28,433 research outputs found

    A Systematic Literature Review of The Role of Ontology in Modeling Knowledge in Software Development Processes

    Get PDF
    Ontologies in software development are explained as showing the properties of a subject area and how they are related to each other by defining a set of concepts and categories that represent the subject. It is used to determine the ambiguity in the software requirements specification. Although claimed to be beneficial, the software development communities are still unfamiliar with the role of Ontology in modeling knowledge in software development processes. Moreover, not much has been known about the role of Ontology in software engineering processes. Our goal is to map and explain the evidence about the role of Ontology in Modelling Knowledge and the challenge faced by the software engineering team to understand how far ontology can help them determine the ambiguity in modeling and software development processes. We conducted a systematic review of the literature published between 2012 and 2021 and identified 150 papers that discuss the role of ontology in modeling knowledge in software development processes. We formulated and applied specific inclusion and exclusion criteria in two rounds to determine the most relevant studies for our research goal. The review identified 22 practices that explain ontologies' primary role in software development processes. However, our findings suggest ontology's role in software engineering as a research context needs additional attention. A more empirical result is required to understand better the role of ontology in modeling knowledge in software development with non-functional requirements and self-organizing teams

    How to Find Suitable Ontologies Using an Ontology-based WWW Broker

    Get PDF
    Knowledge reuse by means of outologies now faces three important problems: (1) there are no standardized identifying features that characterize ontologies from the user point of view; (2) there are no web sites using the same logical organization, presenting relevant information about ontologies; and (3) the search for appropriate ontologies is hard, time-consuming and usually fruitless. To solve the above problems, we present: (1) a living set of features that allow us to characterize ontologies from the user point of view and have the same logical organization; (2) a living domain ontology about ontologies (called ReferenceOntology) that gathers, describes and has links to existing ontologies; and (3) (ONTO)2Agent, the ontology-based www broker about ontologies that uses the Reference Ontology as a source of its knowledge and retrieves descriptions of ontologies that satisfy a given set of constraints. (ONTO)~Agent is available at http://delicias.dia.fi.upm.es/REFERENCE ONTOLOGY

    Using Ontologies for the Design of Data Warehouses

    Get PDF
    Obtaining an implementation of a data warehouse is a complex task that forces designers to acquire wide knowledge of the domain, thus requiring a high level of expertise and becoming it a prone-to-fail task. Based on our experience, we have detected a set of situations we have faced up with in real-world projects in which we believe that the use of ontologies will improve several aspects of the design of data warehouses. The aim of this article is to describe several shortcomings of current data warehouse design approaches and discuss the benefit of using ontologies to overcome them. This work is a starting point for discussing the convenience of using ontologies in data warehouse design.Comment: 15 pages, 2 figure

    Overview of methodologies for building ontologies

    Get PDF
    A few research groups are now proposing a series of steps and methodologies for developing ontologies. However, mainly due to the fact that Ontological Engineering is still a relatively immature discipline, each work group employs its own methodology. Our goal is to present the most representative methodologies used in ontology development and to perform an analysis of such methodologies against the same framework of reference. So, the goal of this paper is not to provide new insights about methodologies, but to put it all in one place and help people to select which methodology to use

    Ontological Reengineering for Reuse

    Get PDF
    This paper presents the concept of Ontological Reengineering as the process of retrieving and transforming a conceptual model of an existing and implemented ontology into a new, more correct and more complete conceptual model which is reimplemented. Three activities have been identified in this process: reverse engineering, restructuring and forward engineering. The aim of Reverse Engineering is to output a possible conceptual model on the basis of the code in which the ontology is implemented. The goal of Restructuring is to reorganize this initial conceptual model into a new conceptual model, which is built bearing in mind the use of the restructured ontology by the ontology/application that reuses it. Finally, the objective of Forward Engineering is output a new implementation of the ontology. The paper also discusses how the ontological reengineering process has been applied to the Standard-Units ontology [18], which is included in a Chemical-Elements [12] ontology. These two ontologies will be included in a Monatomic-Ions and Environmental-Pollutants ontologies

    Ontology-based domain modelling for consistent content change management

    Get PDF
    Ontology-based modelling of multi-formatted software application content is a challenging area in content management. When the number of software content unit is huge and in continuous process of change, content change management is important. The management of content in this context requires targeted access and manipulation methods. We present a novel approach to deal with model-driven content-centric information systems and access to their content. At the core of our approach is an ontology-based semantic annotation technique for diversely formatted content that can improve the accuracy of access and systems evolution. Domain ontologies represent domain-specific concepts and conform to metamodels. Different ontologies - from application domain ontologies to software ontologies - capture and model the different properties and perspectives on a software content unit. Interdependencies between domain ontologies, the artifacts and the content are captured through a trace model. The annotation traces are formalised and a graph-based system is selected for the representation of the annotation traces

    Ontology-driven conceptual modeling: A'systematic literature mapping and review

    Get PDF
    All rights reserved. Ontology-driven conceptual modeling (ODCM) is still a relatively new research domain in the field of information systems and there is still much discussion on how the research in ODCM should be performed and what the focus of this research should be. Therefore, this article aims to critically survey the existing literature in order to assess the kind of research that has been performed over the years, analyze the nature of the research contributions and establish its current state of the art by positioning, evaluating and interpreting relevant research to date that is related to ODCM. To understand and identify any gaps and research opportunities, our literature study is composed of both a systematic mapping study and a systematic review study. The mapping study aims at structuring and classifying the area that is being investigated in order to give a general overview of the research that has been performed in the field. A review study on the other hand is a more thorough and rigorous inquiry and provides recommendations based on the strength of the found evidence. Our results indicate that there are several research gaps that should be addressed and we further composed several research opportunities that are possible areas for future research
    corecore