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Abstract 

Background:  Chronic ankle instability (CAI) has previously been linked to altered lower 

limb kinematics and muscle activation characteristics during walking, though little 

research has been performed analysing the full time-series across the stance and swing 

phases of gait.  

Research Question: The aim of this study was to compare trunk and lower limb 

kinematics and muscle activity between those with chronic ankle instability and healthy 

controls.   

Methods:  Kinematics and muscle activity were measured in 18 (14 males, 4 females) 

healthy controls (age 22.4 ± 3.6 years, height 177.8 ± 7.6 cm, mass 70.4 ± 11.9 kg, UK shoe 

size 8.4 ± 1.6), and 18 (13 males, 5 females) participants with chronic ankle instability 

(age 22.0 ± 2.7 years, height 176.8 ± 7.9 cm, mass 74.1 ± 9.6 kg, UK shoe size 8.1 ± 1.9) 

during barefoot walking trials, using a combined Helen Hayes and Oxford foot model. 

Surface electromyography (sEMG) was recorded for the tibialis anterior and gluteus 

medius. Full curve statistical parametric mapping was performed using independent and 

paired-samples T-tests.  

Results:  No significant differences were observed in kinematic or sEMG variables 

between or within groups for the duration of the swing phase of gait. A significantly 

increased forefoot-tibia inversion was seen in the CAI affected limb when compared to 

the CAI unaffected limb at 4-16% stance (p = 0.039). No other significant differences were 

observed. 

Significance:  There appears to be no differences in muscle activation and movement 

between CAI and healthy control groups. However, participants with CAI exhibited 

increased inversion patterns during the stance phase of gait in their affected limb 



compared to their unaffected limb. This may predispose those with CAI to episodes of 

giving way and further ankle sprains.  
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Introduction 

Lateral ankle sprains are one of the most common musculoskeletal injuries in both 

general and sporting populations [1]. Following an acute ankle sprain, it is suggested that 

32-74% of individuals have residual symptoms such as recurrent sprains, episodes of 

giving way and/or perceived instability [2]. Chronic ankle instability (CAI) is defined as 

‘a history of recurrent ankle sprains and the sensation of giving way’ [3]. Long term, links 

have been established between the development of osteoarthritis and a history of CAI, 

suggesting abnormal kinematic movement patterns adopted may increase repetitive 

cartilage damage to the medial ankle [4]. Greater understanding of the biomechanics 

associated with CAI may aid the development of preventative measures.  

Walking is of high importance in daily life, and is often problematic for people with CAI 

who complain of giving way sensations on uneven and level surfaces [5]. Research 

suggests that the position of the affected ankle joint at specific time points during the gait 

cycle may predispose an ankle to injury [6]. This may be associated with or caused by 

ankle joint instability. Research analysing frontal plane ankle kinematics during walking 

observed increased ankle inversion that corresponded to greater ankle inversion during 

more sport-specific tasks such as jump-landing [7]. Gait analysis is often used in the 

development of rehabilitation and injury prevention protocols, therefore any changes in 

full body gait kinematics need to be investigated, and where possible accounted for, as 

these may impact not only walking but other more dynamic movements.  

Previous literature investigating sEMG found hip abductor weakness to be associated 

with acute ankle sprains, though it is unclear whether this is a cause or an effect of the 

sprain [8]. Koldenhoven et al. [9] reported increased gluteus medius activation in the late 



stance and early swing phase of walking in CAI participants, suggesting this may be a 

coping mechanism used to generate a wider base of support, or to increase lower limb 

stability. Decreased tibialis anterior activation was also observed resulting in increased 

ankle plantarflexion prior to heel strike. This loose-packed position (ligaments and the 

joint capsule lax and minimal joint surface contact) has been found to be unstable [10], 

suggesting an increased risk of ankle sprains. 

Previous literature investigating CAI during walking has modelled the foot as one rigid 

segment [11, 12], however the foot is composed of 26 bones and 20 articulated joints with 

a number of complex interactions [13]. Rigid segment modelling excludes motion 

between different segments of the foot providing inadequate information on the 

biomechanics of the foot [11]. De Ridder et al. [14] appears to be the first study to analyse 

walking using a multi-segmental foot model, comparing the use of the Ghent Foot Model 

to a rigid foot model in participants with CAI, copers (no symptoms of instability after a 

recent ankle sprain) and control participants. Results lead the authors to conclude that 

the multi-segmental foot model provided greater details of the intricacies of the foot, 

showing differences between segments when comparing groups.  

Upper body kinematic analysis should be considered when investigating changes in the 

lower extremities as there may be a significant relationship with changes observed in 

proximal segments [15]. The body is a multi-linked system with the rectus femoris, 

hamstrings and gastrocnemius muscles crossing the hip, knee and ankles. The kinetic 

chain concept suggests that movement of the trunk during landing (which accounts for 

35.5% body mass) will also have an impact on motion of the hip and therefore knee and 

ankle [16]. To the authors’ knowledge, no research has combined trunk kinematics with 



a full lower limb and multi-segmental foot model to address, in combination, the possible 

proximal and distal differences between groups.  

Prior research reports joint angles and muscle activation characteristics at discrete time 

points during walking [9, 12], rather than whole kinematic time-series curves. 

Biomechanical data is one dimensional (1D) (time and kinematic or force trajectories) 

therefore this may result in focus bias or missing potential significance or trends during 

other phases of the gait cycle [17]. Statistical parametric mapping (SPM) is a concept 

introduced to biomechanics from brain research [18] which enables curve analysis across 

the whole movement [17]. Comparison between SPM and time series analysis using 

confidence intervals concluded SPM to be the most suitable method for analysis of 1D 

data, due to increased generalisability of probabilistic conclusions (with the use of 

hypothesis testing techniques) and the ability to present results in a more consistent 

manner aiding interpretation of findings [19]. De Ridder et al. [14] used SPM to compare 

foot kinematics between participants with CAI, copers and controls, identifying exact 

time periods of significantly increased forefoot inversion within the stance phase of 

walking.  

It is suggested that combined analysis of the trunk, hip, knee and multi-segmental foot 

kinematics and sEMG activation patterns across the stance and swing phases of gait will 

provide greater insight into possible differences that exist, not just within the foot, but 

across the full kinetic chain. This may provide greater insight to clinicians rehabilitating 

those with ankle instability and may highlight areas of importance in the reduction of 

future ankle sprains. The aim of this study was to compare trunk, hip, knee and multi-

segmental foot kinematics and muscle activation during the stance and swing phase of 

walking between participants with CAI and healthy controls.  



Methods  

Participants 

Eighteen (14 males, 4 females) healthy controls (age 22.4 ± 3.6 years; height 177.8 ± 7.6 

cm; mass 70.4 ± 11.9 kg; UK shoe size 8.4 ± 1.6), and 18 (13 males, 5 females) participants 

with CAI (age 22.0 ± 2.7 years; height 176.8 ± 7.9 cm; mass 74.1 ± 9.6 kg; UK shoe size 8.1 

± 1.9) participated in this study. Ethical approval was granted by the institutional ethics 

committee prior to testing. Written informed consent was obtained from participants and 

a health screen questionnaire completed prior to participation. Inclusion and exclusion 

criteria for participation detailed in table 1., in accordance with selection criteria outlined 

by the International Ankle Consortium (IAC) [2]. 

TABLE 1 AROUND HERE 

Participants were allocated into the control group or the CAI group based on results of 

the Identification of Functional Ankle Instability (IdFAI) questionnaire, where a score of 

≥11 indicated ankle instability in accordance with IAC guidelines [2]. In the instance of 

bilateral ankle sprains, the involved limb was selected based on the participant’s 

perception of greater instability. As the researcher was blinded to the questionnaire 

outcome, the affected limb could not be identified exclusively as either the dominant or 

non-dominant limb. Therefore, the affected limb was randomly matched to a control limb 

to adjust for the dominance effect. Limb dominance was determined by asking which leg 

they would use to kick a ball [10]. Mean IdFAI score for the control group was 3.71 ± 3.13 

and 19.1 ± 6.25 in the CAI group’s affected limb.   

Protocol 



Participants completed a 5-minute warm up on a cycle ergometer (Monark Ergomedic 

874E, Sweden) at 60 Watts. Electromyographic data were recorded bilaterally for the 

gluteus medius and tibialis anterior using a DataLINK data acquisition system 

(Biometrics Bluetooth unit W4X8, Biometrics Ltd, Gwent, UK) sampling at 1000Hz with 

pre-amplified SX230-1000 electrodes. Participants’ skin was prepared for electrode 

placement and electrodes placed in accordance with SENIAM guidelines [20]. Tibialis 

anterior electrodes were placed at a third of the line between the tip of fibula and the tip 

of medial malleolus. Gluteus medius electrodes were placed half way between the crista 

iliaca and the trochanter. For each muscle, three maximal contractions were performed 

for a 5 second duration, 1-minute rest between trials. Peak activation of the three trials 

was identified as the maximum voluntary isometric contraction (MVIC) which was used 

to allow comparison between participants’ sEMG data and to voluntary contractions to 

inspect for crosstalk. Gluteus medius MVIC was performed in side lying with the 

participant maximally abducting their hip (positioned mid-range) into a rigid strap 

positioned just above the knee [21]. Tibialis anterior MVIC was performed in a seated 

position and the participant maximally dorsiflexing and inverting their foot against a rigid 

strap [21]. 

Motion analysis data were recorded using an Owl Digital Real Time 10 camera system 

(Motion Analysis, Santa Rosa, California) sampling at 200 Hz. The motion analysis system 

was calibrated as per the system instructions. Passive reflective markers were attached 

to the participant using double-sided tape, in accordance with the Helen Hayes marker 

set [22] combined with the Oxford foot model [11, 23]. Marker and electrode placement 

were performed by the same person for all participants.  



Participants were instructed to walk at their normal walking speed through the 

calibrated capture volume. Pace was not controlled, as this was deemed to be unnatural 

and has been previously shown to impact on stride time variability due to increased 

central nervous system involvement [24]. Participants walked barefoot 3.5 m before data 

were collected [25] and proceeded for 7 m across the walkway. Walking speed was 

recorded using pelvis segment velocity. Barefoot walking was used in accordance with 

the method of De Ridder et al. [14] and due to the number of markers on the foot. 

Participants performed a familiarisation until they were comfortable with the movement, 

before recording three trials for analysis [26]. Trials were deemed successful when all 

tracking markers were in view of the cameras and where there was no evidence of gait 

modification. Trials where gait modification occurred were discarded and re-tested. 

Data and Statistical Analysis 

Data were inspected using Cortex software (Cortex-64 5.3.1.1543, Motion Analysis 

Corporation, Santa Rosa, California) before importing into Visual 3D (Visual3D v6 x64, C-

motion, Germantown, Maryland). Data were smoothed using a 6 Hz Butterworth filter. 

Initial contact was determined using the method proposed by O’Connor et al. [27], which 

creates a new signal by calculating the midpoint between the posterior inferior heel 

marker and the toe marker (between 2nd and 3rd metatarsal heads). The first derivative 

was calculated on the vertical component of the signal. Event markers were created at 

the minimum value for heel strike and maximum value for toe off. Electromyographic 

data were root mean squared by a moving window of 100 ms and normalised to MVIC. 

Visual inspection of the data identified noise in the signal for two of the participants, 

warranting their sEMG data be removed. To maintain pre-experimental research design, 

matched controls assigned to the two participants also had their sEMG data removed. 



Kinematic and sEMG data were exported for the stance (heel strike to toe off) and swing 

(toe off to heel strike) phases into MATLAB R2015a (The Math Works, Natick, 

Massachusetts) to perform SPM analysis.  

Kinematic data were exported for forefoot-hindfoot angle (FFHFA), forefoot-tibia angle 

(FFTBA), hindfoot-tibia angle (HFTBA), hip, knee and trunk angles in the sagittal, frontal 

and transverse planes of motion. So not to eliminate inherent variations in foot 

morphology, data were not normalised against a reference segment [14, 23]. Data were 

analysed using SPM in MATLAB (SPM1D open-source package, spm1d.org). Normality 

was tested using a D’Agostino-Pearson’s test. A matched control limb was compared to 

the CAI groups’ affected limb using an independent-samples T-test (α= 0.05). The 

unaffected and affected limb of the CAI group were compared using a paired-samples T-

test (α= 0.05). A matched control limb was compared to CAI groups’ unaffected limb using 

an independent-samples T-test (α= 0.05). 

Results 

Independent-samples T-tests revealed no significant differences (p > 0.05) between 

groups for age, stature, mass, or shoe size. An independent-samples T-test reported no 

significant difference in walking velocity when comparing the control group (1.20 ± 0.15 

m.s-1), and CAI group (1.18 ± 0.09 m.s-1).   

No significant differences were observed in FFHFA, FFTBA, HFTBA, hip, knee, or trunk 

angles in the sagittal, frontal, or transverse planes of motion, in the stance or swing phase, 

between the matched control and the CAI groups affected limb. No significant differences 

were observed in the gluteus medius or tibialis anterior muscle activation in either phase 

of gait between the matched control and the CAI groups affected limb.  



A significant difference was reported between the CAI groups’ unaffected and affected 

limb in the FFTBA in the frontal plane, where increased inversion was observed in the 

affected limb at 4-16% of the stance phase (mean difference = 3.07˚, peak difference = 

3.24˚, p = 0.039, Figure 1.). No other significant differences were reported for FFTBA. 

Furthermore, no significant differences were noted between FFHFA, HFTBA, hip, knee, or 

trunk angles or in muscle activation of the tibialis anterior and gluteus medius between 

the unaffected and affected limbs at any time point. Finally, no significant differences 

were observed between the CAI groups’ unaffected limb and the control groups’ limb 

(matched for dominance) in any of the recorded variables in either the stance or swing 

phases of movement.  

FIGURE 1 AROUND HERE 

Discussion  

The aims of this study were to explore the differences in kinematics and muscle activation 

patterns between CAI participants’ unaffected and affected ankles and to compare the 

same variables to a matched control group throughout the gait cycle.   

Increased FFTBA inversion was found in the affected limb of the CAI group when 

compared to its unaffected counterpart at 4-16% stance. This finding is of particular 

clinical interest, supporting previous hypotheses that participants with CAI may exhibit 

altered joint position sense and proprioceptive awareness [28]. Increased inversion at 

ground contact decreases bony restrictions of the foot-ankle complex, thus, when loaded 

with bodyweight increases inversion torque and joint susceptibility to injury [28]. The 

early period of the stance phase is beyond conscious control [6, 12], thus increased 

inversion places the ankle in a position of increased vulnerability at heel strike, 



potentially predisposing the affected limb to further ankle sprains and episodes of giving 

way. Whilst not within the remit of this study, differences in angular displacement 

associated with CAI may be exacerbated during more dynamic movements e.g. cutting, 

single/double leg landing, running, or when walking on uneven surfaces, as research has 

previously shown increased kinematics in walking often correspond to increased 

kinematics during more dynamic sporting activities [7].  

The lack of significant differences at the hip or knee, between groups, in the frontal, 

sagittal or transverse planes of motion in the current study is consistent with the findings 

of Monaghan et al. [12], who found no significant differences in hip and knee kinematics 

between participants with CAI and healthy control participants from 100 ms pre-heel 

strike to 200 ms post-heel strike. Within the current study, trunk kinematics were 

measured in all three planes, however, no significant differences were identified between 

groups suggesting that no proximal adaptations took place within the CAI group during 

walking. 

No significant differences were observed in tibialis anterior or gluteus maximus muscle 

activation between groups during gait. This is contrary to the findings of Hopkins et al. 

[10] who when reporting discrete peak value data, observed an increase in tibialis 

anterior activation from 15-30% and 45-70% of stance, which they speculated was a 

motor strategy to maintain a more dorsiflexed, stable position in the affected limb 

compared to a dominance matched control limb. Methodological differences exist 

between the current study and the study by Hopkins et al. [10] as participants walked 

shod rather than barefoot as in the present study. Decreased muscle activation patterns 

have previously been observed in barefoot walking compared to shod walking [29]. 

Hopkins et al. [10] also examined tibialis anterior activation whilst walking on a treadmill 



rather than over ground. These differences in methodological approaches may account 

for the differing results between the two studies. Koldenhoven et al. [9] recorded 

significantly higher gluteus medius muscle activation in the final 50% of stance and the 

first 25% of the swing phase, when compared to healthy participants, however, this was 

again performed shod on a treadmill, making comparisons with the current study 

difficult. Previous studies have found different muscle activation patterns and sagittal 

plane motion with treadmill walking compared to over ground walking [30]. Therefore, 

the results from this study may prove a more valid representation of the everyday task of 

over ground walking. Furthermore, comparison to previous research may not be entirely 

valid due to the different statistical analysis used [9, 10, 29, 30]. It is important to note 

that grouping of participants was purely through the inclusion criteria outlined in the IAC 

guidelines and with use of the IdFAI questionnaire [2], no other discriminative measures 

e.g. Beighton score for hypermobility were used. This may be a limitation although 

further research is required to establish this.  

Our study observed no differences in biomechanics between healthy controls and 

participants with CAI, however we did find differences between affected and unaffected 

limbs of the CAI group. This may suggest greater inversion during the stance phase is a 

direct result of the ankle sprain or a predisposing factor for injury. Early gait reeducation 

could be warranted as individuals return to walking; we make this statement with 

caution as a prospective study is warranted to truly determine whether greater inversion 

is present prior to or as a result of injury. 

This study analysed kinematic and electromyographic parameters to determine 

differences in movement patterns and muscle activations. Future research should 

identify the impact of CAI on kinetic parameters using full curve analysis to identify 



differences between groups. Further research should use these analysis methods to 

examine dynamic movements such as change of direction, both single and double leg 

landing and running gait.  Analysis of additional muscle sEMG signals may also provide 

greater understanding of potential differences between groups. In particular muscles 

such as the peroneals which may be a causative factor of the differences observed in 

FFTBA frontal plane kinematics.  

Conclusion  

Participants with CAI exhibited increased inversion patterns during the stance phase of 

gait in their affected limb compared to their unaffected limb. This change in movement 

pattern may predispose those with CAI to episodes of giving way and further ankle 

sprains. Increased inversion may also be a significant risk factor in more dynamic 

movements, thus further research should investigate these using a multi-segmental foot 

model. Incorporating kinetic variables into this analysis may also be beneficial to 

determine differences in ground reaction forces and moments.  
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