighteen 

participants was determined from an a priori power analysis (G*Power 3.1, Heinrich-

Heine-Universität, Düsseldorf, Germany) based upon an estimated squared multiple 

correlation of 0.45 between vertical stiffness and joint stiffness asymmetry angles and 

a power of 0.8 (Beck, 2013). Participants were recreationally active (undertaking ≥ 2.5 

hours of physical activity per week), reported no previous (within the last 12 months) 

or present lower limb injury and provided informed consent to participate in the study. 

Full ethical approval was granted by [REMAINDER OF SENTENCE REMOVED FOR 

ANONYMOUS PEER REVIEW PURPOSE]. All procedures were conducted in 

accordance with the Declaration of Helsinki. 

Experimental trials 

A familiarisation session was performed seven days prior to the experimental trial; a 

pilot investigation within the same experimental cohort had indicated that a single 

familiarisation session was appropriate for unilateral drop jumping. The familiarisation 

session was a complete simulation of the experimental trial outlined below. 

All trials were conducted at the same time of day (10:00 - 12:00) for each participant, 

to alleviate the effects of circadian rhythms. The testing laboratory was controlled at 

an ambient temperature of 25oC. Participants were instructed to prepare for testing as 

they would for training; nutrition, hydration and sleep were not monitored. The 

execution of each experimental trial was monitored by a United Kingdom Strength and 



Conditioning Association accredited strength and conditioning coach to ensure for 

consistency of technique.  

Warm-up 

All participants completed the same warm-up procedure outlined in Table 1. The 

warm-up procedure consisted of 15 dynamic exercises progressing from low to high 

intensities and from generic to specific movement patterns. 

*** Table 1 Here *** 

A rest period of 60 seconds was prescribed between each of the exercises from the 

specific movement preparation phase of the warm-up; all other exercises were not 

prescribed with rest periods. A rest period of 180 seconds was prescribed between 

the termination of the warm-up and commencement of the testing protocol. 

Testing 

All drop jump assessments were performed on a force plate system (Kistler 9281, 

Kistler Instruments, Winterthur, Switzerland). The force plate measured 0.6 m x 0.4 m 

and was set flush into the laboratory floor as per manufacturer guidelines. Kinetic data 

was sampled at 1000 Hz and saved with the use of the manufacturer supplied software 

(BioWare 3.24, Kistler, Winterthur, Switzerland) for later analysis.  

Drop jump testing 

Participants performed a total of three, unshod unilateral drop jumps for each limb; the 

order in which participants performed unilateral drop jumps was randomised and 

counterbalanced. Each repetition of the drop jump was separated by 60 seconds to 

facilitate recovery between efforts (Read & Cisar, 2001). For the execution of the drop 



jumps, participants stepped off a 0.18 m box and performed a vertical jump 

immediately upon landing. Participants were instructed to: a) step, not jump, off the 

box, b) minimise ground contact time during the landing phase whilst attempting to 

jump as high as possible, and c) attempt to maintain an upright torso; the execution of 

every jump was monitored for consistency of technique. Trials would have been 

excluded if any of these criteria were not met. Also, trials would have been excluded 

if participants landed heel first and a distinctive double peak in the vertical force trace 

was observed. All trials met the required criteria. Participants were cued to imagine 

the floor as ‘hot coals’ and to keep their ‘eyes up’. Jumps were performed with 

participants’ hands placed behind their head in order not to obscure the reflective 

markers. Jumps were performed to a self-selected depth by the participants in an 

attempt to replicate how they would jump in a training scenario.  

Kinematic analysis 

Drop jumping trials were recorded in the sagittal plane using a high-speed video 

camera (Quintic High-Speed LIVE USB 2, Quintic Consultancy Ltd., Coventry, United 

Kingdom) recording at 100 Hz. Reflective joint markers were placed on the distal head 

of the fifth metatarsal, distal aspect of the lateral malleolus, lateral collateral ligament 

of the knee at the tibiofemoral gap, greater trochanter and anterolateral point of 11 th 

rib on both left and right sides of the body. Left limb jumps were recorded with the 

participants’ left side of the body facing the camera, right limb jumps were recorded 

with the participants’ right side of the body facing the camera. Recordings were 

automatically digitised using manufacturer provided software (Quintic Biomechanics 

v21, Quintic Consultancy Ltd., Coventry, United Kingdom). Data were filtered using a 

Butterworth fourth-order zero-lag filter (cut-off frequency 20 Hz). 



Kinetic analysis 

*** Figure 1 Near Here *** 

Instants of initial foot contact, take-off and landing were identified from the vertical 

ground reaction force of each trial (Figure 1); this was determined as the time-point at 

which a clear change in force (≥ 10 N) was observed (Lloyd et al., 2009). Reactive 

strength index was determined as the ratio of flight time to ground contract time during 

the jump (Newton & Dugan, 2002) - the reactive strength index is an indicator of an 

athlete’s ability to utilise the stretch-shortening cycle (Flanagan & Comyns, 2008) and 

may therefore be linked to stiffness (Butler et al., 2003).  

Inverse dynamics was used to express acceleration, velocity and centre of mass 

displacement; this was determined from the vertical force trace using the principles 

and equations described by Blazevich (2007). The vertical velocity of the hip joint 

marker at the instant of ground contact was used as the initial value for integration.  

Net muscle moments were determined using a rigid linked segment model, 

anthropomorphic data and an inverse dynamics analysis using the procedures 

outlined in Winter (2009); the linked segment model was created using Dempster’s 

body segment parameter data (Dempster, 1955).  

Stiffness 

Vertical stiffness  was calculated as the ratio of peak vertical ground reaction force (N) 

relative to peak centre of mass displacement (m) during the initial ground contact 

phase (Farley et al., 1998; Farley & Morgenroth, 1999); this was averaged over the 

three drop jumps. The force-displacement correlation coefficient of the landing phase 

of each trial was required to be ≥ 0.8 in an effort to ensure the efficacy of the spring-



mass model (Padua et al., 2005). As vertical stiffness is affected by body size these 

values were reported relative to body mass (Farley et al., 1993). 

Torsional stiffness of the ankle, knee and hip joints were calculated as the ratio of the 

change in net muscle moment (N) to joint angular displacement (rad) between the 

initial ground contact phase and instant of peak angular displacement (Farley et al., 

1998; Farley & Morgenroth, 1999); these were averaged over the three recorded drop 

jumps. Pilot testing indicated that the timing of peak vertical ground reaction forces 

occurred at the instant of peak joint moments and maximum joint flexions as previously 

observed by Kuitunen et al. (2011) and that moment-displacement correlation 

coefficients were ≥ 0.8. However, the phase shift for the moment displacement curve 

of the hip was > 10% (Figure 2). This has been previously specified as exclusion 

criteria in bilateral hopping trials (Farley et al., 1998) and stiffness of the hip was 

therefore not calculated in the current study. 

*** Figure 2 Near Here *** 

Reliability 

The inter-session coefficient of variation for vertical stiffness was established in a 

previous investigation using the same experimental cohort over three trials, following 

a single familiarisation session, a value of 8% was recorded. The intra-session 

coefficients of variation for vertical stiffness in the current study were 5.3% and 6.5% 

listed for the stiff and compliant limbs respectively, coefficients of variation for centre 

of mass displacement were 7.2% and 4.3%. Intra-session coefficients of variation for 

joint stiffness were (listed respectively for the stiff and compliant limbs): 1.6% and 2.2% 

for the ankle, 2.6% and 4.7% for the knee, and 4.1% and 4.9% for the hip, coefficients 



of variation for joint angular displacement were 3.8% and 5.3% for the ankle, 5.5% 

and 7.0% for the knee, and 10.9% and 11.0% for the hip. 

Statistical analysis 

Limbs were categorised as either stiff or compliant based upon the average vertical 

stiffness values achieved across the three drop jumps, each of the variables for the 

stiff and compliant limbs were subsequently compared. Asymmetries were quantified 

using  the symmetry angle, calculated using the procedures outlined by Zifchock et al. 

(2008).  

Shapiro-Wilks tests were performed to assess for normality; all variables were 

considered to be normally distributed given an alpha level of P > 0.05. Paired sample 

T-tests were performed to analyse differences between the stiff and compliant limbs. 

Pair-wise effect sizes (d) (Cohen, 1998) were also calculated and interpreted using 

the thresholds defined by Hopkins (2003) where: <0.20 = trivial, 0.20-0.59 = small, 

0.60-1.19 = moderate, 1.20-1.99 = large, and ≥2 = very large.  

Separate and independent forward step-wise regression analyses were performed for 

vertical stiffness for the stiff and compliant limbs to determine the influence of joint 

stiffness, joint angular displacement and joint moments - a total of six variables. Two 

additional forward step-wise regression analyses were performed, the first to 

determine the influence of vertical ground reaction force, centre of mass displacement, 

joint stiffness, joint angular displacement, centre of mass displacement and reactive 

strength index asymmetry angles on the vertical stiffness asymmetry angle - a total of 

nine variables - and a second with vertical ground reaction force, centre of mass 

displacement excluded - a total of seven variables. 



Finally, to examine the effect of stiffness and jump height asymmetry angles on 

performance, a linear correlation analysis of these variables to mean jump height 

(calculated as an average of each participant’s stiff and compliant limbs) was 

performed. As symmetry angle values may be negative or positive to reflect left or right 

side dominance, negative values were transformed to positive values prior to 

examining the relationship with performance in order to evaluate differences solely in 

the magnitude of asymmetry. 

Statistical significance was set at an alpha level of P ≤ 0.05 and all statistical 

procedures were conducted using the Statistical Package for the Social Sciences for 

Windows (v19.0; SPSS Inc., Chicago, USA). 

 

  



Results 

*** Table 2 Here *** 

Stiff versus compliant limbs 

Vertical stiffness was significantly different between the stiff and compliant limbs, such 

that stiffness of the compliant limb was an average of 17.8% lower than the stiff limb 

and associated with a ‘moderate’ effect size (Table 2). Relative to the stiff limb, ankle 

stiffness was an average of 6.8% lower in the compliant limb although the effect size 

was ‘trivial’. Centre of mass displacement was an average of 9.4% greater in the 

compliant limb; the effect size between limbs was ‘small’. No other significant 

differences were observed between the stiff and compliant limbs, although differences 

in vertical ground reaction force (2.3%), angular hip displacement (11.3%) and reactive 

strength index (6.3%) were associated with ‘small’ effect sizes. 

Determinants of asymmetry 

A model including centre of mass displacement and vertical ground reaction force 

explained 99% of vertical stiffness asymmetry (R2 = 0.99; adjusted R2 = 0.99; F(1,15) = 

638.36; P < 0.001). A model including centre of mass displacement alone explained 

90% of vertical stiffness asymmetry (R2 = 0.90; adjusted R2 = 0.90; F(1,15) = 147.17; P 

< 0.001). 

When centre of mass displacement and vertical ground reaction force were excluded, 

regression analyses revealed that a model including ankle stiffness and reactive 

strength index symmetry angles explained 79% of the variance in vertical stiffness 

asymmetry angle (R2 = 0.79; adjusted R2 = 0.76; F(1,15) = 27.41; P < 0.001) (Table 3). 

*** Table 3 Here *** 



Determinants of vertical stiffness 

In the neither the stiff nor compliant limb did a stepwise regression model explain the 

variance in vertical stiffness when vertical ground reaction force and centre of mass 

displacement were excluded.   

Asymmetry and performance 

Jump height symmetry angle did not correlate to jump height (r = -0.35; P = 0.157), 

nor did the symmetry angles of vertical stiffness (r = -0.08; P = 0.741), ankle stiffness 

(r = -0.28; P = 0.260) or knee stiffness (r = 0.06; P = 0.815). The symmetry angles of 

vertical stiffness (r = -0.01; P = 0.96), ankle stiffness (r = 0.21; P = 0.403) or knee 

stiffness (r = 0.004; P = 0.987) did not correlate to jump height asymmetry. 

 

  



Discussion 

The current study sought to ascertain the determinants of asymmetry in vertical 

stiffness as this had not been previously investigated. A regression model including 

ankle stiffness and reactive strength index asymmetries predicted 79% of the variance 

in vertical stiffness asymmetry. In addition, significant differences in ankle stiffness, 

but not knee stiffness, were observed between the stiff and compliant limbs. These 

results suggest that stiffness at the ankle may play an important role in modulating 

vertical stiffness asymmetry in a recreationally active population. 

Magnitude of asymmetry 

Significant differences in vertical stiffness were reported between the stiff and 

compliant limbs in the current study and were associated with a ‘moderate’ effect size. 

This is in agreement with the findings of a previous study utilising unilateral drop 

jumping (Maloney et al., 2015) and the magnitude of asymmetry observed in the 

current study (17.8%) is similar to that previously reported (15.1%). Also in agreement 

with Maloney et al. (2015), these differences were also shown to be a function of centre 

of mass displacement as opposed to ground reaction forces. Asymmetry in vertical 

stiffness during unilateral hopping has been associated with an increased risk of soft-

tissue injury in Australian Rules football by Pruyn et al. (2012); asymmetries recorded 

within an ‘injured’ group were greater than asymmetries recorded in a ‘non-injured’ 

group (7.5 + 3.0% versus 5.5 + 1.3%; P < 0.05). However, Watsford et al. (2010) had 

previously reported no difference within a similar population (injured: 7.3 ± 6.1%, non-

injured: 7.4 ± 5.7%). Vertical stiffness has also been determined during unilateral 

hopping in two other investigations (Hobara et al., 2013; Joseph et al., 2013). Although 

Joseph et al. (2013) did not discuss asymmetry, their data demonstrates magnitudes 



of asymmetry of between 3% and 7% similar to the values reported by Pruyn et al. 

(2012). Hobara et al. (2013) report slighter larger asymmetries of 9% to 13%. Whilst it 

may be expected for asymmetries to be augmented during acyclic movements such 

as drop jumping versus cyclic tasks such as hopping - for example Maloney et al. 

(2015) reported vertical stiffness asymmetries of 15.1% during unilateral drop jumping 

and 5.3% during bilateral hopping respectively - the magnitude of asymmetry reported 

in the current study is larger than has been previously reported elsewhere in the 

literature. As the current study sampled recreationally trained individuals it is 

recommended that future research attempts to evaluate such asymmetries in 

athletically trained populations. It has been previously demonstrated that asymmetries 

are likely to be linked to training status (Bazyler et al., 2014). 

Contribution of ankle stiffness 

Vertical stiffness calculations do not take into consideration how the ankle, knee and 

hip joints interact and contribute to the summative stiffness of the overall system 

(Pearson & McMahon, 2012). Simulation models had previously determined that 

vertical stiffness was regulated by ankle stiffness and not by knee stiffness  (Farley et 

al., 1998; Farley & Morgenroth, 1999). This position has been supported in hopping 

investigations by Kuitunen et al. (2011) and Kim et al. (2013) and in drop jumping by 

Arampatzis et al. (2001). In contrast, Hobara et al. (2009) reported that knee stiffness, 

but not ankle stiffness, explained variance in vertical stiffness during maximal bilateral 

hopping. Given these observations it is not surprising that asymmetries in vertical 

stiffness appear closely linked to asymmetries in ankle stiffness.  

In a fixed system with multiple springs, the least stiff joint would be expected to 

undergo the greatest angular displacement in response to a given force (Farley et al., 



1998; Kuitunen et al., 2011), and therefore provide the greatest contribution to the 

summative displacement of the leg spring (i.e. centre of mass displacement in the 

current study). During unilateral drop jumping, joint stiffness was lower at the ankle 

(564 vs 526 N.m.rad-1 for the stiff and compliant limbs respectively) and greater at the 

knee (2171 vs 2099 N.m.rad-1); the ankle was therefore the least stiff spring within the 

system. In line with the least stiff spring theory, the greatest angular displacement was 

observed at the ankle (~36 deg), followed by the knee (~27 deg) and then the hip (stiff 

limb: 12 deg, compliant limb: 13 deg). The results of the current study support the 

notion that the least stiff joint will have the greatest influence on the overall stiffness of 

leg-spring system (Kuitunen et al., 2011) and, perhaps, bilateral asymmetries therein. 

Comparisons with previous literature 

Kuitunen et al. (2011) reported greater stiffness at the knee versus the ankle during 

bilateral hopping at an intensity equivalent to 7 times bodyweight (39 and 12 N.m.deg -

1 respectively); this compares to values of ~36 and ~9.5 N.m.deg-1 in the current study. 

Joseph et al. (2013) also observed greater stiffness at the knee than at the ankle 

during unilateral hopping, reporting values of 0.14 - 0.22 N.m.kg-1.deg-1 for the ankle 

and 0.17 - 0.35 N.m.kg-1.deg-1 for the knee; this compares to values of ~0.12 and 

~0.45 N.m.kg-1.deg-1 in the current study. In contrast, stiffnesses of 766 and 631 

N.m.rad-1 were reported by Farley and Morgenroth (1999) for the ankle and knee 

during maximal height hopping, suggesting a greater relative reliance on ankle 

stiffness during bilateral hopping than during unilateral drop jumping. A similar trend 

was also observed during bilateral and unilateral drop jumping by Wang and Peng 

(2014). When performing unilateral drop jumps from a height of 0.2 m, Wang and Peng 

(2014) reported respective stiffness values of 0.28, 0.23 and 0.38 N.m.rad-1 for the 



ankle, knee and hip when expressed relative to body mass and body height, their 

choice of unit does not permit direct comparison to the current study.  

Drop jumping versus hopping tasks 

The figures for knee stiffness reported in the current study exceed those observed 

during bilateral or unilateral hopping. This is a likely consequence of a larger peak 

moment at the knee and indicates an increased reliance on knee extension during 

unilateral drop jumping. During bilateral hopping, peak moments at the knee of ~150 

N.m-1 were reported by Farley and Morgenroth (1999), although moments of up to 475 

N.m-1 were reported by Kuitunen et al. (2011) with greater hopping intensities. Larger 

peak knee moments of up to 9 N.m-1.kg-1 were reported by Joseph et al. (2013) during 

bilateral hopping, this compares to values of ~13 N.m-1.kg-1 in the current study. As 

indicated by Kuitunen et al. (2011), adjustments in knee stiffness appear to be related 

to the intensity of the activity; whilst ankle stiffness may contribute more strongly to the 

maintenance of overall vertical stiffness, knee stiffness plays an important role for 

optimising torque output. Indeed, ankle stiffness has been demonstrated to remain 

relatively consistent across a range of hopping intensities (Kuitunen et al., 2011). The 

structure of the knee extensors in relation to the plantar flexors, such as greater muscle 

size, longer muscle fibres and shorter tendons, facilitates greater mechanical work at 

the knee versus the ankle (Alexander & Ker, 1990). Whilst Horita et al. (2002) and 

Kuitunen et al. (2011) demonstrated that knee stiffness did not influence global 

stiffness during bilateral hopping, they did report that knee stiffness plays an important 

role in modulating mechanical output and overall performance.  

The angular displacements reported in the current study were greater than has been 

observed for bilateral hopping, for example, Farley and Morgenroth (1999) report 



respective values of 0.447, 0.223 and 0.059 rad (equivalent to 26, 13 and 3 deg) for 

the ankle, knee and hip during maximum height hopping and Kuitunen et al. (2011) 

reported a 18-33 deg displacement at the ankle and 6-12 deg displacement at the 

knee. Whilst greater angular displacement of the knee is observed during unilateral 

drop jumping in comparison to bilateral hopping, Joseph et al. (2013) have reported 

greater knee flexion during unilateral hopping (35-45 deg). Greater flexion of the knee 

at ground contact would be expected to be advantageous to torque output (Kawakami 

et al., 2002). 

Farley et al. (1998) propose that, in comparison to the hip and knee, the moment arm 

of ground reaction force is largest at the ankle and would be expected to result in the 

greatest angular displacement. Although absolute ground reaction forces in the current 

study are comparable to the hopping values of Farley and Morgenroth (1999) (typically 

2000-3000 N), the ground reaction forces experienced during unilateral drop jumping 

are directed through a single limb and would therefore be expected to result in greater 

angular displacement. Moreover, Kuitunen et al. (2011) demonstrated that 

displacement of the ankle significantly increased in line with increases in ground 

reaction forces. It would therefore appear that the increased stiffness of the knee is 

consequential of the increased ground reaction forces and peak joint moments 

inherent with unilateral drop jumping versus bilateral hopping and enhanced 

requirement for muscular force to contribute to the production of torque required to 

overcome these ground reaction forces. 

Asymmetry and performance 

Although it has not been properly established if asymmetry in vertical stiffness is 

detrimental to athletic performance, several studies have linked asymmetry in other 



force/power characteristics to impaired performance (Bailey et al., 2013; Bazyler et 

al., 2014; Bell et al., 2014; Hart et al., 2014; Bailey et al., 2015), typically in an athletic 

population. Given that an asymmetry in vertical stiffness would be expected to result 

in an imbalanced force application to each limb (Wilson et al., 1994), it may be 

reasonable to propose that an asymmetry would be similarly detrimental to 

performance. The results of the current study would appear to refute this hypothesis 

in recreationally trained males; stiffness asymmetry angles did not significantly 

correlate with overall jump performance (mean jump height). Further investigation 

would be required before any conclusions may be drawn as these relationships should 

be examined in different athletic populations. 

Sugiyama et al. (2014) reported that asymmetry in jump height was positively 

correlated with asymmetry in kinematic parameters of the ankle such as angular 

velocity and displacement during an approach jump in basketball. The current study 

did not observe such a relationship. Relationships between asymmetries in the 

displacement or stiffness of any joint and the asymmetry in vertical stiffness were not 

reported, nor were relationships between asymmetries in the stiffness of any joint. In 

addition, there was no relationship between the angular displacement of any joint and 

the vertical displacement of the centre of mass.  

Reactive strength index 

With the regression model showing the significance of the reactive strength index in 

explaining vertical stiffness asymmetry, this demonstrates a potential assessment 

option for the field-based assessment of asymmetry without the use of force plates 

and motion capture. Reactive strength index is a function of the flight time and ground 

contract time during a drop jump (Newton & Dugan, 2002), and may therefore be 



quickly assessed using a jump mat or even a smartphone application. Whilst this does 

not replace the direct assessment of stiffness, it may offer an alternative way to assess 

stiffness-related asymmetries and is worthy of further investigation. Given the 

established relationship between reactive strength index and determinants of athletic 

performance, such as change of direction speed (Young et al., 2015), this may prove 

a particularly time-efficacious assessment tool for athletes and coaches. 

Conclusion 

In conclusion, asymmetries in ankle stiffness and reactive strength index appear to 

explain vertical stiffness asymmetry in recreationally trained males. Significant 

differences in ankle stiffness were also observed between the stiff and compliant limbs 

although the effect size was ‘trivial’. As such, asymmetries in ankle stiffness appear to 

play a role in determining asymmetries in vertical stiffness.  

  



Perspectives 

The measurement and quantification of vertical stiffness and joint stiffness 

asymmetries would appear to be of important practical relevance to athletes and 

coaches given the apparent link between asymmetry and injury incidence, and 

hypothesised link between asymmetry and performance. This study provides evidence 

to suggest that the ankle may play an important role in determining vertical stiffness 

asymmetries, although is limited by the sampling of recreationally trained athletes. 

Further research is required to explore the effects of stiffness asymmetries in well-

trained athletic populations before any strong recommendations can be made.  
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Table 1: 

The experimental warm-up protocol completed by the participants. 

 Warm-Up Phase Exercise Prescription 
(sets x reps) 

Generic Movement 
Preparation 

Inchworm 1x6 

Quadruped thoracic rotation 1x6each 

Push up to ‘T’ 1x6each 

Supine glute bridge with abduction 1x12 

Mountain climber 1x6each 

Squat thrust to squat 1x6 

Squat to Stand 1x6 

Single leg, stiff-legged deadlift to 
reverse lunge 

1x6each 

Plyometric / Stiffness 
Preparation 

Lateral step down 1x8each 

Single leg calf raise 1x8each 

Alternate leg ankling drill 1x8each 

Vertical countermovement jump 1x4 

Specific Movement 
Preparation 

Bilateral hopping 1x10 

Bilateral drop jump (from 0.18 m) 1x2 

Unilateral drop jump (from 0.18 m) 1x2each 

  



Table 2: 

Differences in kinetic and kinematic variables between the stiff and compliant limbs 

during unilateral drop jumping. 

 Stiff limb Compliant 

limb 

t17 d  P 

Stiffness 

Kvert (N.m.kg-1) 190 ± 52 156 ± 44 5.49  0.70 <0.001* 

Kankle (N.m.rad-1) 564 ± 230 526 ± 194 2.68  0.18 0.016* 

Kknee (N.m.rad-1) 2171 ± 539 2099 ± 559 1.65  0.13 0.188 

Forces / moments 

GRF (N.kg-1) 29.44 ± 2.68 28.77 ± 2.58 1.27  0.25 0.222 

Mankle (N.m.kg-1) 4.04 ± 0.69 3.94 ± 0.95 0.43  0.11 0.670 

Mknee (N.m.kg-1) 12.40 ± 2.24 12.01 ± 3.47 0.55  0.14 0.591 

Mhip (N.m.kg-1) 18.19 ± 7.59 19.71 ± 7.97 -0.78 -0.20 0.449 

Displacement 

DCOM (m) 0.17 ± 0.05 0.19 ± 0.05 -2.19 -0.36 0.043* 

Dankle (rad) 0.63 ± 0.11 0.61 ± 0.15  0.42  0.11 0.677 

Dknee (rad) 0.48 ± 0.10 0.47 ± 0.13  0.13  0.03 0.899 

Dhip (rad) 0.20 ± 0.08 0.22 ± 0.10 -1.43 -0.27 0.170 

Temporal 

RSI  (flight time / 

GCT) 

1.049 ± 0.177 0.983 ± 0.208  1.73  0.34 0.259 

GCT (s) 0.297 ± 0.029 0.301 ± 0.035 -5.13 -0.14 0.616 

Time to peak force (s) 0.149 ± 0.035 0.156 ± 0.040 -1.17 -0.19 0.102 

Kvert = vertical stiffness, Kankle = ankle stiffness, Kknee = knee stiffness, Khip = hip 

stiffness, GRF = ground reaction force, Mankle = ankle moment, Mknee = knee 



moment, Mhip = hip moment, DCOM = centre of mass displacement, Dankle = ankle 

angular displacement, Dknee = knee angular displacement, Dhip = hip angular 

displacement, RSI = reactive strength index, GCT = ground contact time. 

* indicates a significant difference between stiff and compliant limbs (P < 0.05). 

 

  



Table 3: 

Results of the step-wise regression analysis for vertical stiffness symmetry angle. 

Model b SE-b Beta t P 

1 

(Constant) -0.010  0.010  -0.825   0.422 

Kankle α (%) 1.592 0.344 0.757 4.632 <0.001* 

2 

(Constant)  -0.008 0.009  -0.914   0.375 

Kankle α (%) 1.299 0.263 0.617 4.939 <0.001* 

RSI α (%)  0.633 0.164 0.481 3.851   0.002* 

Dependant variable was vertical stiffness symmetry angle (%).  

SE-b = standard error of b, Kankle = ankle stiffness, α = symmetry angle, 

RSI = reactive strength index. 

Model 1: R2 = 0.57, adjusted R2 = 0.55, P < 0.001. 

Model 2: R2 = 0.79, adjusted R2 = 0.76, P < 0.001. 

* indicates P < 0.001. 

 

  



Figure Legends: 

Figure 1 - An example of the vertical force trace associated with the drop jumps. 

Figure 2 - An example moment-displacement curve for the ankle, knee and hip of a 

single participant from the instant of ground contact to the last instant before toe-off. 


