497 research outputs found

    BrainNet: Epileptic Wave Detection from SEEG with Hierarchical Graph Diffusion Learning

    Full text link
    Epilepsy is one of the most serious neurological diseases, affecting 1-2% of the world's population. The diagnosis of epilepsy depends heavily on the recognition of epileptic waves, i.e., disordered electrical brainwave activity in the patient's brain. Existing works have begun to employ machine learning models to detect epileptic waves via cortical electroencephalogram (EEG). However, the recently developed stereoelectrocorticography (SEEG) method provides information in stereo that is more precise than conventional EEG, and has been broadly applied in clinical practice. Therefore, we propose the first data-driven study to detect epileptic waves in a real-world SEEG dataset. While offering new opportunities, SEEG also poses several challenges. In clinical practice, epileptic wave activities are considered to propagate between different regions in the brain. These propagation paths, also known as the epileptogenic network, are deemed to be a key factor in the context of epilepsy surgery. However, the question of how to extract an exact epileptogenic network for each patient remains an open problem in the field of neuroscience. To address these challenges, we propose a novel model (BrainNet) that jointly learns the dynamic diffusion graphs and models the brain wave diffusion patterns. In addition, our model effectively aids in resisting label imbalance and severe noise by employing several self-supervised learning tasks and a hierarchical framework. By experimenting with the extensive real SEEG dataset obtained from multiple patients, we find that BrainNet outperforms several latest state-of-the-art baselines derived from time-series analysis

    Connectivity Analysis of Electroencephalograms in Epilepsy

    Get PDF
    This dissertation introduces a novel approach at gauging patterns of informa- tion flow using brain connectivity analysis and partial directed coherence (PDC) in epilepsy. The main objective of this dissertation is to assess the key characteristics that delineate neural activities obtained from patients with epilepsy, considering both focal and generalized seizures. The use of PDC analysis is noteworthy as it es- timates the intensity and direction of propagation from neural activities generated in the cerebral cortex, and it ascertains the coefficients as weighted measures in formulating the multivariate autoregressive model (MVAR). The PDC is used here as a feature extraction method for recorded scalp electroencephalograms (EEG) as means to examine the interictal epileptiform discharges (IEDs) and reflect the phys- iological changes of brain activity during interictal periods. Two experiments were set up to investigate the epileptic data by using the PDC concept. For the investigation of IEDs data (interictal spike (IS), spike and slow wave com- plex (SSC), and repetitive spikes and slow wave complex (RSS)), the PDC analysis estimates the intensity and direction of propagation from neural activities gener- ated in the cerebral cortex, and analyzes the coefficients obtained from employing MVAR. Features extracted by using PDC were transformed into adjacency matrices using surrogate data analysis and were classified by using the multilayer Perceptron (MLP) neural network. The classification results yielded a high accuracy and pre- cision number. The second experiment introduces the investigation of intensity (or strength) of information flow. The inflow activity deemed significant and flowing from other regions into a specific region together with the outflow activity emanating from one region and spreading into other regions were calculated based on the PDC results and were quantified by the defined regions of interest. Three groups were considered for this study, the control population, patients with focal epilepsy, and patients with generalized epilepsy. A significant difference in inflow and outflow validated by the nonparametric Kruskal-Wallis test was observed for these groups. By taking advantage of directionality of brain connectivity and by extracting the intensity of information flow, specific patterns in different brain regions of interest between each data group can be revealed. This is rather important as researchers could then associate such patterns in context to the 3D source localization where seizures are thought to emanate in focal epilepsy. This research endeavor, given its generalized construct, can extend for the study of other neurological and neurode- generative disorders such as Parkinson, depression, Alzheimers disease, and mental illness

    Deep learning approach for epileptic seizure detection

    Get PDF
    Abstract. Epilepsy is the most common brain disorder that affects approximately fifty million people worldwide, according to the World Health Organization. The diagnosis of epilepsy relies on manual inspection of EEG, which is error-prone and time-consuming. Automated epileptic seizure detection of EEG signal can reduce the diagnosis time and facilitate targeting of treatment for patients. Current detection approaches mainly rely on the features that are designed manually by domain experts. The features are inflexible for the detection of a variety of complex patterns in a large amount of EEG data. Moreover, the EEG is non-stationary signal and seizure patterns vary across patients and recording sessions. EEG data always contain numerous noise types that negatively affect the detection accuracy of epileptic seizures. To address these challenges deep learning approaches are examined in this paper. Deep learning methods were applied to a large publicly available dataset, the Children’s Hospital of Boston-Massachusetts Institute of Technology dataset (CHB-MIT). The present study includes three experimental groups that are grouped based on the pre-processing steps. The experimental groups contain 3–4 experiments that differ between their objectives. The time-series EEG data is first pre-processed by certain filters and normalization techniques, and then the pre-processed signal was segmented into a sequence of non-overlapping epochs. Second, time series data were transformed into different representations of input signals. In this study time-series EEG signal, magnitude spectrograms, 1D-FFT, 2D-FFT, 2D-FFT magnitude spectrum and 2D-FFT phase spectrum were investigated and compared with each other. Third, time-domain or frequency-domain signals were used separately as a representation of input data of VGG or DenseNet 1D. The best result was achieved with magnitude spectrograms used as representation of input data in VGG model: accuracy of 0.98, sensitivity of 0.71 and specificity of 0.998 with subject dependent data. VGG along with magnitude spectrograms produced promising results for building personalized epileptic seizure detector. There was not enough data for VGG and DenseNet 1D to build subject-dependent classifier.Epileptisten kohtausten havaitseminen syväoppimisella lähestymistavalla. Tiivistelmä. Epilepsia on yleisin aivosairaus, joka Maailman terveysjärjestön mukaan vaikuttaa noin viiteenkymmeneen miljoonaan ihmiseen maailmanlaajuisesti. Epilepsian diagnosointi perustuu EEG:n manuaaliseen tarkastamiseen, mikä on virhealtista ja aikaa vievää. Automaattinen epileptisten kohtausten havaitseminen EEG-signaalista voi potentiaalisesti vähentää diagnoosiaikaa ja helpottaa potilaan hoidon kohdentamista. Nykyiset tunnistusmenetelmät tukeutuvat pääasiassa piirteisiin, jotka asiantuntijat ovat määritelleet manuaalisesti, mutta ne ovat joustamattomia monimutkaisten ilmiöiden havaitsemiseksi suuresta määrästä EEG-dataa. Lisäksi, EEG on epästationäärinen signaali ja kohtauspiirteet vaihtelevat potilaiden ja tallennusten välillä ja EEG-data sisältää aina useita kohinatyyppejä, jotka huonontavat epilepsiakohtauksen havaitsemisen tarkkuutta. Näihin haasteisiin vastaamiseksi tässä diplomityössä tarkastellaan soveltuvatko syväoppivat menetelmät epilepsian havaitsemiseen EEG-tallenteista. Aineistona käytettiin suurta julkisesti saatavilla olevaa Bostonin Massachusetts Institute of Technology lastenklinikan tietoaineistoa (CHB-MIT). Tämän työn tutkimus sisältää kolme koeryhmää, jotka eroavat toisistaan esikäsittelyvaiheiden osalta: aikasarja-EEG-data esikäsiteltiin perinteisten suodattimien ja normalisointitekniikoiden avulla, ja näin esikäsitelty signaali segmentoitiin epookkeihin. Kukin koeryhmä sisältää 3–4 koetta, jotka eroavat menetelmiltään ja tavoitteiltaan. Kussakin niistä epookkeihin jaettu aikasarjadata muutettiin syötesignaalien erilaisiksi esitysmuodoiksi. Tässä tutkimuksessa tutkittiin ja verrattiin keskenään EEG-signaalia sellaisenaan, EEG-signaalin amplitudi-spektrogrammeja, 1D-FFT-, 2D-FFT-, 2D-FFT-amplitudi- ja 2D-FFT -vaihespektriä. Näin saatuja aika- ja taajuusalueen signaaleja käytettiin erikseen VGG- tai DenseNet 1D -mallien syötetietoina. Paras tulos saatiin VGG-mallilla kun syötetietona oli amplitudi-spektrogrammi ja tällöin tarkkuus oli 0,98, herkkyys 0,71 ja spesifisyys 0,99 henkilöstä riippuvaisella EEG-datalla. VGG yhdessä amplitudi-spektrogrammien kanssa tuottivat lupaavia tuloksia henkilökohtaisen epilepsiakohtausdetektorin rakentamiselle. VGG- ja DenseNet 1D -malleille ei ollut tarpeeksi EEG-dataa henkilöstä riippumattoman luokittelijan opettamiseksi

    Automated Classification of EEG Signals Using Component Analysis and Support Vector Machines

    Get PDF
    Epileptic seizures are characterized by abnormal electrical activity occurring in the brain. EEG records the seizures demonstrating changes in signal morphology. These signal characteristics, however, differ between patients as well as between different seizures in the same patient. Epilepsy is managed with anti-epileptic medications but in some extreme cases surgery might be necessary. Non-invasive surface electrode EEG measurement gives an estimate of the seizure onset but more invasive intra-cranial electrocorticogram (ECoG) are required at times for precise localization of the epileptogenic zone. The epileptogenic zone can be described as the cortical area targeted for resection to render the patient symptom free. Epileptologists use the “evolution” of aberrant signals for identifying epileptic seizures and the epileptogenic zone is identified by concentrating on the area contributing to the onset of seizure. This process is done by visually analyzing hours of ECoG data. The signal morphology during an epileptic seizure is not very different from abnormal discharges noticed in ECoG data thereby complicating signal analysis for the epileptologists. This thesis aims to classify the ECoG channel data as epileptic or non-epileptic using an automated machine learning algorithm called support vector machines (SVM). The data will be decomposed into various frequency bands identified by wavelet transform and will span the range of 0-30Hz. Statistical measures will be applied to these frequency bands to identify features that will subsequently be used to train SVM. This thesis will further investigate feature reduction using multivariate analysis methods to train the SVM and compare it to the performance of classification when all the features were used to train SVM. Results show that channel data classification using trained SVM that did not undergo feature reduction performed better with 98% sensitivity but needed more runtime than the SVM algorithms that was trained using reduced features. For high frequency analysis of frequencies between 60-500Hz, the results show the same sensitivity yet less specificity when compared to the classification using lower frequency range of 0-30Hz. The results seen in this thesis show that support vector machines classifiers can be trained to classify the data as epileptic or non-epileptic with good accuracy. Even though training the classifiers took almost two hours, it was still noticeably less than other machine learning algorithms such as artificial neural networks. The accuracy of this algorithm can be improved with changes to the data segment length, size of training matrix, accuracy of epileptic and nonepileptic data, and amount of data used for training

    EventNet: Detecting Events in EEG

    Full text link
    Neurologists are often looking for various "events of interest" when analyzing EEG. To support them in this task various machine-learning-based algorithms have been developed. Most of these algorithms treat the problem as classification, thereby independently processing signal segments and ignoring temporal dependencies inherent to events of varying duration. At inference time, the predicted labels for each segment then have to be post processed to detect the actual events. We propose an end-to-end event detection approach (EventNet), based on deep learning, that directly works with events as learning targets, stepping away from ad-hoc postprocessing schemes to turn model outputs into events. We compare EventNet with a state-of-the-art approach for artefact and and epileptic seizure detection, two event types with highly variable durations. EventNet shows improved performance in detecting both event types. These results show the power of treating events as direct learning targets, instead of using ad-hoc postprocessing to obtain them. Our event detection framework can easily be extended to other event detection problems in signal processing, since the deep learning backbone does not depend on any task-specific features.Comment: This work has been submitted to the IEEE for possible publicatio

    A Performance Comparison of Neural Network and SVM Classifiers Using EEG Spectral Features to Predict Epileptic Seizures

    Get PDF
    Epilepsy is one of the most common neurological disorders, and afflicts approximately 70 million people globally. 30-40% of patients have refractory epilepsy, where seizures cannot be controlled by anti-epileptic medication, and surgery is neither appropriate, nor available. The unpredictable nature of epileptic seizures is the primary cause of mortality among patients, and leads to significant psychosocial disability. If seizures could be predicted in advance, automatic seizure warning systems could transform the lives of millions of people. This study presents a performance comparison of artificial neural network and sup port vector machine classifiers, using EEG spectral features to predict the onset of epileptic seizures. In addition, the study also examines the influence of EEG window size, feature selection, and data sampling on classification performance. A total of 216 generalised models were trained and tested on a public seizure database, which contained over 1300 hours of EEG data from 7 subjects. The results showed that ANN outperform SVM, when using spectral features (p = 0.035). The beta and gamma frequency bands were shown to be the best predictors of seizure onset. No significant differences in performance were determined for the dif ferent window sizes, or for the feature selection methods. The data sampling method significantly influenced the performance (p \u3c 0.001), and highlighted the importance of treating class imbalance in EEG datasets

    Analysis of EEG signals using complex brain networks

    Get PDF
    The human brain is so complex that two mega projects, the Human Brain Project and the BRAIN Initiative project, are under way in the hope of answering important questions for peoples' health and wellbeing. Complex networks become powerful tools for studying brain function due to the fact that network topologies on real-world systems share small world properties. Examples of these networks are the Internet, biological networks, social networks, climate networks and complex brain networks. Complex brain networks in real time biomedical signal processing applications are limited because some graph algorithms (such as graph isomorphism), cannot be solved in polynomial time. In addition, they are hard to use in single-channel EEG applications, such as clinic applications in sleep scoring and depth of anaesthesia monitoring. The first contribution of this research is to present two novel algorithms and two graph models. A fast weighted horizontal visibility algorithm (FWHVA) overcoming the speed limitations for constructing a graph from a time series is presented. Experimental results show that the FWHVA can be 3.8 times faster than the Fast Fourier Transfer (FFT) algorithm when input signals exceed 4000 data points. A linear time graph isomorphism algorithm (HVGI) can determine the isomorphism of two horizontal visibility graphs (HVGs) in a linear time domain. This is an efficient way to measure the synchronized index between two time series. Difference visibility graphs (DVGs) inherit the advantages of horizontal visibility graphs. They are noise-robust, and they overcome a pitfall of visibility graphs (VG): that the degree distribution (DD) doesn't satisfy a pure power-law. Jump visibility graphs (JVGs) enhance brain graphs allowing the processing of non-stationary biomedical signals. This research shows that the DD of JVGs always satisfies a power-lower if the input signals are purely non-stationary. The second highlight of this work is the study of three clinical biomedical signals: alcoholic, epileptic and sleep EEGs. Based on a synchronization likelihood and maximal weighted matching method, this work finds that the processing repeated stimuli and unrepeated stimuli in the controlled drinkers is larger than that in the alcoholics. Seizure detections based on epileptic EEGs have also been investigated with three graph features: graph entropy of VGs, mean strength of HVGs, and mean degrees of JVGs. All of these features can achieve 100% accuracy in seizure identification and differentiation from healthy EEG signals. Sleep EEGs are evaluated based on VG and DVG methods. It is shown that the complex brain networks exhibit more small world structure during deep sleep. Based on DVG methods, the accuracy peaks at 88:9% in a 5-state sleep stage classification from 14; 943 segments from single-channel EEGs. This study also introduces two weighted complex network approaches to analyse the nonlinear EEG signals. A weighted horizontal visibility graph (WHVG) is proposed to enhance noise-robustness properties. Tested with two Chaos signals and an epileptic EEG database, the research shows that the mean strength of the WHVG is more stable and noise-robust than those features from FFT and entropy. Maximal weighted matching algorithms have been applied to evaluate the difference in complex brain networks of alcoholics and controlled drinkers. The last contribution of this dissertation is to develop an unsupervised classifier for biomedical signal pattern recognition. A Multi-Scale Means (MSK-Means) algorithm is proposed for solving the subject-dependent biomedical signals classification issue. Using JVG features from the epileptic EEG database, the MSK-Means algorithm is 4:7% higher in identifying seizures than those by the K-means algorithm and achieves 92:3% accuracy for localizing the epileptogenic zone. The findings suggest that the outcome of this thesis can improve the performance of complex brain networks for biomedical signal processing and nonlinear time series analysis
    corecore