

Ontology-based Domain Modelling for
Consistent Content Change Management

Muhammad Javed, Yalemisew M. Abgaz, Claus Pahl

Abstract—Ontology-based modelling of multi-formatted
software application content is a challenging area in content
management. When the number of software content unit is huge
and in continuous process of change, content change management
is important. The management of content in this context requires
targeted access and manipulation methods. We present a novel
approach to deal with model-driven content-centric information
systems and access to their content. At the core of our approach is
an ontology-based semantic annotation technique for diversely
formatted content that can improve the accuracy of access and
systems evolution. Domain ontologies represent domain-specific
concepts and conform to metamodels. Different ontologies - from
application domain ontologies to software ontologies - capture and
model the different properties and perspectives on a software
content unit. Interdependencies between domain ontologies, the
artifacts and the content are captured through a trace model. The
annotation traces are formalised and a graph-based system is
selected for the representation of the annotation traces.

Keywords—Consistent Content Management, Impact
Categorisation, Trace Model, Ontology Evolution.

I. INTRODUCTION
NTOLOGY-BASED MODELLING of multi-formatted
content is a challenging area in content management.

Domain ontologies become essential for dynamic
information systems and computer science technologies.
Organisations are looking into them as machine processable
data for many software application areas such as
Bioinformatics [1], Educational Technology Systems [2],
Web services [3], E-Learning [4], Indexing and Retrieval
[5] etc. The Semantic Web and collaborative environments
create a high demand for the sharing the semantics of the
data. Access to such content is another issue in content
management systems.

Software content can be of different types, in terms of
their format from a simple text based document to an
executable or abstract entity or in terms of other aspects
like language. By saying content, we mean digital

information available in a collaborative environment. It
could be a source code (such as java script), an executable
element (such as applet), commands (such as print), semi-
structured text (such as HTML, XML documents), software
elements (such as GUI feature) etc. We primarily focus on
the representation of content of a software system in semi
structured text form such as web files in HTML/XML
format.

Muhammad Javed is PhD student at Centre for Next Generation

Localisation, Dublin City University, Dublin 09, Ireland. (Phone: 353-1
700 6912; fax: 353-1 700 6702; e-mail: mjaved@ computing.dcu.ie).

Yalemisew M. Abgaz is PhD student at Centre for Next Generation
Localisation, Dublin City University, Dublin 09, Ireland. (Phone: 353-1
700 6912; fax: 353-1 700 6702; e-mail: yabgaz@ computing.dcu.ie).

Dr. Claus Pahl is Senior Lecturer at School of Computing, Dublin City
University, Dublin 09, Ireland. (Phone: 353-1 700 5620; fax: 353-1 700
5442; e-mail: cpahl@ computing.dcu.ie).

Knowledge-based software application content is always
changing with time. The dynamic nature of software
content in every field requires domain ontologies to change
over time. The reason for change in ontology can be the
change in the domain, the specification, the
conceptualization or any combination of them [6]. The
change in software content may lead to change in the
respective domain ontology and vice versa.

As domain ontologies are subject to real-time content
changes, they need to keep themselves consistent. The
context has been explored in a number of recent research
projects [7], [8], [9], [10]. In our research area domain,
consistency is a property of holding together all entities of
ontology and its artifacts. Thus we can define a consistent
ontology as one that does not contain a contradiction and
the defined integrity constraints are not violated.
Inconsistent ontologies may lead to false content access.
Some of the changes during content evolution are about the
introduction of new concepts, removal of outdated
concepts, change in the structures and the meanings of
concepts. This requires an effective ontology change
management approach.

In this context, ontology-based software application
domain models can play a critical role. They can help and
guide software evolution, enforce consistency and reduce
critical risks of loss of knowledge involved in content
management. Our approach is ontology-based domain
modelling by taking advantage of semantic annotation
technique. Some central features of our approach are
• Digital information modelling technique for software

application systems
• Addition of ontological layer at the top of content

management layer
• Semantic guided access to the software application

content through domain ontologies
• Consistency management between domain ontologies

and system components

O

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/11310349?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The paper is structured as follows: We discuss our case
study on ontology-based modelling of software applications
in section 2. In section 3 we discuss the consistency
management between domain ontologies and software
application content. Related work is discussed in section 4.
A short evaluation is given in section 5 and we end with
some conclusions.

II. ONTOLOGY-BASED CONTENT MANAGEMENT
Change management of differently formed and
structured/semi-structured content is a key focus here.
Content centric systems require special solutions for the
management and manipulation of the content. The semantic
access to the content is another issue of importance.
Content can be of different types, however we are mainly
interested in structured/semi-structured textual
representation of the system components in content
management files.

A. Trace Model for Guided Access to the Content

The core of the framework is an ontology-based
semantic annotation trace model, as a key approach for
adding semantics to the content and their guided access.
Figure 1 represents the key components of proposed
content modelling framework. As a case study we took a
content-centric perspective on the software application
system. The application is a content management and
archiving system. It contains a number of task components
such as Archiving, Searching, Sorting, Messaging etc. We
specifically focus on the help system of the software
application which contains help files and help management.
The help files are linked to the domain ontologies through
the trace model. One can find the key entities, such as GUI
elements, commands, procedures, role etc. of different
software components in these help files. Such entities are
identified from the help files and are linked to the
respective domain ontologies. We distinguish between
software components, annotation trace model and domain
ontologies as key artifacts in our case study.

Fig. 1 Annotation Model linking Software Components to the

Ontologies

The traces, generated as the result of ontology-based

semantic annotations, will be utilized in two aspects, i.e.
querying the software application content for searching
relevant information and change management for the
dynamic content.
1) Trace-based Information Retrieval: The traces will be
used to query the content semantically by taking advantage
of the domain ontologies. The query may be in a form such
as How to sort archived folders. It can be deduced from the
query that user is interested in a certain procedure,
performed on a concept, available in a certain software
component. A query agent will utilize the annotation traces
to identify the relevant software component and domain
ontologies. Suitable files will be retrieved by accessing the
appropriate concepts in domain ontologies through
annotation traces and forwarded to the query initiator.
2) Trace-based Change Management: A set of change
operations will be offered to perform the changes (such as
add, delete) in the annotation traces. They will be used for
the activities such as modification, rollback, versioning of
traces etc. The multilayered change operations proposed in
[9] will be utilized for the operationalisation of ontological
changes.

B. Annotation Set Formalisation

An annotation set (AS) consists of an unordered
sequence of annotation traces, AS =< A1, A2, A3, · · ·AN >.
An annotation trace structure, linking content to the domain
ontologies, is given below in Figure 2. Each annotation
trace contains two types of attributes, i.e. Meta attributes
(M) and the Trace attributes (T). Meta attributes mainly
consists of metadata information about the trace itself. It is
in the form of M = (id, u, t) where id represents the
Identification Key of the trace, u represents the User who
generated the trace, t represents the time the trace was
constructed.

Fig. 2 Annotation Trace, Linking Software Application Content to
Domain Ontologies

The trace attributes contain the central information how

the source content and the targeted domain ontology are
linked to each other. The Source Document (SD) is a tuple
of References to the Document and the Type of Content.
The Target Ontology is a triple consisting of a Reference to
Ontology, a Class URI and an Instance URI.

SD = (Dref, TC)
TO = (Oref, C, I)

where SD, TO, Dref , Oref , C, I and TC represents the
Source Document, Target Ontology, Document Reference,
Ontology Reference, Class URI, Instance URI and Content

Type, respectively. Thus, overall trace attribute set can be
given as T = (SD, At, TO) where At represents the
Annotated text.

1) Graph-based representation of Annotation Traces: In
order to formally represent the annotation traces, a graph-
based representation has been selected [11]. Graphs are
preferable as they are simple to implement, simple to
explain and can be further refined. They make the facts
clearer and more understandable for non-experts. They can
be used to represent the facts in visual form. The benefit of
graph-based representation is the availability of its well
established algorithms, properties and its well known
characteristics which can be used for querying and
management of annotation traces effectively with a great
performance. The graph-based formalisation will be used to
store, access and manipulate the traces efficiently in an
ontology-based content change management system.

III. CONSISTENCY MANAGEMENT BETWEEN CONTENT AND
ONTOLOGIES

The annotation traces will be used to keep the bi-directional
consistency between the content and the domain ontologies.
That means, if the content or ontology changes at a certain
time, the annotation traces will evolve and will provide
feedback to other trace components for their necessary
evolution process.

We need to keep track of changes in the components of
the software system, reflected through the content
management layer. These changes must be reflected in the
representative domain ontologies. The inter-dependencies
between domain ontologies and the content will be
captured through Trace Consistency Model. Changes can
be made either in the ontology or in the domain content.
We will realize changes from both perspectives, i.e.
bottom-up, top-down approach (Figure 3). For example, if
there is a change in the content, it needs to be reflected by
changes to the respective ontologies and the annotation
traces. Similarly, if there is a change in the ontology, it
needs to be reflected in the annotation traces and in the
content, depending on the significance of change. As traces,
formed through the semantic annotation scheme, capture
central consistency constraints, we will use the traces for
consistency management. For the operationalisation of
ontology changes, the change operator framework detailed
in [9] will be used.

To uniquely identify and keep the traces consistent, one
needs to identify consistency constraints for them.
Definition - Trace Consistency Constraints: We define the
consistent trace as

A single annotation trace is consistent with respect
to its trace model if it preserves the constraints
defined for the model.
To deal with consistency issues, we have introduced the

notion of trace invariants (I). Invariants are must hold
consistency constraints for every trace in the set. Every

trace should keep the correctness of the invariant. Some of
the invariants are given as follows.
I1: Unique Identity Invariant: Each trace must have its own
individual identity to be uniquely identified.
I2: Trace Closure Invariant: All traces must be an element
of the annotation set AS (AT1, AT2 · · ·ATN ∈AS).
I3: Trace-Ontology Closure Invariant: Each trace can be
connected to at most one concept/instance of the target
ontology (1:N).
I4: Trace-Content Closure Invariant: Each trace can
contain at most one link to the source document (1: N).

Fig. 3 Top-Down and Bottom-Up Approach for Consistency

Management between Ontologies and Domain Content

Following to the invariants, a number of trace

manipulation techniques can be set to deal with the
consistency issues. For example, a trace manipulation
technique can be offered for the 3rd invariant (I3), i.e., if
ontology changes list an operation in which a concept,
which is currently been used in the formulation of a trace,
is deleted, the trace

- must also be deleted or
- the deletion of such concept must not be allowed from
the ontology or
- user must be informed about referential integrity before
deletion of the concept.

Such flexibility will give a free hand to the user to deal
with the consistency issue based on individual
requirements.

A. Impact-based Categorisation of Content Changes:
A change in software content or domain ontology may lead
to the addition, modification or deletion of relevant
annotations. Below in Table 1, we discuss a number of the
changes that can occur in the content of a software system
and their impact on the annotation traces and ontology.

The effect of changes can be categorized based on the
structural or semantic level impact. For example, if a new
feature is added to the software system, new concepts will
be added in the respective ontology and so new traces will
be generated. On structural level, it has a low level impact
as no concept in the current ontology will be affected
except an addition of a concept and traces in the ontology
and annotation set, respectively. If we look at the same

change semantically, it has a high impact on the ontology
and annotation set, because a new concept, which was not
there before, will be added.

We have categorized the effect of changes based on their
semantic level into Higher (H), Medium (M) and Lower (L)
types. The semantic level impact is high when a change
requires addition or deletion of certain element. Semantic
level impact is medium if the content change requires
ontology to be edited or if the change is at the instance
level. The semantic level impact of change is low if does

not affect the ontology semantically and involves structural
ontological changes such as renaming etc. In such cases
only annotations have to be added or edited. Impact-based
categorisation of ontological and content changes provides
information to the ontology engineer to support decisions in
content change management.

In Table 1, we discuss a number of the changes that can
occur in the content of a software system and their impact
on the annotation traces and ontology.

TABLE 1

IMPACT OF CONTENT CHANGES ON ANNOTATIONS AND ONTOLOGIES

 Content Changes Impact on Ontologies Impact on
Annotations

Effect

Addition of a new feature in
software system.

New concepts will added in
multiple ontologies.

New Annotations will be
added

H

Addition of new topic in help file. New instances will be added in
ontology.

New Annotations will be
added.

M

Removal of a feature from
software system.

Concepts will be deleted from
relevant ontologies.

Annotations will be
deleted

H

New reference of help file is
added.

New attributes to the concept will
be added in ontology

Annotation will be
edited

M

Content format is changed No-Effect (if format instance is
already available in ontology).

Annotation will be
edited

L

A software feature is upgraded to
a software component.

Concepts will be generalized. Annotations will be
edited

M

Adding a specialized feature
under a component.

New specialized concepts will be
added.

New Annotations will be
added.

H

TABLE 2
 IMPACT OF ONTOLOGICAL CHANGES ON ANNOTATIONS AND CONTENT

Ontological Changes Impact on Annotation Impact on Content Effect

New concept is added New Annotation will be added New content is eligible
to add.

H

Annotated Concept is renamed. Annotation will be edited. No-Effect L
Concept is deleted. The annotation will be deleted. Content is eligible for

deletion.
H

Parent Concept of an annotated
concept is deleted from the
ontology

i. sub concepts will be deleted

ii. sub concepts will be
preserved

The effect depends on evolution
strategy we follow.

Annotations will be deleted

Annotations will be edited

Content is eligible for
deletion.
Content is eligible for
edition

H

M
Annotated Instance is renamed. Annotation will be edited. No-Effect L
Annotated Instance is deleted. The annotation will be deleted. Content is eligible for

deletion.
M

Parent concept of annotated
instance is changed.

The annotation will be edited. Content will be moved
from one location to the
other.

M

Class hierarchy is changed in the
ontology

Annotation will be edited Content is eligible for
edition.

M

Ontology URI is changed. The Annotation will be edited No-Effect L

B. Impact-based Categorisation of Ontological Changes:
In Table 2, we discuss a number of changes that can occur
in the ontology and their impact on the annotation traces
and content. We used the word eligible with the impact on
the content changes, as the content manager will be notified
about the ontological changes. Now it is his decision
whether to perform the changes in the content or to assess
the costs of change.

IV. RELATED WORK
We give a brief summary of current practice in the area of
ontology-driven modelling of content, specifically through
semantic annotation. The researchers have worked in the
area of semantic annotation, mostly annotating the web
pages in HTML and XML form, to help in realisation of
semantic web. A few others have also worked of annotating
multimedia content [12]. In [5], the authors discussed how
semantic annotation can be used for generating metadata
for the semantic web. Their automatic annotation system,
the Knowledge and Information Management (KIM), is
based on an upper level ontology (i.e. proton ontology) as a
knowledge base. It examines the text and searches for
references to the entities. Furthermore, it tries to match
these searched entities with the classes and instances
available in the proton ontology. Once found, they get
annotated with the unique URI of the entity. The authors
suggest that such annotated data can be used for indexing
and information retrieval activities.

In [13], the authors share the idea of linking the web
content dynamically. They suggest that it will be of great
benefit for the user if related web documents are linked
together. Their system, named Conceptual Open
Hypermedia System (COHSE), is a combination of
ontological services and Open Hypermedia Link Service
and enables the content to be annotated via domain
ontologies [14]. For the demonstration, they used the Gene
Ontology [1].

A number of components have been proposed in the well
formed Text Engineering Platform (GATE) [15]. One of
them is (OAT) which is a manual annotation system.
Another component of it is the Onto Root Gazetteer, which
creates the dynamic gazetteer based on the loaded ontology
and performs the annotation automatically.

The currently developed models deal with semantic
annotation, however, none of them deal with the
consistency issues, i.e. if there is a change in the content, it
must be reflected in the respective domain ontology and
vice versa. Consistency has to be established during content
change management. The research in the area of mutual
dependencies between the content and the domain
ontologies are still at an explorative stage.

V. EVALUATION
We followed the categorisation approach given by the
quality standard model ISO/IEC 9126 and identified
functional suitability as evaluation criteria. The evaluation

criteria are compliant with definitions provided in the
quality model.

Functional suitability refers to the adequacy of the
solution in terms of its coverage of user needs and
correctness of implementation. In case of systems aiming at
semantic support, functional suitability focuses on how
accurately the trace model can be used for guided access to
the content by querying the ontologies semantically, i.e.
how correct the reflection of semantic links is.

The functional suitability of the trace model has been
empirically evaluated. It has been observed that the solution
is valid and suitable to handle the core issues of software
evolution. Ontology-based software application model
plays a semantic role in guided access to the content. The
consistency between the different software application
artifacts and domain ontologies is preserved using
consistency check model.

VI. CONCLUSION
When content management needs to work in
multidimensional, multi-format, web-based applications,
semantic annotation is a technique to support access to the
content. To do so, an ontological layer has been proposed
to be placed at the top of content management layer of
application system.

The empirical study indicates that the solution is valid
and suitable to handle the issues of content management
systems. Currently we are focusing on the formalization of
annotation trace model and the impact categorisation of the
software application changes on the consistency of the
domain ontology. The implementation of the approach as a
trace model which includes tools and techniques and graph-
based formalisation of annotation traces is our future work.

ACKNOWLEDGMENT
This research is supported by the Science Foundation
Ireland (Grant 07/CE/I1142) as part of the Centre for Next
Generation Localisation (www.cngl.ie) at Dublin City
University.

REFERENCES
[1] Gene Ontology Tool for the unification of biology:

http://www.geneontology.org/.
[2] Boyce, S., Pahl, C.: The development of subject domain ontologies

for educational technology systems. Journal of Educational
Technology and Society (ETS) IEEE 10(3) (2007) 275–288

[3] Bandara, K.Y., Wang, M., Pahl, C.: Context modeling and
constraints binding in web service business processes. In Proceedings
of the First international Workshop on Context-Aware Software
Technology and Applications (2009)

[4] Holohan, E., McMullen, D., Melia, M., Pahl, C.: Adaptive
Courseware Generation based on Semantic Web Technologies. In:
Proceeding of the International Workshop on Applications of
Semantic Web Technologies for E-Learning (SW-EL2005) at the
Twelveth International Conference on Artificial Intelligence in
Education (AIED2005) , IOS Press (2005)

[5] Kiryakov, A., Popov, B., Terziev, I., Manov, D., Ognyanoff, D.:
Semantic annotation, indexing, and retrieval. Volume 2. (2004) 49–
79

[6] Noy, N.F., Klein, M.: Ontology evolution: Not the same as schema
evolution. Knowledge and Information Systems. 6(4) (2004) 328–
440

http://www.geneontology.org/

[7] Qin, L., Atluri, V.: Evaluating the validity of data instances against
ontology evolution over the semantic web. Information and Software
Technology. 51(1) (2009) 83–97

[8] Gruhn, V., Pahl, C., Wever, M.: Data model evolution as basis of
business process management. In: OOER ’95: Proceedings of the 14th
International Conference on Object-Oriented and Entity-Relationship
Modelling, London, UK, Springer-Verlag (1995) 270–281

[9] Javed, M., Abgaz, Y., Pahl, C.: A pattern-based framework of change
operators for ontology evolution. In: 4th International Workshop on
Ontology Content. Volume 5872 of LNCS., Springer (2009) 544–
553

[10] Stojanovic, L.: Methods and tools for ontology evolution. PhD thesis,
University of Karlsruhe (2004)

[11] Ehrig, H., Prange, U., Taentzer, G.: Fundamental theory for typed
attributed graph transformation. In Proc. of 2nd Int. Conference on
Graph Transformation (ICGT) (2004) 161–177

[12] Petridis, K., Bloehdorn, S., Saathoff, C., Simou, N., Dasiopoulou, S.,
Tzouvaras, V., Handschuh, S., Avrithis, Y., Kompatsiaris, I., Staab,
S.: Knowledge representation and semantic annotation of multimedia
content. In: proceedings on V.I.S. Processing, Special issue on
Knowledge-Based Digital Media Processing. Volume 153. (2006)
255–262

[13] Bechhofer, S., Yesilada, Y., Horan, B., Goble, C.: Knowledge-driven
hyperlinks: Linking in the wild. Volume 4018 of Lecture Notes in
Computer Science. (2006) 1–10

[14] Carr, L., Bechhofer, S., Goble, C., Hall, W.: Conceptual linking:
Ontology-based open hypermedia. In WWW10, Tenth World Wide
Web Conference. (2001)

[15] General Architecture for Text Engineering: http://gate.ac.uk.

	I. INTRODUCTION
	II. ontology-based content management
	III. Consistency management between content and ontologies
	A. Impact-based Categorisation of Content Changes:
	B. Impact-based Categorisation of Ontological Changes:

	IV. Related work
	V. Evaluation
	VI. conclusion

