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Abstract 

Epileptic seizures are characterized by abnormal electrical activity occurring in the brain. 

EEG records the seizures demonstrating changes in signal morphology. These signal 

characteristics, however, differ between patients as well as between different seizures in the 

same patient. Epilepsy is managed with anti-epileptic medications but in some extreme cases 

surgery might be necessary. Non-invasive surface electrode EEG measurement gives an estimate 

of the seizure onset but more invasive intra-cranial electrocorticogram (ECoG) are required at 

times for precise localization of the epileptogenic zone. 

The epileptogenic zone can be described as the cortical area targeted for resection to render 

the patient symptom free. Epileptologists use the “evolution” of aberrant signals for identifying 

epileptic seizures and the epileptogenic zone is identified by concentrating on the area 

contributing to the onset of seizure. This process is done by visually analyzing hours of ECoG 

data. The signal morphology during an epileptic seizure is not very different from abnormal 

discharges noticed in ECoG data thereby complicating signal analysis for the epileptologists. 

This thesis aims to classify the ECoG channel data as epileptic or non-epileptic using an 

automated machine learning algorithm called support vector machines (SVM). The data will be 

decomposed into various frequency bands identified by wavelet transform and will span the 

range of 0-30Hz. Statistical measures will be applied to these frequency bands to identify 

features that will subsequently be used to train SVM. This thesis will further investigate feature 

reduction using multivariate analysis methods to train the SVM and compare it to the 

performance of classification when all the features were used to train SVM.  

Results show that channel data classification using trained SVM that did not undergo feature 

reduction performed better with 98% sensitivity but needed more runtime than the SVM 
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algorithms that was trained using reduced features. For high frequency analysis of frequencies 

between 60-500Hz, the results show the same sensitivity yet less specificity when compared to 

the classification using lower frequency range of 0-30Hz.  

The results seen in this thesis show that support vector machines classifiers can be trained to 

classify the data as epileptic or non-epileptic with good accuracy. Even though training the 

classifiers took almost two hours, it was still noticeably less than other machine learning 

algorithms such as artificial neural networks. The accuracy of this algorithm can be improved 

with changes to the data segment length, size of training matrix, accuracy of epileptic and non-

epileptic data, and amount of data used for training.  
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1. Introduction 

1.1. Neurological signals 

Brain activity may be measured non-invasively using electroencephalography (EEGs) or 

invasively using electrocorticography (ECoG). Both sets of signals have been used to 

understand, diagnose, and treat a number of neurological disorders and abnormalities of the 

brain. EEG signals are recorded by placing the electrodes on the scalp over the skull. ECoG 

records brain activity via slender penetrating subdural electrodes that are inserted directly in or 

via surface subdural electrodes that are placed over the cerebral cortex 
1
.  

Currently clinical EEG analysis is performed visually by electroencephalographers trained to 

identify and locate abnormalities in EEG signals. Since multiple electrodes generate a lot of data, 

the visual process of EEG analysis is tedious and prone to operator bias. EEG signal processing 

techniques help speed up this tedious process and allow medical professionals to identify 

abnormalities quickly and accurately. EEG signal analysis is used in the diagnosis and treatment 

of various neurological diseases including but not limited to seizure detection. Hence automation 

of signal analysis saves valuable time. The challenges towards automation of signal analysis 

techniques particularly for seizure detection include the following: 

 Seizure activity presents with a variety of signal characteristics that differ between 

patients as well as between different seizures in the same patient.  

 Abnormalities noticed during epileptic seizures may also be seen during some non-

epileptic activities like subconscious mental activity or stress, thereby complicating the 

classification process.  

For simple classification, a seizure is considered to be epileptic when it results from 

abnormal brain activity  and the seizure is non-epileptic when it is a result of subconscious 
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mental activity that are more psychological in nature such as psychogenic non-epileptic seizures. 

The resemblance between these seizures exists yet varies considerably so to derive a single set of 

features that can classify the seizure as epileptic or non-epileptic is difficult. The psychogenic 

non-epileptic seizures are, however, characterized by absence of electrographic activity. 

Automation presents significant challenges but is still coveted by neurologists, epileptologists 

and neurophysiologists.  

1.2. Focus: Analysis and Classification of Epileptic Seizures 

EEG is used for the following purposes in epilepsy studies: 

 To clinically diagnose epilepsy 

 To classify epileptic seizures 

 To identify the epileptogenic zone for pre-surgical patients  

 To confirm the absence of epileptic seizures 

Since the recorded EEG requires gigabytes of data storage space for a single patient, 

automated signal analysis, classification, and prediction are being explored. Research suggests 

that in order to devise a reliable prediction algorithm for epilepsy that will provide insight into 

the neurophysiologic state just prior to an epileptic seizure, it is important to test and train an 

automated learning system which performs EEG signal analysis and classification. Even though 

EEG signals are used for multiple other purposes, the focus of this thesis will be automated 

detection of epileptic seizures (Figure 1.1).  
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Subasi and Gursoy
2
 performed EEG signal classification using multivariate analysis and 

support vector machines to compare the performance of the classification processes in an attempt 

to identify the optimal process. According to the authors, the heterogeneity of epilepsy mandated 

the requirement of configuring intelligent devices to each patient’s neurophysiology prior to 

clinical operation. The authors used epileptic data from scalp EEG recordings of seizure activity 

from patients diagnosed with petit mal epilepsy and non-epileptic data from the scalp EEG 

recordings of healthy volunteers with no history of epilepsy. The proposed method showed 

promising results identifying the multivariate analysis methods for dimensionality reduction to 

be superior to training SVM without dimensionality reduction. Even though the authors used 

scalp recording for their proposed method, this paper forms the basis for this thesis in the 

automated classification of the ECoG signals. 

The automated epilepsy detection system would include four steps; EEG signal 

preprocessing, EEG signal analysis using discrete wavelet transform, dimensionality reduction 

using multivariate analysis methods, and signal classification using support vector machines
3
. 

EEG signal preprocessing prepares the raw data for easy analysis. In this stage, the signal is 

filtered and normalized to remove noise due to artifacts. Time-frequency analysis of EEG signals 

using discrete wavelet transform allows the data to be classified based on the wavelet 

EEG Preprocessed Signal 

EEG Signal 

Analysis 

Dimensionality 

Reduction 

Signal 

Classification 

Non-epileptic 

Signal 

Epileptic Signal 

Figure 1.1 EEG Signal Classification 
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coefficients. Features are extracted from wavelet coefficients by computing mean and variances 

of different frequency bands to create a feature matrix. The feature matrix will serve as inputs in 

creating the training matrix for the support vector machines to classify the signal as epileptic or 

non-epileptic. Support vector machines (SVM) algorithms are learning algorithms that 

distinguish epileptic and non-epileptic signals.  In addition, dimensionality reduction via 

multivariate analysis is performed on the feature matrix. The transformed and reduced feature 

training matrix will also be used as inputs to SVM. Results from the SVM classified data for the 

correct classification of epileptic rhythms will determine whether or not to use the training 

matrix comprised of entire feature matrix or one with reduced dimensionality.   

1.3. Summary 

Epilepsy is one of the most common neurological diseases and patients suffer from epileptic 

seizures that may be unpredictable and recurrent 
4
. Scalp or intracranial EEGs are used clinically 

to diagnose, differentiate and classify epileptic seizures because epilepsy manifests aberrant EEG 

signal changes. These signals are called epileptogenic discharges and may appear in the form of 

spikes, poly-spikes or spike and waves. Ictal (i.e. state during epileptic seizure) EEG recordings 

are more reliable in diagnosing epilepsy than interictal (i.e. state between two epileptic seizures) 

recordings but they are expensive and difficult to obtain in patients with infrequent epileptic 

seizures.  

Whether the data gathered is EEG data from non-invasive scalp electrodes or the more 

invasive ECoG data from intra-cranial electrodes, it currently must be interpreted by medical 

professionals. As the data usually contains interictal and ictal data, it can be quite cumbersome 

when analyzed visually. The purpose of computer aided EEG classification is not only to save 
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time and effort for medical professionals but also to train the automated system to predict 

occurrences of epileptic seizures.  
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2. Literature Review 

2.1. Electroencephalography and Electrocorticography 

Neurons communicate by transmitting and receiving electrical impulses or signals. An EEG 

is a recording involving a set of electrodes or sensors for monitoring these electrical impulses in 

brain or the “brain waves” and was first recorded in human in 1924 by Hans Berger. The sensors 

or electrodes used to record the brain’s electrical activity are placed at strategic positions on top 

of the scalp (EEG) or in direct contact with the exposed brain cells (ECoG), depending on the 

type of desired neurophysiologic information.  

EEG is in the form of waveforms of different frequencies and amplitudes measured across 

time. Since EEG recorded at the scalp is a spatial average of a large area of cortical neuronal 

activity, the scalp acts as a volume conductor and subsequently the EEG signals have low spatial 

or temporal resolution and poor signal - to - noise ratio when compared to ECoG. However, EEG 

is non-invasive and less expensive than the ECoG recordings, which provide signals that have 

less susceptibility to artifacts when compared to the standard EEG 
5
.  

Despite the relatively poor signal quality in EEG signals, they are routinely used to study 

neuropathophysiology. Using advanced signal processing techniques for signal analysis allows 

researchers to develop automated tools that aid medical professionals in interpreting the EEG 

signals.   

2.2. Epilepsy and EEG 

Neurological diseases can be interpreted as a chemical or electrical imbalance in the brain 

that causes impaired brain function. Degenerative diseases, neurogenetic diseases, and 

convulsive disorders are but some of the examples of neurological diseases 
6
. Some seizures are 
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characterized by uncontrollable and rapid shaking of an individual’s body due to an irregular or 

atypical electrical conductivity or connection in the brain. Epilepsy is the most common form of 

convulsive or seizure disorder. Even though seizures are an inherent part of epilepsy, not all 

seizures are due to epilepsy. While epilepsy is incurable, it can be controlled with medications or 

in some cases it is self limiting. When patients, do not respond to medications then surgery is an 

option. 

EEG is most commonly used to diagnose epilepsy because epileptic seizures result from 

abnormal electrical activity in the brain. Seizure activity causes the EEG signal to deviate from 

its normal morphology. EEG signals demonstrate changes in the form of a decrease in signal 

frequency and an increase in signal amplitude. Also, multiple recording sites on the brain start 

showing an ordered pattern during seizure activity that is not prevalent during normal brain 

function.  

The discharges in an epileptic brain can be divided into four different categories; interictal, 

pre-ictal, ictal and post-ictal. Pre-ictal state occurs right before the start of an epileptic seizure. 

Ictal state is defined as the epileptic seizure during which the functioning of the brain is 

impaired. Interictal state occurs between two consecutive epileptic seizures and can be 

characterized as normal or abnormal brain activity. During the abnormal interictal state, interictal 

epileptiform discharges (IEDs) or interictal slow activity can be observed. During the post-ictal 

state the brain is recovering from an epileptic seizure
7
. The dynamics of pre-ictal state are most 

complex and during this stage there is a reduction in the connectivity of neurons in the 

epileptogenic zone
8
. The primary objective of this thesis is to differentiate between the ictal and 

interictal discharges. The morphology of abnormal IEDs is similar to the ictal discharges but the 

“evolution” of transient changes is required to classify the discharge as ictal. The “evolution” of 
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discharges can be described as the change in frequency, change in field (spreading to other parts 

of the brain), change in morphology, or change in amplitude. The neurologists or epileptologists 

visually scan the pre-ictal, ictal and interictal states to detect epileptic discharges but an 

automated signal classification algorithm will allow reproducible and objective analysis of EEG 

data.  

2.3. Signal analysis 

2.3.1. Time – Scale Domain: Discrete Wavelet Transform 

The signals from any complex system can be analyzed by using both linear and non-linear 

tools. The use of linear tools requires the underlying assumption that the signal being analyzed is 

linear. This is demonstrably not the case in complex neurophysiologic systems. Hence, their use 

may result in the loss of information from non-linearities. On the other hand, non-linear tools are 

computationally intensive.  The main analysis of EEG signals can be classified into time domain, 

frequency domain, time-frequency domain, and time-scale methods.  

A signal can be constructed as a linear combination of “basis functions”. In time domain 

methods, the basis function is a function that isolates elements in time. In frequency domain 

methods, the sinusoidal basis function isolates the frequency components of the signal because 

sinusoids are good at isolating components of different frequencies. Time domain and frequency 

domain representations contain the same information but differ in the features that are 

accentuated in each domain. 

As the time domain method fails to provide frequency content information and the frequency 

domain method provides temporal information only with the help of windowing, the time-

frequency and the time-scale methods resolve the temporal and frequency content for non-

stationary signals.  
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The signal analysis methods involve the remapping of the signal so more information about it 

can be extracted. The Fourier transform (FT) provides the frequency information by comparing 

the signal to a whole family of sine or cosine functions at harmonically related frequencies
9
. The 

advantage of using sinusoidal functions is that they contain energy at only one specific frequency 

which then leads to easy conversion into the frequency domain. FT uses the computationally 

attractive algorithm called “Fast Fourier Transform (FFT)”, to allow a clear visualization of the 

periodicities of the signal that helps in understanding the underlying physical phenomena. FT 

based spectral analysis of the EEG signal data is the most commonly used quantitative method 

for analysis because FT allows the separation and study of different EEG rhythms when several 

rhythms occur simultaneously
10

. Despite the usefulness of FT in analyzing EEG signal data, 

there are some disadvantages to this method. FT requires or assumes the signal to be stationary 

but the EEG signal data is highly non-stationary and since FT is based on comparing the signal 

with sinusoids that extend through the whole time domain, there is a clear lack of information 

about the time evolution of the frequencies. 

Short term Fourier transform (STFT) or spectrogram is a time-frequency analysis method 

which involves segmenting the signal into short time windows and performing FT on each 

segment. STFT has been successfully applied in a number of biomedical applications such as 

ECG analysis for arrhythmias, classifications of the lung sounds, and biomedical image analysis 

for tumor detection. STFT uses classical Fourier transforms while reducing the disadvantages of 

FT by assuming stationarity of the signal over shorter time segments. STFT can be used to 

analyze signals with high frequency components where frequency resolution is not critical. The 

selection of optimal window length for data segments and the time-frequency tradeoff due to the 

shortening the data length is the main disadvantage of spectrogram.   
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Time-scale analysis or “Wavelet analysis” utilizes expanded and compressed wavelets as basis 

functions to provide a combination of temporal and frequency information. Wavelets use varying 

window size, wide for slow frequencies and narrow for fast frequencies, leading to an optimal 

time-frequency resolution in all frequency ranges. Wavelets do not require the signals to be 

stationary as the windows are adapted to different transients of EEG data that are correlated to 

the wavelet coefficients of different scales.  

For wavelet transforms, a wavelet is defined as a small wave with finite duration and energy 

and upon correlation with EEG signals generates wavelet coefficients. 

             
 

    

 

  
      

 
          (2.1) 

where b acts to translates the function across x(t) and a is the scaled value of the wavelet function 

 . For a>1, the wavelet  , is stretched along the time axis and for a<1 the wavelet is contracted 

in time. The normalizing factor 
 

    
 ensures that the energy is the same for all values of a

9
. When 

a = 1 and b=0, the wavelet is in its natural form and  is known as the mother wavelet
3
. The 

wavelet coefficients W(a,b), describe the correlation between the signal and the wavelet at 

various translations(b) and scales(a) and the coefficients must be added together to reconstruct 

the original signal.  Like FT, if the wavelet function is appropriately chosen then the original 

signal can be reconstructed using the wavelet coefficients. Just as in STFT, the time-frequency 

tradeoff exists in the wavelet transformation as decreasing the wavelet time range (decreasing a) 

provides better time resolution but reduces the frequency resolution and increasing the wavelet 

time range provides better frequency resolution but poor time resolution.  

 The two types of wavelet transforms are Discrete Wavelet (DWT) and Continuous Wavelet 

Transform (CWT)
9
. The CWT (Equation 2.1), shows that ‘a’ is variable and changes during the 

analysis and it is often easier to analyze or recognize patterns. The CWT is highly redundant and 
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provides an oversampling of the signal by generating more coefficients than is necessary to 

describe the signal
9
. The DWT (Equation 2.2), however, restricts the variation in translation and 

scale to powers of 2.  

               
 

 
 
    

 
                  (2.2) 

where a =    and b =     and d(k,l) is a sampling of W(a,b) at discrete point k.  

DWT for signal and image processing applications is described in terms of filter banks. In 

DWT, the EEG signal is first filtered using low-pass filter to obtain coarse coefficients and then 

the detailed coefficients are obtained by passing through a set of high pass filters 
2
.  These groups 

of filters are used to divide up the signal into the spectral components called sub-band coding. 

This method is known as the multi-resolution decomposition of the EEG signal and the main 

parameter of the wavelet is to choose the number of levels of decomposition of the signal where 

these levels are based on the dominant frequency components of the signal. The extracted 

wavelet coefficients provide a compact representation of the energy distribution of the EEG 

signal in time as well as frequency.  

Both the time-frequency method such as STFT, and the time-scale methods such as, Wavelet 

transforms, map the non-stationary EEG signal into a two-dimensional space of time and 

frequency but with a time-frequency tradeoff. STFT uses a single window for the transformation 

while wavelet transforms uses multiple window durations that allow for varying frequency 

resolutions from coarse to fine. The varying size of the wavelets allows different features of the 

signal to be extracted. 

Wavelet analysis allows the signal to be expressed as wavelet coefficients obtained by 

shifting and dilating a single function called the “mother wavelet”. Therefore, the signal can be 

reconstructed by summing the wavelet coefficients. Most of the energy of the wavelets is 
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restricted to finite time intervals and when compared to STFT, the wavelet transforms provide 

good frequency resolution for lower frequencies (long time windows) and good time resolution 

for high frequencies (short time windows). 

 

Figure 2.1 Window regions of STFT and Wavelet Transforms (WT) 

In other words, STFT provides uniform time resolution across all frequencies whereas 

discrete wavelet analysis provides high time resolution and low frequency resolution for high 

frequencies while providing high frequency resolution and low time resolution for low 

frequencies
11

. Figure 2.1 shows the representation of window regions of STFT and wavelet 

transforms analysis
12,13

. 

2.4. Component analysis 

2.4.1. Principal Component Analysis 

Principal component analysis (PCA) is a form of signal analysis that identifies the principal 

components of multivariate data and uses these components to reduce the dimension of the data. 

Principal components contain statistically significant information about the data and can be 

defined as the variance in that data 
14

. In other words, PCA identifies the components that 
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contribute the most to the variance in the data as these components are most important to 

recreating the data. 

Principal components are ranked in order if their decreasing contribution to the variance in 

the data with first principal component containing information contributing maximally to the 

variance in the data and subsequent principal components ranked in order.  The primary purpose 

of PCA is to find a new set of axes so that when the data is projected on these axes, the projected 

points have maximum variation in a way that the projected data points are widely spread out 
15

. 

For a given data set      where i = 1… m, each      is an n dimensional dataset. So when this 

data is reduced to a k-dimensional data where k<n, the reduction in dimension is done to reduce 

noise, visualize higher dimensional data into reduced number of dimensions, and to compress 

high dimensional data to save time and computational complexities.  

To perform PCA, the eigenvectors and eigenvalues of the covariance matrix of the 

normalized data are obtained. The eigenvalues and their associated eigenvectors are ranked in 

order of magnitude so to reduce n-dimensional data; eigenvectors associated with the first k 

eigenvalues are chosen which form the new principal axes for dataset     . 

The covariance matrix S can be reduced to a diagonal matrix D by pre and post 

multiplication with an orthonormal matrix U
9
. The diagonal elements of D make up the variances 

of the new data and form the eigenvalues of the covariance matrix S. The columns of U 

constitute the eigenvectors for the corresponding eigenvalues. These eigenvalues determine the 

percentage of the total variance that any given principal component represents. To simplify this 

approach, the singular value decomposition (SVD) works directly with the data matrix X that is 

decomposed into D and the principal components matrix U. Using SVD, the eigenvalues 

describe the variance accounted for by the associated principal components that are ordered by 
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size and can be meaningful in identifying the number of principal components that are really 

significant. These principal components can then be used to reduce the data set as those 

contributing the least to the variance in the data can be eliminated.  

EEG data is considered to be a large dataset and the purpose of reducing the dimension, 

while allowing minimal information loss as most of the data is in the lower dimensional space, is 

to use it as input to machine learning systems such as support vector machines.  

2.4.2. Independent Component Analysis 

Independent component analysis (ICA) is similar to PCA in identifying new dimensional 

space for representing data, but differs from PCA by treating the data as coherent groups 
16

. PCA 

tries to identify new dimensional space for the data by finding the major axis of variation, 

whereas ICA identifies new dimensional space by finding the independent components of 

variation of data. The main computational difference between PCA and ICA is that while PCA 

uses variance which is only a second order statistic, ICA uses higher order statistics for 

computation of independent variables
9
.  

For a given data set of observations      for i = 1… N 

          
       (2.3) 

where A is the “mixing matrix” with sources      that generates the data     . Here s is composed 

of all the source signals. The model assumes that the mixed signals are the product of 

instantaneous linear combinations of the independent sources.  

For an “unmixing matrix”      , the main goal is to identify W so that the original 

sources      can be generated from Equation 2.4. 

          
       (2.4) 
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where W =  
   

  
   
   

  
 . 

It is important to note that ICA algorithms have some inherent ambiguities; the ICA 

algorithm cannot identify the order of the independent components or the original sources and 

ICA algorithms cannot differentiate between the signs of the original sources 
17

. These 

ambiguities however do not affect most of the applications for which ICA is used.  

When the original sources are considered non-Gaussian and independent, the joint density of 

the sources is given by  

         
 
             (2.5) 

where p(s) is the density of the original source s. For recorded, zero-meaned data     , ICA uses 

a monotonic function (any non-Gaussian function such as sigmoid function) to identify the 

parameters of W using the learning rate of the training algorithm and after the algorithm 

converges,            is computed to recover the original sources of the dataset.  

To identify the independent sources in a signal using the mixing matrix, ICA has only two 

requirements; the sources variables ‘s’ should be truly independent and that the dataset is non-

Gaussian. Since real signals satisfy both these conditions, one of the applications of ICA is the 

processing of various types of brain data such as EEG. As each electrode measures electrical 

potential generated as combinations of the underlying components of brain activity, and since 

only these mixtures of the components can be observed, ICA is useful in identifying the 

independent components in the signals in order to uncover meaningful information. In other 

words, since EEG data consists of recording from multiple locations on the brain and the data 

recorded is comprised of the mixed neural activity of the brain, ICA is used to obtain the 

independent components to help observe the original components of the brain activity. 
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2.5. Signal Classification 

2.5.1. Support Vector Machines 

A Learning System is the process of training a computer to perform tasks that it has not been 

explicitly programmed to do due to the lack of a suitable mathematical model. Learning systems 

use existing examples or training set data to find patterns and build classification models for 

problem solving. Artificial Neural Network (ANN) and Support Vector Machines (SVM) are 

two most common supervised learning algorithms that are used to train classifiers to separate 

EEG data into epileptic and non-epileptic signals 
18

. While the performance of SVM and ANN 

with respect to linear data is quite similar, the difference is observed in non-linear data 
19

. ANN 

uses multiple layers and various activation functions on non-linear data whereas SVM uses the 

kernel function as a key to separate the non-linear data. ANN uses the gradient descent algorithm 

to converge to local minima that leads to over-fitting of data whereas SVM converges to a global 

minima while providing a simple geometric interpretation and reducing errors due to over-fitting.  

To understand SVM and to see how the learning system employs the computational learning 

theory to classify the data, it is important to gain knowledge of the margins that act as the 

optimum marginal classifiers and kernels that allow SVM to be used efficiently with the high 

dimensional data. A classifier is considered to be linear when the separating hyperplane is a 

decision boundary that separates the positive and negative classes of the data with a clear margin. 

The classifier for a linear classification is 

                       (2.6) 

where y{-1,1}, w  , x   and b is a real number. 

The linear classifier is the simplest form of SVM and is usually used for data that can be 

separated using a separating hyperplane and forms the basis for more complex and non-linear 
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classifiers in SVM. If the data are not linearly separable and the points overlap then the linear 

classifiers are limited to decision boundaries that are straight lines. In more complex datasets, the 

linear boundary is attainable if the data is transformed to a higher dimensional space. 

In Figure 2.2, the solid line represents the maximal margin separating the hyperplane and 

there are two negative and one positive dataset point that lie on the dotted lines that are parallel 

to the hyperplane. These points are called “support vectors” and in an SVM algorithm there are 

very few support vectors while the rest of the dataset points are non-support vectors.  

 

Figure 2.2 A maximal margin hyperplane with its support vectors highlighted 20 

When data vectors are mapped onto higher dimension space defined by the function (x) then the 

kernel function K(           is the inner product of the feature vectors           
 because 

calculating (x) is computationally intensive being a high dimensional vector. The idea of SVM 

is to replace the inner products in the algorithm with kernel functions that can be computed very 

efficiently which allows computations in high dimensional feature space. The kernel function is 

defined as K(                          . The kernel function types include: 

 Linear : K(                           

 Radial Basis Function:                                 
 
 
 ,  >0 

 Polynomial: K(                                ,  >0 

 Sigmoid: K(                                   

Separating hyperplane 
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Here,  , r and d are kernel parameters
21

.  

While considering the EEG data which can be described as non-linear dataset as it 

originates from a non-linear system, the SVM algorithm takes the input data and projects them to 

a higher dimensional space. The kernel function defines the characteristics of the input data in 

this high dimensional space. Once the data that could not be separated linearly is projected to a 

higher dimension, it is easier for SVM to obtain a separating plane between the two classes of the 

data. The radial basis function is preferred as the kernel handles non-linear data with less 

numerical difficulties. RBF kernel uses   parameter as kernel parameter for SVM and σ as the 

penalty parameter. The penalty parameter allows the SVM to misclassify some of the parameters 

in order to obtain an optimal separating plane.  The identification of these parameters is 

paramount for training of the classifier to achieve high accuracy
21

.  
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3. Specific aims 

The purpose of this thesis is to classify ECoG signals as epileptic and non-epileptic using an 

automated machine learning algorithm. In this thesis, the epileptic signals will concentrate on 

ictal discharges and the non-epileptic signals are made up of normal and abnormal interictal 

discharges.  To achieve this, the algorithm will: 

1. Extract and normalize the ECoG data channel of interest using EEGLab. 

2. Decompose the signal using wavelet decomposition. 

3. Extract statistical features to create a feature set. 

4. Use Principal Component analysis and Independent Component analysis to reduce the 

number of features of the feature set to decrease runtime.   

5. Use the reduced feature set to train the Support Vector Machine. 

6. Compare the performance of the SVM trained on original and reduced feature set to 

separate epileptic from non-epileptic signals on a test data set. 
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4. Methodology 

4.1. Data Collection: Clinical ECoG data 

The ECoG data used in this thesis comprised of ECoG collected from a single patient. 

Subject #2 was suffering from focal epilepsy and the data was collected as part of pre-surgical 

preparations prior to  removing the epileptogenic focus. The epileptogenic focus was defined by 

the epileptologist as the site in the brain that comprised of the seizure onset zone. The resection 

of this zone eliminated the clinical symptoms due to epileptic seizures for the patient. The data 

were obtained with permission from Spectrum Health’s Epilepsy Monitoring Unit (EMU) 

located in Grand Rapids, Michigan. During this comprehensive data collection, 72 intracranial 

electrodes were implanted on the cerebrum of the patient and ECOG data with a sampling 

frequency of 1000 Hz was collected for twenty four hours a day over two weeks. This data was 

recorded as 2 hour blocks in a file format called European Data Format or .edf. The anatomical 

locations of each electrode, labeled as channels throughout this thesis, and the electrode grids can 

be found in Appendix A. The data were then annotated by an expert epileptologist who marked 

the start and stop times of each seizure for the patient along with the channels, and therefore 

anatomical locations, that exhibited marked ictal discharge. The durations and channels varied 

with each of the fifteen seizures that  Subject #2 experienced. 

The data were used for algorithm development and for creation of the training matrices for 

all models and the test data set. EEGLab was used to import the data into MATLAB from which 

the 20 second data segments were extracted. Of the fifteen events, 12 were used for training the 

SVM classifiers and the remaining were part of the test data set. The training matrices and test 

data set comprised of 20 second segments from epileptic as well as non-epileptic data. Epileptic 

data were selected only from the channels and times that been noted as demonstrating ictal 
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discharge by the epileptologist. Non-epileptic data were selected from files that did not contain 

any ictal activity noted by the epileptologist in his report. The purpose of this data selection was 

to obtain a training matrix that contained only ictal activity assigned as epileptic and absence of 

ictal activity assigned as non-epileptic.  

4.2. Algorithm  

Four models of classification, as shown in Figure 4.1 were created for identifying the most 

suitable combination of dimensionality reduction technique paired with SVM that gave the 

highest sensitivity and specificity in classifying epileptic and non-epileptic data. Each 20 second 

data segment in the training matrices and test data was normalized and decomposed into 

wavelets from which features were extracted. The steps for decomposing the signal and 

extracting features have been described in detailed in sections 4.4 and 4.5 respectively. Next, the 

features were reduced using PCA or ICA. Finally, the SVM algorithm was implemented with the 

training matrix created using the original set of features (Figure 4.1, classifier IV), the reduced 

set of features via PCA (Figure 4.1, classifier I), ICA (Figure 4.1, classifier II) or PCA+ICA 

(Figure 4.1, classifier III). The SVM classifier training using PCA and ICA were similar to  the 

paper by authors Subasi and Gursoy on which this thesis is based
2
. The third model to combine 

the principal components and independent components to create a training set was introduced in 

this thesis to observe the accuracy of the classifier. Since, principal components represent the 

variation in data and the independent components identify the independent sources contributing 

to the variance in the data, the third model was created.   

Once the SVM was trained and the classifiers obtained for each model, the test data set was 

classified. The sensitivity and specificity of each classification technique or model was computed 

using equations 4.1 and 4.2. The sensitivity (Equation 4.1) of the model is the measure of its 
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ability to correctly identify the epileptic channels, and the specificity (Equation 4.2) of the model 

is the measure of its ability to correctly identify non-epileptic channels. The classification of the 

channels and data performed by the epileptologist are the gold standard for the calculation of 

sensitivity and specificity of each model.  

            
              

                                
        (4.1) 

 

             
              

                                
        (4.2) 

 

4.3. Software Overview 

All software development was done in MATLAB R2014a (Mathworks, Natick, MA) for 

performing the following steps:  

1. Reading the clinical ECoG data for analysis 

2. Performing wavelet decomposition on the signals 

3. Reducing features using PCA and ICA algorithms 

Signal 

Classification 
Feature 

Reduction 

IV 

III 

II 

I 

EEG 

Signal 

Wavelet 

Decomposition 

Feature 

Extraction 

PCA 

ICA 

PCA+ICA 

SVM 

SVM 

SVM 

SVM 

Figure 4.1 Functional diagram 
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4. Implementing machine learning using SVM algorithm on the training matrix 

5. Obtaining performance measures of sensitivity and specificity for test data set. 

 EEGLAB, an open source MATLAB compatible package, was used to import the patient 

data for analysis in step 1. EEGLAB is an open source environment for electrophysiological 

signal processing and was developed by the Swartz Center for Computational Neuroscience 

(SCCN) and is distributed under the GNU General Public License
22

. The Wavelet Toolbox is 

part of the MATLAB 2014a which allows analysis and synthesis of signals and images using 

wavelet techniques and was used for performing step 2. The PCA is a function of the Statistics 

Toolbox of MATLAB 2014a which allows the Principal Component Analysis of raw data. For 

dimensionality reduction using the ICA algorithm, the algorithm for real-valued signal developed 

by Jean-Francois Cardoso was used
23

. SVM is also a function available in the Statistics Toolbox 

of MATLAB 2014a and was used for classifying data into two classes.  

4.4. Analysis using Discrete Wavelet Transform 

The wavelet technique applied to the EEG signals reveals features related to the transient 

nature of the signal in both the time and frequency content. The DWT analyzes the signal at 

various frequency bands by decomposing the signal into coarse and fine information. This 

decomposition into frequency bands is achieved by using filter banks that divide a signal into 

various spectral components called sub-bands.  

The signals are divided into high pass (Hi_D) and low pass (Lo_D) spectral characteristics 

where the high pass filter is like applying a wavelet to the original signal and the low pass filter 

is like applying a scaling or smoothing function.  Figure 4.2 shows the sub-band decomposition 

of the signal using DWT in which each stage is made up of high pass and low pass filters. The 

first filter Hi_D is the discrete mother wavelet, high pass in nature and the second filter Lo_D is 
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its mirror version, low pass in nature
12,13

. The down sampled outputs of the filters are the detailed 

decomposition called D1 and approximate decomposition called A1. The approximation signal 

A1 is further decomposed using the high pass and low pass filter pair. 

   

Table 4.1 Ranges of frequency bands for the ECOG signal with a sampling frequency of 1000 Hz 

Decomposed Signal Frequency Range (Hz) 

D1 250-500 

D2 125-250 

D3 62.5-125 

D4 31.25 – 62.5 

D5 15.625 – 31.25 

D6 7.8125 – 15.625 

D7 3.9062 – 7.8125 

A7 0 – 3.9062 

 

Table 4.1 shows the number of decomposition levels chosen for the ECoG signal based on 

the dominant frequency components of the signal. The sampling frequency of the ECoG signals 

used for analysis was 1000Hz. The levels shown in Table 4.1 were chosen such that each 

Figure 4.2 Sub-band decomposition of DWT 
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frequency sub-band retains frequencies necessary for classification of the signal. The ECoG 

signals were decomposed into D1-D7 detailed coefficients and final approximation coefficient 

A7. 

The signal was decomposed using the functions from the wavelet toolbox in MATLAB. 

Daubechies filter (“db6”) was used for obtaining the detailed and approximation coefficients. 

Several other filters such as Morlet filter, or Haar filter are used for wavelet transform of the 

physiological signals. The Daubechies filter  was used in this thesis to follow the paper on which 

this thesis is based. This method of wavelet decomposition was applied to epileptic (Set E - 

Appendix C) and non-epileptic (Set NE - Appendix C) data of clinical ECoG data of Subject 2.  

4.5. Feature Matrix  

After the wavelet coefficients were reconstructed, the detailed coefficients D5, D6, D7 and 

approximate coefficient A7 were used to generate the “Feature matrix”. Based on Table 4.1, 

these coefficients constitute the range of frequency bands from 0 – 31.25Hz. As the ECoG signal 

analyzed in this thesis only looks at the frequency spectrum below 30Hz, the coefficients D1-D4 

were not included in the analysis allowing the feature matrix to be reduced.  

Feature matrix is the representation of the signal using statistics over the set of wavelet 

coefficients D5-D7 and A7. The fifteen statistical features representing the time-frequency 

distribution of the ECoG signal for each sub band (as described in Table 4.1) are: 

1. Mean of the absolute values of the wavelet coefficients: Four features representing the 

frequency distribution of the signal. 

2. Average power of the wavelet coefficients: Four features representing the frequency 

distribution of the signal. 
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3. Standard deviation of the wavelet coefficients: Four features representing the amount of 

change in the frequency distribution 

4. Ratio of the mean values between adjacent sub bands: Three features representing the 

relative change in the frequency distribution 

These statistical features were chosen in this thesis to emulate the feature extraction method 

explained in the paper written by Subasi and Gursoy
2
. The authors chose these statistical 

measures because promising results were observed using these statistical measures with 

classification of lung sounds
12

. Each 20 second data segment, sampled at 1000Hz, was further 

divided into subsegments of 0.5seconds or 500 samples and an overlap of 0.25 seconds or 250 

samples between adjacent subsegments was used to calculate the statistical features for the 

feature matrix
11

. So each 20 second data segment resulted in a feature matrix with 79 rows, one 

for each 0.5 second subsegment and 15 columns for each of the 15 statistical features.  

To include the high frequency components observed in the ECoG signals during an epileptic 

event, another feature matrix was created to include coefficients D1-D3. This feature matrix 

included high frequency bands between 60Hz and 500Hz for performing analysis. The steps 

involved in creating the feature matrix as explained in this section were followed to obtain the 

high frequency feature matrix as well. 

4.6. Generating Model 

To evaluate the efficacy of SVM for differentiating epileptic from non-epileptic signals, four 

training models were implemented; each model amending the feature matrix used to train the 

SVM classifiers. To evaluate the efficiency of each model in classification of the signal, the 

sensitivity and specificity of each model was compared.  
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4.6.1. Model 1: Principal Components  

The feature matrix created from the wavelet coefficients had 79 time points for a total of 15 

statistical features. The efficacy of training SVM using data where the feature matrix had been 

reduced using PCA was explored in this model. PCA was used to generate principal components 

that are orthogonal to each other ensuring that no redundant information exists. The pca() 

function in MATLAB was used to identify the principal components that explained the total 

variance in the original feature matrix. The principal component analysis constructed 

independent new variables that are linear combinations of the original variables.  

As the pairwise correlation between the features showed substantial difference in variance of 

different columns, the inverse variance of the data was used as weights for computing the 

principal components. The pca() function computed the coefficients of the principal components 

and transformed them so they are orthonormal. The score matrix generated by the function 

contained the coordinates of the new principal axes and organized them in ascending order from 

the first principal component coordinates to the last principal component coordinates. The 

number of columns in the score matrix had equal number of columns as the feature matrix 

because pca() generates the same number of principal components as the number of categories in 

the data.  

As each principal component corresponds to the percentage variance explained by that 

component with respect to the original data, the scree plot provided a visual representation of the 

percentage of variance explained for each principal component
24

.  
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Figure 4.3 Scree plot of an epileptic seizure 

 

 
Figure 4.4 Scree plot of non-epileptic data 

Based on scree plots of multiple epileptic and non-epileptic channel data, three principal 

components explained 80% or more variance in the original data and were taken to create the 

training matrix to train SVM classifier I.  

4.6.2. Model 2: Independent Components  

In the second model number of features in the feature matrix was reduced using ICA. To 

identify the independent components an algorithm based on joint diagonalization of cumulant 

matrices called JadeR was used
25

.  
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The first step of this statistics based algorithm, created by Cardoso and Souloumiac, to use 

with real data, involved whitening of the feature matrix
23

. This was done to obtain a new mixing 

matrix that is orthogonal with values that are uncorrelated and with variances equal to unity. The 

next step involved estimation of cumulant matrices and to find rotation matrix such that the 

cumulant matrices are diagonal before estimating the independent components. This step used 

joint diagonalization method as the optimization technique to obtain the objective function that 

relates to variable independence
23

. Scree plots such as shown in Figure 4.3 were used to identify 

that the optimum number of independent components needed is three, so the first three 

independent components of the feature matrix computed using the JadeR were obtained to create 

the training matrix to train SVM classifier II. 

4.6.3.  Model 3: Principal + Independent Components 

This model is a combination of models 1 and 2 where three principal components and three 

independent components are used together to create the training matrix to train the SVM 

classifier III.  

4.6.4. Model 4: Feature Matrix  

For this model, the entire feature matrix was used as the training matrix to train the SVM 

classifier IV. It should be noted that as only 15 features are present in the Feature matrix, training 

an SVM classifier using all of the features would likely provide better sensitivity and specificity.  

4.6.5. Obtaining SVM Classifiers 

SVM algorithm classifies the two classes (epileptic and non-epileptic) by finding an optimal 

hyperplane with the largest margin that separates the data points of the classes. The support 

vectors are the data points closest to this hyperplane and on the margins of the border separating 
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the classes. For non-separable data, a softer margin is identified that separates many if not all 

points. 

The basic premise of SVM is to produce a classifier (based on the training matrix) which 

predicts the classification of the test data set given only the test data attributes. Training an SVM 

classifier was achieved in three distinct steps; first step was to train the machine classifier, the 

second step was to classify the data using the classifier and the third step was to tune the 

classifier for optimal classification. fitcsvm() is a MATLAB function that is available from the 

statistical toolbox for training SVM. The training matrix containing the epileptic and non 

epileptic data along with the class matrix containing the classification (class = -1 for epileptic 

and class = +1 for non-epileptic) was used to train the SVM. For all the aforementioned models, 

the data matrix changed based on the number of columns used for creating the training matrix.  

The radial basis function (RBF) kernel which is a Gaussian function was used for training 

SVM classifiers. This function non-linearly maps the data points onto a higher dimensional space 

where it becomes close to linearly separable under the change of variables. The resulting SVM 

trained classifier contains the optimized parameters that helped classify the test data set. predict() 

function from MATLAB along with the classifier was used to classify the test data set, where 

each row corresponds to a new time point. The test data set contains all 79 time points for the 20 

second data segment for each channel included in the test data. SVM classifier then classifies 

each time point for the channel as epileptic or non-epileptic. In order to identify whether the 

entire channel can be classified as epileptic or non-epileptic, the preponderance of classification 

was used. For the channel to be classified as epileptic, 51% of the 79 time points are required to 

have a classification as epileptic (class = -1) and for the channel to be classified as non-epileptic, 

51% of the 79 time points are required to have a classification as non-epileptic or (class = +1). 
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In order to tune the classifier for optimal performance, it was necessary to identify the best 

parameters for σ and   where σ is the penalty parameter and   is the kernel parameter. This was 

accomplished using a ten-fold cross-validation to identify the parameters where multiple σ and   

values are used to compute the best cross validation accuracy. In ten-fold cross-validation, the 

training data was partitioned into ten subsets. The classifier was trained using nine of the subsets 

of which the tenth one was used as a test set to obtain a score that corresponds to the percentage 

of data that was classified correctly. This process was repeated ten times with each subset as a 

test set exactly once. The ten test scores were then averaged and the classifier with the highest 

test score was chosen
12

. Cross-validation was used for comparing all the SVM classifiers 

possible to identify the best classifier. After identifying the kernel parameters, the SVM classifier 

was trained and the test data was classified. The process of obtaining classifiers described above 

was repeated for each model classifier with its corresponding training matrix and test data set. 

The classifiers obtained were classifier I for model 1, classifier II for model 2, classifier III for 

model 3, and classifier IV for model 4.  
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5. Results 

Figure 5.1 shows the ECoG data of ictal discharge seen in epileptic data and Figure 5.2 

shows ECoG data from the non-epileptic files that shows no ictal activity.  

 

Figure 5.1 Epileptic ECoG data 

 

Figure 5.2 Non-epileptic ECoG data 

As explained in section 4, an algorithm was written to convert 20 second data segment for a 

channel into a feature matrix containing 79 time points and 15 features. Figure 5.4 shows the 

wavelet decomposition of the epileptic data during seizure #2 on Channel 34 (Figure 5.3) and 

Figure 5.6 shows the decomposition of the non-epileptic data for the same channel (Figure 5.5).  
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Figure 5.3 Epileptic data in Channel 34 

 
Figure 5.4 Wavelet decomposition of epileptic data on Channel 34 of Subject #2 

 

 

Figure 5.5 Non-epileptic data in Channel 34 
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Figure 5.6 Wavelet decomposition of non-epileptic data on Channel 34 of Subject #2 

The extracted coefficients provided a representation of energy distribution of the ECoG 

signal in time and frequency. Each coefficient was reconstructed using wrcoef() function from 

the wavelet toolbox. The feature matrix obtained from these coefficients had 79 time points and 

15 features as explained in section 4.5. Figure 5.7shows each channel being classified as 

epileptic. Notice that out of 79 time points preponderance (greater than 51%) shows that the 

channel is epileptic as the SVM classifier classifies epileptic data as -1 and non-epileptic data as 

+1. Figure 5.8 shows the channel as being non-epileptic. Again the preponderance of time points 

is shown as non-epileptic which is +1.  

 

Figure 5.7 Preponderance of time points showing the channel as epileptic 
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Figure 5.8 Preponderance of time points showing the channel as non-epileptic 

Using this algorithm, a training matrix for each model was created using data from 12 

seizures experienced by Subject #2. The training matrix contained epileptic data from a total of 

253 channels with 20000 time points and non-epileptic data from 190 channels with 15000 time 

points. The feature matrix for each of the channels was computed individually using the 

algorithm and all the feature matrices were combined to create the training matrix. It should be 

noted that the training matrix contains more epileptic channels than non-epileptic channels; the 

reason was to increase the sensitivity of the SVM classifiers in classifying the epileptic from 

non-epileptic data. 

Table 5.1 Class distribution of the channels in the training and data sets 

Class Training Matrix Test Data set 

Epileptic 253 channels 50 channels 

Non-epileptic 190 channels 50 channels 

 

The test data set was created using the epileptic and non-epileptic data of Subject #2 not used 

in the training matrix. This test data set was used with each model to identify the models’ 
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sensitivity and specificity. Table 5.1 shows the number of epileptic and non-epileptic channels 

chosen for the training matrix and test data set.  

5.1.1. Testing using Model 1 

For this model only three principal components were chosen to train the SVM classifier I and 

the number of channels used to train and test were as shown in Table 5.1. While the model was 

able to correctly identify all the epileptic channels, it also identified all the non-epileptic 

channels as epileptic. This allowed the sensitivity of the model to be 100% but the specificity of 

the model was zero. Table 5.2 shows the time the model took for training classifier I and 

classifying the test data set using classifier I. Figure 5.9 shows the classification of a seizure 

performed by classifier I and due to low specificity, almost all channels have been marked as 

epileptic. The channels of interest for this seizure were 34,39-41 only.  

 

Figure 5.9 Channel classification performed by classifier I 

5.1.2. Testing using Model 2 

In this model, three independent components were used to train and test the SVM for 

performing the classification. This model behaved in the same way as model 1 where it correctly 

identified all the epileptic channels, identified by the epileptologist, correctly but it also showed 

zero specificity. Table 5.2 shows time the model took for training classifier II and classifying the 
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test data set using classifier II. Figure 5.10 shows the classification of the same seizure 

performed by classifier II and as the low specificity exhibited with the test data set, only 13 

channels have been marked as non-epileptic.  

 

Figure 5.10 Channel classification performed by classifier II 

5.1.3. Testing using Model 3 

The training matrix for this model was created with the first three principal components using 

PCA and the first three independent components using ICA. This model showed results that were 

better than both model one and model two. While the sensitivity of the model was lower 

compared to the previous models, the specificity improved. Table 5.2 shows the sensitivity and 

specificity values of the model along with the time the model took to train the SVM classifier III. 

This model was used to classify the channels of  epileptic data during a seizure and non-

epileptic data where no ictal activity was observed by the epileptologist. While the model 

identified the channels chosen by the epileptologist as the channels of interest, several other 

channels were chosen as well (Figure 5.11). Similarly in the non-epileptic data, classifier III 

identified several channels that were shown as epileptic (Figure 5.12).  
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Figure 5.11 Channel classification performed by classifier III 

 

Figure 5.12 Channel classifying non-epileptic data using classifier III 

5.1.4. Testing using Model 4 

For this model no dimensionality reduction methods were used to reduce the feature matrix 

and the training matrix comprised of all fifteen features. The sensitivity of the model was 98% 

and the specificity was 80% and both these values were observed to be the best among all the 

four models. The time taken for training classifier IV for this model was considerably more than 

the time taken by other models for training their classifiers (Table 5.2).  

Figure 5.13 shows the classification of seizure #2 performed by classifier IV. The classifier 

correctly identifies the channels chosen by the epileptologist while pick four additional channels 
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as epileptic. Figure 5.14 shows the classification of a non-epileptic data. Please note that this is 

the same data used for classification by model 3.  

 

Figure 5.13 Channels classified using classifier IV (0-30Hz) 

 

Figure 5.14 Channel classifications of non-epileptic data using classifier IV (0-30Hz) 

Table 5.2 Sensitivity and specificity of the four models 

 Sensitivity Specificity Time to train classifier 

Model 1 100% 0% 17 minutes 

Model 2 100% 0% 18 minutes 

Model 3 80% 46% 44 minutes 

Model 4 98% 80% 70 minutes 
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In order to observe the classification of data using just the high frequency components 

observed in the ECoG signals, the second feature matrix created using the wavelet coefficients 

D1-D3 was used to train and test classifier IV.  

 

Figure 5.15 Channels classified using the high frequency classifier IV (60-500Hz) 

 

Figure 5.16 Channel classifications of non-epileptic data using high frequency classifier IV (60-500Hz) 

Figure 5.15 shows the classification of all the channels for the epileptic data from Subject # 

2. Figure 5.16 shows the classifications of all the channels from non-epileptic files of Subject # 

2. Please note that the training data used for the training the high frequency classifier IV was 

created using the wavelet coefficients D1-D3 which was different from the training data created 

using coefficients D5-D7 and A7.  
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6. Discussion 

The test data set created using 50 epileptic channel and 50 non-epileptic channel data was 

able to provide the sensitivity and specificity of each model studied in this thesis. The use of 

component analysis methods to reduce dimensionality of the feature matrix used to train the 

SVM classifier to differentiate between the epileptic and non-epileptic signals were explored. 

The objective of this thesis was the classification of data along with identifying the optimal 

technique that achieved the differentiation with more accuracy.  

After selecting the  data length of extraction for analysis as twenty seconds, the wavelet 

transform was used to find the wavelet coefficients of the signal segment. To obtain good time 

and frequency resolutions, the signal was decomposed into frequency sub bands as shown in 

Table 4.1. Primarily the frequency spectrum of interest for ECoG signals was in the ranges 0-

30Hz, the detailed coefficients D5-D7 and approximate coefficients A7 were used to create the 

feature matrix using statistical features. These features are mean of the absolute values, average 

power, standard deviation, and ratio of the mean in order to obtain the frequency distribution 

along with change in the frequency distribution in each sub band. For creating the feature matrix, 

the signal was divided into 0.5 second subsegments with an overlap of 0.25 seconds and 

stationarity was assumed for the subsegment. Each channel of data was represented in the feature 

matrix as a total of 79 time points with a total of 15 features.  

The feature matrix was then used with the PCA algorithm to obtain principal components and 

ICA algorithms to obtain the independent components for creating the training matrix for models 

1, 2 and 3. The number of principal and independent components used for analysis was identified 

from the scree plot of multiple epileptic and non-epileptic channel data. The inflection point was 

observed to be near the 4
th

 and 5
th

 principal component (Figure 4.3). After visually analyzing 



53 

 

several scree plots for both epileptic and non-epileptic data, it was observed that the first three 

principal components explained more than 80% - 90% variation in the signal. Hence, only three 

principal and independent components were chosen for creating the training matrices. The other 

reason for choosing only three principal components was to reduce the training time of the SVM 

classifiers.  

In their work, Subasi and Gursoy suggested that using PCA and ICA to reduce the feature 

dimension resulted in faster and more accurate classification. They also suggested that using the 

feature matrix as a whole to train the SVM classifiers lead to longer runtime as well as reduced 

accuracy. The authors used EEG data recorded using scalp electrodes and their epileptic data 

contained only seizure activity and their non epileptic data was taken from healthy individuals 

with no epileptic activity. In this thesis, the data used for analysis is ECoG from patients who 

were diagnosed with epilepsy. The epileptic data used contained seizure activity as noted by the 

epileptologist. As it is impossible to obtain ECoG data from healthy individuals, the non-

epileptic data came from files that the epileptologist found no epileptic activity. 

Significant differences exist in data as well as methods used for creating the feature matrix 

between the algorithm of Subasi and Gursoy and the one used in this thesis.  The data segment 

along with the subsegment chosen for wavelet transform is different in both the studies. The 

authors also chose the frequency bands during feature extraction to only include frequencies 

between 0 -21.7Hz. In this thesis the initial analysis and calculation of sensitivity and specificity 

of all models were calculated using the frequencies between 0-30Hz. After obtaining the best 

classifier among the four models tested, a high frequency analysis was performed using the high 

frequency range between 60-500Hz.  
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In order to account for the changes between the two studies, it was necessary to evaluate 

using the entire feature matrix to train SVM classifiers and, therefore, model 4 was included for 

analysis.  Just as the training data, the test data for each model was created using the feature 

matrix of the epileptic and non-epileptic data excluded from the training matrix. Hence, SVM 

classified each of the 79 time point as epileptic or non-epileptic. In order to classify the channel 

as epileptic or non-epileptic, 51% preponderance of classifications was calculated for all the 79 

time points of that channel.  

Results of the analysis using 0-30Hz showed that out of the four models, model 4 and 

classifier IV was best at classifying the test data set with a sensitivity of 98% and specificity of 

80%. But model 4 also had the longest runtime when compared to the other three models. Model 

3 fared better than models 1 and 2 in terms of sensitivity and specificity.  

All the four model classifiers were used to classify all 72 channels of seizure #2 for a 20 

second time segment. Results show that classifier I and II had subpar performance and classifier 

III also classified a lot of non-epileptic channels as epileptic. Classifier IV performed optimally 

by choosing all the channels that the epileptologist highlighted. The other channels chosen with 

the epileptic and non-epileptic data could have been for the following reasons:  

1. The channels chosen showed subclinical epileptic discharge that lasted for a very short 

duration and did not cause any clinical symptom.  

2. The algorithm misclassified it as epileptic even though no epileptic discharge was present. 

 3. The epileptic discharge was just starting at that time and would have evolved or dissipated 

in the next 20 seconds.  

As there are high frequency components present in the EEG data during ictal activity, the 

analysis using all 72 channels of Seizure # 2 for a 20 second time segment was carried out using 
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the training matrix created with the high frequency wavelet coefficients D1-D3. Results show 

that while the channels highlighted by the epileptologist were picked by the classifier as well 

several other channels were classified as epileptic. This was also observed when the high 

frequency classifier was used to classify the channels from the non-epileptic data. The 

classifications done by classifier IV and the high frequency classifier IV for the same data files 

were visually analyzed. It was observed that while all the channels highlighted as epileptic were 

picked by both the classifiers, the high frequency classifier has an increased number of false 

positives as several other channels were picked as epileptic.  

To further evaluate the algorithm and the classifications performed by the classifiers, it is 

imperative to analyze each and every misclassification by analyzing the raw EEG data with the 

experts.  
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7. Future Work 

The results in this thesis suggest that using the entire feature set to train the SVM allows for 

higher sensitivity and specificity but accuracy of SVM classification is highly dependent on the 

training data. The possibility of using PCA and ICA to reduce the dimensions of the data were 

explored in this thesis but not all combinations of the number of principal components and 

independent components to be used, were explored.  To perform an exhaustive comparison 

between various techniques of component analysis and  training an SVM classifier, it is 

imperative to try all combinations and compare the results. ICA is used with scalp EEG data with 

more efficiency as the data recorded has influence from independent sources of neural activity 

captured by the electrode. Hence, this algorithm should be tested using the scalp EEG data as 

well. 

The sensitivity and specificity of each model was determined based on the comparison 

between the channels that the SVM classified as epileptic and the channels that the epileptologist 

classified as epileptic. The efficacy of the models and the algorithm used in this thesis should be 

verified by the epileptologist. Such verifications were not possible with the data used in this 

thesis due to time constraints. 

As SVM trains and performs better with the amount and quality of data used, it is possible to 

fine tune the ways that SVM is trained. While some information, such as the length of data used 

for analysis, window size for obtaining the wavelet coefficients and the number of statistical 

features applied to the chosen coefficients, were empirically chosen for optimal performance 

based on the present knowledge of the data as well as the recommendation of the paper written 

by Subasi and Gursoy, there is certainly a need to analyze other ways to increase the efficiency 

of SVM in performing classifications.  
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The availability of additional patient ECoG data provides promising avenues for training and 

testing the models using data from these patients. Since the time taken to train the SVM classifier 

is considerably smaller than other machine learning options such as artificial neural networks 

(ANNs) and since the possibility of over-fitting the model is much lower, this additional data can 

be used to help increase the robustness of the machine algorithm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



58 

 

8. Conclusion 

This thesis contributes to the detection of epilepsy by providing an automated classification 

method that allows the data to be sorted as epileptic or non-epileptic. While several 

commercially available software packages exist for assisting  medical professionals in making 

this distinction, a black box that can intuitively classify the available data and learn to improve 

its performance, is more useful.  This black box or support vector machine can be used to 

classify the data as either epileptic or non-epileptic based on currently available data. With 

clinical ECoG single patient data for training and testing, the sensitivity and specificity of the 

SVM classifier was 98% and 80%, respectively, for the model that used the feature matrix to 

train SVM. 

SVM runtime for training the classifiers is much faster when compared to other machine 

learning algorithms and the testing time was observed to be less than five seconds for classifying 

all 72 channels of a twenty second data segment. This allows the algorithm to be used for 

obtaining real time classification of data while recording. While, identification of epileptogenic 

zone will require the expert opinion of an epileptologist, the machine learning algorithm can be 

used to assist in signal analysis and classification.  
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10. Appendix A: Electrode Locations Subject #2 
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Table 10.1 Electrode Grids 

Grid Electrode Number 

A 1-20 

B 21-28 

C 29-34 

D 35-42 

E 43-46 

F 47-50 

G 51-54 

H 55-58 

I 59-62 

J 63-66 

K 67-72 
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11. Appendix B: List of epileptic and non-epileptic files used for analysis 
 

Table 11.1 List of epileptic and non-epileptic files 

Non-epileptic files (Set NE) Epileptic files (Set E) 

BA26802O_1-1.edf 
 

BA26802N_1-1.edf 
 

BA26802S_1-1.edf 
 

BA26802P_1-1.edf 
 

BA26802U_1-1.edf 
 

BA26802Q_1-1.edf 
 

BA26802V_1-1.edf 
 

BA26802R_1-1.edf 
 

BA26802W_1-1.edf 
 

BA26802T_1-1.edf 
 

BA26802Y_1-1.edf 
 

BA26802X_1-1.edf 
 

BA26802Z_1-1.edf 
 

BA26802X_1-1.edf 
 

BA26803A_1-1.edf 
 

BA26802X_1-1.edf 
 

BA26803B_1-1.edf 
 

BA268030_1-1.edf 
 

BA26803D_1-1.edf 
 

BA268031_1-1.edf 
 

BA26803E_1-1.edf 
 

BA26803C_1-1.edf 
 

BA26803F_1-1.edf 
 

BA268049_1-1.edf 
 

BA26803G_1-1.edf 
 

BA26804K_1-1.edf 
 

BA26803H_1-1.edf 
 

BA26804L_1-1.edf 
 

BA26804A_1-1.edf 
 

BA26804M_1-1.edf 
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12. Appendix C: Matlab Code : Epileptic  
 

%########################################################################## 

%This program performs the following actions in a sequence: 

%   - Add path to the files containing the data from the excel 

%   - Get information of the start time and stop time for each seizure 

%   - Read the .edf file of the patient 

%   - extract 20 second data for epileptic channels 

% 

%Some initial steps for loading the EEG data for analysis has been adapted 

%from James Gurisko's thesis. 

% 

% Priya Balasubramanian 

% Created on 07/23/2014 

% Last updated on 11/24/2014 

%########################################################################## 

clear all; 

clc; 

close all; 

 

%-------------------------------------------------------------------------- 

% User entered parameters 

% 

% The information entered below will change for each patient and each 

% seizure. The sampling frequency as well as the epileptic and nonepileptic 

% channels being considered will change based on the patient and seizure as 

% well. The length of the data remains as 20 seconds for each dataset being 

% analyzed. 

 

Filename = 'DataNotesP.xlsx'; %File containing the patient data 

Directory = 'C:/eegData/SH-EEG/'; % Directory containing the patient data 

SeizureNumber =2; % Seizure number being analyzed 

Nextset = 0;% to collect the next 20 seconds worth of data 

DataLength = 0; % Length of the data in seconds 

Fs = 1000 ; % sampling frequency in Hz 

E1begin = 1; 

E1end = 74; % Range of first set of epileptic channels 

% E1begin = 4; 

% E1end = 6; 

% E2begin = 33; 

% E2end = 46; 

%E2begin = 41; 

%E2end = 74; % Range of second set of epileptic channels 

 

%-------------------------------------------------------------------------- 
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% Add path to files 

% 

addpath('C:/eegData/Priya','C:/eegData/MATLAB/WOSSPA_Mathworks_v2',... 

    'C:/eegData/Priya/eeglab10.2.2.4b'); 

% Use addpath to add the necessary folders 

 

%-------------------------------------------------------------------------- 

%Read information of the seizure from the excel file 

% 

% Read the start times for each seizure 

Hour = xlsread(Filename,1,'O:O'); 

Minute = xlsread(Filename,1,'P:P'); 

Second = xlsread(Filename,1,'Q:Q'); 

 

% Calculate the absolute start time for each seizure 

StartSeizure = ((((Hour.*60)+Minute).*60)+Second); 

 

%Read the file name corresponding to each seizure from the excel file 

[Num,FileEDF,Raw] = xlsread(Filename,'I:I'); 

size(FileEDF) 

clear Num; 

clear Raw; 

 

%Create a single string for importing data 

%strcat combines the directory with the .edf filename to create a single 

%string for importing patient data 

 

FilenameCombined = cell(16,1); 

 

for i = 1:16, 

    FilenameCombined(i,1) = strcat(Directory,FileEDF(i+1,1)); 

end 

 

%-------------------------------------------------------------------------- 

% Read the .edf file of the patient and open EEGlab for analysis 

% 

% Open EEGlab 

eeglab; 

FileTemp = FilenameCombined(SeizureNumber); 

FileSeizure = FileTemp{1}; 

 

EEG = pop_biosig(FileSeizure,'importevent','off','blockepoch','off'); 

 

EEG.setname = 'CurrentSet'; 

EEG = eeg_checkset(EEG); 

eeglab redraw; 
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%-------------------------------------------------------------------------- 

% Extract 20 second data for analysis 

% 

% The 20 second data to be analyzed is 20 seconds during the seizure. 

% This value will be extracted from epileptic channels. A total of 20 

% seconds for 20 channels will be extracted. The electrode label of the 

% channels will be extracted as well for reference. 

 

y = EEG.data; 

y = double(y); 

 

%Prior = 10; 

%During = 10; 

During = 20; 

 

StartData = StartSeizure(SeizureNumber); 

%StartData1 = StartData -2000; 

% 10 seconds prior to the start of the seizure 

%Start = StartData - Prior; 

Start = StartData+Nextset; 

% 10 seconds after the start of the seizure 

%Stop = StartData + During; 

Stop = StartData+Nextset + During; 

 

% For 20 seconds of data for first set of epileptic channels 

 

x(1:length(E1begin:E1end),:)= y(E1begin:E1end,Fs*Start:Fs*Stop-1); 

 

 

% Creating channel label vectors for first set of epileptic channels 

 

xlabels_temp = char(EEG.chanlocs.labels);xlables = xlabels_temp; 

 

xlabels(1:length(E1begin:E1end),:) = xlabels_temp(E1begin:E1end,:); 

 

xlabels = cellstr(xlabels); 

 

% Normalize mean and standard deviation 

x2 = zscore(x,0,2); 

 

% % For 20 seconds of data on second set of epileptic channels 

% 

% z(1:length(E2begin:E2end),:)= y(E2begin:E2end,Fs*Start:Fs*Stop-1); 

% 

% 
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% % Creating channel label vectors for second set of epileptic channels 

% 

% zlabels_temp = char(EEG.chanlocs.labels);zlables = zlabels_temp; 

% 

% zlabels(1:length(E2begin:E2end),:) = zlabels_temp(E2begin:E2end,:); 

% 

% zlabels = cellstr(zlabels); 

% 

% % Normalize mean and standard deviation 

% z2 = zscore(z,0,2); 

% 

 

% %-------------------------------------------------------------------------- 

% % Till this step the data is extracted and normalized. 

% % The next step is to visualize the 20 second data. 

% %Signal = x2(1,:); 

% %Signal = z2(2,:); 

% taxis = 0:1/Fs:20-1/Fs; % Time for the axis on graph 

% figure(2); 

% plot(taxis,x2(34,:)); 

% title('Subject#2, Seizure#1, Channel 34 Original signal - 1000Hz'); 

% xlabel('Time (s)'); 

% ylabel('Amplitude (units)'); 

% 

% % plot(z2(1,:)); 

% % title('Original signal - 1000Hz'); 

% Signal = x2(34,:); 

% 

% [ A7,D1,D2,D3,D4,D5,D6,D7 ] = Wavelet_Decomposition( Signal,7); 

% 

% figure(3); 

% subplot(4,2,1); 

% plot(taxis,A7); 

% xlabel('Time (s)'); 

% ylabel('A7'); 

% %title('Epileptic - Approximation A7'); 

% subplot(4,2,2); 

% plot(taxis,D1),ylim([-1.5 1.5]); 

% xlabel('Time (s)'); 

% ylabel('D1'); 

% %title('Epileptic - Detailed D1'); 

% subplot(4,2,3); 

% plot(taxis,D2),ylim([-1.5 1.5]); 

% xlabel('Time (s)'); 

% ylabel('D2'); 

% %title('Epileptic - Detailed D2'); 
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% subplot(4,2,4); 

% plot(taxis,D3),ylim([-1.5 1.5]); 

% xlabel('Time (s)'); 

% ylabel('D3'); 

% %title('Epileptic - Detailed D3'); 

% subplot(4,2,5); 

% plot(taxis,D4),ylim([-1.5 1.5]); 

% xlabel('Time (s)'); 

% ylabel('D4'); 

% %title('Epileptic - Detailed D4'); 

% subplot(4,2,6); 

% plot(taxis,D5),ylim([-1.5 1.5]); 

% xlabel('Time (s)'); 

% ylabel('D5'); 

% %title('Epileptic - Detailed D5'); 

% subplot(4,2,7); 

% plot(taxis,D6),ylim([-1.5 1.5]); 

% xlabel('Time (s)'); 

% ylabel('D6'); 

% %title('Epileptic - Detailed D6'); 

% subplot(4,2,8); 

% plot(taxis,D7),ylim([-1.5 1.5]); 

% xlabel('Time (s)'); 

% ylabel('D7'); 

% %title('Epileptic - Detailed D7'); 

% %------------------------------------------------------------------------- 

% 

% % Generating the PCA and ICA final matrix for all the signal 

% 

% % First set of epileptic channel signals 

% Signal0 = x2(1,:); % Channel 4 

% Signal1 = x2(2,:); % Channel 5 

% Signal2 = x2(3,:); % Channel 6 

% % 

% % % Second set of epileptic channel signals 

% Signal3 = z2(1,:); % Channel 33 

% %Signal4 = z2(2,:);  % Channel 34 

% % %Signal5 = z2(3,:); % Channel 35 

% % %Signal6 =z2(4,:);  % Channel 36 

% % %Signal7 = z2(5,:); % Channel 37 

% %Signal8 = z2(6,:); % Channel 38 

% %Signal9 = z2(9,:); % Channel 39 

% %Signal10 = z2(10,:); % Channel 40 

% %Signal11 = z2(11,:);  % Channel 41 

% %Signal12 = z2(12,:); % Channel 42 

% % %Signal13 = z2(13,:): % Channel 43 
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% Signal14 = z2(14,:); % Channel 44 

% % 

% [FS0,P0,IC0,exp0] = Combination(Signal0); 

% [FS1,P1,IC1,exp1] = Combination(Signal1); 

% [FS2,P2,IC2,exp2] = Combination(Signal2); 

% [FS3,P3,IC3,exp3] = Combination(Signal3); 

% %[FS4,P4,IC4,exp4] = Combination(Signal4); 

% % %P5 = Combination(Signal5); 

% % %P6 = Combination(Signal6); 

% % %P7 = Combination(Signal7); 

% %[FS8,P8,IC8,exp8] = Combination(Signal8); 

% %[FS9,P9,IC9,exp9] = Combination(Signal9); 

% %[FS10,P10,IC10,exp10] = Combination(Signal10); 

% %[FS11,P11,IC11,exp11] = Combination(Signal11); 

% %[FS12,P12,IC12,exp12] = Combination(Signal12); 

% % %P13 = Combination(Signal13); 

% [FS14,P14,IC14,exp14] = Combination(Signal14); 

% %------------------------------------------------------------------------- 

% % % Printing the scree plot for the above channels 

% % figure(2); 

% % plot(exp3); 

% % title('Scree plot (epileptic) - Seizure 12 - Channel 33'); 

% % xlabel('Principal Component'); 

% % ylabel('Variance explained(%)'); 

% % figure(3); 

% % plot(exp4); 

% % title('Scree plot (epileptic) - Seizure 2 - Channel 34'); 

% % xlabel('Principal Component'); 

% % ylabel('Variance explained(%)'); 

% % figure(4); 

% % plot(exp11); 

% % title('Scree plot (epileptic) - Seizure 12 - Channel 41'); 

% % xlabel('Principal Component'); 

% % ylabel('Variance explained(%)'); 

% % figure(5); 

% % plot(exp12); 

% % title('Scree plot (epileptic) - Seizure 12 - Channel 42'); 

% % xlabel('Principal Component'); 

% % ylabel('Variance explained(%)'); 

% 

% % exp3 = exp3'; 

% % exp4 = exp4'; 

% % exp11 = exp11'; 

% %------------------------------------------------------------------------- 

% % Creating the training matrix for the epileptic data with first three rows 

% % as principal components 1,2 and 3 and the next three rows as independent 
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% % components 1,2 and 3. Echan contains the channel numbers for the data 

% i1 = 1; 

% i2 = 79; 

% i = 4; 

% Etrain(i1:i2,2:20) = FS0; 

% Etrain(i1:i2,21:23) = P0; 

% Etrain(i1:i2,24:26) = IC0; 

% Etrain(i1:i2,1) = i; 

% 

% i1 = i1+79; 

% i2 = i2+79; 

% i = 5; 

% Etrain(i1:i2,2:20) = FS1; 

% Etrain(i1:i2,21:23) = P1; 

% Etrain(i1:i2,24:26) = IC1; 

% Etrain(i1:i2,1) = i; 

% 

% i1 = i1+79; 

% i2 = i2+79; 

% i = 6; 

% Etrain(i1:i2,2:20) = FS2; 

% Etrain(i1:i2,21:23) = P2; 

% Etrain(i1:i2,24:26) = IC2; 

% Etrain(i1:i2,1) = i; 

% 

% i1 = i1+79; 

% i2 = i2+79; 

% i = 33; 

% Etrain(i1:i2,2:20) = FS3; 

% Etrain(i1:i2,21:23) = P3; 

% Etrain(i1:i2,24:26) = IC3; 

% Etrain(i1:i2,1) = i; 

% 

% i1 = i1+79; 

% i2 = i2+79; 

% i = 44; 

% Etrain(i1:i2,2:20) = FS14; 

% Etrain(i1:i2,21:23) = P14; 

% Etrain(i1:i2,24:26) = IC14; 

% Etrain(i1:i2,1) = i; 

% 

% % i1 = i1+79; 

% % i2 = i2+79; 

% % i = 44; 

% % Etrain(i1:i2,2:20) = FS14; 

% % Etrain(i1:i2,21:23) = P14; 
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% % Etrain(i1:i2,24:26) = IC14; 

% % Etrain(i1:i2,1) = i; 

% %------------------------------------------------------------------------- 

% Creating the training matrix for all the channels for one seizure. The 

% training matrix has first column as the channel number. For feature 

% matrix the columns are 15 features. and for the PCA+ICA model the columns 

% are 3 pcs and 3 Ics. 

 

 

i1 = 1; 

for i = 1:38; 

    Signal = x2(i,:); 

    i2 = i1+78; 

    [FS,P,IC] = Combination(Signal); 

    Etrain(i1:i2,2:20) = FS; 

    Etrain(i1:i2,21:23) = P; 

    Etrain(i1:i2,24:26) = IC; 

    Etrain(i1:i2,1) = i; 

    i1=i1+79; 

end 

for i = 41:74; 

    Signal1 = x2(i,:); 

    i2 = i1+78; 

    [FS,P,IC] = Combination(Signal1); 

    Etrain(i1:i2,2:20) = FS; 

    Etrain(i1:i2,1) = i-2; 

    Etrain(i1:i2,21:23) = P; 

    Etrain(i1:i2,24:26) = IC; 

    i1=i1+79; 

end 

 

TestNew = Etrain; 

%------------------------------------------------------------------------- 

% Using the Etrain matrix as TestNew matrix with the SVM function 

 

Edata = xlsread('EpilepticTrain.xlsx'); 

NEdata = xlsread('NEpilepticTrain.xlsx'); 

% TestTrain = xlsread('TestTrainFMData.xlsx'); 

% TestNew = xlsread('TestFMData.xlsx'); 

 

% Creating the Training matrix for epileptic and non epileptic data 

data1 = Edata(4001:24000,2:20); 

data2 = NEdata(4001:19000,2:20); 

data3 =[data1;data2]; % data set containing the training set data 

class = ones(35000,1); %NE = 1 and E = -1 

class(1:20000) = -1;% data set containing the classifier for training set 
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% Creating the matrix for picking optimal values for the SVM 

 

datac1 = Edata(24001:25500,2:20); 

datac2 = NEdata(24001:25500,2:20); 

datac3 =[datac1;datac2]; % data set containing the training set data 

classc = ones(3000,1); %NE = 1 and E = -1 

classc(1:1500) = -1;% data set containing the classifier for training set 

 

%------------------------------------------------------------------------- 

% SVM training and cross validation 

tic 

%Picking optimal values for the rbf_sigma and boxconstraint 

[d1,d2] = size(datac3); 

c = cvpartition(d1,'KFold',10); 

minfn = @(z)kfoldLoss(fitcsvm(datac3,classc,'CVPartition',c,... 

    'KernelFunction','rbf','Boxconstraint',exp(z(2)),... 

    'KernelScale',exp(z(1)))); 

opts = optimset('TolX',5e-4,'TolFun',5e-4); 

[searchmin,fval] = fminsearch(minfn,randn(2,1),opts); 

z = exp(searchmin); 

%z = [1.2992;1.3311]; 

 

%------------------------------------------------------------------------- 

 

% Using fitcsvm and values from cross validation to train the SVM model 

SVMModel = fitcsvm(data3,class,'KernelFunction','rbf',... 

    'KernelScale',z(1),'BoxConstraint',z(2)); 

CVSVMModel = crossval(SVMModel); 

misclass = kfoldLoss(CVSVMModel); 

misclass 

toc 

%------------------------------------------------------------------------- 

% Using SVMModel to test the test data and generate the matrix 

 

tic 

% Classification of the TestNew data which is the test matrix created using 

% the data from subject #2 and the data was not used for training the SVM 

OL = 0; 

WL = 79; 

SignalBlock = (length(TestNew)/79); 

SignalEnd = WL-1; 

 

i1 = 1; 

for i = 1:SignalBlock 

    i2 = i1+SignalEnd; 
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    %Testing the data using SVMStruct 

    Test(:,:) = TestNew(i1:i2,2:20); 

    [label,score] = predict(SVMModel,Test); 

    Test1(i1:i2,1:20) = TestNew(i1:i2,1:20); 

    Test1(i1:i2,21) = label; 

 

    i1 = (i2-OL)+1; 

end 

 

toc 

 

 

j1 = 1; 

for j = 1:72 

    j2 = j1+78; 

    temp = sum(Test1(j1:j2,21)); 

    if(temp<=0) 

        x = (temp+79)/2; 

        epi(j,1) = -((x/79)*100); 

        %epi(j,2) = ((79-x)/79)*100; 

        %temp = (temp/79)*100; 

       lab = -1; 

       %epi(j,1) = temp; 

    else 

        x = (temp+79)/2; 

        lab = 1; 

        %nonepi(j,1) = ((-x)/79)*100; 

        nonepi(j,1) = ((79-x)/79)*100; 

        %temp = (temp/79)*100; 

        %nonepi(j,1) = temp; 

    end 

 

%     epi(j,1) = -(x/79)*100; 

%     nonepi(j,1) = ((79-x)/79)*100; 

    %results(j,1) = j; 

    preresults(j,1) = temp; 

    results(j,1) = lab; 

    j1 = j1+79; 

end 

 

figure(4); 

bar(preresults,'b'); 

title('Subject #2, Seizure #2 and Start time - 2300'); 

xlabel('Channels'); 

ylabel('epileptic vs. non-epileptic(units)'); 

xlim([0 72]); 
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ylim([-80 80]); 

figure(5); 

bar(epi,'r'); 

title('Subject #2, Seizure #2 and Start time - 2300'); 

xlabel('Channels'); 

ylabel('epileptic vs. non-epileptic(units)'); 

xlim([0 72]); 

ylim([-100 100]); 

hold on 

bar(nonepi,'b'); 

hold off 
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13. Appendix D: Matlab Code: Non-epileptic 
 

%########################################################################## 

%This program performs the following actions in a sequence: 

%   - Add path to the files containing the data from the excel 

%   - Get information of the start time and stop time for each seizure 

%   - Read the .edf file of the patient 

%   - extract 20 second data for for all the channels from the 

%   non-epileptic edf files. 

% 

%Some initial steps for loading the EEG data for analysis has been adapted 

%from James Gurisko's thesis. 

% 

% Priya Balasubramanian 

% Created on 09/25/2014 

% Last updated on 

%########################################################################## 

clear all; 

clc; 

close all; 

 

%-------------------------------------------------------------------------- 

% User entered parameters 

% 

% The information entered below will change for each patient and each 

% seizure. The sampling frequency as well as the epileptic and nonepileptic 

% channels being considered will change based on the patient and seizure as 

% well. The length of the data remains as 20 seconds for each dataset being 

% analyzed. 

 

Filename = 'DataNotesP.xlsx'; %File containing the patient data 

Directory = 'C:/eegData/SH-EEG/'; % Directory containing the patient data 

%SeizureNumber = 1; % Seizure number being analyzed 

NEFileNumber = 3; % File number of the nonepileptic file being analyzed 

DataLength = 20; % Length of the data in seconds 

Fs = 1000 ; % sampling frequency in Hz 

NEbegin = 1; 

NEend = 76;% Range of non-epileptic channels 

%-------------------------------------------------------------------------- 

% Add path to files 

% 

addpath('C:/eegData/Priya','C:/eegData/MATLAB/WOSSPA_Mathworks_v2',... 

    'C:/eegData/Priya/eeglab10.2.2.4b'); 

% Use addpath to add the necessary folders 
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%-------------------------------------------------------------------------- 

%Read information of the seizure from the excel file 

 

% Read the start time for each non-epileptic file 

StartNE = 5000; 

 

%Read the file name corresponding to each nonseizure from the excel file 

[Num1,NEFileEDF,Raw1] = xlsread(Filename,'G:G'); 

size(NEFileEDF) 

clear Num1; 

clear Raw1; 

 

%Create a single string for importing data 

%strcat combines the directory with the .edf filename to create a single 

%string for importing patient data 

 

NEFilenameCombined = cell(16,1); 

 

for i = 1:16, 

    NEFilenameCombined(i,1) = strcat(Directory,NEFileEDF(i+1,1)); 

end 

 

%-------------------------------------------------------------------------- 

% Read the .edf file of the patient and open EEGlab for analysis 

% 

% Open EEGlab 

eeglab; 

 

% Read the nonepileptic files 

NEFileTemp = NEFilenameCombined(NEFileNumber); 

NEFileSeizure = NEFileTemp{1}; 

 

EEG = pop_biosig(NEFileSeizure,'importevent','off','blockepoch','off'); 

 

EEG.setname = 'CurrentSetNE'; 

EEG = eeg_checkset(EEG); 

eeglab redraw; 

 

 

%-------------------------------------------------------------------------- 

% Extract 20 second data for analysis 

% 

% The 20 second data to be analyzed is 10 seconds prior to the start of a 

% seizure and 10 seconds during the seizure. This value will be extracted 

% from the ten nonepileptic channels and 10 epileptic channels for 

% analysis. A total of 20 seconds for 20 channels will be extracted. The 
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% electrode label of the channels will be extracted as well for reference. 

 

NEy = EEG.data; 

NEy = double(NEy); 

 

During = 20; 

 

NEStartData = StartNE; 

 

% 20 seconds worth of data of non-epileptic 

NEStart = NEStartData; 

NEStop = NEStart+During; 

 

% For 20 seconds of data on nonepileptic channels 

 

NEx(1:length(NEbegin:NEend),:)= NEy(NEbegin:NEend,Fs*NEStart:Fs*NEStop-1); 

 

% Creating channel label vectors for epileptic channels 

 

% NExlabels_temp = char(EEG.chanlocs.labels);NExlables = NExlabels_temp; 

% 

% NExlabels(1:length(NEbegin:NEend),:) = NExlabels_temp(NEbegin:NEend,:); 

% 

% NExlabels = cellstr(NExlabels); 

 

% Normalize mean and standard deviation 

NEx2 = zscore(NEx,0,2); 

 

% % Signal = NEx2(34,:); 

% % 

% taxis = 0:1/Fs:20-1/Fs; % Time for the axis on graph 

% figure(2); 

% plot(taxis,NEx2(34,:)); 

% title('Subject#2, Channel 34 Original signal - 1000Hz'); 

% xlabel('Time (s)'); 

% ylabel('Amplitude (units)'); 

% Signal = NEx2(34,:); 

% 

% [ A7,D1,D2,D3,D4,D5,D6,D7 ] = Wavelet_Decomposition( Signal,7); 

% 

% figure(3); 

% subplot(4,2,1); 

% plot(taxis,A7); 

% xlabel('Time (s)'); 

% ylabel('A7'); 

% %title('Non-Epileptic - Approximation A7'); 
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% subplot(4,2,2); 

% plot(taxis,D1),ylim([-1.5 1.5]); 

% xlabel('Time (s)'); 

% ylabel('D1'); 

% %title('Non-Epileptic - Detailed D1'); 

% subplot(4,2,3); 

% plot(taxis,D2),ylim([-1.5 1.5]); 

% xlabel('Time (s)'); 

% ylabel('D2'); 

% %title('Non-Epileptic - Detailed D2'); 

% subplot(4,2,4); 

% plot(taxis,D3),ylim([-1.5 1.5]); 

% xlabel('Time (s)'); 

% ylabel('D3'); 

% %title('Non-Epileptic - Detailed D3'); 

% subplot(4,2,5); 

% plot(taxis,D4),ylim([-1.5 1.5]); 

% xlabel('Time (s)'); 

% ylabel('D4'); 

% %title('Non-Epileptic - Detailed D4'); 

% subplot(4,2,6); 

% plot(taxis,D5),ylim([-1.5 1.5]); 

% xlabel('Time (s)'); 

% ylabel('D5'); 

% %title('Non-Epileptic - Detailed D5'); 

% subplot(4,2,7); 

% plot(taxis,D6),ylim([-1.5 1.5]); 

% xlabel('Time (s)'); 

% ylabel('D6'); 

% %title('Non-Epileptic - Detailed D6'); 

% subplot(4,2,8); 

% plot(taxis,D7),ylim([-1.5 1.5]); 

% xlabel('Time (s)'); 

% ylabel('D7'); 

% %title('Non-Epileptic - Detailed D7'); 

 

 

% [pca_final1,ica_final1,explained1] = Combination(Signal); 

% explained1 = explained1'; 

% Signal = NEx2(34,:); 

% [pca_final2,ica_final2,explained2] = Combination(Signal); 

% explained2 = explained2'; 

% Signal = NEx2(41,:); 

% [pca_final3,ica_final3,explained3] = Combination(Signal); 

% explained3 = explained3'; 

% Signal = NEx2(42,:); 
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% [pca_final4,ica_final4,explained4] = Combination(Signal); 

% explained4 = explained4'; 

% 

% % figure(2); 

% % plot(explained); 

% % title('Scree plot (Nonepileptic) - BA26802O_1-1.edf - Channel 56'); 

% % xlabel('Principal Component'); 

% % ylabel('Variance explained(%)'); 

% 

% %-------------------------------------------------------------------------- 

% % % Till this step the data is extracted and normalized. 

% 

%------------------------------------------------------------------------- 

% Creating the training matrix for all the channels for one seizure. The 

% training matrix has first column as the channel number. For feature 

% matrix the columns are 15 features. and for the PCA+ICA model the columns 

% are 3 pcs and 3 Ics. 

 

 

i1 = 1; 

for i = 1:38; 

    Signal = NEx2(i,:); 

    i2 = i1+78; 

    [FS,P,IC] = Combination(Signal); 

    NEtrain(i1:i2,2:20) = FS; 

    NEtrain(i1:i2,21:23) = P; 

    NEtrain(i1:i2,24:26) = IC; 

    NEtrain(i1:i2,1) = i; 

    i1=i1+79; 

end 

    % 

%i1 = 1; 

for i = 41:74; 

    Signal = NEx2(i,:); 

    i2 = i1+78; 

    [FS,P,IC] = Combination(Signal); 

    NEtrain(i1:i2,2:20) = FS; 

    NEtrain(i1:i2,21:23) = P; 

    NEtrain(i1:i2,24:26) = IC; 

    NEtrain(i1:i2,1) = i-2; 

    i1=i1+79; 

end 

 

TestNew = NEtrain; 

%------------------------------------------------------------------------- 

% Using the NEtrain matrix as TestNew matrix with the SVM function 
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Edata = xlsread('EpilepticTrain.xlsx'); 

NEdata = xlsread('NEpilepticTrain.xlsx'); 

% TestTrain = xlsread('TestTrainFMData.xlsx'); 

% TestNew = xlsread('TestFMData.xlsx'); 

 

% Creating the Training matrix for epileptic and non epileptic data 

data1 = Edata(4001:24000,2:20); 

data2 = NEdata(4001:19000,2:20); 

data3 =[data1;data2]; % data set containing the training set data 

class = ones(35000,1); %NE = 1 and E = -1 

class(1:20000) = -1;% data set containing the classifier for training set 

 

% Creating the matrix for picking optimal values for the SVM 

 

datac1 = Edata(24001:25500,2:20); 

datac2 = NEdata(24001:25500,2:20); 

datac3 =[datac1;datac2]; % data set containing the training set data 

classc = ones(3000,1); %NE = 1 and E = -1 

classc(1:1500) = -1;% data set containing the classifier for training set 

 

%------------------------------------------------------------------------- 

% SVM training and cross validation 

tic 

%Picking optimal values for the rbf_sigma and boxconstraint 

[d1,d2] = size(datac3); 

c = cvpartition(d1,'KFold',10); 

minfn = @(z)kfoldLoss(fitcsvm(datac3,classc,'CVPartition',c,... 

    'KernelFunction','rbf','Boxconstraint',exp(z(2)),... 

    'KernelScale',exp(z(1)))); 

opts = optimset('TolX',5e-4,'TolFun',5e-4); 

[searchmin,fval] = fminsearch(minfn,randn(2,1),opts); 

z = exp(searchmin); 

%z = [1.2992;1.3311]; 

 

%------------------------------------------------------------------------- 

 

% Using fitcsvm and values from cross validation to train the SVM model 

SVMModel = fitcsvm(data3,class,'KernelFunction','rbf',... 

    'KernelScale',z(1),'BoxConstraint',z(2)); 

CVSVMModel = crossval(SVMModel); 

misclass = kfoldLoss(CVSVMModel); 

misclass 

toc 

%------------------------------------------------------------------------- 

% Using SVMModel to test the test data and generate the matrix 
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tic 

% Classification of the TestNew data which is the test matrix created using 

% the data from subject #2 and the data was not used for training the SVM 

OL = 0; 

WL = 79; 

SignalBlock = (length(TestNew)/79); 

SignalEnd = WL-1; 

 

i1 = 1; 

for i = 1:SignalBlock 

    i2 = i1+SignalEnd; 

    %Testing the data using SVMStruct 

    Test(:,:) = TestNew(i1:i2,2:20); 

    [label,score] = predict(SVMModel,Test); 

    Test1(i1:i2,1:20) = TestNew(i1:i2,1:20); 

    Test1(i1:i2,21) = label; 

 

    i1 = (i2-OL)+1; 

end 

 

toc 

 

 

j1 = 1; 

for j = 1:72 

    j2 = j1+78; 

    temp = sum(Test1(j1:j2,21)); 

    if(temp<=0) 

        x = (temp+79)/2; 

        epi(j,1) = -((x/79)*100); 

        %epi(j,2) = ((79-x)/79)*100; 

        %temp = (temp/79)*100; 

       lab = -1; 

       %epi(j,1) = temp; 

    else 

        x = (temp+79)/2; 

        lab = 1; 

        %nonepi(j,1) = ((-x)/79)*100; 

        nonepi(j,1) = ((79-x)/79)*100; 

        %temp = (temp/79)*100; 

        %nonepi(j,1) = temp; 

    end 

 

%     epi(j,1) = -(x/79)*100; 

%     nonepi(j,1) = ((79-x)/79)*100; 
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    %results(j,1) = j; 

    preresults(j,1) = temp; 

    results(j,1) = lab; 

    j1 = j1+79; 

end 

 

figure(4); 

bar(preresults,'b'); 

title('Subject #2, Seizure #1 and Start time - 6750'); 

xlabel('Channels'); 

ylabel('epileptic vs. non-epileptic(units)'); 

xlim([0 72]); 

ylim([-80 80]); 

figure(5); 

bar(epi,'r'); 

title('Subject #2, Seizure #1 and Start time - 6750'); 

xlabel('Channels'); 

ylabel('epileptic vs. non-epileptic(units)'); 

xlim([0 72]); 

ylim([-100 100]); 

hold on 

bar(nonepi,'b'); 

hold off 
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14. Appendix E: Matlab Code: Functions 
 

function [ FeatureSignal,PCAFinal,ICAFinal,explained ] = Combination( Signal ) 

%UNTITLED7 Summary of this function goes here 

%   Detailed explanation goes here 

%------------------------------------------------------------------------- 

% Decimate the signal for ease of computation and to get the right 

% frequency range using the Decimating_Frequency function 

% Function inputs are df = decimating factor,os = original signal. Here 

% the df = 5 

 

% Decimating channels used by NE 

% y2 = Decimating_Frequency(x2,5); 

% [m,n] = size(y2); 

%figure(3); 

% plot(y2(1,:)); 

% title('Decimated signal - 200Hz'); 

%Signal = y2(1,:); 

 

% Decimating channels used by E 

% Y2 = Decimating_Frequency(z2,5); 

% [m1,n1] = size(Y2); 

%figure(3); 

%plot(Y2(3,:)); 

% title('Decimated signal - 200Hz'); 

%Signal = Y2(3,:); 

 

%------------------------------------------------------------------------- 

% Performing the wavelet decomposition 

[A7,D1,D2,D3,D4,D5,D6,D7] = Wavelet_Decomposition(Signal,7); 

 

% figure(2); 

% subplot(4,2,1); 

% plot(A7); 

% title('Epileptic - Approximation A7'); 

% subplot(4,2,2); 

% plot(D1),axis([ 0 20000 -1.5 1.5]); 

% title('Epileptic - Detailed D1'); 

% subplot(4,2,3); 

% plot(D2),axis([0 20000 -1.5 1.5]); 

% title('Epileptic - Detailed D2'); 

% subplot(4,2,4); 

% plot(D3),axis([0 20000 -1.5 1.5]); 

% title('Epileptic - Detailed D3'); 

% subplot(4,2,5); 
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% plot(D4),axis([0 20000 -1.5 1.5]); 

% title('Epileptic - Detailed D4'); 

% subplot(4,2,6); 

% plot(D5),axis([0 20000 -1.5 1.5]); 

% title('Epileptic - Detailed D5'); 

% subplot(4,2,7); 

% plot(D6),axis([0 20000 -1.5 1.5]); 

% title('Epileptic - Detailed D6'); 

% subplot(4,2,8); 

% plot(D7),axis([0 20000 -1.5 1.5]); 

% title('Epileptic - Detailed D7'); 

 

%------------------------------------------------------------------------ 

% Extracting the statistical fetures from D5, D6, D7 and A7 subbands 

 

% There will be a total of 15 features dimensions; 

% Meanx4 subbands+averagex4 subbands+ SDx4 subbands+ ratiox4 subbands = 

% 4+4+4+3 = 15 features dimensions 

% Extracting the statistical features 

 

overlap = 250; % 0.25 second overlap 

WindowLength = 500; % 0.5 second window length 

SignalBlock = (length(D5)/overlap)-1; 

 

 

%Statistical features for wavelet subband D5 

[MeanD4,AvgD4,SDD4] = Stat_Features(D4,overlap,WindowLength); 

%Statistical features for wavelet subband D5 

[MeanD5,AvgD5,SDD5] = Stat_Features(D5,overlap,WindowLength); 

%Statistical features for wavelet subband D6 

[MeanD6,AvgD6,SDD6] = Stat_Features(D6,overlap,WindowLength); 

%Statistical features for wavelet subband D7 

[MeanD7,AvgD7,SDD7] = Stat_Features(D7,overlap,WindowLength); 

%Statistical features for wavelet subband A7 

[MeanA7,AvgA7,SDA7] = Stat_Features(A7,overlap,WindowLength); 

 

% Calculating the ratios R1,R2 and R3 

RatioR1 = rdivide(MeanD4,MeanD5); 

RatioR2 = rdivide(MeanD5,MeanD6); 

RatioR3 = rdivide(MeanD6,MeanD7); 

RatioR4 = rdivide(MeanD7,MeanA7); 

 

% Creating a 79x15 feature matrix 

% Rows of the matrix corresponds to observations or timepoints 

% Columns of the matrix corresponds to variables or features 
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FeatureSignal = zeros(SignalBlock,19); % Preallocating for the feature matrix 

 

% Extracts the feature lable from the dataexcel 

% Labels =MeanD5,MeanD6,MeanD7,MeanA7,AvgD7,AvgD6,AvgD7,AvgA7,SDD5,SDD6, 

% SDD7,SDA7,Ratio1,Ratio2,Ratio3 

 

%[num1,FeatureLabel,raw1] = xlsread(Filename,3,'B:B'); 

%clear num1; 

%clear raw1; 

 

FeatureSignal(:,1) = MeanD4; 

FeatureSignal(:,2) = MeanD5; 

FeatureSignal(:,3) = MeanD6; 

FeatureSignal(:,4) = MeanD7; 

FeatureSignal(:,5) = MeanA7; 

FeatureSignal(:,6) = AvgD4; 

FeatureSignal(:,7) = AvgD5; 

FeatureSignal(:,8) = AvgD6; 

FeatureSignal(:,9) = AvgD7; 

FeatureSignal(:,10) = AvgA7; 

FeatureSignal(:,11) = SDD4; 

FeatureSignal(:,12) = SDD5; 

FeatureSignal(:,13) = SDD6; 

FeatureSignal(:,14) = SDD7; 

FeatureSignal(:,15) = SDA7; 

FeatureSignal(:,16) = RatioR1; 

FeatureSignal(:,17) = RatioR2; 

FeatureSignal(:,18) = RatioR3; 

FeatureSignal(:,19) = RatioR4; 

 

%------------------------------------------------------------------------- 

% Performing PCA on the FeatureSignal 

 

[PCAFinal, explained] = Pca_Analysis(FeatureSignal); 

 

% Performing ICA on the FeatureSignal and presenting the ICs 

 

NumberIC = 3; % number of Independant components we are interested in 

FeatureICA = FeatureSignal'; 

% Cumputing the ICA using the jadeR function 

W = jadeR(FeatureICA,NumberIC); 

 

ICAFinal = (W*FeatureICA)'; 

 

 

end 



88 

 

 

function [ Mean,Avg,SD ] = Stat_Features( SB,OL,WL ) 

%Extracts the statistical features of a subband 

%   1. Mean of the absolute values of the coefficients in each sub band 

% eg. If there are 20000 samples so 20s worth of data, the windown length 

% for the statistical analysis will be 0.5s each with an overlap of 0.25 

% seconds and that will give a total of 79 time points or sample points 

% for each subband. 

% 2. Average power of the wavelet coefficients in each sub band 

% 3. Standard deviation of the coefficients in each sub band 

 

SignalBlock = (length(SB)/OL)-1; 

SignalEnd = WL - 1; 

 

% Preallocating matrix for mean, avg and std 

 

Mean = zeros(1,SignalBlock); 

Avg = zeros(1,SignalBlock); 

SD = zeros(1,SignalBlock); 

 

i1 = 1; 

for i = 1:SignalBlock 

    i2 = i1+SignalEnd; 

    %Statistical features for the wavelet subband 

    Mean(i) = mean(abs(SB(i1:i2))); 

    Avg(i) = mean((SB(i1:i2).^2)); 

    SD(i) = std((SB(i1:i2).^2)); 

 

    i1 = (i2-OL)+1; 

end 

 

 

end 

 

function [ A7,D1,D2,D3,D4,D5,D6,D7 ] = Wavelet_Decomposition(S,L) 

%UNTITLED3 Wavelet decomposition of the original signal 

% C is the vector formed by concatenating approximation and detail 

% coeeficients at each level. L is the vector that gives the length of each 

% component. Courtsey: 

% http://www.mathworks.com/help/wavelet/ug/one-dimensional- 

% discrete-wavelet-analysis.html#f4-997029 

 

% S = signal, L = level of the decomposition. 
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[C,L] = wavedec(S,L,'db6'); 

 

cA7 = appcoef(C,L,'db6',7); % Extracts approximation coefficents 

 

% Extracts detailed coefficients 

 

[cD1,cD2,cD3,cD4,cD5,cD6,cD7] = detcoef(C,L,[1,2,3,4,5,6,7]); 

 

 

% Reconstructs the signal component corresponsing to each of the six 

% wavelet coefficient sequences 

 

A7 = wrcoef('a',C,L,'db6',7); 

D1 = wrcoef('d',C,L,'db6',1); 

D2 = wrcoef('d',C,L,'db6',2); 

D3 = wrcoef('d',C,L,'db6',3); 

D4 = wrcoef('d',C,L,'db6',4); 

D5 = wrcoef('d',C,L,'db6',5); 

D6 = wrcoef('d',C,L,'db6',6); 

D7 = wrcoef('d',C,L,'db6',7); 

end 

 

function [ pca_final, explained] = Pca_Analysis( Feature_Signal ) 

%Pca_Analysis perform the PCA analysis on the Feature matrix 

%   This function uses the buitl in matlab function to determine the 

%   covariance matrix that has eigenvectors as its rows and the PCAs as its 

%   column. The t-squared value generated by the function is used to 

%   identify the 8 most extreme points and based on the scree plot the 

%   first 4 PCAs are used to generate the output matrix called pcafinal 

%   which is an 8x4 matrix. 

% Input arguments include the Feature signal which is a matrix of rows with 

% observations or time points and columns with 15 features. 

 

% % Boxplot to look at the distribution of the feature data 

% figure(5); 

% boxplot(Feature_Signal,'orientation','horizontal','labels',FeatureLabel); 

% title('Distributions of features'); 

 

% Checking the correlation between the features/variables 

 

Correlation = corr(Feature_Signal,Feature_Signal); 

 

% Performing PCA by using the inverse variances of the data as weights 
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[wcoeff,score,latent,tsquared,explained] = pca(Feature_Signal,... 

    'VariableWeights','variance'); 

 

c3 = wcoeff(:,1:3);% The first three principal component coefficients 

 

% Transforming the coefficients so that they are orthonormal 

coefforth = (diag(std(Feature_Signal)))\wcoeff; 

 

% "Score" contains the coordinates of the original data in the new 

% coordinate system defined by the principal components. The score matrix 

% is the same size as the input data matrix. 

 

csscores = zscore(Feature_Signal)*coefforth; 

 

% figure(6); 

% %subplot(2,1,1); 

% plot(score(:,1),score(:,2),'+'); 

% xlabel('1st Principal Component'); 

% ylabel('2nd Principal Component'); 

 

% figure(7); 

% plot(explained); 

% title('Scree plot'); 

% xlabel('Principal Component'); 

% ylabel('Variance explained(%)'); 

 

% Using the Hotellings T-squared statistic to analytically find the most 

% extreme points in the data 

 

[st2, index] = sort(tsquared, 'descend'); 

extreme = index(1:8,:); 

pca_final(:,:) = score(:,1:3); 

 

% Visualizing both the orthonormal principal component coefficients for 

% each variable and the principal component scores for each observation 

% in a single plot. 

% All 15 Features are represented in this bi-plot by a vector, and the 

% direction and length of the vector indicate how each variable 

% contributes to the two principal components in the plot. 

 

% figure(8); 

% biplot(coefforth(:,1:2),'scores',score(:,1:2),'varlabels',FeatureLabel); 

% axis([-.26 0.6 -.51 .51]); 

end 
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