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ABSTRACT 

Epilepsy is the most common brain disorder that affects approximately fifty 

million people worldwide, according to the World Health Organization. The 

diagnosis of epilepsy relies on manual inspection of EEG, which is error-prone 

and time-consuming. Automated epileptic seizure detection of EEG signal can 

reduce the diagnosis time and facilitate targeting of treatment for patients. 

Current detection approaches mainly rely on the features that are designed 

manually by domain experts. The features are inflexible for the detection of a 

variety of complex patterns in a large amount of EEG data. Moreover, the EEG 

is non-stationary signal and seizure patterns vary across patients and recording 

sessions. EEG data always contain numerous noise types that negatively affect 

the detection accuracy of epileptic seizures. To address these challenges deep 

learning approaches are examined in this paper.  

Deep learning methods were applied to a large publicly available dataset, the 

Children’s Hospital of Boston-Massachusetts Institute of Technology dataset 

(CHB-MIT). The present study includes three experimental groups that are 

grouped based on the pre-processing steps. The experimental groups contain 3-

4 experiments that differ between their objectives. The time-series EEG data is 

first pre-processed by certain filters and normalization techniques, and then the 

pre-processed signal was segmented into a sequence of non-overlapping epochs. 

Second, time series data were transformed into different representations of 

input signals. In this study time-series EEG signal, magnitude spectrograms, 

1D-FFT, 2D-FFT, 2D-FFT magnitude spectrum and 2D-FFT phase spectrum 

were investigated and compared with each other. Third, time-domain or 

frequency-domain signals were used separately as a representation of input data 

of VGG or DenseNet 1D.  

The best result was achieved with magnitude spectrograms used as 

representation of input data in VGG model: accuracy of 0.98, sensitivity of 0.71 

and specificity of 0.998 with subject dependent data.  

VGG along with magnitude spectrograms produced promising results for 

building personalized epileptic seizure detector. There was not enough data for 

VGG and DenseNet 1D to build subject-dependent classifier. 

 

Keywords: Electroencephalogram (EEG), Epilepsy, Seizure detection, Deep 

learning, raw EEG, 1D-FFT, 2D-FFT, magnitude spectrogram, DenseNet 1D, 

VGG 
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TIIVISTELMÄ 

Epilepsia on yleisin aivosairaus, joka Maailman terveysjärjestön mukaan 

vaikuttaa noin viiteenkymmeneen miljoonaan ihmiseen maailmanlaajuisesti. 

Epilepsian diagnosointi perustuu EEG:n manuaaliseen tarkastamiseen, mikä on 

virhealtista ja aikaa vievää. Automaattinen epileptisten kohtausten 

havaitseminen EEG-signaalista voi potentiaalisesti vähentää diagnoosiaikaa ja 

helpottaa potilaan hoidon kohdentamista. Nykyiset tunnistusmenetelmät 

tukeutuvat pääasiassa piirteisiin, jotka asiantuntijat ovat määritelleet 

manuaalisesti, mutta ne ovat joustamattomia monimutkaisten ilmiöiden  

havaitsemiseksi suuresta määrästä EEG-dataa. Lisäksi, EEG on 

epästationäärinen signaali ja kohtauspiirteet vaihtelevat potilaiden ja 

tallennusten välillä ja EEG-data sisältää aina useita kohinatyyppejä, jotka 

huonontavat epilepsiakohtauksen havaitsemisen tarkkuutta. Näihin haasteisiin 

vastaamiseksi tässä diplomityössä tarkastellaan soveltuvatko syväoppivat 

menetelmät epilepsian havaitsemiseen EEG-tallenteista. 

Aineistona käytettiin suurta julkisesti saatavilla olevaa Bostonin Massachusetts 

Institute of Technology lastenklinikan tietoaineistoa (CHB-MIT). Tämän työn 

tutkimus sisältää kolme koeryhmää, jotka eroavat toisistaan  

esikäsittelyvaiheiden osalta: aikasarja-EEG-data esikäsiteltiin perinteisten  

suodattimien ja normalisointitekniikoiden avulla, ja näin esikäsitelty signaali 

segmentoitiin epookkeihin.  Kukin koeryhmä sisältää 3-4 koetta, jotka eroavat 

menetelmiltään ja tavoitteiltaan. Kussakin niistä epookkeihin jaettu 

aikasarjadata muutettiin syötesignaalien erilaisiksi esitysmuodoiksi. Tässä 

tutkimuksessa tutkittiin ja verrattiin keskenään EEG-signaalia sellaisenaan, 

EEG-signaalin amplitudi-spektrogrammeja, 1D-FFT-, 2D-FFT-, 2D-FFT-

amplitudi- ja 2D-FFT -vaihespektriä. Näin saatuja aika- ja taajuusalueen 

signaaleja käytettiin erikseen VGG- tai DenseNet 1D -mallien syötetietoina. 

Paras tulos saatiin VGG-mallilla kun syötetietona oli amplitudi-spektrogrammi 

ja tällöin tarkkuus oli 0,98, herkkyys 0,71 ja spesifisyys 0,99 henkilöstä 

riippuvaisella EEG-datalla. 

VGG yhdessä amplitudi-spektrogrammien kanssa tuottivat lupaavia tuloksia 

henkilökohtaisen epilepsiakohtausdetektorin rakentamiselle. VGG- ja DenseNet 

1D -malleille ei ollut tarpeeksi EEG-dataa henkilöstä riippumattoman 

luokittelijan opettamiseksi. 

 

Avainsanat: Electroencephalogrammi (EEG), Epilepsia, Kohtauksen 

tunnistaminen, Syväoppiminen, 1D-FFT, 2D-FFT, amplitudi-spektrogrammi, 

DenseNet 1D, VGG 
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1. INTRODUCTION 
 

Epilepsy is the most common serious neurological disorder. The number of people 

affected by epilepsy is three out of every thousand in worldwide. In several areas, the 

percentage of epilepsy patients in a population is about 4%, which means 40 people 

per thousand. Every year, among every 100 000 people there will be 40 – 70 new 

people who are affected by epilepsy. About 1% of the Finnish population are 

affected by epilepsy. 1% equals to 56 000 Finnish citizens and 5 000 of them are 

children. About 36 000 people need active drug treatment (about 0,7% of the 

population) and about 9 000 people are affected by severe epilepsy in Finland (about 

20-25% of all epilepsy patients). People from all age groups can suffer from 

epilepsy, but the age group of over 65 years old has over doubled risk to get affected 

by epilepsy compared to 25-55 years old age group. Each year about 3 000 people 

start drug treatment for epilepsy and 800 of them are younger than 15 years old [1 p. 

8, 2, 3].    

Electroencephalogram (EEG) is a technique commonly used for monitoring the 

brain activity and diagnosis of epilepsy. EEG recordings are analyzed by 

neurologists to detect and identify epileptic seizures. The visual examination is a 

laborious and time-consuming task. Identification of epilepsy, minimization of delay 

in treatment and finding the optimal level of healthcare are critical aspects in the 

treatment of epilepsy [4]. There is a lot of research work carried out to automatically 

classify the epileptic and non-epileptic signals [5-9]. From the machine learning 

point of view, classification of epileptic and non-epileptic signals is a challenging 

task. The reason is a lack of available data for training a classifier. Moreover, the 

presence of noise, interference, and artefacts in EEG signal causes challenges in 

learning the brain patterns associated with seizure and non-seizure EEG signals [10]. 

Epilepsy is not a singular disease entity, but a variety of disorders caused by different 

brain dysfunctions [11]. Thus, there are variety of complex patterns of different 

seizure types. Furthermore, seizures may not only vary among the patients but also 

between seizures. [12] 

Researches have proposed approaches for the detection of seizures using hand-

engineered features extracted from EEG signals [6]. Deep learning is an approach 

that automatically extracts features from the data [13]. Automatically extracted 

features have shown promising results as compared to hand-engineered features [13]. 

Deep convolutional neural network variants such as AlexNet [14], VGG [15], 

ResNet [16] and DenseNet [17] have shown good performance in many fields. 

Moreover, CNN-LSTM [18], 3DCNN [19] and C3D [20] networks have shown 

significant results with time-domain data. 

The aim of this work was to build a binary classifier for epileptic seizure detection 

to distinct seizure or non-seizure EEG. Specifically, time-series EEG signal, 

magnitude spectrograms, 1D-FFT, 2D-FFT, 2D-FFT magnitude spectrum and 2D-

FFT phase spectrum were investigated as a representation of input data of a deep 

learning model. VGG and DenseNet 1D were examined as deep learning classifiers 

for automatic epileptic seizure detection. Deep learning methods were applied to a 

large publicly available dataset, the Children’s Hospital of Boston-Massachusetts 

Institute of Technology dataset (CHB-MIT). Moreover, the trained classifiers were 

evaluated with subject dependent and subject dependent data. 
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2. LITERATURE REVIEW 

2.1. Epilepsy and EEG 

2.1.1. Definition of epilepsy and epileptic seizure 

Epilepsy is defined as a chronic neurological brain disorder where a brain has a long-

lasting abnormal tendency to cause epileptic seizures [1 p. 8, 3]. Epilepsy is not a 

singular disease entity, but a variety of disorders caused by different brain 

dysfunctions [11]. An epileptic seizure is defined as “a transient occurrence of signs 

and/or symptoms due to abnormal excessive or synchronous neuronal activity in the 

brain” [1 p. 8, 3, 11, 21, 22].  

A diagnosis of epilepsy requires the occurrence of at least one epileptic seizure 

and abnormal change found in brain magnetic resonance imaging or in EEG 

recording [1 p. 9, 11]. The duration of epileptic seizure varies from a few seconds to 

several minutes [23 p.15]. A person that suffers from epilepsy tends to have 

problems with neurological, cognitive, psychological or social consequence of this 

condition [1 p. 8, 3, 11].  

2.1.2. Etiology of epilepsy 

Epilepsy is more than just spontaneously occurring seizures, epilepsy is a 

neurological disorder where a person has observable and abnormal long-lasting 

changes in a brain. Finding the cause of epilepsy is the most important part of 

diagnostics because it allows more efficient treatment for a brain disorder behind 

epilepsy. In some cases, epilepsy is genetic, but most often it is caused by brain 

damage, infections, trauma, stroke, brain tumor or development of abnormalities. 

Still, the majority of the causes of epilepsy stay unknown. [2, 23] 

The etiology of epilepsy can be divided into genetic, structural, infectious, 

metabolic, immune and unknown causes (Figure 1.) [24]. Epilepsy caused by genetic 

causes is resulted directly from a known or presumed genetic mutation. More 

specifically, these genetic causes can be a chromosomal defect or a single genetic 

error. In most cases, underlying genes reflecting epilepsy are not yet known. A 

genetic does not mean the same than inheritable, because new mutations are 

constantly evolving. It is well known that environmental factors contribute to the 

development of epilepsy and therefore, a genetic etiology does not exclude the 

importance of environmental contributions. [23 p.16-18, 24]  

In structural etiology, a structural abnormality has a substantially increasing risk 

to cause epilepsy. The underlying basis for a structural abnormality are genetic, 

acquired, or both. Acquired causes are such as stroke, trauma, infection or 

cerebrovascular disorder. However, in some cases structural abnormalities may be 

also associated with genetic mutations. Structural abnormalities can be visibly seen 

and examined via a brain neuroimaging.  [23 p.19, 24]  

 Metabolic causes of epilepsy are metabolic state or metabolic disorder in a brain. 

The understanding of metabolic disorders of the brain and the association between 

metabolic abnormalities and epilepsy is constantly evolving. Recently it is known 

that metabolic epilepsy results directly from a known or presumed metabolic 

disorder. Nonetheless, often metabolic disorders are also genetic, but the factor that 

causes an epileptic seizure is a metabolic defect in the background. [23 p.16-18, 24] 
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Currently abnormal activity of immunological defense mechanism has been 

identified as one cause of epilepsy. Immune epilepsy results directly from an immune 

disorder. In an immune disorder, there is autoimmune-mediated central nervous 

system inflammation, which leads a defense mechanism of a body to attack against 

itself. The field of immune disorders is also emerging and causes rapid increase in 

diagnosis of these disorders. [23 p.18, 24] 

The most common cause of the development of epilepsy is an infection. In 

infectious ethology epilepsy is directly resulted from a known infection in which 

seizures are a core symptom of the disorder. Bacteria, viruses, funguses and 

protozoans can cause infection in a brain and thus damage a brain. Eventually, a 

brain damage caused by infection can lead to the development of epilepsy. The 

development of epilepsy can occur during an acute or a post-acute phase. [23 p.18, 

24, 25] 

 

 

Figure 1. Framework for classification of the epilepsies. 

2.1.3. Seizure classification 

Understanding of epileptic seizure networks is developing constantly, but there is 

still a lot to do to serve sufficient seizure classification. In 1981, International League 

Against Epilepsy (ILAE) Commission conducted a study where hundreds of video-

EEG recordings of seizures were evaluated and applied to develop recommendations 

that divided seizures into partial and generalized onset, simple and complex partial 

seizures, and various specific types. The classification remains as a base for seizure 

classification in widespread use. Previous seizure classifications have been based on 

anatomy, but recently have been shifted to the modern approach in which epilepsy is 

defined as a network disease. Network perspective allows seizures to be categorized 

in neocortical, thalamocortical, limbic, and brainstem networks. Recently the 

classification of seizures has been operational rather than based on fundamental 

mechanisms as previously. [12, 24, 26, 27] 

Multiple variations of seizure classification exist for various purposes, but this 

document takes under consideration only clinical perspective based on EEG patterns 

and uses current epileptic seizure classification and terminology of ILAE [12] 

(Figure 2.). In clinical purposes, classification of seizure type is an important factor 

for diagnostics and treatment of epilepsy. The first task in diagnostics of epileptic 

syndrome is to determine that event has the characteristics of seizure and the second 

phase is to diagnose a seizure type. The classification of epileptic seizures is still 
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mostly based on neurologist’s opinion and observation. It also needs to be noted that 

EEG cannot be the only asset to classify epileptic seizures. [12, 23, 24, 25, 28 p.22-

25, 29]. 

The current seizure classification (Figure 2.) is based on the following features: 

where the seizure begins in the brain, level of awareness during a seizure and other 

features of seizures (Figure 3.). Defining where the seizure begins is an important 

factor because it affects the choice of seizure medication and possible surgery. 

Seizures defined by where the seizure begins are divided into focal, generalized, 

unknown onset and focal to bilateral seizures. Awareness in the beginning and during 

a seizure is divided into focal aware, focal impaired awareness, awareness not known 

and generalized seizures. Describing awareness is an important factor for a person’s 

safety [30]. Motor symptoms in focal and general seizures are divided into motor and 

non-motor seizures. Sometimes the onset of a seizure is not known then the seizure is 

described as an unknown onset seizure. Unknown onset seizures are divided into 

motor and non-motor seizures. [12, 30] 

 

 

Figure 2. ILAE 2017 classification of seizure type expanded version. 
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Figure 3. The symptom features of an epileptic seizure 

 

Described features are the key factors for the seizure type classification. The 

seizure types based on the features are divided into focal, general and unknown types 

(Figure 2.). Epilepsy types that have the characteristics of generalized seizures are 

typically genetic and begin in childhood. The characteristic of general seizure type is 

that the electrical discharge starts from a local starting point and spreads to the wider 

area of a brain. General seizures engage networks on both sides of the brain at the 

onset. The electrical discharge may spread rapidly from one hemisphere to another 

via the corpus callosum. All generalized seizure types have an effect on awareness or 

consciousness. That is the reason why only motor and non-motor features are applied 

to divide generalized seizure types. Generalized motor seizures are divided into 

tonic-clonic, clonic, tonic, myoclonic, myoclonic-tonic-clonic, myoclonic-atonic, 

atonic and epileptic spasms seizure types. (Figure 2.) The primary feature of 

generalized motor seizures is stiffening and/or jerking of a body. The specific 

characteristics of each generalized motor seizure type are presented in Appendix 1. 

[12, 31, 32]  

Generalized non-motor seizures are divided into typical absence, atypical absence, 

myoclonic absence and eyelid myoclonic seizure types. The primary feature of 

generalized non-motor seizures is absence. Absence involves brief changes in 

awareness, staring, automatic or repeated movements. The specific characteristics 

and common causes of each generalized non-motor seizure type are presented in 

Appendix 2. [12] 

Epilepsy types that have focal seizure characteristics begin typically in adulthood. 

Focal seizures start in an area or network of cells on one side of the brain. Focal 

seizures may occur over any lobe or hemisphere, but are most commonly seen in 

either temporal or frontal lobe epilepsy. The location and the spreading area of the 

electrical discharge in a brain are related to symptoms that are caused by the seizure 

(Figure 4.). Focal seizures are divided into seizure types based on awareness and 

motor symptoms. Focal seizures based on awareness or consciousness is  grouped 

into focal aware, focal impaired awareness and focal seizures that turn into bilateral 
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tonic-clonic seizure. The characteristics of focal seizures are presented in Appendix 

3. [12, 23, 33, 34] 

 

 

Figure 4. Functional areas of the cerebral cortex, the cerebellum and their 

relationship between focal seizures and symptoms 

 

Focal motor seizures are divided into automatisms, atonic, clonic, epileptic 

spasms, hyperkinetic, myoclonic and tonic seizure types (Figure 2.). The primary 

features of focal motor seizures are stiffness or jerking of body, loss of muscle tone 

or automatisms. The characteristics of focal motor seizures are described in 

Appendix 4. Focal non-motor seizures are divided into autonomic, behavior arrest, 

cognitive, emotional or sensory seizure types. The primary features of non-motor 

seizures are related to sensation, emotions, thinking or experience and they occur at 

the beginning of non-motor seizures. The characteristics of focal non-motor seizure 

types are described in Appendix 5. [12, 30]  

2.1.4. Status epilepticus 

Status epilepticus (SE) is a serious condition where epileptic seizure or a series of 

seizures without recovery between them is lasting more than defined time period. 

Generally, if epileptic seizure lasts more than 5 minutes the condition requires 

intensive care. Status epilepticus is an epileptic seizure that lasts more than 30 

minutes. Prolonged seizures are caused by the failure of the mechanism responsible 

for seizure termination or the initiation of abnormal mechanisms. Classically status 

epilepticus is defined as “a condition characterized by an epileptic seizure that is 

sufficiently prolonged or repeated at sufficiently brief intervals so as to produce an 

unvarying and enduring epileptic condition”. [35, 36, 37, 38 p.155]  

Status epilepticus may appear after acute or chronic disorder that affects the 

central nervous system such as cerebral infarction, central nervous system infection, 

brain damage, metabolic syndrome, electrolyte imbalance or hypoxia. Status 

epilepticus may lead to neuronal death, neuronal injury, and alteration of neuronal 

networks, depending on the type and duration of seizures, therefore status epilepticus 
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must be terminated quickly with aggressive therapy. It has been reported that on 

average 20% of cases of status epilepticus are fatal and long-term mortality rates in 

children is 22% and 57% in adults. Approximately one third of all status epilepticus 

patients die, one third gets permanent various degrees of neurological deficiencies 

and one third recovery completely. [35-37, 39] 

Status epilepticus can be divided into convulsive and non-convulsive status 

epilepticus. Convulsive status epilepticus includes motor symptoms and non-

convulsive status epilepticus non-motor. Non-convulsive status epilepticus includes 

loss of consciousness, hallucinations or symptoms that are more difficult to observe 

than motor symptoms. Convulsive and non-convulsive status epilepticus are divided 

into generalized and focal based on the EEG registration. More specifically status 

epilepticus are divided into five manifestation types: tonic-clonic SE, absence SE, 

myoclonic SE, focal SE with impaired consciousness and focal SE without impaired 

consciousness. The characteristics and the EEG features of each status epilepticus 

type are presented in Appendix 6. Tonic-clonic status epilepticus is the most 

common status epilepticus type and is 70% of all treatment cases. [37, 40, 41 p.199-

200] 

Only for 30 – 60 % of status epilepticus patients have been diagnosed with 

epilepsy earlier. In Finland appearance of status epilepticus is about 340/100 000 

annually. Annually the appearance of number of status epilepticus that needs hospital 

care is 20/100 000 in Finland and the risk is biggest in children and in elder. The 

factors that most often causes the condition of status epilepticus for adults are poor 

balance in treatment of epilepsy, earlier diagnosed neurological diseases and acute 

symptomatic factors such as transient ischemic attack or severe cardiac arrhythmia 

attack. For children the most common causes are fever, earlier diagnosed 

neurological diseases and infection in central nervous system. Annually in Finnish 

intensive care units 3.4/100 000 patients were treated with severe status epilepticus 

and 0.7/100 000 patients with extremely severe status epilepticus. [36] 

Status epilepticus is a neurological emergency condition which needs quick 

aggressive therapy and even general anesthesia to terminate a seizure [41 p.202]. 

Still, majority of epileptic seizures are short-lasting and terminate without special 

treatment. In status epilepticus there are two operational dimensions: the first is the 

time point (𝑡1) where the seizure should be regarded as continuous seizure activity 

and the time point (𝑡2) where the risk of long-term consequences start to increase 

dramatically. The current time points 𝑡1 and 𝑡2 are defined only for tonic-clonic, 

focal status epilepticus with impaired consciousness and absence status epilepticus 

(Table 4.). The operational times of tonic-clonic status epilepticus, focal status 

epilepticus with impaired consciousness and absence status epilepticus are presented 

in appendix 6. For other status epilepticus types the time points have not yet been 

defined. In clinical perspective 𝑡1  determines the time when treatment should be 

started and 𝑡2 determines how aggressive treatment should be implemented to 

prevent long-term consequences. [35, 36]  
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Figure 5. Classification of status epilepticus [35]. 

 

In more details, status epilepticus is classified in four different axes semiology, 

etiology, EEG correlates and age. Based on the semiology status epilepticus is 

classified into two classes the presence of absence of prominent motor symptoms and 

the degree of impaired consciousness. Status epilepticus is not a disease entity but 

rather a symptom that has numerous different etiologies. A classification of seizure 

types cannot be simply applied for classification of status epilepticus because the 

symptoms during the status epilepticus may differ a lot compared to short-lasting 

seizures. The classification of status epilepticus based on etiology is presented in 

figure 3. The ictal EEG pattern of any type of status epilepticus are not specific. 

Therefore, there are no EEG criteria for status epilepticus, but there are features such 

as location, name of the pattern, morphology, time-related features, modulation and 

effect of intervention which describe EEG patterns in status epilepticus (Table 9.). 

The different age groups of status epilepticus are neonatal (0 to 30 days), infancy (1 

month to 2 years), childhood (>2 to 12 years), adolescence and adulthood (> 12 to 59 

years) and elderly (≥ 60 years). [35] 

Status epilepticus has four phases based on the degree of severity: early status 

epilepticus, established status epilepticus, refractory status epilepticus and super 

refractory status epilepticus (Appendix 7.). The objectives of treatment of status 

epilepticus are maintenance of vital functions, quick termination of clinical seizure 

symptoms and deviant electrical discharge activity of the brain. After the acute 

phase, the most important objectives of treatment are to prevent recurrence of 

seizures, observation of systemic complications, detection of etiological factors and 

minimization of mortality and secondary symptoms. [36] 

2.1.5. Origin of EEG 

The electroencephalogram (EEG) is a neurophysiological research for measurement 

of an electrical activity of brain cells [42 p.1]. In EEG recording electric potential 

differences are measured between electrodes that are attached invasively or 

noninvasively to the scalp [43]. The origins of cerebral potentials reflect the intrinsic 

electrophysiological properties of the nervous system [42 p.2]. EEG is primarily 

generated by cortical pyramidal neurons in the cerebral cortex that are oriented 
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perpendicularly to the brain’s surface [44]. Creation of EEG signals needs 

simultaneous activation of millions nerve cells in the same area of a brain. Recently 

it has been reconsidered that EEG may contain components from other cellular 

structures. [43] 

 EEG is created when electrical charges move within the cerebral cortex. 

Neuronal function of the cerebral cortex is maintained with ionic gradients 

established by neuronal membrane. Electrical currents of cerebral activity are 

required to be amplified and displayed for interpretation. Synaptic potentials are the 

primary source of the extracellular current flow that is seen in the EEG. These 

synaptic potentials are called as excitatory postsynaptic potentials that flow inwardly 

to other parts of the cell via sodium and calcium ions and inhibitory postsynaptic 

potentials which instead flow outward in the opposite direction and involve chloride 

or potassium ions. The EEG provides evidence of the continuous and changing 

voltage fields varying with different locations on the scalp over time. [42 p.2-3] 

The most important measured quantities of EEG are amplitude and frequency. 

The amplitude of EEG is typically around tens to hundreds of microvolts and reflects 

the size of synchronously activating group of nerve cells. Measuring technology is an 

important factor in EEG but also the thickness, electrical conductivity and size of the 

scalp and distance and position of electrodes have significant impact on 

measurement. Frequency changes slowly in EEG from 1 to several hundreds of 

Herts. The spontaneous electrical brain activity consists of voltage fluctuation in 

different frequencies. Traditionally the frequency bands are divided into delta (less 

than 4 Hz), theta (4-8 Hz), alfa (8-13 Hz) and beta (over 13 Hz) bands. Fast brain 

activity at a frequency of around 40 Hz is called as gamma activity. Practically 

frequency of normal EEG is around 0.5 – 25 Hz, but epileptic seizures may cause 

rapid bursts that reach even over 200 Hz frequency in EEG signal. [43, 45 p.50-51]  

The setup of EEG varies depending on use, therefore there are several EEG 

paradigms for different targets (Appendix 8.). The basic EEG measurement setup is 

called as 10-20 international system (Figure 6.). Earlier typical EEG research 

included only 19 channels, but currently International Federation of Clinical 

Neurophysiology (IFCN) has given a new recommendation to increase the number of 

electrodes to 26. A larger number of electrodes disclose brain activities that were not 

seen via a smaller number of channels. Most of EEG measurements are recorded in 

intensive care or in emergency duty. The number of electrodes is decreased to most 

important channels in intensive care and emergency duty because of the 

circumstances. Often synchronized video recording and polygraph channels are 

added to the EEG measurement. Typical polygraph channels are ECG, EOG, EMG, 

respiration measured with respiration belt, oxygen saturation measured with pulse 

oximetry and movement interference signals measured with piezoelectric sensors. 

[43, 46] 

2.1.6. EEG registration and activations 

The most often EEG is measured from electrodes that are attached noninvasively to 

the scalp’s skin. The names of electrodes indicate the lobe of the cerebral cortex 

where the electrodes are placed (Figure 4.). Electrodes vary between different 

materials, shapes and the way of them are attached. Electrodes can be attached to the 

skin of head separately, with a hat or a web along with a gel that ensures better 

contact between the electrode and skin. The type of electrodes affect for a little bit on 
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the susceptibility to interference, frequency response and field of application. An 

electrical connection is created from brain tissue to amplifier via electrodes and 

cables. An amplifier measures EEG signals based on the chosen montage. 

Functionality of channels should be tested with calibration signal at the beginning 

and in the end of registration and during registration if necessary. [46] 

 

 

Figure 6. The international 10-20 system seen from (figure on left) left and (figure on 

right) above the head. A  = Ear lobe, C  = central, Pg = nasopharyngeal, P  = parietal, 

F  = frontal, Fp = frontal polar, O  = occipital. 

 

The EEG montage is a standardized arrangement and selection of channel pairs 

and chains for display and review. The montages are divided into two categories: 

bipolar and referential/monopolar. In bipolar montages, one electrode is connected to 

one or two neighboring electrodes forming a chain of electrodes. The bipolar 

longitudinal pattern is the most commonly used bipolar montage. In longitudinal 

pattern each channel connects adjacent electrodes from anterior to posterior in two 

lines (Figure 6.). The bipolar traverse montage connects adjacent electrodes in a 

chain from left to right. In monopolar montage each electrode is connected to a 

single referential point (Figure 7.). A referential point of monopolar montage can be 

the vertex, the mastoid process or common average reference. The Cz electrode 

indicates the vertex and the mastoid process includes electrodes from either 

individual ears or a mathematical derivation of both sides. Another commonly used 

montage in the evaluation of epilepsy is the Laplacian montage. The Laplacian 
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means a source, derivation montage where each electrode is compared with a 

weighted average of the neighboring electrodes. [47]  

 

 

Figure 7. Longitudinal bipolar montage on top and common electrode reference 

monopolar montage on below. 

 

Various types of activations are utilized during EEG registration to get useful 

information about the function of neural network. Routine activation is eyes closed – 

eyes open activation. On examination of epilepsy, hyperventilation and flashing light 

provocation are the key activations to provoke epileptiform activity. During 

hyperventilation test, a patient takes deep breaths 3 – 5 minutes, causing decrease in 

concentration of carbon dioxide in the blood. Concentration of carbon dioxide is a 

primary regulator of the cerebrovascular system. In flashing light provocation, a 

patient is predisposed with flashing light of different frequencies while a patient is 

having eyes open and alternately eyes closed. A sleep deprivation is also used to 

provoke epileptiform activity. In sleep deprivation, a patient is given instructions not 

to sleep at night before EEG registration. Sleep deprivation requires deep sleep hence 

patients are requested to stay awake overnight to guarantee better sleep quality 

during EEG registration. [48 p.81] 

2.1.7. EEG in diagnostics of epilepsy and status epilepticus 

EEG measurement is the primary clinical tool for diagnostics of epilepsy and status 

epilepticus. EEG is used for neurophysiological identification, classification, 

quantification and localization of epileptiform discharges (EDs). In more details, 

EEG is utilized to indicate the existence of a finding that correlates with epilepsy, 

which epilepsy type is in question and is epileptic seizure focal or generalized. EEG 

is used also to quantify the number and duration of epileptiform abnormalities. 

Epilepsy is an electrical dysfunction of the brain, and hence EEG is the most suitable 

research method for evaluation of electrical activity of a brain. Possibility to monitor 

dynamically electrical activity of the brain is also necessary for presurgical 

evaluation, considering stopping AED therapy, monitoring of seizure frequency, 
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monitoring effect of medicine, and deciding can a patient have a driver’s license or 

flight certificate. [41 p.200-201, 49 p.144-145, 50, 51, 52] 

In basic EEG findings that correlate with epilepsy are found in only 50% of 

epilepsy patients during the first registration. By repeating EEG recording with a 

sleep deprivation, 80 - 90 % of epilepsy findings are discovered. In 1% of population 

can be seen features of epileptiform activity in the EEG without epilepsy. An 

ambulatory EEG provides a possibility to monitor electrical activity of the brain in 

the patient’s normal home environment for natural recording. The advantages of 

ambulatory EEG are to quantify the number and duration of subclinical seizures and 

seizures without awareness. In some cases, focal epileptic seizures are difficult to be 

identified. Utilization of invasive EEG monitoring with intracranial electrodes is 

necessary if the location of seizure onset has not been found with non-invasive 

presurgical evaluation or the goal is to carefully define cortical function in an area of 

planned surgical resection. [10, 49 p.145, 50] 

The EEG is the most important research method in diagnostics and monitoring 

treatment of status epilepticus. In case of status epilepticus, EEG is especially used 

for suspicion of non-convulsive status epilepticus.  In emergency situations, EEG is a 

primary clinical tool in the classification of status epilepticus by defining is a patient 

suffering from tonic-clonic SE, absence SE, focal SE or psychomotor SE. EEG is 

required to evaluate an appropriate choice of antiepileptic-drug. A patient that is 

suffering from status epilepticus is in ongoing EEG monitoring therefore EEG helps 

also to determine the size of the dose of antiepileptic-drug and to indicate when 

status epilepticus seizure ends. [49 p.144-146, 52] 

The symptoms of convulsive status epilepticus are easier to observe than non-

convulsive because of motor symptoms. Both types require EEG monitoring, but 

non-convulsive is more critical because the symptoms of non-convulsive status 

epilepticus might not be that clearly observable [37]. General status epilepticus is 

always visible in EEG signals, but in some cases of focal status epilepticus EEG 

registration appears to be normal. In focal seizures epileptiform activity may be in 

the too small area of a brain or too deep in brain tissue so it cannot be seen in EEG 

signal. [49 p.145-146] 

Diagnosing epilepsy without epilepsy is more harmful than not diagnosing 

epilepsy even though the patient is suffering from it. Diagnosing epilepsy requires 

always other clinical information along with EEG therefore the diagnosis of epilepsy 

cannot be fully based on the EEG interpretation. In some cases interictal epileptiform 

features in EEG do not necessarily always indicate epilepsy. Incorrect diagnostics are 

often caused by wrong EEG interpretation when EEG contains artefacts or doctors 

have dissenting opinions. [41 p.199-202]  

There are conditions that are related to cardiac, toxic/metabolic, pulmonary, 

movement disorders, migraine headache, cerebral diseases, autonomic disorders, 

sleep disorders, vestibular dysfunctions or transient global amnesia that may mimic 

epileptic seizure in EEG recording. There are also psychiatric events that may mimic 

symptoms of epileptic seizures such as psychogenic non-epileptic seizures, 

malingering, catatonia, panic attack, hallucinations/psychosis, episodic dyscontrol, 

fugue state and Munchausen syndrome/ Munchausen syndrome by proxy. [10] 
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2.1.8. Interpretation of EEG 

EEG interpretation requires understanding of EEG’s basis, recording technology, 

descriptive terminology, and general capabilities and limitations. By understanding 

these factors, the EEG interpretation and diagnostics can be more clearly addressed 

and leads to appropriate prognosis and diagnosis. EEG interpretation is all about 

identifying the patterns and defining relevant patterns to the patient. The essential 

EEG feature components provide insights about the cerebral electrical activity. 

Becoming familiar with the component features that characterize each pattern is an 

important aspect in EEG interpretation. [53, 54] 

The EEG signal consists of several patterns of rhythmic or periodic activity [55 

p.37]. EEG waveforms are divided into the delta (0.1–<4 Hz), theta (4–<8 Hz), alpha 

(8–13 Hz) and beta (14–30 Hz) frequency bands. There is also a high frequency 

wave pattern called as gamma (30 – 80 Hz) and mu wave pattern that overlaps with 

other frequency bands (7 – 11 Hz). EEG rhythms reflect physiological and mental 

processes. EEG signal also may contain spikes, transients and other waves and 

patterns which are associated with various disorders of the nervous system such as 

epilepsy. [55 p.37-38, 56] 

The identification of epileptiform patterns of features is started with categorizing 

EEG segments into attenuation, transient and repetition  types (Figure 8.). 

Attenuation is defined as either low voltage or a marked decrease in amplitude. The 

attenuations are categorized only into focal, hemispheric, bilateral, or generalized 

according to distribution. The distributions have subheadings based on the more 

detailed locations: frontal, temporal, parietal, central, occipital and anywhere. A 

transient is defined as an isolated wave or complex and it first also categorized by the 

distribution and characterized by location(s). Transients are further categorized into 

monophasic, diphasic and triphasic and whether it is a spike, sharp wave, or slow 

wave. Finally, the transients are characterized by polarity. Repetitions mean a 

recurring transient and they are also categorized by distribution and whether the 

repeating transient is monophasic or polyphasic. Repetitions are further characterized 

by location(s) and whether the pattern is regular or evolving. [53]  

There are various physiological and psychological conditions that may have 

similar EEG patterns than epileptic discharges. These physiological and 

psychological conditions are listed in “EEG in diagnostics of epilepsy and status 

epilepticus” section. There are also physiological and non-physiological artefacts 

that may mimic epileptic discharges in EEG. These artefacts are respectively 

mentioned in “EEG artefacts” section of this thesis. These factors need to be taken 

also into account in EEG interpretation. [10, 50] 
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Figure 8. Pattern identification. 

2.1.9. Normal EEG 

Identification of epileptiform patterns is based on the development of criteria for 

normal EEG activity. It is essential to provide knowledge of normal waveform 

variations for each age group throughout the lifecycle from infants to elder. Brain 

waves can be divided into delta, theta, alpha, beta and additionally mu and gamma 

bands. Different frequency bands and their physiological relations are presented in 

Table 2. Normal EEG of adults consists of alpha and beta activity, but includes also 

other wave frequencies within a range of 0.5-70 Hz.  The waves occur in clear 

rhythms or spontaneously separately, where waves in different frequencies are mixed 

in together. EEG is constantly dynamic and changes along with the state of 

physiology. Consequently, it can be interpreted from EEG is person awake, in a light 

sleep, in a sleep, nervous, cognitively active, having eyes open, having eyes closed 

etc. EEG cannot be only used to give evidence are patterns in EEG recording normal 

or abnormal, but with the relevance between EEG and condition of patient. EEG 

differs between individuals but for the same individual EEG is fairly similar between 

separate recordings but changes during aging. [42 p.5-7, 57 p.109-110, 57 p.127] 

 The alpha rhythm is a normal pattern that relates to gated levels of visual 

attention, perhaps as an active stand-by state [58]. The alpha rhythm is the 

predominant activity while a patient is mentally and physically relaxed but not in 

light sleep. It is common in wakeful, resting adults, especially in the occipital area. 

The alpha rhythm attenuates while opening eyes, but the reactivity differs among 

individuals. Frequency of alpha rhythm is 9-11 Hz in 70% of 20 years old 

individuals. One out of one hundred has slow 4-5 Hz alpha variant rhythm in the 

posterior. Fast alpha variant rhythm that occurs in 14-20 Hz frequencies is even rarer 

than slow alpha variant rhythm. Alpha variant rhythms react to external stimulus just 

like alpha rhythm. Over half of the adults have alpha rhythm with amplitude of 

between 20-50 µV. 10% of adults have less than 20 µV and it is even rarer to have 

over 100 µV amplitude of alpha rhythm. Alpha rhythm occurs usually in the occipital 
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and posterior temporal areas. Sometimes alpha rhythm appears also in anterior 

temporal, central areas and even weakly in a couple of electrodes in frontal area. [55 

p.38, 57 p.109-116] 

The alpha rhythm is replaced by slower rhythms in various stages of sleep. The 

theta is the frequency range from 4 Hz to 7 Hz. The theta waves are common in 

children in a wide area of the central temporal region of the brain. They may appear 

also in healthy adults at the beginning stages of sleep or during arousal. The presence 

of theta waves in wakeful adults indicates abnormality. One out of third of young 

adults has subdued theta activity at 6-7 Hz frequencies in frontal or frontal central 

areas. Theta activity is prominent during executing mental activation tasks, but it can 

be more clearly seen in light sleep because of attenuation of background rhythms. 

Bilateral or generalized polymorphic theta activity is the evidence of either normal 

drowsiness or of encephalopathy in adults. In infants, occurrence of theta activity is 

normal. [45 p.51-56, 55 p.34-38, 57 p.122-126, 59] 

The delta is the frequency range from 0.5 Hz to 4 Hz. It tends to have the highest 

amplitude and the slowest waves compared to other EEG frequency bands. The delta 

waves appear in the deep-sleep stages in healthy adults. Normal polymorphic delta 

activity is a sign of non-rapid eye movement sleep. The frequency of polymorphic 

delta activity decreases with progression of sleep into its deeper sleep stages. 

Polymorphic delta activity is normal or abnormal finding depending on its features 

and circumstances. Abnormal polymorphic delta activity may indicate 

encephalopathy. [55 p. 37, 60] 

High frequency beta waves (14 Hz to 30 Hz) are more commonly a sign of 

drowsiness or sleep onset, but it is present in full wakefulness in some individuals. 

More rarely, it is associated with anxiety and vigilance. The majority of beta activity 

seen in EEG in adults is occurring at 18-25 Hz frequencies. Less common are 14-16 

Hz and over 35 Hz activity. Beta activity has an amplitude of less than 20 µV. Beta 

activity occurs mostly in frontal, central and sometimes it is visible in occipital areas. 

Beta activity in occipital areas reacts to stimulus just like alpha rhythm and central 

beta as mu rhythm. Mu rhythm attenuates while planning movement or during 

movement and it is observable in C4 and C3 electrodes. Beta activity emphasizes 

during cognitive performance, in light sleep and in REM sleep. [55 p.37, 57 p.113, 

61] 

Table 1. Normal brain waves 

Brain 

wave 

Frequency 

band 

Physiological relation Graph 

Delta 0.5-4 Hz Deep sleep state, deep sleep, 

loss of bodily awareness 
 

Theta 4-8 Hz Hypnoidal state, reduced 

consciousness, deep 

meditation, dreams, light 

sleep, REM sleep 
 

Alpha 8-13 Hz Normal resting state, 

physically and mentally 

related, awake but drowsy  
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Mu 8-13 Hz Indicator of activation of 

motor neurons in resting state 
 

Beta 14-30 Hz Normal waking state, awake, 

normal alert consciousness 

 

Gamma 30-100 Hz Heighted perception 

 

 

2.1.10. Epileptiform abnormalities  

Epileptiform abnormalities are seen as distinguishable transients from background 

activity in EEG signal [62]. The term epileptiform is defined as an EEG pattern that 

is associated with a relatively high risk of having seizures [51]. Epileptiform 

discharges appear in various morphologies (Appendix 9.) [63]. There are 6 criteria 

regarding to the characteristic morphology of epileptiform patterns and 4 of them 

must be fulfilled to define a specific pattern as an epileptiform pattern: 

1. “Di- or tri-phase waves with sharp or spiky morphology (i.e. 

pointed peak). 

2. Different wave-duration than the ongoing background activity, 

either shorter or longer. 

3. Asymmetry of the waveform: a sharply rising ascending phase and 

a more slowly decaying descending phase, or vice versa. 

4. The transient is followed by an associated slow after-wave. 

5. The background activity surrounding epileptiform discharges is 

distributed by the presence of the epileptiform discharges, 

6. Distribution of the negative and positive potentials on the scalp 

suggests a source of the signal in the brain, corresponding to a 

radial, oblique or tangential orientation of the source. This is best 

assessed by inspecting voltage maps constructed using common-

average reference” [56]. 

 

Based on the descriptions of Vakkuri et al. [64] delta with spikes (DSP), rhythmic 

polyspikes (PSR), periodic epileptiform discharges (PED), and suppression with 

spikes (SSP) are regarded as epileptiform patterns. Figure 9. [65] illustrates these 

typical epileptiform patterns in EEG signals. DSP includes delta activity of any 

frequency with regular or irregular spikes. PSR are waveforms with more than two 

negative and positive deflections appearing at regular intervals, associated with slow 

wave or mixed frequency EEG activity between spike complexes. SSP means short 

episodes consisting mostly of single spike appearing during complete EEG 

suppression. [65] 
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Figure 9. Epileptiform patterns [65] 

 

Each of these epileptiform patterns consists of different combinations of spikes, 

sharp waves, polyspikes or slow-wave patterns. Sharp waves and spikes differ in 

their duration (70-200 ms vs. less than 70 ms), but in practice they reflect the same 

thing. Polyspikes are multiple spikes observed typically in rapid succession (typically 

at frequencies of 10 Hz or faster). Spike-and-slow-wave complex corresponds to a 

phenomena where a spike is instantly followed by a slow wave. Polyspike-and-slow-

wave complex is similar to spike-and-slow-wave complex, but is associated with 

polyspikes followed by one or more slow waves. [62] 

An epileptiform EEG pattern is split into preictal, ictal, interictal and postictal 

states (Figure 9.) [51, 66]. A preictal state means a period in EEG before a seizure 

occurs. A preictal state includes often aura symptoms in some epilepsy types, but 

sometimes appears without any symptoms. There has been evidence to possibly 

predict epileptic seizure before it occurs. Detection of the preictal state from EEG 

has been highly interesting field in epilepsy research [66]. The electrographic 

evolution of a seizure commonly includes one or more following features: change in 

frequency, amplitude, distribution, and/or waveform [67]. These features form at 

least five common EEG patterns at the start of the seizure: rhythmical evolving at 

theta, delta and alpha frequencies, rhythmic spiking, spike-waves or 
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electrodecremental. In some cases, there is no clear change in EEG. The epileptiform 

patterns and their characteristics are presented in Appendix 10. [51]  

 

 

Figure 10. States of a seizure. 

 

The ictal EEG pattern also called as a seizure pattern is defined as the EEG 

finding that is present during a seizure [51]. The ictal pattern consists of repetitive 

epileptiform EEG discharges at <2 c/s and/or characteristic with gradual change in 

frequency, amplitude, morphology and location, lasting at least several seconds 

(usually > 10s) [56]. The ictal activity patterns are described in table 8. Ictal pattern 

typically includes rhythms or repetitive sharp waves regardless of a seizure type. 

There are two types of ictal patterns: ictal patters for focal seizures and ictal patterns 

for generalized seizures [67].  

A focal-onset has features related to frequency, amplitude, distribution, and 

waveform. Frequency of EEG pattern during a focal-onset may be increased or 

decreased several Hertz within any of the normal EEG frequency bands. Amplitude 

is usually increased, but often followed by attenuation at the beginning of the seizure 

as amplitude has evolved to its maximum. The distribution of evolution reflects the 

anatomic spread or the seizure across the cerebral hemisphere. The ictal rhythm of 

focal-onset seizure may lead to a generalized distribution. During generalization the 

ictal pattern has fast activity features of a generalized-onset seizure. The generalized-

onset seizures have more similar pattern in their ictal and interictal EEG pattern than 

focal-onset seizures. [68 pp. 213-214] 

Generalized-onset seizures can be characterized by one of three types: Generalized 

paroxysmal fast activity (GPFA), generalized spikes and slow-wave complexes 

(GSW) or an electro decrement. GPFA begins with low amplitude and fast frequency 

activity that often leads into postictal slowing and attenuation. GPFA evolves with 

increasing amplitude and a decreasing frequency. The GSW complex is most 

commonly triphasic with a negative initiating spike and negative completing slow 

wave. In some cases GSW may appear as polyphasic because of a polyspike 

initiation. GSW occurs repeatedly with duration of at least 3 to 5 seconds. 

Generalized-onset may be also in form of the electrodecremantal pattern which 

means a sudden and generalized attenuation. In the electro decrement 20 to 40 Hz 

low voltage activity evolves with gradually increases in amplitude and decreases in 

frequency over the subsequent few seconds. The electro decrement typically evolves 

into GPFA which has similar waveform. Generalized-onset seizure typically ends as 

abrupt resolution without evolution, with evolution in waveform and frequency, or 

with disintegration of the ictal pattern. [68 p.234-235] 

The interictal pattern means the EEG finding between seizures. During an 

interictal state a patient may have emotional disturbances. Interictal epileptiform 

discharges are sharp waves, spikes and polyspikes often followed by slow waves. 

Morphologies of epileptiform interictal activity are described in table 9. Often the 

boundaries of different states are unclear and arbitrary. Interictal-ictal boundary is 

blurred for many epileptiform discharges. Especially, the distinction between ictal 
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and interictal generalized IEDs are difficult because often the only difference in the 

waveform is duration. [51, 69] 

Focal interictal epileptiform discharges (IEDs) have four characteristic features: a 

sharply countered component, electronegativity on the cerebral surface, disruption of 

the surrounding background activity, and a field that extends beyond one electrode. 

These features do not always appear at the time of IEDs and all of these features are 

not epileptiform, but still they are together a useful framework for considering IED 

waveforms. IEDs are a sign of epilepsy, but they are not infallible because they do 

not have full specificity. IEDs are present in a small percentage of individuals in the 

healthy population (0% to 2.6%). Morphologies of focal interictal epileptiform 

activity are presented in Appendix 9. [69] 

Generalized interictal epileptiform discharges are not exactly generalized across 

the entire cerebral hemisphere. Generalized IEDs commonly appear in the midfrontal 

region and spread to the entire frontal region and some or most of the parietal region. 

Generalized IEDs often occur as spikes and sharp waves with after-going slow waves 

or as burst of successive spikes. The waveform of generalized IEDs varies less than 

the waveform of focal IEDs. Generalized IEDs are an indicator of generalized 

epilepsy syndromes and typically occurs across all forms of generalized epilepsies. 

[69]  

Paroxysmal fast activity (PFA) is an epileptic pattern that is a specific type of 

bursting beta frequency range activity. Paroxysmal fast activity may occur either as 

focal or generalized epileptiform discharge. Paroxysmal fast activity can be also 

either interictal or ictal abnormality depending on its duration. PFA begins with a 

fast, regular or irregular rhythm that has usually greater or occasionally lower 

amplitude than the background activity. The abrupt change in amplitude and the 

presence of a beta frequency rhythm are key features of PFA. A waveform of PFA 

consists of repetition of monophasic waves with a sharp contour produced by the 

high frequency. [70] 

Periodic epileptiform discharges (PEDs) are triphasic with a sharply contoured 

wave, followed by a slow wave, which have three types: periodic lateralized 

epileptiform discharges, bilateral independent periodic epileptiform discharges and 

bilateral periodic epileptiform discharges. Periodic lateralized epileptiform 

discharges (PLEDs) occur with a singular focus at any scalp electrode location. 

Whereas PLEDs have a singular focus, bilateral periodic epileptiform discharges 

(BiPEDs) are symmetrically and synchronously occurring periodic epileptiform 

discharges. When PLEDs have asynchrony and dissimilar appearance, they are 

termed as bilateral independent PLEDs (BIPLEDs). In BIPLEDs, discharges occur at 

more than one location in the cerebral hemisphere. [71] 

The postictal pattern is defined as a recovery period after an epileptic seizure. The 

distinction between ictal to postictal EEG can be classified by rate or location. The 

Postictal is seen as attenuation or slowing in usually in the delta frequency range in 

EEG. In some cases, a patient enter sleep during recovery state. The postictal 

includes commonly cognitive disturbances, focal motor and sensory deficits, 

postictal headaches and migraines, and postictal automatisms. The postictal state 

often includes depression or rarely even psychosis. [51, 72-74] 

Epileptiform patterns are characteristics of epilepsy, but their appearance in EEG 

does not always mean that a patient has epilepsy. Beside clear epileptiform pattern 

there are so called normal patterns that may also be a sign of epilepsy in particular 

circumstances. The benign epileptiform transients of sleep (BETS) are normal EEG 
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patterns which commonly occur during light sleep. Although some studies have 

found evidence that individual with epilepsy have higher rates of BETS than among 

those without epilepsy. Moreover, needle spikes may have also indirect relation to 

epilepsy. The burst suppression that is generally associated with coma and 

anaesthesia. In epilepsy context the burst suppression pattern indicates end stage of 

status epilepticus or severe epileptic encephalopathies of infancy. A transient with a 

vertex localization called as K complexes with spiky waveform may occur during 

arousal from NREM sleep in generalized epilepsies or focal epilepsies. [62, 75-78] 

2.1.11. EEG artifacts 

The analysis and interpretation of EEG are often made complex by the presence of a 

variety of artefacts [79].  The EEG artefacts are seen in EEG signal as changes in 

voltage that originate from source other than the brain [80]. An EEG artefact is 

defined as a physiological potential difference due to an extra cerebral sources 

present in EEG recordings or a modification of EEG caused by non-biological extra 

cerebral factors [56]. It is necessary to recognize physiological and non-biological 

artefacts, identify the source of artefacts and especially eliminate nonessential 

nonphysiological from EEG before analysis are performed [50, 81].  The sources of 

noise in EEG could be physiological, the instrumentation used, or the environment of 

the experiment [82 p.91]. Every type of EEG recording always contaminates 

artefacts [50]. It is impossible to remove all of the noise from EEG because some 

sources of noise are difficult to identify [81]. Beside removal, appearance of artefacts 

in EEG signal can be also reduced by attenuating or protecting against interfering 

signals [80]. 

Physiological artefacts include cardiac, pulse, respiratory, sweat, gloss kinetic, eye 

movement, muscle and movement artefacts [80]. The most common artefacts during 

EEG recording are eye movements, tongue movements, talking, chewing, other body 

movements and sweat artefacts [83]. The most common non-biological artefacts are 

electrode artefacts that include electrode pop, electrode contact, lead movement, 

perspiration and salt bridge [84]. The artefacts may negatively affect the 

manifestation of seizure pattern and therefore significantly influence the 

identification of epileptic seizure. The three most vital artefacts are muscle artefacts, 

eye movements/blinks and white noise. Physiological and non-biological EEG 

artefacts are presented in Appendix 11. [85] 

Some artefacts mimic EDs and may be therefore misinterpreted as epileptiform 

pattern.  Cardiac sources, myogenic sources, body and eye movements may result in 

artefacts that mimic abnormality in the EEG. Single-electrical artefact may mimic 

spike-and-waves. For instance, vertical eye blink might be interpreted as a sharp 

wave on EEG. Incorrect recognition of artefact as an ED can adversely affect 

treatment and lead to wrong diagnosis. Denoising EEG signal before interpretation 

and analysis is a challenge priority. Digital filters and montage manipulation are used 

to recognize what is beneath artefacts. The use of polygraphs is helpful for the 

recognition of artefacts and their sources [50, 79].  
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2.2. Deep learning 

2.2.1. Overview 

Artificial intelligence (AI) (Fig. 8) is a field of computer science of developing 

computers to learn from experience and understand concepts through its relation to 

simpler concepts. The hierarchy of concepts enables computers to learn by building 

simpler ones out of the complicated ones. Some algorithms of artificial intelligence 

rely on hard-coded knowledge using logical inference rules. This concept is known 

as the knowledge base approach. [86] 

Machine learning is a subset of artificial intelligence techniques that has 

capability to extract patterns from raw data and learn from them through statistical 

methods. The representation of the data effects heavily on the performance of a 

simple machine learning algorithm. A simple machine learning algorithm requires 

selection of the right set of features for artificial intelligence tasks. In many tasks it is 

difficult to know which features should be extracted. One solution to this is a 

representation learning approach, also known as deep learning. The concept of 

representation learning is based on obtaining better algorithm performance with 

learning from representations rather than hand-design representations. [86] 

 

 

Figure 11. Venn diagram of the components of artificial intelligence. 

 

Since 2006, deep learning has emerged as new, highly interesting area of machine 

learning research. Deep learning exploits multi-layer non-linear information 

processing for supervised or unsupervised feature extraction, transformation, pattern 

analysis and classification.  Deep learning is a subset of machine learning that is 

based on algorithms for learning multi-level representations in order to model 

complex relationships among data. Learning the right representation for the data 

provides one perspective on deep learning. Another perspective is that depth enables 

deep learning neural network to learn complex multiple levels of representation and 

abstraction. Greater depth enables a neural network to execute more instructions in 

sequence. [86-88] 
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2.2.2. Artificial neural networks 

Deep learning methods are based on artificial neural networks (ANNs) that have 

been motivated from its inception by the recognition capability similar to the human 

brain. ANNs are inspired by the human brain, but their computations are based on 

entirely different manners. The brain is nonlinear, a highly complex and parallel 

computer that performs certain computations via neurons for pattern recognition, 

perception and motor control. The artificial neural network can be either linear or 

nonlinear, currently do not reach the complexity with the same level than the human 

brain and has more limitations in parallel computing. [89] ANNs have the ability to 

learn by example through several iterations. They have the advantage that there is no 

need for deep knowledge of a field where they are applied. This has resulted in the 

rapid evolution of ANNs in various diverse scientific fields. [90]. 

 In a big picture, a typical neural network consists of an input layer, multiple 

hidden layers and an output layer (Fig 10). The input layer accepts different type of 

input data such as biosignals, images, videos, speech, sounds, text, or numeric data. 

The hidden layers mostly consist of convolutional and pooling layers. The 

convolutional layers detect the local patterns and features in data from previous 

layers. The pooling layers semantically merge similar features into one. The output 

layer presents the classification or prediction results that are often controlled by 

activation functions such as softmax. [91, 92] 

 

 

Figure 12. A typical block diagram of deep learning model. 

 

In more details, ANNs consist of information-processing units, the neurons, and 

directed, weighted connections between those neurons [89, 93]. Each neuron has a 

limited computing capacity restricted by utilized activation function for combining 

input signals in order to calculate the output one. The output signal may be sent to 

other units along weighted connections. Weights excite or inhibit the signal being 

communicated. There are three basic elements of the neural model:  

1. A set of synapses, or connecting links, which are characterized by a weight. 

2. An adder sums the input signals, weighted by the respective synaptic weights 

of the neuron. 

3. An activation function for limiting the amplitude of the output of a neuron by 

computing the weighted sum of input and biases, of which is used to decide if 

a neuron fires or not. [89-91] 
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Figure 13. Nonlinear model of a neuron. 

 

The output activity of neuron is expressed in equation (1): 

 

𝑦𝑘 = 𝜑 (∑ 𝑤𝑘𝑗𝑥𝑗

𝑚

𝑗=1

+ 𝑏𝑘) 

 

(1) 

 

 

where 𝑥1, 𝑥2, … , 𝑥𝑛 are the input signals, 𝑤1, 𝑤2, … , 𝑤𝑛 are the respective synaptic 

weights of neuron,  𝑏𝑘 is externally applied bias, 𝜑(∙) is the activation function and 

𝑦𝑘is the output signal of the neuron [94]. The activation functions can be either linear 

or non-linear and they control the output of a neuron [91]. There are multiple 

different activation functions and their suitability varies among different machine 

learning tasks [95]. The proper selection of activation function improves results of 

neural network [91]. 

As mentioned earlier a deep neural network consists of input layer, hidden layers 

and output layer. All of the layers are formed by nodes, which’s structure and 

functionality was presented in more details in top. A deep neural network has a 

number of components and hyperparameters that specify the configurations of a 

neural network. The components and hyperaparameters are: network topology, loss 

function, weight initialization, batch size, learning rate, epochs and data preparation. 

These components and hyperparameters are reviewed in more details in “Tuning 

deep neural networks” section. [96] 

2.2.3. Categorization of deep neural networks 

Deep learning refers to various types of machine learning techniques and 

architectures that exploit hierarchical multi-layer non-linear information processing 

[95]. Deep neural networks can be broadly categorized into three major categories: 

deep networks for unsupervised or generative learning, deep networks for supervised 

learning and hybrid deep networks [95]. These approaches differ in a way how the 

weights of a neural network are trained [97].   

Unsupervised or generative learning refers to no use of task specific supervision 

information in the learning process [95]. In unsupervised learning all the training 

samples are not labeled and the goal is to divide the samples into clusters based on 

the features of the samples [97]. Unsupervised learning networks are intended to 

detect high-order correlation of the observed data for pattern analysis when 

information about target class labels is available. Deep networks in unsupervised or 
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generative learning category can be either generative or non-generative but most of 

them are generative in nature, such as restricted Boltzmann machines (RBMs), deep 

belief network (DBNs), deep Boltzmann machines (DBMs) and generalized de-

noising and auto-encoders (Figure 10.). Recurrent neural network (RNN) can be 

considered as deep networks for unsupervised learning, but the model is also used for 

supervised learning. [95] 

 

 

Figure 14. Deep Belief Network, Boltzmann machine, Restricted Boltzmann 

Machine and Deep Auto-encoder. 

 

The most common approach of training is a supervised learning where all the 

training samples are labeled with the correct class [97]. Supervised learning networks 

are designed to directly provide discriminative power for pattern classification 

purposes. In supervised learning target label data are always available in direct or 

indirect forms. Most of the supervised architectures are shallow such as Hidden 

Markov Model (HMMs) and Conditional Random Fields (CRFs). [95] 

Semi-supervised learning has characteristics of both supervised and unsupervised 

learning where only a small subset of the data is labeled [97]. Neural networks that 

use semi-supervised learning are called as hybrid networks. Hybrid networks are 

intended to discriminate data with the outcomes of generative or unsupervised deep 

networks. Discrimination in hybrid deep networks can be accomplished by 

optimization or/and regulation of supervised learning networks or with using 

discriminative criteria for supervised learning to estimate the parameters in any of 

the deep generative or unsupervised deep networks.  [95] 

Reinforcement learning means a training approach where the agent (a decision-

maker) tries to maximize expected rewards in a particular environment over the long 

run. It interacts with through trials and errors to compute a behavior strategy with a 

given environment. Another common approach is fine-tuning, where previously 

trained weights are used as a starting point for new adjusted dataset or a new 

constraint. A technique where previously trained weights are adjusted with a new 

dataset is called as transfer learning. [97, 98]  
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2.2.4. Architectures 

2.2.4.1. Deep feedforward networks 

Deep feedforward networks (Fig 14.), also called as feedforward neural networks, or 

multilayer perceptrons (MLPs) are the first and simplest deep learning models [99]. 

A feedforward neural network has only direct connections from each neuron in one 

layer to the neurons of the next layer towards the output layer [100]. The calculations 

of feedforward network are based on approximating some function 𝑓∗. These models 

are called feedforward because data flows through function being evaluated from 

𝑥 without feeding the outputs back to itself. Feedforward neural networks typically 

compose together many different functions in a chain. A chain structure notation of 

three layer structured feedforward neural network for functions 𝑓(1), 𝑓(2) and 

𝑓(3) is 𝑓(𝑥) = 𝑓(3)(𝑓(2)(𝑓(1)(𝑥))), where 𝑓(1) is the first layer, 𝑓(2)  is the second 

layer and 𝑓(3)  is the third layer of the network. The overall length of the chain 

indicates the depth of the model. [99] 

Backpropagation is the most common learning techniques used in feedforward 

neural networks. Backpropagation is a gradient descent procedure to train the 

weights of the neural network with error function. The method calculates the gradient 

of the error function with respect to the neural network’s weights. A typical problem 

with backpropagation is that the algorithm finds only a local minimum of the error 

function rather than a global minimum [101]. Moreover, in some cases a network 

may overfit the training data when there is only limited amount of data available 

resulting to a poor performance with testing data. [102, 103] 

 

 

Figure 15. Example of feedforward network with an input layer, two hidden layers 

and an output layer. 

 

Deep neural nets have improved significantly results of artificial neural networks, 

but they have had a serious problem with overfitting. Deep neural nets are also slow 

to train and use. Regularization is that can be used for addressing a problem of 

overfitting by adding weights of a network to a loss function. There are two different 

regularization techniques called as L1 and L2. In L1 regularization, the absolute 

weights are added to the loss function to make a model more generalized. In L2 

regularization, the squared weights are added to the loss function. [96, 104]  

Beside L1 and L2, there is dropout regularization technique. The basic idea of 

dropout is that the dropout layer randomly drops out units of the neural network 

during training by preventing units from co-adapting too much (Fig 15.). Dropout 

means removing temporarily units of the network along with all its incoming and 

outgoing connections. Srivastava, Hinton et al. has showed that dropout improves the 
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performance of neural networks. Dropout layers can be only applied to fully 

connected regions of neural network, but although they are not limited to 

feedforward neural networks. Data augmentation is also one technique to reduce 

overfitting. Data augmentation means a process where data are artificially enlarged 

using label-preserving transformations. [14, 104] 

 

 

Figure 16. Standard neural network and neural network with dropout. 

 

The problem of feedforward neural network, that has standard connections is that 

the model learns high-level features and this leads to vanishing gradient problem 

[16]. To overcome the vanishing gradient problem feedforward networks with 

shortcut connections has been developed. A neural network can have shortcut 

connections that skip one or more layers (Fig 16.). In feedforward networks these 

shortcut connections can be directed only towards the output layer. The word 

perceptron is most of the time used to describe a feedforward network with a shortcut 

connection. [100, 102]   

Some studies have shown that shortcut connections achieve better results than the 

models that have standard connection [16, 105]. He, Zhang et al. has proved that 

residual networks are easier to optimize, and can gain accuracy from considerably 

increased depth of networks. The study has claimed that by skipping over layers the 

network avoids the problem of vanishing gradient. The residual network uses 

element-wise addition. Densenet connection enables a network to receive additional 

information from all preceding layers and passes on its own feature maps to all 

subsequent layers (Fig 16.). Since layers receive information from all preceding 

layers, the network requires fewer parameters and less computation to achieve better 

results than the models with standard and shortcut connections. [16, 17] 

 

 

Figure 17. a) Standard connection, b) shortcut connection network with double layer 

skip and c) densenet connection. 
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2.2.4.2. Convolutional neural networks 

Convolutional neural networks (CNN) are artificial neural networks that are 

specialized for processing grid-like topology [106]. They are biologically-inspired 

variants of Multi-Layer Perceptrons (MLPs) [107]. LeCun et al. introduced 

convolutional networks in the early 1900’s [108].  A typical convolutional neural 

network model consists of several convolutions, pooling, and fully connected layers 

[92]. Each layer of CNN generates higher level abstraction of the input data called as 

a feature map [97]. Computations inside of CNNs are based on specialized kind of 

linear operations called as convolutions [92]. Goodfellow, Bengion et al. described 

CNNs as: “Convolutional networks are simply neural networks that use convolution 

in place of general matrix multiplication in at least one of their layers.” [106].  

CNNs have demonstrated excellent performance at pattern recognition and 

classification [109]. CNNs improve idea of traditional machine learning systems by 

providing sparse interactions, parameter sharing and equivariant representation 

[106]. CNN is one of the neural networks that are appropriate for time series 

classification beside recurrent neural network (RNN) [110]. CNN is capable of 

learning deep features in recursive patterns and thus is good at inferring long term 

repetitive activities [110]. CNNs ensure some degree of shift and distortion variance 

due local receptive fields, shared weights and in some cases, spatial and temporal 

subsampling [13]. Local dependency, scale invariance and multivariate input support 

are benefits of CNN as compared to the other models [110, 111]. However, in some 

cases, local dependency may turn out to be disadvantageous because the size of 

convolutional kernels limits the captured range of dependencies between samples 

[112].  

Data that can be fed to CNNs are for example 1-D grid of time series data, images 

as a 2-D grid of pixels or even more complex multidimensional grids such as 3D 

[106]. All CNNs follow the same approach no matter what the dimensionality of 

given input data is. The only key difference is how the feature detector also called as 

filter slides across the data. In 1D CNNs convolution calculations are performed in 

one dimensional, whereas in 2D in two and in 3D in three dimensional respectively. 

In 1D-CNNs computational complexity is significantly lower than in 2D or 3D 

CNNs. Recent studies have shown that 1D-CNNs are capable to learn challenging 

tasks related to 1D-signals. Often 2D CNNs require much deeper networks than 1D 

CNNs involving 1D-signals. 1D-CNNs are well-suited for low-cost and real-time 

applications due to their low computational requirements. [113] 
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Figure 18. Example of CNN with two convolutional layers (Conv_1 and Conv_2), 

two max-pooling layers and two fully-connected layers (fc_3 and fc_4). 

 

CNN consist of convolutional and fully connected layers as represented in fig 16 

but there are also optional layers like nonlinear activation, pooling and normalization 

layers. A nonlinear activation function is often applied after each convolutional or 

fully-connected layer. The most commonly used activation function is rectified linear 

unit (ReLu) due its ability to enable fast training. Pooling layers reduce the 

dimensionality of feature maps. Reduction in dimensionality of feature maps enables 

the network to be robust and invariant to small shifts and distortions. Pooling layer 

can be configured based on the size of its receptive field. Strides of pooling layers 

determine the way how the filter convolves around the input volume. There are 

various types of pooling layers such as max pooling, average pooling and global 

average pooling. [106] 

2.2.4.3. Recurrent and long short-term memory networks 

Recurrent neural networks differ from feedforward neural networks in a way that 

they have at least one feedback loop. In a feedback loop, each neuron feeds their 

outputs back to the inputs of all the other neurons of a previous layer. [89] Recurrent 

neural networks are particularly useful when the solution depends not just on the 

current inputs, but on all previous inputs. During training, the recurrent neural 

network feeds data through a network including feedback loop from outputs to inputs 

until the values of the outputs do not change. It can be said that recurrent neural 

networks have a memory because the solution is based on the current input and the 

previous outputs. [114] 

Recurrent neural networks like the Long Short-Term Memory network (LSTM) 

adds native support for input data comprised of a sequence of observations [115]. 

LSTM is capable to solve many time series tasks using fixed size time windows 

better than feedforward [115].  LSTM is capable to learn long-term correlations in 

sequence and thus is also able to accurately model complex multivariate sequences 

[116]. RNN and LSTM make use of the time-order relationship between readings 

and therefore they are capable to recognize short activities that have a natural order 

[110].  
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Figure 19. Example of recurrent neural network with hidden layer. 

 

There are multiple different LSTM architectures. Vanilla LSTMs are the simplest 

LTSM models with memory cell of a single LSTM layer in the simple network 

structure [117]. Stacked LSTM networks contain multiple hidden LSTM layers 

stacked on top of each other into deep networks. Stacking enables the network to 

achieve deeper structure than Vanilla LSTM. CNN-LSTM is a model that consists of 

CNN model and LSTM model stacked on top of each other. CNN-LSTM model 

combines powers of CNN and LSTM models together. In CNN-LSTM model, CNN 

is used to learn features of samples, while the LSTM can be used to support sequence 

input and output type. Encoder-decoder LSTM means a LSTM model, which 

contains separate encoder LSTM, and decoder LSTM networks. Encoder LSTM 

maps a variable-length sequence to a fixed-length vector, while decoder LSTM 

network maps the vector back to a variable-length sequence. In bidirectional LSTM, 

the input sequence is learned both forward and backward, whereas in generative 

LSTM, the structure relationship of the input sequence is learned in a way that it can 

generate new sequences. The architectures are presented as block diagrams in figure 

18. [118-122] 

 

 

Figure 20. Block diagrams of LSTM architectures: a) Vanilla LSTM, b) stacked 

LSTM, c) CNN LSTM, d) Encoder-Decoder LSTM and e) bidirectional LSTM. 
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2.2.5. Tuning deep neural networks 

Tuning deep neural networks means a process where different combinations of 

parameters and components of a network are tested to improve performance of a 

model. These parameters that define a model’s holistic structure are called as 

hyperparameters. Hyperparameter are for example the number of neurons in a layer, 

the number of hidden layers, the activation function, the optimizer, the learning rate 

of the architecture, the number of epochs, batch size etc. Some of them have effect to 

other components and some components are more important than others. The choices 

of hyperpatameters and components are critical for learning algorithm. However, 

there is no foolproof recipe to find optimal hyperparameters for a model because they 

are largely problem and data dependent. [96, 123] 

The concept of network topology includes two components: the number of nodes 

in each hidden layer and the number of hidden layers. Network topology refers to the 

capacity of the network to fit a wide variety of functions. The capacity of the 

network controls whether a model is more likely to overfit or underfit. Thus, model 

with more layers and more nodes per layer has higher capacity than a model that has 

fewer of them. [124, 125] 

Neural networks are trained using stochastic gradient descent that requires 

selection of loss function. Loss function is a measure that calculates the model error. 

The model error describes the performance of a model with specific weights. Loss 

function is the objective function that is being minimised, also called as the cost 

function, or error function. The selection of loss function relies on the choice of 

output activation function. Wrong selection of loss function may result to mislead in 

evaluation of model performance. [126-129] 

Weight initialization means a procedure in which the weights of a model are 

initialized with small random values before training process [130]. There are 

multiple different methods to initialize the weights for a neural network like Xavier 

method, however yet there is no best weight initialization scheme investigated  [131, 

132]. Greedy Layer-wise pretraining and transfer learning can be used as 

initialization schemes [133, 134]. Greedy layer-wise pretraining is a technique for 

developing deeper neural networks by initializing weights in a region near a good 

local minimum [135]. Transfer learning refers to process where a model that is 

trained on one problem is used for another problem to improve generalization [134].  

Batch size, also called as mini-batch size is the number of samples used to 

estimate the error before updating the model parameters. Batch size has effect on the 

speed and stability of the training process. Small batch size has shown to improve 

generalization and it needs less memory at one time during the training process. A 

good default value for batch size is 32 but it can be chosen between 1 and a few 

hundreds depending on settings and data. [136, 137] 

Epochs means the number of passes through the training dataset that a model 

completes. It is highly important to stop training at the right time to improve 

generalization. Early stopping is a procedure where training is stopped at the time of 

smallest error with respect to the validation data set. Early stopping is perceived as 

one type of regularization method [138]. Criteria which stop training later on the 

average leads to improved generalization compared to faster stopping. However, the 

results of using later stopping criteria vary dramatically. Criteria which should be 

considered for early stopping are: no change, decrease, average change or an 

absolute change in metric over a given number of epochs. [139, 140] 
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Learning rate, also called as the step size, means the amount that each model 

parameter is updated per iteration [128]. It controls how quickly a model learns a 

problem. The learning rate is tightly related to the number of epochs and batch size. 

The learning rate is the single most important hyperparameter that should be tuned 

for a model that uses stochastic gradient descent. The range values that should be 

considered for the learning rate are less than 1.0 and greater than 10−6 . [124, 136] 

There are various techniques for hyperparameter tuning to gain better model 

performance. Manual search means a technique to select manually by hand the best 

candidate value for the hyperparameters in a model. Good starting point is to use 

default values of a model and change the hyperparameters of a model based on the 

model performance. Grid search means a technique that tests grid-like combinations 

of the provided values of each hyperparameter. In this technique disadvantage is that 

the grid does not have always good hyperparameter combinations. Random search is 

a technique where hyperparameter combinations are selected randomly. This 

technique provides bigger hyperparameter space and thus much higher probability of 

selecting better hyperparameter combinations to improve performance of a model.  

Bayesian optimization is a technique that accelerates hyperparameter selection. This 

approach chooses hyperparameter combinations based on the previous evaluations 

and focuses on those areas of the hyperparameter space that possibly brings the most 

promising testing scores. [96, 141, 142] 

2.2.1. Deep learning workflow in signal processing 

Deep learning neural networks are especially used for image classification, but they 

also fit well for signal processing tasks. Neural networks are capable to process 1D 

signal, time-series data, or even text as input data. The main steps in the deep 

learning workflow are importing data, preprocessing data, configuring network 

architecture, training network and checking network accuracy. Configuration of 

network architecture is iterative, because the objective is to find the best network 

architecture that produces the highest accuracy for test data. Test data need to contain 

similar data than data in the deployment environment.  [143] 

 

 

Figure 21. Deep learning workflow. 

 

Typically deep learning does not require much preprocessing and feature 

extraction, so often raw image is passed into the network to get results. Ideal deep 

learning does not work with signals because most often raw signal data are noisy, 

variable, and smaller than image data. Thus, raw signal data require careful 

preprocessing and sometimes feature extraction to ensure the best possible results. 

Possible preprocessing tasks are for example, removing signals with constant values, 

normalizing training predictors, or denoising. Classical signal processing filters are 

still used in preprocessing but the challenges with these approaches are that they 

filter out also some information of the desired signal along with noise. Denoising 
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with neural networks has proved to be a good selection to enhance quality of signals, 

for example to increase the noise-to-signal ratio. [143] 

Data scaling is recommended pre-processing step because unscaled inputs may 

cause a slow and unstable learning process. Input variables may have different units 

which may mean the variables have different scales. Input values should be small 

values in the range of 0-1 or standardized with a zero mean and a standard deviation 

of one. If the distribution of data has shape of a normal distribution, then it needs to 

be standardized, otherwise the data should be normalized. Moreover, the output 

variables must be scaled to match the scale of the activation function of the output 

layer of a neural network. [123, 144, 145] 

Time series forecasting is one of the most challenging tasks in data mining [146]. 

Often time series data are highly imbalanced and the most interesting predictive 

samples are the least represented [147]. Concrete example is epilepsy data were 

recordings may have length of multiple hours, but epileptic seizure may last only a 

few seconds to several minutes [23 p. 15]. In these types of scenarios, learning 

algorithms bias the models towards the majority class leading to performance 

degradation [147]. There are various resampling strategies to solve this type of 

problem such as random under sampling, random oversampling and random under 

sampling with synthetic minority over-sampling technique [148-150]. Beside 

resampling techniques, another way to deal with imbalanced data is cost sensitive 

learning [151]. Resampling strategies and cost sensitive learning can significantly 

improve the predictive evaluation of the models [152]. 

 To prepare signal data for neural networks the signal data are often transformed 

into spectrograms, the wavelets or Fourier’s transforms. A spectrogram is a time-

frequency transformation that represents raw signal data as a 2D image. Wavelet 

transformation is similar to spectrograms but includes time resolution for non-

periodic signal components. Wavelets are also used for feature extraction called as 

wavelet scattering or invariant scattering convolutional networks. Short-time Fourier 

Transform (STFT) transforms the signal into a 2D signal in frequency domain. The 

technique allows breaking the signal into overlapping segments to enable see 

predictions while the signal is being acquired. [143] 
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3. RELATED WORK 
 

Over three decades, research has attempted to solve the problem of EEG-based 

epileptic seizure detection to help clinicians in their work. Therefore, a huge number 

of research papers are published for identification of epileptic seizure. The published 

research papers can be categorized into three main classification problems. The first 

and the easiest one compared to other problems is to distinct classes: normal and ictal 

EEG patterns. The second problem is to distinct normal, inter-ictal and ictal EEG 

patterns. The third and most challenging is to address discrimination between 

classes: normal, ictal, inter-ictal, post-ictal and pre-ictal EEG patterns. This section 

only focuses on the literature related to two class classification problem to 

differentiate normal and ictal EEG patterns. [153, 154] 

There are huge amount of different approaches and techniques how to develop an 

epileptic seizure detector. From machine learning point of view in 2005, Aarabi et al. 

[155] proposed an automatic epileptic seizure detection system using a set of 

representative EEG features. They extracted features from time domain, frequency 

domain, wavelet domain to feed together along with auto-regressive coefficients and 

cepstral features into a back-propagation neural network (BNN). This research setup 

achieved an average classification accuracy of 93.00%. In 2007, Polat et al. [156] 

achieved higher accuracy of 98.68% using fast Fourier transform (FFT) as an input 

for a decision tree classifier. In same year, Subasi et al. [157] achieved a comparable 

accuracy of 94.50% by using wavelet transform to derive EEG frequency bands as an 

input for the mixture of experts (ME) classifier. [155-157] 

In 2008, Mirowski et al. [158] compared for the first time convolutional neural 

networks with SVM to predict epileptic seizure. Mirowski et al. concentrated on 

aggregated features that encode the relationship between pairs of EEG channels, such 

as cross-correlation, nonlinear interdependence, difference of Lyapunov exponent 

and wavelet analysis-based synchrony such as phase locking. They achieved a zero-

false-alarm seizure prediction on 20 patients out of 21, compared to 11 only using 

SVM. [158] One year later, Chandaka et al. [159]  used support vector machine 

(SVM) along with three statistical features as an input. Features were computed via 

cross correlation coefficients. The model achieved seizure detection accuracies of 

95.96%. [158, 159]  

Yuan et al. [160] used ELM and nonlinear dynamic features extracted from EEG 

in 2011. They used features such as approximate entropy (ApEN), Hurst exponent 

and scaling exponent obtained by detrended fluctuation analysis (DFA). ELM 

algorithm resulted satisfactory recognition accuracy of 96.5%. Khan et al. [161] used 

simple linear discriminant analysis (LDA) along with discrete wavelet transform 

(DWT). This study reached to an accuracy of 91.80%. In same year, Nicolaou et al. 

[162] used Permutation Entropy (PE) as an input for SVM. PE and SVM 

combination resulted accuracy of 93.80%. Zhou et al. [163] used lacunarity and 

Bayesian Linear Discriminant Analysis in intracranial EEG and achieved accuracy of 

96.67%. In 2014, Kumar et al. [164] disbanded the EEG signals into delta, theta, 

alpha, beta and gamma bands via wavelet transform. Statistical and non-linear 

features were extracted from these bands and fed into a SVM classifier. Kumar et al. 

achieved an accuracy of 97.50% with this setup. In 2016, Song et al. [165] used 

SVM, along with weighted-permutation entropy and achieved an accuracy of 

97.25%. In 2016, Bugeja et al. [166] used multilevel wavelet transform as a feature 

extractor and fed them into ELM classifier. [160-162, 165, 166] 
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In 2017, Hosseini et al. [167] used multimodal rs-fMRI and EEG with CNN 

classifier to localize an epileptogenic area. The result of this study was normal p-

value 1.85e-14 and p-seizure value 4.64e-27. In the same year, Arharya et al. [168] 

used 13-layer deep 1-D convolutional neural network to detect normal, preictal and 

seizure classes. They normalized data with z-score normalization and set the 

sampling rate of EEG signal to 173.61 Hz. The technique achieved an accuracy, 

specificity, and sensitivity of 88.67%, 90.00% and 95.00%, respectively. [167, 168]  

In next year 2018, Hussein et al. [169] used 1-D fully connected three layer LSTM 

network along with softmax classifier to detect epileptic seizure. The network 

included also time distributed dense layer and average pooling layer. They achieved 

convincing results of sensitivity, specificity, and accuracy of 100% each in two-class 

problems, three-class problem and five-class problem. Approaches of this study were 

evaluated over the University of Bonn. Recordings of Bonn EEG data set contain 

only one channel EEG and have no artefacts. Thus, Bonn dataset differs a lot 

compared to real life EEG data. In the same year, Liang et al. [170] tried a deep 

learning classifier to identify seizures through the EEG images. They justified their 

approach with a visual inspection to identify epileptiform abnormalities and achieved 

reasonably good result, with 84% for sensitivity, 99% for specificity, and 99% for 

accuracy. [169, 170] 

The recent deep learning approaches developed in [5, 171-174] are based on neural 

network architectures such as CNN, RNN, LSTM and GRU. CNN is suitable for two 

or more dimensional data, but not suited for one dimensional sequence data. RNN 

suffers from the gradient vanishing. LSTM and GRU improved on RNN, but they 

both still have the gradient decay problem. In 2019, Yao et al. [175] proposed 

promising a variety of RNN called IndRNN to detect epileptic seizure. The study 

obtained reasonably good results, the average sensitivity, specificity, F1-score, 

precision and accuracy are 88.80%, 88.60%, 88.71%, 88.69%, and 88.70%, 

respectively on CHB-MIT dataset. This approach exceeded the LSTM approach [5] 

and the CNN approach [171] with an improvement of at least 4%. 
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4. METHODS 
 

4.1. Designed system 

The development of neural networks is typically time consuming task because of the 

large amount of hyperparameter combinations. It is convenient to use publicly 

available tools or build up a system that covers the whole deep learning workflow 

pipeline. This fact led to the development of a system that attempts to include the 

main core of the deep learning workflow from pre-processing to prediction 

visualization. The designed system contains python modules pre-process, 

hyperparameter search and evaluation, MySQL database for storing data and Jupyter 

notebook for visualizing predictions and evaluation metrics. The sequence diagram 

of the system is illustrated in Figure 20. 

Pre-processing module contains pre-processing and segmentation functionality. 

Pre-processing module produces hdf5 file and saves it on disk for hyperparameter 

search. Hyperparameter search module loads data from hdf5 file in batches and 

performs hyperparameter optimization for selected model type such as VGG, VGG-

LSTM, DenseNet 1D etc. Model scripts are located in hyperparameter search 

module. Hyperparameter search uses k-fold cross validation to evaluate model 

performance on a subset of the dataset. In the hyperparameter search the subset of 

dataset contains only recordings which included epileptic seizure events. Thus, 

recording that included only normal EEG data was left out in this study. The subset 

of dataset was used to decrease hyperparameter tuning time. The developed system 

uses MySQL database for storing evaluation metrics and model related information. 

The structure of the database is described in Figure 21. 

After each experiment, all evaluation metrics are stored into database. The 5-folds 

cross validation was used to evaluate a model. If F1-score of test dataset of the 

evaluated model does not reach over given threshold (for example F1-score > 0.75) 

then hyperparameter search continues to a new experiment without looping the 

remaining folds. A model along with trained weights is stored in a folder named with 

the present experiment. The hyperparameter search module uses Bayesian 

optimization to optimize a network structure and configurations.  
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Figure 22. Sequence diagram. 

 

The designed system saves metrics and other valuable data throughout the 

machine learning pipeline. The database structure of the system is illustrated in 

Figure 23. The experiment table is a parent table of the fold table. The fold table is a 
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parent table of epoch_point, confusion_matrix, metric and model tables. The column 

experiment_id is a primary key of the experiment table and creates a relationship 

with the child tables. Therefore, experiment_id column in each child table is a 

foreign key of the child tables. The experiment table contains information about 

single experiment. The child table epoch_point contains accuracy and loss of each 

epoch. The epoch_point table is used to visualize training and validation curves. The 

child table, confusion_matrix contains a confusion matrix of single fold calculated 

from test results. The table metric is a derivation table calculated from 

confusion_matrix table. The table model contains a model file_name that matches 

with a model file located in a disk described in the sequence diagram in Figure 22.  

 

Figure 23. Database structure. 

4.2. Input formats 

In this study, EEG signal, 1D-FFT, 2D-FFT, 2D-FFT magnitude spectrum, 2D-

FFT phase spectrum and magnitude spectrograms were used separately in different 

experiments as an input for a neural network. Raw signals have been widely used as 

an input for a neural network but often a signal is transformed into a frequency-

domain. The EEG signal is a time-domain signal which can be transformed into 

frequency-domain signal through Fourier transform. The power of the Fourier 

transform has found wide use in diagnostics, speech and audio processing based on 

mechanical vibration [176, 177]. The discrete Fourier transform (DFT) is one type of 

the FFT and it converts a finite signal into a same-length complex valued frequency-

domain signal. The DFT can be computed by: 
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𝑓(𝑚) =
1

𝑛
∑ 𝐹(𝑘)exp (2𝜋𝑖

𝑚𝑘

𝑛
)

𝑛−1

𝑘=0

 

 

 

(2) 

 

for 𝑚 = 0, … , 𝑛 − 1 [178 p.400, 179]. When FFT is applied on the signal, the result 

is a set of complex numbers.  The complex numbers contain a real part and an 

imaginary part. The magnitude and phase can be calculated by the real and imaginary 

parts of the complex numbers. The magnitude is similar to the amplitude of the 

signal, but does not contain the direction information thus it has only positive values. 

The magnitude of a variable is the measure of how far the quantity differs from zero. 

Respectively, the amplitude of a variable is the measure of how far and what 

direction the quantity differs from zero. Figure 23. In below illustrates the relations 

between the real and the imaginary parts of the complex numbers, and the magnitude 

and the phase. [180, 181] 

 

 

Figure 24. Illustration of relations between the complex numbers and the imaginary 

part, the real part, the magnitude and the phase. C= complex numbers, a = real part, b 

= imaginary part, i = imaginary unit = √−1, M = magnitude and ϕ = phase. 

 

A spectrogram is a visual representation of the spectrum of frequencies of a signal 

varied within time generated by the fast Fourier transform (FFT). Spectrograms have 

been used in the analysis of complex sleep apnea to recognize oscillation of heart 

rate variability and detection of subtypes of epilepsy. Once the FFT is applied to 

short fixed windows of the signal in time, the result is known as the short-time 

Fourier transform (STFT) of the signal. SFFT is an algorithm that is used for 

converting a time-domain signal in fixed segments into and equivalent frequency-

domain signal. The spectrogram is built by stacking a sequence of spectra together in 

time. Spectrogram has frequency along the vertical axis, time along the horizontal 

axis, and the amplitude is shown as a gray level. [178 p.400-402, 182 p. 478-481, 

183, 184]  
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The Fourier transform can be performed in higher dimensions [185]. In this study, 

two-dimensional FFT was investigated as one input option for neural networks. The 

2D discrete Fourier Transform (DFT) of 𝑓, donated by 𝐹(𝑘, 𝑙), is given by: 

 

𝐹(𝑘, 𝑙) = ∑ ∑ 𝑓(𝑥, 𝑦)exp (−2𝜋𝑖(
𝑥

𝑀
𝑘 +

𝑦

𝑁
𝑙))

𝑁−1

𝑦=0

𝑀−1

𝑥=0

 

 

(3) 

 

for 𝑘 =  1,2,3, … , 𝑀 − 1  and 𝑙 =  0,1,2, … , 𝑁 − 1. The 2D FFT has been used for a 

long time in image processing. Significant solution that uses the 2D-FFT is MRI. 2D 

FFT is needed to reconstruct a 2D image in MRI. The first FFT transformation 

converts MR signals to frequency projection and the second FFT transformation 

converts frequency projections to 2D image [186]. In image processing the 2D FFT 

is used in image compression, sharpening, edge detection and smoothing. A two-

dimensional fast Fourier transform is carried out on by executing a one-dimensional 

fast Fourier transform on all vertical lines of sample points, storing the first FFT 

transformation values at one or more specified positions in each vertical line in an 

internal buffer, and then executing a one-dimensional fast Fourier transform on each 

resulting horizontal line of transformed data. [185]  

A 2D-FFT contains real part, imaginary part, magnitude and phase components 

just like a 1D-FFT. This is because performing a 2D-FFT is actually equivalent to 

performing two 1D transforms as: 

1. Performing a 1D transform on each row of image 𝑓(𝑚, 𝑛) to get 𝐹(𝑚, 𝑙)  
2. Performing a 1D transform on each column of  𝐹(𝑚, 𝑙)  to get  𝐹(𝑘, 𝑙). 

 

A 2D-FFT provides shift and scale properties just like the 1D-FFT. There is a 

relationship that can be derived from shifting and image in one domain to the other. 

Shifting means rotation around the boundaries. Scale property means that as an 

object grows in the image, the corresponding features in the frequency domain will 

expand. The 2D-FFT provides one property that the 1D-FFT does not contain and 

that is rotation property. In the 2D-FFT, the content in the frequency domain is 

positioned based on the spatial location of the content in the space domain. This 

means that rotating the spatial domain contents rotates the frequency domain 

contents. [187]  

4.3. Used CNN architectures 

In this study, VGG, DenseNet 1D, VGG-LSTM and 3D convolutional neural 

network were tested, but only results from VGG and DenseNet 1D were reported. 

VGG is very deep convolutional network ConvNet architecture that is specialized for 

large-scale image recognition. It was developed by Karen Simonyan and Andrew 

Zisserman in ImageNet ILSVRC-2014. The aim of the VGG project was to 

investigate how the depth of the ConvNet affects the accuracy in the large-scale 

image recognition setting. It was investigated that the depth of neural networks is 

beneficial for classification accuracy. Original VGG contribution has 16-19 weight 

layers by means of very small (3x3) convolutional filters. The work showed that 

significant improvement on the prior art configurations can be achieved by very 

small filters with pushing the depth to 16-19 weight layers. The design of VGG 
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architecture was inspired by [14, 188]. VGG was used in the present work for feature 

extraction. [15] 

 

Table 2. VGG-19 [15] 

Layers Output size VGG 19 

Block (1) 224 × 224 [3 ×  3 conv, 64] × 2 

112 × 112 2 × 2 max pooling 

Block (2) 112 × 112 [3 ×  3 conv, 128] × 2 

56 × 56 2 × 2 max pooling  

Block (3) 56 × 56 [3 ×  3 conv, 256] × 3 

28 × 28 2 × 2 max pooling 

Block (4) 28 × 28 [3 ×  3 conv, 512] × 3 

14 × 14 2 × 2 max pooling 

Block (5) 14 × 14 [3 ×  3 conv, 512] × 3 

7 × 7 2 × 2 max pooling 

Fully connected layer 1 × 1 Dense 4096 

Fully connected layer 1 × 1 Dense 4096 

Fully connected layer 1 × 1 Dense 1000 

Classification layer 1 × 1 Softmax 

 

In 2017, DenseNet was introduced in Densely Connected Convolutional Networks 

paper. The paper received Best Paper Award at the IEEE Conference on Computer 

Vision and Pattern recognition (CVPR). The primary developer was Gao Huang. 

DenseNet achieved state-of-art performances across several highly competitive 

datasets. DenseNet required substantially fewer parameters and less computation to 

achieve higher results than ResNet. DenseNet needs fewer filters in each layer since 

each layer receives feature maps from all preceding layers. DenseNet handles the 

error signal better by propagating it to earlier layers more directly. Through 

propagation a network maintains low complexity features and a strong gradient flow. 

In this work DenseNet was used as an option for feature extractor from raw EEG 

signal beside VGG. [17] 

 

Table 3. DenseNet-121 [17] 

Layers Output size DenseNet-121 

Convolution 112 × 112 7 × 7 conv, stride 2 

Pooling 56 × 56 3 × 3 max pool, stride 2 

Dense block (1) 56 × 56 [
1 ×  1 conv
3 ×  3 conv

] × 12 

Transition layer (1) 56 × 56 1 × 1 conv 

28 × 28 2 × 2 average pool, stride 2 

Dense block (2) 28 × 28 [
1 ×  1 conv
3 ×  3 conv

] × 12 

Transition layer (2) 28 × 28 1 × 1 conv 

14 × 14 2 × 2 average pool, stride 2 

Dense block (3) 14 × 14 [
1 ×  1 conv
3 ×  3 conv

] × 12 

Transition layer (3) 14 × 14 1 × 1 conv 
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7 × 7 2 × 2 average pool, stride 2 

Dense block (4) 7 × 7 [
1 ×  1 conv
3 ×  3 conv

] × 12 

Classification layer 1 × 1 7 × 7 global average pool 

 

In this paper VGG-LSTM was tested but not reported in the paper. VGG-LSTM 

achieved poor results on the CHB-MIT dataset because of lack of time. General 

CNN-LSTM has been developed for video analysis. It is widely used in emotion and 

visual recognition from videos. [189, 190] Shahbazi et all. used CNN-LSTM with 

short-time Fourier transform (STFT) input for seizure prediction. The task of CNN is 

to extract high-level time frequency from the samples. The LSTM cell of the CNN-

LSTM model uses the temporal trajectory of these features. [18] 

3D convolutional neural network was also tested in this study but was not reported 

in the paper. 3D convolutional neural network achieved poor results mainly because 

of lack of time. In 2016, 3D convolutional neural network made great progress in 

dealing with various video analysis tasks. 3D convolutional neural network is 

capable to handle appearance and motion information simultaneously. The features 

with a linear classifier can achieve good results on different video analysis. [20] 

4.4. Bayesian optimization 

Bayesian optimization is an approach to automatically optimize objective function by 

finding a global minimum of the function. Bayesian optimization typically works by 

assuming the unknown function that was sampled from a Gaussian process. In 

machine learning Bayesian optimization is used for tuning hyperparameters. 

Hyperaparameters control the rate of learning and the capacity of the underlying 

model. The Bayesian optimization approach should be considered in a situation 

where the number of tuning hyperparameters is high and the evaluation of a model 

takes a long time. [191, 192].  

Bayesian optimization constructs a probabilistic model for 𝑓(𝑥) and then exploits 

this model to make decisions towards the global minimum of the function. The 

procedure relies on the information gathered from previous evaluations rather than 

local gradient and Hessian approximations. A prior over functions must be selected 

before applying Bayesian optimization A prior could be for example accuracy, loss 

or etc. which will express assumption about the function being optimized. Secondly, 

acquisition functions must be determined to deploy the model to decide the next 

point to evaluate. [192] 

4.5. Validation methods and evaluation metrics 

Designed system used 5-fold or leave-one-out cross validation method. Used 

validation method depended on F1-score computed on test data. The system executed 

more folds if the F1-score exceeded given threshold which was 75%. 5-fold cross 

validation and leave-one-out cross validation are illustrated in fig 24. In both cross 

validations at first test data is isolated from training data for final evaluation. In 5-

fold cross validation training data is split 5 times into validation and training data. 

The performance measure reported by 5-fold cross validation is the average of the 

values computed in the loop. Leave-one-out means that data is split into training and 
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validation dataset only once. The performance measure is therefore the measure 

computed in one loop. Leave-one-out approach may have a high bias if there is a 

limited amount of data. Thus, k-fold cross validation provide results in a less biased 

model compared to other methods. [193, 194] 

 

 

Figure 25. 5-fold cross validation in the left and leave-one-out cross validation on the 

right. 

 

Prediction models have four results: true positives (TP), false positives (FP), true 

negatives (TN) and false negatives (FN) which can be presented by a confusion 

matrix. In Figure 26. is a confusion matrix which includes information about actual 

and predicted observations carried by a binary classification algorithm. The 

performance of classification algorithm is evaluated using the data in the confusion 

matrix. Results of confusion matrix can be described as the following: 

 True positive (TP) is a number of positive cases that were correctly identified 

  False positive (FP) is a number of negative cases that were incorrectly   

classified as positive 

 True negative (TN) is a number of negative cases that were correctly 

classified 

 False negative (FN) is a number of positive cases that were incorrectly 

classified as negative. [195] 

  

 

Figure 26. Confusion matrix. 

 

The designed system saved multiple evaluation metrics into a database for post 

analysis. The evaluation of the model performance was performed on a testing 

dataset which was 25% of all data. During training accuracy and loss were computer 

from the training and validation datasets and saved into database simultaneously. 

Used loss function was binary cross entropy. Because of imbalanced data the 

accuracy of overall dataset was not valid evaluation metric for the epilepsy detection. 
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During training class weights were calculated and given to a model.  The class 

weights affects only to loss function not to accuracy. [195] 

Accuracy is not a valid evaluation metric for detection problem where data is 

imbalanced because accuracy stays high even if a model is able to detect all normal 

segments but not any rarely appearing segments. The formula of accuracy is 

described in Equation 4. The error rate is computed as the number of all incorrect 

predictions divided by the total number of the dataset. Simply it can be computed as 

1 – accuracy. Similar to accuracy error rate should not be used to evaluate model 

performance on imbalanced dataset. The formula of the error rate is described in 

Equation 5. [195, 196] 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
TP + TN

TP + TN + FN + FP
=  

TP + TN

P + N
 

 

 

 

(4) 

 

𝐸𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 =  
FP + FN

TP + TN + FN + FP
=  

FP + FN

P + N
= 1 − 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 

 

(5) 

 

In the evaluation phase precision, sensitivity, specificity, F1-score, false positive 

rate, error rate and accuracy were computed from the test dataset. Precision is a 

percentage of positive instances out of the total predicted positive instances. 

Dominator of true positive instances is the model prediction done as positive from 

the whole dataset. It other words: “how much the model is right when it proposes to 

be right”. The formula of precision is described in Equation 6. [195, 196] 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
TP

TP + FP
 

 

(6) 

 

Sensitivity also called as recall or true positive rate describes a percentage of 

positive instances out of the total actual positive instances. In the present study, 

sensitivity word is used. In sensitivity the dominator of true positives is the actual 

number of positive instances present in the dataset. In other words: “how much extra 

right ones, the model missed when it predicted the right ones”. The formula of 

sensitivity is described in Equation 7. [195, 196] 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑦 =
TP

TP + FN
=  

TP

P
 

 

(7) 

 

Specificity also known as the true negative rate is a percentage of negative 

instances out of the total actual negative instances. In this study, specificity word is 

used in this context. In specificity the dominator of true negatives is the actual 

number of negative instances present in the dataset. It is similar to sensitivity, but 

specificity regards negative instances instead of positive ones. Simply put: “how 

many healthy patients were not having epilepsy and were told they don’t have 

epilepsy”. The formula of specificity is described in Equation 8. [195, 196] 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
TN

TP + FP
=  

TN

N
 

 

(8) 
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F1-score is the harmonic mean of precision and sensitivity. F1-score is high if both 

precision and sensitivity are high and if precision or sensitivity goes down then F1-

score also goes down. Otherwise speaking F1-score is high if the positive predicted 

are actually positives and a model does not miss out on the positives and predict 

them negative. In some application precision or sensitivity needs to be higher than 

another, thus in this type of cases F1-score cannot be the measure to follow. The 

formula of F1-score is described in Equation 9. [195, 196] 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  
2 ∙ precision ∙ recall

precision ∙ recall
 

 

(9) 

 

False Negative rate (FNR) or Miss Rate is computed as the number of incorrect 

negative predictions divided by the total number of actual positives. False Positive 

Rate (FPR) or Fall-out describes the probability of false alarms. It is computed as the 

number of incorrect predictions divided by the total number of actual negatives. The 

formulas of the False Positive Rate and True Positive Rate are described in Equation 

10 and Equation 11 respectively. [195, 196] 

 

𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =
FN

FN + TP
 

 

 

(10) 

 

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =
FP

FP + TN
 

 

(11) 

 

In situations, where data is imbalanced and both precision and sensitivity/recall 

needs to be taken into account it is recommended to use precision-recall curve. The 

precision-recall curve is the curve between precision and recall of various threshold 

values. A receiver operating characteristics curve (ROC curve) is a plot that 

illustrates performance measurement for binary classification tasks. The x-axis of the 

ROC curve indicates the false positive rate and the y-axis indicates the true positive 

rate. [197] 

ROC curve is appropriate measurement only when the observations are balanced 

between each class, whereas precision-recall curve is appropriate for imbalance data. 

Davis et al. used highly imbalanced data in their study and the authors noted that the 

true positive rate should be used with precision instead of with the false positive rate 

to evaluate performance. AUC is the area under the curve. It can be computed from 

both ROC and precision-recall curve. AUC-PR is a more suitable measure for 

imbalanced data than AUC-ROC since it is derived from precision and recall instead 

False Positive Rate and True Positive Rate. [197] 
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Figure 27. Receiver operating characteristics curve on the left and precision-recall 

curve on right. AUC is the area under the curve. 
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5. IMPLEMENTATION 

5.1. Workflow 

5.1.1. Data preparation 

In the present study, an open-source scalp EEG database, provided by the 

Massachusetts Institute of Technology (CHB-MIT) was used. The recordings of 

CHB-MIT database were collected from 23 patients diagnosed with epilepsy. The 

database included recordings from 17 females (age from ~1.5 to 19 years) and five 

males (age from 3 to 22 years) (Appendix 12). Case chb21 was obtained 1.5 years 

after case chb01 from the same female subject. Case chb24 was added later to the 

collection without personal information. All subjects were requested to stop medicine 

related to epilepsy one week before data collection. A sampling frequency of the data 

was 256Hz with 16-bit resolution and the recordings were in European Data Format 

(EDF). The recordings included 198 seizures. The beginning and end of each seizure 

were marked in the .seizure annotation files.  

Data preparation is the process of cleaning and transforming data for machine 

learning or analytics. In CHB-MIT database, EEG montage types varied between 

recordings and some of them included polygraph channels such as ECG, VNS, LOC-

ROC, LUE-RAE, EKG1-EKG2, EKG1-CHIN. The majority of the recordings were 

recorded in a longitudinal montage, but a few of the recordings were in a common 

reference montage or had only the direct signals from each electrode. All the data 

were transferred to the international 10-20 system of electrode placement in bipolar 

longitudinal montage (Figure 30.) by selecting particular channels and then 

calculating signal derivatives. Some recordings had duplicate channels, empty 

channels and channels that do not belong to the 10-20 system. The transformation 

was needed to make the montages uniform in the collection. 

 

 

Figure 28. The 10-20 system of electrode placement in bipolar longitudinal montage. 

 

In machine learning, data needs to be scaled into a common scale, without 

distorting differences in the ranges of values. Data normalization scales variables to a 

specific range, while standardization transforms data to have a mean of zero and a 

standard deviation of 1. This standardization is called as z-score standardization. 
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Both of these techniques were experimented in the present study. Identification of 

outliers in EEG signals for machine learning is important difficult task. Most of the 

EEG recordings were contaminated by power line noise at 60 Hz for the CHB-MIT 

dataset. In the frequency domain, it is convenient to effectively remove the power 

line noise by excluding components of 57–63 Hz and 117–123 Hz for a power line 

frequency of 60 Hz. The DC component (at 0 Hz) was also removed in some 

experiments. Based on this fact, effect of simple digital filters (high pass and low 

pass) and standardization algorithm that is robust to outliers was examined. 

One important parameter in data preparation is a segment length of the input 

sample. In this context, it is vital to keep the length of the segment long enough. 

Short segments enable an algorithm to detect more closely the start and the end of a 

seizure but in other hand, a small segment might not have enough features for an 

algorithm to detection (Figure 32.). Segment length of 1 second, 2 seconds, 5 

seconds, 10 seconds and 1 minute were experimented. Eventually, a length of the 

segment was selected based on a literature regarding to the duration of a seizure. A 

seizure may last from seconds to minutes or even hours depending on seizure type. 

For example, atonic seizure may last only 1 to 2 seconds, whereas auras or focal 

onset impaired awareness seizures may last up to 2 minutes. Some of the recordings 

did not split equally into given segment length. Too short segments were discarded 

from the data. 

 

 

Figure 29. 1 second, 5 second and 1 minute segments labeled as 1 to indicate 

epilepsy segment. Seizure starts at 2996 seconds and ends at 3036. Smaller segment 

length gives more accurate start point of epileptic seizure, but has a less partition of 

an epileptic seizure segment than longer segment. 

5.1.2. Feature engineering 

Choosing a suitable representation of the input data is a major part of the machine 

learning process and effects on a model selection. In the present study, magnitude 

spectrogram was the first representation of the input data (Figure 30.). The 

transformation transforms the EEG signal from time-domain signal to the frequency-

domain representation of the signal. Selection of spectrograms influenced on data 

scaling process. Before EEG signals were transformed to magnitude spectrograms, 

EEG signals were standardized with standardization algorithm that is robust to 

outliers. After spectrogram transformation, spectrograms where scaled with a 

logarithmic function with a small constant. A small constant was used to prevent 

logarithmic function to get zero values. Magnitude spectrograms as representation of 

the input data were used only in the first experimental group. 
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Figure 30. On the top left epileptiform activity in EEG signal, on the top right 

epileptiform activity of the same epileptiform activity in magnitude spectrogram, on 

the bottom left normal brain activity in EEG signal and on the bottom right the same 

normal brain activity in magnitude spectrogram (case chb01_03). 

 

EEG signals in time-domain representation waw one candidate representation of 

the input data (Figure 29.). Time-domain EEG signals were examined in each 

experimental group testing all normalization techniques presented in this study. The 

effect of the standardization algorithm that is robust to outliers was examined in the 

first experiment. In the next experiment bandpass and low pass filters along with 

min-max normalization was examined. Finally, in the last experiment the effect of 

bandpass and low pass filters along with z-score normalization was investigated. 

Selection of data scaling technique depends on the data. The purpose of going 

through all these experiments was to find a right scaling technique for the dataset.  

 

 

Figure 31. 120 seconds of epileptiform activity in channel FP1-F7 of case chb01_03. 
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A 1D-FFT was another representation candidate of the input data. The DFT 

needed data segmentation before the transformation to frequency-domain because the 

transformation disposes time information. A 1D-FFT was used as representation of 

the input data only in one experiment. In this experiment a bandpass and a low pass 

filtering and min-max scaling was utilized before the DFT transformation. The 

results of a 1D-FFT were compared with the results of a 2D-FFT. 

A 2D-FFT was the most experimental representation candidate of the input data of 

the other candidates for a detection of an epileptic seizure (Figure 31.). The purpose 

of examining a 2D-FFT was to investigate does spatial information improve the 

detection results. A 2D-FFT has spatial shift and rotation property that are commonly 

used in image classification tasks. Similar to 1D-FFT preprocessing, data 

segmentation was needed to do before the transformation into frequency-domain 

signals. In the first experiment a bandpass and a low pass filtering and min-max 

scaling was applied before the DFT transformation in 2D. In the last experiments a 

bandpass and a low pass filtering and z-score scaling was used before the 

transformation. In the last experiments, it was investigated how a magnitude and a 

phase of a 2D-FFT effect on detection results.  

 

 

Figure 32. 2D FFT of a normal brain activity and an epileptiform brain activity (2 

seconds length segment). 

5.1.1. Model selection 

A selection of representation of the input data has an effect on a model selection. 

Choosing magnitude spectrograms as one representation of the input data, an 

intuitive model selection was VGG model architecture. The VGG model is 2D 

convolutional neural network that is used for image classification. The input shape of 

VGG must be (height, width, channels). A height and width is the size of an image 
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and channels are color channels of an image. In the present study, one segment 

produced 18 spectrograms. A number of spectrograms were equal to a number of 

EEG signals. In the present study, VGG model handled spectrogram size similarly to 

image size, but a number of spectrograms were handled similarly to image color 

channels. 

 Using grayscale images in image classification a number of channels is one. 

Therefore, this approach enabled to use time-domain EEG signals as one 

representation of the input data of the VGG model. In this context, height was the 

number of EEG signals; a width was a length of a segment and channels was handled 

similarly to a number of color channels in a grayscale image. The same approach was 

used in experiments where FFT variants were a representation of the input data. 

In the present study, the DenseNet 1D model was used only along with time-

domain EEG signal data. An input shape of DenseNet 1D must be (width, channels). 

Thus, this fact led to conclusion that DenseNet 1D could be used along with time-

domain EEG signal data and FFT variants. The decision to use DenseNet 1D only for 

time-domain EEG signals was based on the slowness of training. The feature maps 

produced by the DenseNet 1D expanded too large causing slowness in the training 

process. Hence, examination of DenseNet 1D remained just at a satisfactory level 

and caused to leave out experiments in which DenseNet 1D could have been used 

with all FFT variants. 

5.1.2. Hyperparameter tuning 

The detection results of DenseNet 1D model were compared with the results of VGG 

model in experiments in which time-domain EEG signals were used as a 

representation of the input data. The hyperparameters that were tuned for DenseNet 

1D were a number of blocks, a bottleneck size, dilations, a growth rate and a number 

of epochs in each experiment. A number of blocks in this context refer to a one-

dimensional array that consists of the number of DenseNet composition layers in 

each block of DenseNet 1D. Typical DenseNet block has four blocks and one block 

contains multiple basic DenseNet composition layers followed by a transition layer 

or a classification layer. [17] The bottleneck size gives filter size to the bottleneck 

layers in DenseNet block. True set dilations parameter adds space between each cell 

in filters. The growth rate means the number of feature maps of one layer. The 

learning rate is a hyperparameter that controls the rate of speed at which a model 

learns. The number of epochs is the number how many times algorithm goes through 

a training dataset.  

VGG was used in the experiments where an input data type was spectrograms, 1D-

FFT, 2D-FFT, 2D-FFT magnitude, 2D-FFT phase or raw EEG signal. Tuned 

hyperparameters of VGG in each experiment were a number of blocks, a number of 

convolutional layers in one block, a number of filters in one convolutional layer, a 

number of dense layers, a size of dense layers, a dropout rate and a number of 

epochs. The number of blocks in VGG refers to block which contains one or multiple 

convolutional layers, followed by max-pooling layer [15]. The structural logic of 

VGG remained the same even number of blocks varied. A batch size was tuned only 

in the experimental group 1 and a learning rate was not tuned in the experimental 

group 1. The hyperaparameters and their values of DenseNet 1D and VGG are 

described in Table 6. 
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Table 4. Model, tuned hyperparameters and their values 

Model Hyperparameters Values 

DenseNet 1D a batch size (only in the experimental 

group 1) 

 [32, 64 ,128] 

a number of blocks = 

[Block 1, Block 2, Block 3, Block 4] 

Block 1 = [4, 6] 

Block 2 = [4, 6, 8, 10, 12] 

Block 3 = [4, 6, 8, 10, 12] 

Block 4 = [4, 6, 8, 10, 12] 

a bottleneck size  [2, 4, 6] 

dilations [False, True] 

a growth rate [4, 8, 16, 32] 

a learning rate (not in the 

experimental group 1) 

[0.0001, 0.001, 0.01, 0.1] 

a number of epochs [20, 40, 60, 80] 

VGG a number of blocks  [1, 2, 3, 4, 5, 6] 

a number of convolutional layers in 

one block 

[1, 2, 3] 

a number of filters in convolutional 

layers  

[4, 8, 16, 32] 

a number of dense layers [1, 2, 3] 

a size of dense layers [128, 256, 512, 1024] 

a dropout rate [0.1, 0.2, 0.3, 0.4,0.5, 0.6, 

0.7, 0.8, 0.9] 

a learning rate (not in the 

experimental group 1) 

[0.0001, 0.001, 0.01, 0.1] 

a batch size (only in the experimental 

group 1) 

[32, 64 ,128] 

a number of epochs [20, 40, 60, 80] 

 

5.2. Experiments 

The experiments of the present study were grouped into three experimental groups 

based on executed pre-processing steps. One experiment of a specific experimental 

group followed the same pre-processing steps than other experiments within the 

experimental group. The objective of composing experimental groups was to 

organize experiments and to identify similarities between the experiments.  

The hyperparameters of the DenseNet 1D and VGG were optimized by 

maximizing a validation F1-score in each experiment. The input parameters of the 

objective function for VGG are described in section Hyperparameter tuning in the 

present study. Because of data imbalance class weights were computed and fed to a 

classifier to penalize a loss function during training. The leave-one-out procedure 

was used to validate trained models if the model did not exceed a given threshold 

value for validation F1-score. If a model exceeded a given threshold (75%) then 5 

folds cross validation was utilized. 
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5.2.1. Experimental group 1 

In the experimental group 1, EEG signal was standardized by robustScalar of scikit-

learn python library with the range between the 1st quartile (25th quantile) and the 

3rd quartile (75th quantile). RobustScalar method removes the median and scales the 

data according to the quantile range using statistics that are robust to outliers. The 

data were centered before scaling. After data scaling, EEG signal was segmented into 

equal segments of 2 seconds.  

Each experiment of the experimental group 1 had the same data split procedure. 

The data was split randomly into training, validation and testing datasets. The 

procedure is called as subject dependent split. In the subject dependent split samples 

from a single patient can be in training, validation and testing datasets. In the 

experimental group 1, 20% of the data was taken for testing, 20% for validation and 

60% for training. The experiment 1 was the only one experiment within the 

experimental group 1 that exceeded 75% F1-score threshold. Thus, 5 folds cross 

validation was used only for this experiment and the leave-one-out cross volition was 

used for others. 

In the experiment 1, EEG segments of 2 seconds were transformed into magnitude 

spectrograms. One EEG segment produced 18 magnitude spectrograms after 

transformation. The problem with spectrogram representations is that its values 

possess a large dynamic range. As a result, small values may be dominated by large 

values. Logarithmic compression was used to balance out this decadency by reducing 

the difference between large and small values and make the distribution more 

Gaussian. Logarithmic compression function is 𝑓(𝑥) = log (𝑥 + 𝑐), where x is an 

input signal and c is a small constant. In the experiment 1, 1e-9 was used as a small 

constant in logarithmic compression. In the experiment 1, the magnitude 

spectrograms and VGG model were investigated for epileptic seizure detection. The 

purpose of the experiment was to investigate is VGG capable to detect epileptic 

seizure patterns from magnitude spectrograms. 

In the experiments 2 and 3, EEG signal segments were used as a representation of 

the input data. In the experiment 2, the DenseNet 1D and EEG signal were 

investigated and in the experiment 3, VGG with EEG signal as input representation 

were examined. The objective of the experiment 2 and 3 was to compare 

performance of 1D and 2D convolutional neural networks for EEG signal. The block 

diagram of the experimental group 1 is illustrated in Figure 33. 

 

 

Figure 33. The block diagram of the experimental group 1. 
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5.2.2. Experimental group 2 

In the experimental group 2, EEG signals were filtered by bandpass and low-pass 

filters to remove the powerline noise. The powerline noise was removed by 

excluding components in the frequency ranges of 57-63 Hz and 117-123 Hz for a 

power line frequency of 60 Hz. Moreover, DC component at 0 Hz was removed. The 

EEG data was normalized by min-max normalization to scale values between 0 and 

1. In the figure 32, spectrograms visualize filtering and standardization steps of EEG 

signasl. Spectrograms are used only for visualization in this context. After data 

scaling, EEG signal was segmented into equal segments of 2 seconds. 

 

 

Figure 34. Pre-processing steps: original spectrogram, filtered with bandpass and 

high pass filter, cleaned and standardized. 

Each experiment of the experimental group 2 had the same data split procedure. In 

the first split, subject dependent train/test split was used. 25% of the data was taken 

for testing and 75% of the data for training. At the second split, subject dependent 

train/val split was used. 20% of the data was used for validation and 80% for 

training. The reason for using subject dependent train/val split rather than subject 

dependent was a lack of data. The assumption was that a model is not able to 

generalize properly if there is not enough data. In the experimental group 2, the 

leave-one-out cross validation was used to validate trained models since validation 

F1-score of the models did not exceed the 70% threshold. 

In the experiment 1, EEG segments of 2 seconds were fed into VGG and in the 

experiment 2, EEG segment with DenseNet 1D were investigated. The results of 

these two experiments were compared to each other. The objective of the comparison 

was to confirm findings regarding to using 2D convolutional model architecture 

rather than 1D convolutional model for multi-channel signal. 

In the experiment 3, EEG segments of 2 seconds were transformed into 1D-FFT 

whereas in the experiment 4, EEG segments were transformed into 2D-FFT. In both 

experiments FFT variants were representations of the input data for VGG model. The 

purpose of the experiment 3 and 4 were to investigate could 2D-FFT give better 
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results than 1D-FFT regarding to spatial shift and rotation properties. The block 

diagram of the experimental group 2 is illustrated in Figure 35. 

 

 

Figure 35. The block diagram of the experimental group 2. 

5.2.3. Experimental group 3 

In the experimental group 3, EEG signals were filtered by bandpass and low-pass 

filters to remove the powerline noise. The powerline noise was removed by 

excluding components in the frequency ranges of 57-63 Hz and 117-123 Hz for a 

power line frequency of 60 Hz. Moreover, DC component at 0 Hz was removed. The 

EEG data were standardized by z-score normalization to scale values, relative to the 

sample mean and standard deviation. After data scaling, EEG signal was segmented 

into equal segments of 2 seconds. 

Each experiment of the experimental group 3 had the same data split procedure. In 

the first split, subject dependent train/test split was used. 25% of the data were taken 

for testing and 75% of the data for training. In the second split, subject dependent 

train/val split was used. 20% of the data was used for validation and 80% for 

training. Similar to experimental group 2, the reason for using subject dependent 

train/val split rather than subject dependent was a lack of data. In the experimental 

group 3, the leave-one-out cross validation was used to validate trained models since 

validation F1-score of the models did not exceed the 70% threshold. 

In the experiment 1, EEG segments with VGG model were investigated. The 

objective of the experiment 1 was compare effect of z-score normalization with min-

max normalization that was examined in the experimental group 2. The purpose of 

the experiment 2 was to investigate 2D-FFT with DenseNet 1D and compare the 

results with the results of the experiment 4 of the experimental group 2 where VGG 

model were used with the same input representation. In experiment 3 and 4, the 

objective was to investigate how dominant is the magnitude component as compared 

to phase component in the detection of epileptic seizure. The block diagram of the 

experimental group 3 is illustrated in Figure 36. 
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Figure 36. The block diagram of the experimental group 3. 
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6. RESULTS 
 

6.1. Experimental group 1 

The results of the experimental group 1 are represented in the Table 10 and Table 11. 

The Table 10 contains the results of the experiment 1. The best model in the 

experiment 1 was evaluated with subject dependent data. VGG model exceeded 

validation f1-score threshold (70%) therefore a model was tested with 5 subsets of 

the data. In the experiment 1, 1453 hyperparameter iterations were executed. 

Table 5. The results of the experiment 1. Iterations = 1453, ACC = accuracy, F1 = 

F1-score, PREC = precision, SENS = sensitivity, SPEC = specificity, FPR = false 

positive rate and ER = error rate 

Fold ACC F1 PREC SENS SPEC FPR ER 

Fold_1 0.989 0.813 0.937 0.719 0.998 0.0017 0.01147 

Fold 2 0.987 0.783 0.863 0.716 0.996 0.0041 0.01383 

Fold 3 0.986 0.782 0.830 0.739 0.995 0.0054 0.01431 

Fold 4 0.987 0.793 0.866 0.731 0.996 0.0041 0.01327 

Fold 5 0.986 0.775 0.851 0.712 0.995 0.0045 0.01434 

 

The Table 11 contains the results of the experiment 2 and 3. The best models were 

evaluated with subject dependent data and leave-one-out cross validation method. 

The experimental group 1 is illustrated in Figure 37. 

 

Table 6. The results of the experiment 2 and 3 of the experimental group 1. EXP = 

experiment, ITER = number of hyperparameter iterations, ACC = accuracy, F1 = F1-

score, PREC = precision, SENS = sensitivity, SPEC = specificity, FPR = false 

positive rate and ER = error rate 

EXP # ITER ACC F1 PREC SENS SPEC FPR ER 

Exp 2 34 0.980 0.675 0.790 0.589 0.995 0.0055 0.01931 

Exp 3 32 0.984 0.754 0.841 0.684 0.995 0.0047 0.01566 

 

 

Figure 37. The experimental group 1 (subject dependent). 
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6.2. Experimental group 2 

The results of the experimental group 2 are represented in the Table 12. In the final 

evaluation, the best models were evaluated with subject dependent data and leave-

one-out cross validation method. The experimental group 2 is illustrated in Figure 

38. 

Table 7. The results of the experimental group 2. EXP = experiment, ITER = number 

of hyperparameter iterations, ACC = accuracy, F1 = F1-score, PREC = precision, 

SENS = sensitivity, SPEC = specificity, FPR = false positive rate and ER = error rate 

EXP # ITER ACC F1 PREC SENS SPEC FPR ER 

Exp 1 13 0.982 0.362 0.492 0.287 0.995 0.0046 0.01545 

Exp 2 57 0.985 0.358 0.490 0.282 0.996 0.0046 0.01550 

Exp 3  177 0.986 0.388 0.634 0.280 0.997 0.0025 0.01350 

Exp 4 70 0.984 0.368 0.470 0.303 0.995 0.0053 0.01589 

 

 

Figure 38. The experimental group 2 (subject independent). 
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6.3. Experimental group 3 

The results of the experimental group 3 are represented in the Table 13. In the final 

evaluation, the best models were evaluated with subject dependent data and leave-

one-out cross validation method. The experimental group 3 is illustrated in Figure 

39. 

Table 8. The results of the experiment 4. EXP = experiment, ITER = number of 

hyperparameter iterations, ACC = accuracy, F1 = F1-score, PREC = precision, SENS 

= sensitivity, SPEC = specificity, FPR = false positive rate and ER = error rate 

EXP # ITER ACC F1 PREC SENS SPEC FPR ER 

Exp 1 43 0.987 0.485 0.606 0.405 0.996 0.0041 0.01315 

Exp 2 33 0.988 0.527 0.675 0.432 0.997 0.0032 0.01189 

Exp 3 56 0.988 0.523 0.697 0.418 0.997 0.0028 0.01692 

Exp 4 38 0.980 0.105 0.179 0.075 0.995 0.0053 0.01942 

 

 

Figure 39. The experimental group 3 (subject independent). 
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7. DISCUSSION 
 

In this study, the subject dependent experiments gave reasonable good results with 

magnitude spectrograms as a representation of input data for VGG model. The 

magnitude spectrograms could be used for personalized epileptic seizure detection. 

For developing subject dependent model, there was not enough data for used deep 

learning approaches in this study. The segment length of the samples was too small 

to classify individually the samples to normal and epileptic brain activity samples 

with subject dependent data.  

One solution to address the noticed issue is to combine VGG model with recurrent 

model architecture or use totally different model architecture. VGG-LSTM and CNN 

3D are these type of neural networks that were under investigation during this thesis, 

but unfortunately the time run out to make them work properly. Another possible 

solution is to implement post-processing algorithm to fill out error caps between 

correctly predicted segments. However, this approach has many problems and is 

more likely quick fix for a model that doesn’t work as expected.  The third possible 

solution could be to use multiple different representations of input data together as an 

input data for a neural network. All of these proposed solutions should be 

investigated in future studies. 

Zhou et al. [198] used the CNN model to detect epileptic seizures based on EEG 

signals. They used time and frequency domain signals separately in different 

experiments. They concluded that frequency domain better achieved better results 

than time domain signals. They achieved with frequency domain signal satisfactory 

results with Freiburg and CHB-MIT datasets on three-class problem. The results of 

the present study agree with the results of Zhou et al. The results of all experimental 

groups show that frequency-domain signals give better results than EEG signals as a 

representation of input data for a neural network. 

Weixia Liang et al. [170] and Ramy Hussein et al. [153] have proved that CNN-

LSTM and LSTM neural network architectures are good model candidates for 

epileptic seizure detection. In this context need to point out that Liang et al. used 

image based EEG samples and Hussein et al. used intracranial EEG data. Images are 

the most studied representation of input data for neural networks, therefor image 

based EEG samples are easier to apply for existing neural network architectures. 

Image based EEG signals are interesting topic and should be investigated in future 

studies.  

In the study of Ramy Hussein et al., intracranial EEG offers more accurate EEG 

data than scalp EEG. However, there are only a limited amount of use cases where 

intracranial EEG data are available. One rare use case is, when epilepsy is severe and 

epileptogenic needs localization for a surgery. In this thesis, the requirement was that 

the data is scalp EEG data so there could be more existing use cases for a developed 

solution.  

Kostas et al. used LSTM with time domain, frequency domain, correlation and 

graph theory features from 5-s long EEG segments [199]. This study indicates that 

there still might be need for a manual feature extraction in some levels with EEG 

data. Kostas et al. used subject dependent data for evaluation. Therefore, the results 

of the present study in the experiment 1 and 2 are somewhat comparable with results 

of Kosta et al.’s study. However, not all of the normal data was used for evaluation in 

the present study due to a lack of time. 
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Njedly et al. used multimodal feature fusion for seizure forecasting in canines 

[200]. This study showed that multimodal feature fusion with EEG signal and FFT 

data representations of input data together might be a good candidate for epileptic 

seizure detection. The study was conducted with EEG data from canines, therefore 

there is no guarantee it is suitable for human EEG data. A similar approach might be 

worth to try with different combinations of representation of input data that were 

explored in this present study. Moreover, CNN-LSTM, LSTM and CNN 3D have 

stood out to be good model candidates along with multimodal feature fusion-based 

models for further studies. 

The study of Njedly et al. inspirited to investigate different representation of input 

data along with the EEG-signal. As mentioned earlier magnitude spectrograms 

appeared to be the most powerful representation of input data as compared to EEG 

signal in the subject dependent experiments. The decision to use spectrograms as a 

representation of input data leaded into interesting idea of handling spectrograms as a 

video. This way there is a possibility to use the same model architectures than in a 

video classification. This idea was good, but it was not conducted because a lack of 

time. In the future studies, this approach should be investigated.  

The comparison of 1D-FFT and 2D-FFT as a representation of input data was 

interesting. However, the results show that using 2D-FFT as a representation of input 

data does not improve the results. The finding indicates that shift and rotation 

properties are not valuable information for epileptic seizure detection with these deep 

learning approaches used in this study. However, this approach could be more 

relevant in the distinction between epilepsy types from EEG signal, or in localization 

of epileptogenic. 

The magnitude of 2D-FFT was compared to the 2D-FFT phase spectrum to 

confirm the importance of the magnitude spectrum in the detection of epileptic 

seizure. The difference of the results was significant, but at the same time expected. 

During epileptic seizure, the magnitude of FFT often increases, but phase spectrum 

varies. The phase of FFT is not useful without the magnitude spectrum in detection 

of epileptic seizure. Instead, the magnitude of FFT can be used without the phase 

spectrum, but still the magnitude of FFT cannot be the only representation of input 

data for epileptic seizure detection. 

In 2018, Shahbazi et al. proposed CNN-LSTM neural network with STFT input to 

classify preictal and interictal states [18]. Shahbazi et al. used also CHB-MIT dataset. 

The study claimed there is still a cap in the literature for a reliable and generalizable 

method that can be used in practice to predict epileptic seizure. They believed that 

there are two main reasons: 1) A lack of reliable EEG data. Preictal stage is accepted 

fact, which unlike its onset is not recognizable by eyes from EEG signal. Therefore, 

there is no global consensus about how to define and identify it, making it hard to 

develop a practical prediction approach. 2) The complexity and variability of the 

patterns of the preictal state. This leads to a conlusion that the preictal state is 

different among different patients and even between different seizures of the same 

patient. A lack of reliable data appeared to be a big challenge also in the present 

study. Another prominent challenge was the complexity and variability of the 

patterns in EEG signal between patients and even between epileptic seizures of a 

single patient. [18] 

It is important to consider other approaches for epileptic seizure detection beside 

EEG signal-based solutions. Rambopal et al. has listed [201] seizure detection 

systems invented before the year 2014. In the review of Rambopal et al., there are 17 
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EEG based seizure detection systems, but they all are stated to be specialized in 

specific epilepsy types such as an absence seizure, or detection algorithms that uses 

handmade features. Rambopal et al. listed five detection systems that are based on 

intracranial EEG signals. As mentioned earlier, intracranial EEG is not suitable for a 

common usage in epileptic seizure treatment since it is only used in research of 

severe epilepsy. In the review, there are also over 20 solutions that are based on 

ECG, motion or video data and only a few of these might be suitable for all epilepsy 

types because they are limited to one specific epilepsy type.  

The review of Rambopal et al. indicates how difficult is to build epileptic seizure 

detection system because of complexity of epilepsy disorders. Epilepsy types have 

different characteristics and their appearance differ from each other in EEG signal. 

Another challenge in this context is that in 2017 ILAE announced a new 

classification for epileptic seizure types. A publication of the announcement 

underlines the fact that the classification of epilepsy has not been fully established. 

It is obvious that the detection of epileptic seizure is a difficult task to do even by 

current deep learning approaches. The major challenge in the epileptic seizure 

detection is a stochastic nature of EEG signals. It is hard to determine is there enough 

data available for a neural network to identify normal and epileptic seizure features. 

The amount of data in the CHB-MIT dataset is limited, and it does not contain 

information about epileptic seizure types. Regarding to literature review, epilepsy is 

not a singular disease entity, but a variety of disorders caused by different brain 

dysfunctions. The characteristics of epileptic seizure patterns in EEG signal may 

vary even for a single person. Therefore, it is vital to have enough EEG data for 

training and testing a model, to ensure that a model has a higher possibility to work 

in a real life. 

Another challenge is an appearance of artefacts in EEG signal. In a real life, there 

is variety of artefact that a model needs to be able to handle so that they do not have 

an effect on epileptic seizure detection. It has been claimed that a deep learning 

approaches are robust to noise. However, it needs to be pointed out that if there is so 

much noise and artefacts that a neurologist is not able to distinguish epileptic seizure 

and the normal EEG signal from each other, then a model cannot do it either. The 

EEG signal contains always noise and variety of artefact. This is a challenge that 

needs to be solved at first, before building an automatic epileptic seizure detection 

system based on EEG signals. 

Currently, one major challenge is limited amount of available deep learning 

architectures. Most of the deep learning architectures are developed for image 

classification, but not for signals.  The research in a field of applying deep learning 

models for signals is novel as compared to the research of a deep learning with 

images. Detection and classification from time series data often require features from 

previous or next segments to improve a detection score. This finding led into a 

conclusion that without recurrent model or overlapping sliding window segmentation 

it might be impossible to detect epileptic seizure based on the features from single 

segments. As mentioned earlier, multimodal feature fusion-based model with a 

variety of representations of input data might be one possible solution. Transfer 

learning was also considered to overcome this challenge. The idea was to use pre-

trained VGG model with LSTM model. Investigation of a stacked VGG-LSTM 

model was excluded from the thesis because a lack of time. 

Deep learning is claimed to be handy because expert knowledge is not needed for 

a specific domain but on the other hand, that is a serious problem. A data scientist 
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needs to be able evaluate the correctness of a single prediction of a model from a 

visual representation of input data. This was a huge challenge during the thesis 

because the interpretation of EEG signals is difficult. Difficulty of interpretation of 

EEG signals highlighted the importance of feature engineering also in deep learning.  
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8. CONCLUSION 

In the present thesis, deep learning approach for epileptic seizure detection from 

EEG signal was addressed. The study included three experimental groups based on 

data processing pipeline steps. Subject dependent experiment gave reasonable good 

results with magnitude spectrograms as representation of input data of VGG model.  

The same approach was examined with subject independent data but the results were 

poor and were therefore left out from the results section. Thus, it can be concluded 

that VGG was not able to generalize features from segments of 2 seconds when it 

was trained with subject dependent data.  

Regarding to the results, the magnitude spectrograms proved to be better 

representation of input data than EEG signal for VGG model. However it need to be 

noted that there were 1453 hyperparameter iterations for VGG model with magnitude 

spectrograms versus 34 hyperparameter iterations for VGG and DenseNet models 

with EEG signal data. Therefore, in the experiment where magnitude spectrograms 

where used had much more time to optimize validation F1-score. 

The performance of VGG and DenseNet 1D with EEG signal as representation of 

the input data were compared in all experimental groups. The results show that 2D 

convolutional neural network also can be used for multi-channel signals in the same 

way as 1D convolutional neural network in this study. The objective of this study 

case was to investigate spatial information essential for epileptic seizure detection. 

The results with this small dataset show that spatial information is not essential. 

However, the size of the dataset advocates that this conclusion cannot be fully made. 

The essentiality of the spatial information of epileptic brain activity in EEG signal 

was also investigated with 2D-FFT transformation. The results of 2D-FFT are in the 

same level than the results of 1D-FFT. This study case supports the previous 

conclusion that spatial information of epileptic brain activity is not essential for 

epileptic seizure detection. However, it needs to be noted again that the dataset was 

too small for this conclusion.  

The most interesting research question of the thesis was that is magnitude 

spectrum more essential than phase spectrum of FFT for epileptic seizure detection. 

This research question was addressed with magnitude and phase spectrums extracted 

from 2D-FFT. The results show that magnitude spectrum is more essential than 

phase spectrum for epileptic seizure detection from EEG signal. VGG model 

achieved better results with 2D-FFT magnitude spectrum than with 2D-FFT phase 

spectrum, or with original 2D-FFT. 

In the pre-processing phase, different normalization techniques were examined for 

data normalization. Regarding to the results of the experiments, the z-score 

normalization can be suggested as the most promising normalization approach for the 

dataset in this study. The z-score normalization enabled better results than min-max 

normalization. The reason is that z-score normalization handles outlier better than 

min-max normalization. Moreover, it was convenient to remove the power line noise 

by bandpass and low pass filters from the data. 

In final words, the scope of this study turned out to be enormous along the way, 

due to a variety of concepts that were difficult to embrace in a short time such as 

interpretation of EEG signals, feature engineering and deep learning methods. The 

study did not produce a model design for epileptic seizure detection, but it covers a 
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variety of pain points that need to be taken into account while developing an 

automated EEG-based epileptic seizure detection system. The study also brought up 

various deep learning approaches that might be the key factors for designing a real 

life epileptic seizure detection system in a near future. 
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Appendix 1. Generalized motor seizures 

 

Table 9. Generalized Motor Seizures [12, 23, 33, 202-207] 

Generalized motor 

seizure type 

Characteristics 

1. Tonic-clonic Sudden loss of consciousness and falling 

Shriek caused by spasm of laryngeal muscles 

Breathing stops and skin color turns to blue 

Foam coming out of mouth 

Tonic-clonic has two phases: tonic contraction phase 

with duration of 20 seconds followed by bilateral clonic 

contraction of somatic muscles phase with duration of 

1-2 minutes (lasting more than 5 minutes is a medical 

emergency) 

Attacks are followed by sleep state 

2.Clonic Rhythmical jerking of the body or the body parts, 

regularly  repetitive,  involves  the same muscle groups 

3. Tonic Tonic seizures involve tonic stiffening  and 

cocontraction of agonist and antagonist musculature 

Tonic seizures are brief with duration of 15 seconds but 

may escalate into tonic status epilepticus 

4. Myoclonic Involves sudden brief jerks or twisting of limbs, face or 

axial musculature, usually preserved consciousness 

5. Myoclonic-tonic-clonic Involves sudden brief jerks or twisting of limbs, face or 

axial musculature, usually preserved consciousness 

Tonic seizures involve tonic stiffening  and 

cocontraction of agonist and antagonist musculature 

Rhythmical jerking of the body or the body parts 

6. Myoclonic-atonic Involves sudden brief jerks or twisting of limbs, face or 

axial musculature, usually preserved consciousness 

Involves sudden loss of muscle tone, with variable 

severity from head nods/drops to complete loss of axial 

posture with falling and injury 

7. Atonic Involves sudden loss of muscle tone, with variable 

severity from head nods/drops to complete loss of axial 

posture with falling and injury 
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Lasting 1 to 2 seconds 

8. Epileptic spasms Autonomic dysfunction symptoms such as pallor, 

flushing, sweating, pupillary dilatation, lacrimation, 

changes in respiratory and heart rate 

Brief head nods, whereas other seizures consist of 

violent flexion of the trunk, arms, and legs 

Frequently occurs in clusters 
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Appendix 2. Generalized non-motor seizures 

 

Table 10. Generalized non-motor seizures (Absence) [12, 23, 33, 207-212] 

Generalized non-

motor seizure type 

Characteristics 

1. Typical absence Absence seizures are the most common seizures and involve 

impaired awareness or consciousness for 5 to 10 seconds 

followed by immediate recovery 

Lacks a prodromal aura or postictal state 

Sometimes involve eye blinking, twitching of eyelids, corners 

of mouth or limbs 

Sometimes involve short automatisms such as pupil dilation, 

pallor, flushing, sweating, salivating, piloerection, urinary 

incontinence 

2.Atypical absence Unusual or not typical 

Staring but able to respond 

Eye blinking, chewing movements, lip smacking or jerking 

movements 

Begins and ends gradually 

Usually last 5 to 30 seconds most often more than 10 seconds 

3. Myoclonic 

absence 

Significant and continuous rhythmic shock-like jerks of a 

muscle or group of muscles 

Typical absence symptoms 

4. Eyelid myoclonic Brief and repetitive myoclonic jerks of the eyelids 

Brief absence 

Typically lasts less than 6 seconds 
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Appendix 3.  Focal seizures based on awareness of consciousness 

Table 11. Focal Seizures based on awareness of consciousness [23 p.13-14, 33, 207, 

213-215] 

Focal seizure type Characteristics 

1. Focal Onset Aware 

Seizure (Aura) 

Remains alert and able to interact 

Lasting seconds to less than 2 minutes 

Motor symptoms: spams of limbs, symptoms related to 

posture of view, head and body, vocalization or stop 

talking 

Sense symptoms: sensing, sight or hearing sensory, 

smell, taste, dizziness or imbalance 

Autonomic symptoms: heart pumping, blush, paleness, 

sweating etc. 

Psychological symptoms: memory disturbance, fear, 

anxiousness, euphoria, illusion 

2. Focal Onset Impaired 

Awareness Seizures 

Not aware of surroundings 

Lasting 1 to 2 minutes 

Attack may start with aura and lead to loss of 

consciousness or it can immediately start with loss of 

consciousness 

Seizures may involve automatisms 

Confusion and feeling tired for 5 to 15 minutes or longer 

after seizure 

3. Focal to Bilateral 

Tonic Clonic Seizure 

Focal seizure that turns into Bilateral tonic clonic seizure 

(starts from one area of the brain, then spreads to both 

sides of the brain) 
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Appendix 4. Focal motor seizures 

 

Table 12. Focal motor seizures [12, 202, 204, 205, 207, 210, 216] 

Focal motor seizure 

type 

Characteristics 

1. Automatisms Coordinated,  repetitive,  motor movements 

2. Atonic Involves sudden loss of muscle tone, with variable severity 

from head nods/drops to complete loss of axial posture with 

falling and injury 

Lasts 1 to 2 seconds 

3. Clonic Rhythmical jerking of the body or the body parts, regularly  

repetitive,  involves  the same muscle groups 

4. Epileptic spasms 

(Infantile spasms) 

Autonomic dysfunction symptoms such as pallor, flushing, 

sweating, pupillary dilatation, lacrimation, changes in 

respiratory and heart rate 

Brief head nods, a sudden flexion, extension, or mixed 

extension-flexion of predominantly proximal and truncal 

muscles 

Frequently occurs in clusters 

5. Hyperkinetic Involving predominantly proximal limb or axial muscles in 

irregular sequential ballistic movements and increases rate of 

ongoing movement 

 Often occurs during sleep and repeatedly, with intervals of a 

few seconds 

6. Myoclonic Involuntary shock-like jerks of a muscle or group of muscles 

7. Tonic Sustained increase in muscle contraction 

Lasts a few seconds to minutes 

 

 

 

 

 



 

 

96 

 

Appendix 5. Focal non-motor seizures 

 

Table 13. Focal non-motor seizures [12, 217, 218] 

Focal non-motor seizure type Characteristics 

1. Autonomic Change in heart rate, breathing, color of 

skin, pupil dilation, pallor, flushing, 

sweating, salivating, piloerection 

2. Behavior arrest Blank stare, stop talking, stop moving 

3. Cognitive Confusion, slowed thinking, problems 

with talking and understanding 

4. Emotional Sudden fear, dread, anxiety, pleasure 

5. Sensory Change in hearing, vision, taste, feeling 

of numbness, tingling or pain 
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Appendix 6. Characteristics and EEG features of different types of status 

epilepticus 

 

Table 14. Characteristics and EEG features of different types of status epilepticus 

[36] 

Type of status 

epilepticus 

Characteristics EEG features  

1. Tonic-clonic status 

epilepticus 

Tonic, clonic or tonic-clonic 

seizures 

Generalized epileptiform 

discharges 

2. Absence status 

epilepticus 

Absence seizure that lasts from 

hours to days with possible 

automatisms or myoclonic twitch 

Continuous generalized 2-3 

Hz multi spike slow wave 

discharges 

3. Myoclonic status 

epilepticus 

Prolonged myoclonic seizures 

without impaired consciousness 

Single and polyspike complex 

or sometimes without any 

EEG correlation 

4. Focal status 

epilepticus with 

impaired 

consciousness 

Begins with series of separate 

focal absence seizures with 

automatisms, stopping of 

functions and speech impediment 

Cyclic epileptiform 

discharges 

5. Focal status 

epilepticus without 

impaired 

consciousness 

Motor, somatosensory or aphasia 

symptoms 

Focal epileptiform discharges 

or sometimes without any 

EEG correlation if discharge 

activity is in small area 

 

Table 15. Operational dimensions. 𝑡1 indicates time point where the seizure should 

be regarded as continuous seizure activity and 𝑡2 indicates the time point where the 

risk of long-term consequences start to increase 

Type of status epilepticus 𝒕𝟏 𝒕𝟐 

Tonic-clonic status epilepticus 5 min 30 min 

Focal status epilepticus with impaired consciousness 10 min 60 min 

Absence status epilepticus 10-15 min Unknown 
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Appendix 7. Treatment chart of tonic-clonic status epilepticus 

 

Table 16. Treatment chart of tonic-clonic status epilepticus [36, 37, 219] 

Time 

 

Phase Condition Treatment Clinical  examination 

5 min Stabilization 

phase, first aid 

outside of 

hospital 

Premonitoring 

stage 

 Blood sugar quick 

measurement 

5-10 

min 

Initial therapy 

phase, 

treatment 

outside of 

hospital 

Early status 

epilepticus 

Antiepileptic 

drugs: 

benzodiazepines 

𝑆𝑝𝑂2, blood pressure, 

ECG, Blood sugar, a 

basic blood count, 

concentration of 

antiepileptic in blood, 

functions of liver and 

kidneys 

30-60 

min 

Second therapy 

phase 

Established 

status 

epilepticus 

Antiepileptic 

drugs: 

fosphenytoin, 

valproate, 

levetiracetam  

Thorax x-ray, 

computer tomography, 

brain and 

cerebrospinal fluid, 

EEG 

Over 

60 

min 

Third therapy 

phase in 

intensive care 

unit 

 

Refractory 

status 

epilepticus 

Antiepileptic 

drugs: propofol, 

midazolam, 

thiopental, 

ketamine 

 

Other: General 

anaesthesia 

 

Continuous EEG 

monitoring for 

observing termination 

of epileptiform 

activity and deepness 

level of anesthesia  

 

Over 

24 

hours 

Super-

refractory 

status 

epilepticus 
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Appendix 8. EEG registration methods 

 

Table 17. EEG registration methods [43] 

EEG 

paradigm 

Characteristics Target 

Basic EEG  19-26 electrodes placed on scalp’s 

skin.  

 Takes 20 – 60 minutes  

 Often includes polygraph channels 

and video.  

 Basic measurement tool 

Ambulatory 

EEG 
 Several days lasting EEG 

recording outside of hospital.  

 No video. 

 Investigation of uncertain 

seizures 

EEG 

monitoring 
 Long lasting (hours, days or 

weeks) brain monitoring in which 

number of electrodes are limited 

 Sometimes includes polygraph and 

video 

 Often includes aEEG 

 Brain monitoring in intensive 

care and monitoring treatment 

of status epilepticus 

Video-EEG 

monitoring 
 EEG registration in epilepsy unit 

 Long lasting (days) 

 Includes polygraph and video 

 Diagnostics of epilepsy and 

preparation for surgery 

Dense array 

EEG 
 Big number (maximum of 256) of 

electrodes with various polygraph 

channels 

 Ultrafast frequencies are used 

for investigation of location of 

epileptogenic 

Full-band 

EEG 
 Measured from 0 (infraslow) to 

hundreds (ultrafast) of Herts 

 High frequencies for 

Investigation of location of 

epileptogenic and low only for 

research 

Invasive EEG  Electrodes are placed inside of a 

scalp 

 Investigation of location of 

epileptogenic and preparation 

for surgery 

EEG-EP / 

ERP 
 EEG and action potentials are 

measured simultaneously 

 Action potentials are calculated 

from EEG signals via averaging 

 Often used with sensory action 

potentials (EEG-SEP) 

 After brain injury or 

resuscitation 
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Appendix 9. Epileptiform activities 

 

Table 18. Epileptiform ictal activity [52] 

Name Activity 

Epileptiform ictal activity No observable change 

 Obscured by artifacts 

 Polyspikes 

 Fast spike activity or repetitive spikes 

 Low voltage fast activity 

 Polysharp-waves 

 Spike-and slow-waves 

 Rhythmic activity 

 Slow wave of large amplitude 

 Irregular delta or theta activity 

 Burst-suppression pattern 

 Electrodecrement change 

 DC-shift 

 High frequency oscillation (HFO) 

 Disappearance of ongoing activity 

 Other ictal EEG pattern 

 

Table 19. Morphology of epileptiform interictal activity [52] 

Name Morphology 

Epileptiform interictal activity Spike 

 Spike-and-slow-wave 

 Runs of rapid spikes 

Polyspikes 

 Polyspikes-and-slow-wave 

 Sharp-wave 

 Slow sharp-wave 

 High frequency oscillation (HFO) 

 Hypsarrhythmia - classic 

 Hypsarrhythmia - modified 
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Table 20. More detailed morphologies of generalized and focal interictal epileptiform 

discharges [69] 

Name Morphology 

Focal interictal epileptiform dischages 
Spikes 

Sharps 

 Sharp waves 

 Polyspikes 

Multiple spike complexes 

 Spike and (slow) waves 

 Sharp and (slow) waves 

 Polyspike and (slow) waves 

 Rolandic discharges 

 Multifocal independent spike discharges 

(MISD) 

 Independent multifocal spike discharges 

(IMSD) 

 Second bilateral synchrony 

Generalized interictal epileptiform 

discharges 
3 per second spike (and slow ) wave 

complexes 

Atypical spike and slow waves 

 Slow spike and waves 

 Petit mal variant 

Fast spike and waves 

 Polyspike and (slow) wave complexes 

 Multiple spike complexes 

 Spike and dome complexes 

 Dart and dome complexes 

 Hypsarrhythmia  

 Modified Hypsarrhythmia 
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Appendix 10. Epileptiform patterns 

 

Table 21. EEG epileptiform patterns [68 pp. 214-215, 69, 71, 75] 

EEG epileptiform patterns Subcategories 

Ictal epileptiform patterns Ictal patterns for focal-onset seizures 

Ictal patterns for generalized-onset seizures 

Interictal epileptiform patterns Focal interictal epileptiform discharges 

Generalized intercital epileptiform discharges 

Periodic epileptiform discharges Periodic lateralized epileptiform discharges (PLEDs) 

Bilateral independent periodic epileptiform discharges 

(BIPLEDs) 

Bilateral periodic epileptiform discharges (BiPEDs) 

Benign epileptiform transients of 

sleep 

None 
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Appendix 11. Common sources of artifacts 

 

Table 22. Common sources of EEG artifacts [52] 

Biological artifacts Non-biological artifacts 

Eye blinks 50 or 60 Hz 

Eye movements Induction or high frequency 

Nystagmus Dialysis 

Chewing artifact Artificial ventilation artifact 

Sucking artifact Electrode pops 

Glossokinetic artifact Salt bridge artifact 

Rocking or patting artifact Other artifact 

Movement artifact  

Respiration artifact  

Pulse artifact  

ECG artifact  

Sweat artifact  

EMG artifact  
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Appendix 12. Description of the CHB-MIT dataset 

 

 

Table 23. Description of the CHB-MIT dataset 

Case Gender Age (years) # of 

seizures 

Duration of 

recordings 

(hh:mm:ss) 

chb01 F 11 7 40:33:08 

chb02 M 11 3 35:15:59 

chb03 F 14 7 38:00:06 

chb04 M 22 4 156:03:54 

chb05 F 7 5 39:00:10 

chb06 F 1.5 10 66:44:06 

chb07 F 14.4 3 67:03:08 

chb08 M 3.5 5 20:00:23 

chb09 F 10 4 67:52:18 

chb10 M 3 7 50:01:24 

chb11 F 12 3 34:47:37 

chb12 F 2 27 20:41:40 

chb13 F 3 12 33:00:00 

chb14 F 9 8 26:00:00 

chb15 M 16 20 40:00:36 

chb16 F 7 10 19:00:00 

chb17 F 12 3 21:00:24 

chb18 F 18 6 35:38:05 

chb19 F 19 3 29:55:46 

chb20 F 6 8 27:36:06 

chb21 F 13 4 32:49:49 

chb22 F 9 3 31:00:11 

chb23 F 6 7 26:33:30 

chb24 - - 16 21:17:47 

Total   185 979:56:07 
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