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ABSTRACT 

Obtaining an implementation of a data warehouse is a complex task that forces designers to acquire wide 

knowledge of the domain, thus requiring a high level of expertise and becoming it a prone-to-fail task. 

Based on our experience, we have detected a set of situations we have faced up with in real-world 

projects in which we believe that the use of ontologies will improve several aspects of the design of data 

warehouses. The aim of this article is to describe several shortcomings of current data warehouse design 

approaches and discuss the benefit of using ontologies to overcome them. This work is a starting point for 

discussing the convenience of using ontologies in data warehouse design. 
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1. INTRODUCTION 

Data warehouse systems provide a multidimensional view of huge amounts of historical data 

from operational sources, thus supplying useful information, which allows decision makers to 

improve business processes in organizations. A multidimensional model structures information 

into facts and dimensions. A fact contains the interesting measures (fact attributes) of a business 

process (sales, deliveries, etc.), whereas a dimension represents the context for analyzing a fact 

(product, customer, time, etc.) using hierarchically organized dimension attributes. 

Multidimensional modeling requires specialized design techniques that resemble the traditional 

database design methods [1]. First, a conceptual design phase is carried out, whose output is an 

implementation-independent and expressive conceptual multidimensional model for the data 

warehouse. A logical design phase then aims to obtain a technology-dependent model from the 

previously defined conceptual multidimensional model. This logical model is the basis for the 

implementation of the data warehouse. Therefore, the multidimensional design is driven by 

models to reflects real-world scenarios and obtain the most suitable logical representation. 

One benefit of multidimensional modeling has been to increase the level of automatization in 

obtaining a final implementation at the same time that semantic gap among different models are 

bridged. To this aim, so far, we have been applying UML and MDA in the design of data 

warehouses [2, 3, 4]. More concretely, we have developed a hybrid approach to reconcile the 

conceptual schemas obtained from user's requirements and the conceptual schemas from data 

sources [5]. We have also developed a prototype (http://www.lucentia.es) based on the Eclipse 

Modeling Framework that allows us to apply our approach in real-world projects. 

However, obtaining an implementation of the data warehouse is a complex task that often forces 

designers to acquire wide knowledge of the domain, thus requiring a high level of expertise and  
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becoming it a prone-to-fail task. Based on our experience, we have detected a set of situations 

(e.g., additivity, reconciling requirements and data sources, conformed dimensions, etc.) we 

have faced up with in real-world projects in which we believe that the use of some kind of 

knowledge resources will improve the design of data warehouses (some of them are being 

considered). In the light of these issues, ontologies seem to be a promising solution, since they 

are common conceptualization of a domain, representing shared knowledge: while models are 

prescriptive, ontologies are descriptive [6], which means that models state requirements about 

the system-to-be (e.g., what and how should it be built), and ontologies describe the application 

domain as it is (in a technology-independent manner). 

Importantly, ontologies may empower the automatization advocated by model-driven 

development, since they provide mechanisms to formally specify the semantics of a domain on 

which models may be supported. Interestingly, we argue that ontologies could be used in data 

warehouse development since data structures depend on a given context to define their actual 

semantics, and ontologies provide the crucial context knowledge relevant to interpret semantics 

[7]. For instance, the fact sales may be interpreted as (i) “a collection of actions and a 

specialization of business activity and commercial activity” (the conventional sense) or as (ii) 

“the collection of OfferingForSale events including events in which an agent offers one or more 

things for sale to one or more agents” (http://www.cycfoundation.org/concepts). Moreover, in 

the context of data warehousing, sales may refer to both punctual and cumulative sales (in the 

sense of snapshot stocks). Finally, if sales are modeled as a fact of a data warehouse and we 

find different sales' concepts in data sources with the same functional dependencies, we cannot 

automatically decide which one to be taken without considering semantic knowledge. In each 

case, its management and analysis imply different treatments. 

Therefore, in this article, we present a set of situations in which ontologies may help data 

warehouse designers to solve several problems. On the same way, there are other authors who 

have also started the use of ontologies in different aspects of a data-warehouse architecture such 

as ETL processes [8] or data sources [9]. However, there is a still a plethora of situations where 

ontologies may be applied and there is not still a research roadmap on how to do it. This article 

sheds light on the benefit of using ontologies in data warehouse research. 

This article describes several shortcomings of current data warehouse design approaches and 

how ontologies can help in overcoming them. This work is intended to be an avenue for future 

work as we pretend to give hints and start a discussion about the convenience of using 

ontologies in data warehouse design. 

2. ONTOLOGY-AWARE DATA WAREHOUSE DESIGN 

In the following, the situations in which ontologies may help designers in the development of 

data warehouses are presented as follow: (i) Shortcoming: the situation is presented as a 

shortcoming followed by a short definition of the detected problem, (ii) Description: a deeper 

description of the problem is presented to clarify the found shortcoming, and (iii) Discussion: a 

discussion on how ontologies may help designer in improving the current solution for the found 

problem is presented. 

2.1. Shortcoming: Requirement Analysis in Multidimensional Design 

Requirement analysis for data warehouse design needs new concepts and techniques 

whose meaning should be clarified to be used by stakeholders. 
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2.1.1 Description 

Requirements analysis for multidimensional modeling pretends to elicit information needs of 

decision makers to deploy a data warehouse that satisfy their expectations. Data warehouse 

design needs for new concepts and techniques different from those used in traditional 

requirement engineering tasks. Currently, several proposals for eliciting information 

requirements in data warehouses have been developed [10, 11, 12]. However, these approaches 

ignore how to formally describe the meaning of every decision concept and how to share this 

knowledge to be easily used by requirement engineers. 

2.1.2. Discussion 

The role of a business model is highly important in requirement engineering to every 

stakeholder understands one another. This is especially useful because stakeholders may have 

incompatible needs [13]. Importantly, business models should be managed as an ontology, 

because they are descriptive abstraction of the environment in which any software system 

(including a data warehouse) should operate. They also contain the semantics already agreed by 

the organization stakeholders. Moreover, an ontology such as the one presented in [14] that is 

based on speech acts [15] may serve as a guide for analyzing information requirements in an 

ontological way. As its authors state “the only relevant core ontology is one which helps the 

software engineer in solving the requirements problem” [14]. 

Multidimensional concepts and techniques should be clarified when a requirement analysis 

stage is applied to the development of data warehouses. For instance, a foundational ontology 

such as the Bunge's one [16] serves us for validating multidimensional models [3, 17] by a 

representation mapping where ontological concepts are mapped into language constructs and an 

interpretation mapping where for the later ones an ontological interpretation is assigned. 

Thus, ontologies are not the panacea for requirement engineering in data warehouses but they 

are an interesting complement for formalizing what is really meaning by stakeholders when 

multidimensional issues arise. 

2.2. Shortcoming: Reconciling Requirements and Data Sources 

Due to the special idiosyncrasy of data warehouses, not only requirements should be 

considered for multidimensional design, but also a second driving force: data sources, 

which need to be reconciled with information requirements. 

2.2.1. Description 

Requirements analysis for multidimensional modeling pretends to elicit information needs of 

decision makers to deploy a data warehouse that satisfy their expectations. Furthermore, 

available data sources should be taken into account since they will populate the data warehouse. 

Currently, several proposals for eliciting information requirements in data warehouses have 

been developed [11, 12] to derive multidimensional models that describe real world in terms of 

facts and dimensions. However, mechanisms through which to formally match the data sources 

with information requirements in early stages of the development are not investigated so far, 

thus the correspondence between information requirements and their counterparts in data 

sources are not obvious. The identification of multidimensional elements in the data sources is a 

mandatory previous step before reconciling requirements and data sources (i.e., fact, 

dimensions, bases, etc.).  These elements are usually annotated in a manual [10] or 

semiautomatic [18, 19] manner from data sources using syntactic information [20], which is not 

enough for every scenario and prevents their total automatization. In order to overcome this  
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situation, we argue that the most promising solution consists of enriching the previous cited 

approaches by using the semantic knowledge provided by ontologies as stated in [9]. 

2.2.2. Discussion 

One approach closely related to the idea of using ontologies for deriving multidimensional data 

is [9]. It presents a method for discovering multidimensional structure from ontologies. This 

method consists on: (i) discovering dimensions and measures by matching and subsumption, (ii) 

selecting measures and dimensions for defining facts, (iii) defining bases by exhaustive 

searching and pruning, and (iv) defining aggregation hierarchies by identifying part-whole 

relationships. Dimensional elements (i.e., fact, dimensions, bases, etc.) are identified using 

heuristics based on structural aspects (such as counting instances, inserting frequency, 

cardinality, etc.). Other approach using heuristics is [18] where the fact-dimension dichotomy is 

based on data cardinality. 

However, semantics about multidimensional properties of a given concept should also be 

considered. In this sense, the interesting debate comes from discovering the ontological 

foundation of multidimensional modeling. It may be articulated by answering if the proposed 

structural heuristics are pointing out semantics for which multidimensional elements will be 

univocally identified. Therefore, research community should work on providing both the 

involved semantics rules and the (public) repository of multidimensional-annotated ontologies. 

For the last one, an interesting starting point is the CyC ontology (http://www.cyc.com) or its 

open version OpenCyC (http://www.opencyc.org). CyC is an ontology conceived to answer 

common sense reasoning by computers. Let it be, both requirement-driven and data-driven 

methods could take advantage of the ontological knowledge about multidimensionality. 

2.3. Shortcoming: Incompleteness in Multidimensional Models 

Ontological knowledge may enrich a multidimensional model in aspects that have not 

been taken into account during requirement analysis or data-source alignment. 

2.3.1. Description 

Data sources of a data warehouse may not cope with all information that end-user analysis 

requires. For instance: product dimension can be populated with data only for the product 

details themselves (e.g., code, name, description). However, required additional aggregation 

levels such as product subtype, type or class may be not contained in operational data sources. 

Therefore, additional knowledge is required to deal with these new aggregation levels. 

2.3.2. Discussion 

There are some kinds of data that can be directly obtained from other, “public” data sources. For 

example, an ontology such as WordNet can be used to complete the unsupported elements 

within a dimension hierarchy. Moreover, taxonomies such as the Computing Classification 

System (CCS, http://portal.acm.org/ccs.cfm?part=author&coll=portal&dl=GUIDE) can be also 

used as additional data sources from which designing multidimensional models. CSS provides a 

classification for topics on computations that can be, (and usually is), used for classifying 

computer literature. For instance, there is a taxon for Information Systems (H) where, e.g., 

Database Management (H.2) topics are classified. This taxonomy can also be used for 

completing aggregation hierarchies, whenever a data warehouse requires a dimension on 

computer-related topics. An example of using ontologies for enriching dimension hierarchies is 

defined in [21]: for the hierarchy city-state-country, the meronymy/holonymy relationship can 

be used due to the fact that city is a part of state and state is a part of country (e.g., Boston is a  
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part of Massachusetts, and Massachusetts is a part of USA), and if the hierarchy is product-

family-class, hypernymy/hyponymy relationships can be used, because of every product is a 

kind of family and every family is a kind of class (e.g., cake is a kind of baked good, and baked 

good is a kind of food). 

2.4. Shortcoming: Data Types of Measures 

Measures of analysis described by multidimensional models in facts, even at the 

conceptual level, do not aid neither designers nor end-users to know important details 

such as their units or scale. 

2.4.1. Description 

An interesting improvement in the semantic description of measures in multidimensional 

models is the addition of units, magnitudes, and scales. Regarding this issue, [22] proposed the 

well-known “levels of measurement”: four different types of numerical scales, which he called 

nominal, ordinal, interval and ratio. This classification is interesting for multidimensional 

models because from these scale types, some statistics functions (and particularly, the 

aggregation functions used in OLAP systems) are restricted. Each scale type defines a 

mathematical structure on which the permissible statistics and scale transformations are 

allowed. For instance, nominal measures of a multidimensional model may be aggregated using 

mode or chi-square statistics and only directly compared using equality. However, in a more 

powerful scale such as interval, statistics such as mean, standard deviation, correlation, etc. are 

allowed. 

2.4.2. Discussion 

Some simple definition as units of measurement may dramatically empower the common 

definition of OLAP measures. Units of measurement are a common forgotten part of 

measurement definition. This topic directly deals with the ontological concept of quantity 

(http://www.wikipedia.org):  (it) is a kind of property, which exists as magnitude or multitude 

(number). Identifying these concepts in the multidimensional models, by their ontological 

alignment, enables designers to describe properly what is really modeled, and therefore, how 

actually should be analyzed. 

Many measurement ontologies may aid designers to annotate the identified measures of OLAP 

analysis according to them. A well-known ontology in the software engineering field is the 

agreed by [23]. This ontology is defined by many representative research groups in the area of 

software measurement and quality and thus, provides commitment among them for uniformly 

specify measures. Thus, since data warehouses deal with measurement of facts for being 

analyzed, it is also useful in this context. In addition, ontologies for describing units of 

measurement domain may be also helpful: e.g., the Measurement Units Ontology (MUO, 

http://idi.fundacionctic.org/muo/muo-vocab.html) or others from the biomedical domain such as 

the units of measurement (unit.obo, http://www.obofoundry.org/cgi-bin/detail.cgi?id=unit; as 

seen in Figure 1). 
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Figure 1.  Visualization of an excerpt of the units of measurement ontology 

2.5. Shortcoming: Semantic-aware Summarizability 

Many statistic functions may be used to aggregate data cells of measures. Their 

application depends on which sort of measure and aggregation criteria are involved. 

2.5.1. Description 

Specifying additivity constraints is a fundamental part of a multidimensional model. In 

particular, type compatibility [24] states the compatibility of category attributes (aggregation 

levels), summary attributes (measures) and statistical functions (aggregation functions). A 

classification for measures is proposed in [25]: the well-known categories additive, semi-

additive and non-additive. Despite of the fact that these categories are related to assuring 

additivity along all, some, or none dimensions, respectively, without taking into account their 

nature (semantics), other authors propose frameworks where measures are described by richer 

classifications. Take [24, 26] as example. In [24], authors propose the classification of summary 

attributes into can be classified as either a “flow” (also called “rate”), a “stock” (also called 

“level”) or a “value-per-unit”. In addition, [26] presents a taxonomy of summary constraints 

where, e.g., non-additive measures are further classified into ratios and percentages, measures of 

intensity, or average/maximum/minimum together with some treatments for dealing with them. 

That is, there is not a common agreement. 

2.5.2. Discussion 

The proposed taxonomies for dealing with summarizability constraints lack in an ontological 

foundation. This means that designers do not have aids for reasoning about what really is a 

given piece of information and thus, which constraints should be hold. For instance, the concept 

expressed by “flow” in [24] and the concept expressed by “measure of intensity” in [26] may be 

the same. 

The problem is that, without an ontological foundation (whether it be implicitly taken into 

account or explicitly codified in an ontology thought as a communication artifact) acting as a 

comparison framework, there is no possibility of being sure that these frameworks are complete 

or formally stated. Simply, there is only tacit knowledge, not formal semantics (two readers may 

interpret different things). Even more importantly, we cannot know why it is in that way and 

how sound our knowledge is. 

In this way, ontologies enable us to gain better understanding about the very nature of 

summarizability constraints, reasoning about why, when, and how to hold it. One first issue to  
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deal with is the role that time dimension plays in the summarizability constraints. Despite of the 

fact that type incompatibilities are not always associated to time dimension [17], time is a 

(probably, the) key dimension in a data warehouse. Indeed, data warehouses are time-variant 

[27] databases, i.e., collection of time-stamped facts. Therefore, the first dimension to check 

additivity is usually this one. Here, these facts that are described temporally, may be understood 

as events, should be described by a foundational ontology such as DOLCE (http://www.loa-

cnr.it/DOLCE.html) as endurant or perdurant particulars. The distinction between endurants 

and perdurants plays a prominent role in top-level ontologies and it can provide very useful 

knowledge about what is really managed by data warehouses and how OLAP analyses should 

be performed over them. These categories may be characterised by the following properties: 

• Endurant: Particulars may be categorized as endurants iff (i) they persist, (ii) necessarily 

lack proper temporal parts, and (iii) are necessarily and completely present in each time 

interval at which they exist. 

• Perdurant: Particulars may be categorized as perdurant iff (i) they persist, (ii) necessarily 

have proper temporal parts, and (iii) are necessarily not wholly present in each time interval 

at which they exist. 

Given these (on the other hand, informal) definitions, a measure “sale units” may be interpreted 

as endurant sale, i.e., the sale accomplished in a temporal moment, and as perdurant sale, i.e., 

the (cumulative) sale that “lives” till now. Another example, the classical “inventory stock” (in 

the traditional sense) is not more, accordingly to the ontological basis, a perdurant entity. 

Therefore, by the semantic annotation of measures, its nature regarding time can be assessed. 

Since perdurant particulars live in a time period, they should be characterized as semi-additive 

measures along time dimensions of a data warehouse. Conversely, endurant particulars are 

attached to particular temporal moment, thus they can be added along time without 

ontologically-founded duplicated values. 

Interestingly, ontologies allow us to establish endurant-perdurant mappings: because perdurant 

particular are attached to particular temporal points, two of them may be translated into an 

endurant one, and conversely, an endurant particular may be mapped into at least two perdurant 

particulars marking the beginning and end of the period over which exists. These facts provide 

real guides for checking and assuring summarizability constraints regarding time. 

For instance, in order to make inventory stocks additive along time, we may map them into the 

input goods and output ones. Note that additivity, i.e., the aggregation by sum function, is a 

desirable property of any measure because it is transitive along aggregates (data cubes) in 

contrast to other statistics such as means that should be recalculated from the most granular 

data. Then, we specify a derived measure, over which we will calculate by aggregating it from 

the previous ones by simply adding quantities. This measure can be calculated for obtaining the 

stock in given time period. Please note that conversely, “well-formed” sales (endurant 

particular) may be shown as “stocks being output”. In this line, product returns should be 

“stocks being input” in the general balance of the company account. However, here, this 

conversion only implies harder constraints over summarizability, thus designers naturally 

overlook it. Interestingly, facts such as these can be logically derived from the ontologies. The 

method for gaining such results is the semantic annotation of multidimensional models. This is 

called “interpretation mapping” [28], that is the process of assigning ontological meaning to the 

modeling elements which have not yet one assigned. After this step, ontological reasoners may 

be used to infer facts to both aiding to define summarizability constraints and evaluate how 

sound are the constraints manually imposed. 
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2.6. Shortcoming: Conformed Dimensions 

Data-warehousing architecture deals with data marts to customize the access to the 

corporate data warehouse. However, in order to tie data marts together, they should be 

conformed. 

2.6.1. Description 

The orchestration of the design of databases for the data warehouse repositories is recognized in 

terms of the architectural debate [29]. There are two different points of view: on the one hand, 

Inmon [27] advocates the design of corporate data warehouses that elegantly integrate all data 

sources which will be then mapped into departmental data marts. On the other, Kimball [25] 

advocates the design of data marts (related by a “bus architecture”) that may be additionally 

supported by a data warehouse. 

2.6.2. Discussion 

Whichever approach is selected, there is a step in the development process where both structural 

and semantics mapping are involved. Despite of the fact that works such as [30, 31] deal with 

the integrated design of data marts and data warehouses, they are mainly oriented to the 

structural design of databases. With regard to the structural mappings, data marts models are 

summarized or customized versions of the data warehouse counterparts where aggregation 

hierarchies are pruned and dimensions are limited (acting as materialized views). However, the 

integration of such data structures also involves semantics mappings. A data mart should be 

integrated (or conversely, a data warehouse should be customized as a data mart) by matching 

modeling elements. Moreover, data marts should be tied together to be able to reply cross-

departmental queries elaborated from OLAP operations such as the classical drill across [25]. 

This situation, i.e., data mart and data warehouse integration, indeed arise problems related to 

semantics. Otherwise, integrating them is one hardest problem in real-world projects. 

In particular, conformed dimensions mean the 80% of effort in the development of data marts 

[25]. Current approaches are based on some variant of the foundational definition of conformity 

provided by Kimball: “two dimensions are conformed if the fields that you use as common row 

headers have the same domain” [32]. These definitions manage conformity as similarity 

functions of the meaning, i.e., ontological entities of multidimensional models. Thus, a 

promising solution involves ontologies for abstracting the semantic layer on which both data 

marts and corporate data warehouses (in the sense of data structures) are supported. For 

instance, a sample process would act as follows: the semantic annotation of each modeling 

element regarding a domain ontology is performed first. This step involves every repository in 

the architecture (data marts and data warehouse). Second, subsumption reasoning is used for 

inferring proper ways to match them. Third, given the mapping output from the (automatic) 

reasoner, a data transformation is used for implementing the transference among repositories, 

acting in the same sense of ETL processes act between data sources and the data warehouse [8]. 

Interestingly, the semantic annotation of the repositories may be aided by visual tools thus, 

intuitively and avoiding time-consuming efforts. 

2.7. Shortcoming: Semantically-traceable Models 

Mapping from multidimensional models to relational models is accomplished by 

structural matching. Since structure and semantics are closely related in such a way, 

whenever structure is manually changed, the source semantics are lost. 
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2.7.1. Description 

The main different between model transformations and ontologies is that ontological mapping 

uses the explicitly codified knowledge whereas models have to assume the meaning from the 

codification of the modeling [33]. Multidimensional models are then concerned about data 

structures for OLAP purposes. The key idea is that model-to-model transformations have been 

designed for matching structures instead of matching semantics as ontologies do. 

 

Figure 1.  QVT relation for mapping facts into tables 

Figure 2 shows the usual situation where multidimensional modeling elements (facts in the 

figure) are related to others (a table in a relational deployment of the data warehouse). Despite 

of the fact that Query/View/Transformation (QVT) language (as appear in [4]) codifies this 

relation, the structural matching is articulated using simple name matching/comparison (using 

string equality). It is illustrated by the name=fn rule in Figure 2. A QVT engine can match here 

complex data structures taking into account these kinds of relations. However, because the 

matching is indeed structural, these labels acting as structural identifiers do not provide suitable 

mappings when they come from arbitrary decisions. Therefore, data warehouse designers may 

change them indiscriminately along time. 

2.7.2. Discussion 

Automatic model transformations are managed with the manual transformations that software 

engineers do, i.e., modify the current label of a modeling element, remove some data, relate 

some elements together, and so on. Traceability is the mechanism for propagating changes in a 

transformation chain taking into account only the changes and not entire models (this capability 

is referred in programming as incremental compilation). It solves the problem whenever 

automatic transformations are involved. However, modifying the label implies change its 

semantics or even worse, losing its meaning because the misuse of semantics in model-driven 

methods. This fact is easily shown in data sources where a data item may be label in a cryptic 

form (s0702) on which its semantics cannot be inferred (the sales from 2007 to 2009). 

Ontologies may solve this drawback in model-driven development by semantically annotating 

multidimensional models. Then, instead of labeling them for a dual purpose, i.e., specify 

semantics and identifying structures, each modeling element keeps an (ontological) identity 

about what is their meaning. In Figure 2, identifiers in the sense of ontology references should 

be used instead of name. Then, structural mappings such as this will properly manage changes 

in structure (e.g., caused by user manipulation) without affecting semantics. In this case, string 

equality is converted into identifier/reference equality that may be easily mapped to a numeric 

equality (solving the exact matching required by string equality or complex auxiliary similarity 

functions). 
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2.8. Shortcoming: Reasoning on OLAP Queries 

OLAP queries are based on the manipulation of data aggregations. However, OLAP 

algebras are based on calculus instead of logics. Any proposition about the 

multidimensional model cannot be proven but just calculated. 

2.8.1. Description 

The main insight is to enrich OLAP-querying expressiveness with the inference capability 

provided by the ontological foundation of the data warehouse. Similarly to the geographical 

enrichment of traditional OLAP systems [34] or the alignment of data warehouses with 

document databases [35], the ontological query may provide interesting capabilities to OLAP 

analysis. 

2.8.2. Discussion 

Take an OLAP analysis over commercial transactions as example. These are related to some 

dimensions such as product, customer, and season. Despite of the fact that OLAP analysis 

enables decision makers to explore hypothesis concerning these dimensions (e.g., such-and-so 

customer kinds determine such-and-so commercial transaction), inferring knowledge from the 

logical propositions provided by ontologies is still missing (e.g., is a kind of customer logically 

associated to a product type regarding a given season?). 

Moreover, semantics-aware querying of data warehouses provides decision makers with 

ontologically-founded models. Decision makers can properly interpret these models because 

they have been obtained by agreement. 

2.9. Shortcoming: Asserting Suitable Visualizations 

Deciding which visualization may be suitable for a given data set is one of the top 10 

problems in the visualization information field [36]. Data cubes can be visualized in 

this sense using many techniques. Finding ways of aiding decision makers to select the 

proper visualization will ameliorate this task. 

2.9.1. Description 

What kind of visualization technique is provided? Regarding the very nature of data cubes is 

another topic on which the semantic data annotation may aid to improve the development 

process. On the one hand, data warehouses are multidimensionally modeled, i.e., describing 

facts and dimensions of analysis. On the other hand, visualization techniques have particular 

information requirements in terms of the data types. For instance, Table 1 shows many of the 

visualizations used by Many Eyes software solution (http://manyeyes.alphaworks.ibm.com). 

This application presents a method for visualizing data sets by novels. Interestingly, taking 

Many Eyes as example, techniques related to the category see the world (see Table 1) requires 

data under the signature Ʃ* x R. 

2.9.2. Discussion 

The semantic annotation of measures and dimensions enables the automatic matching of these 

visualization information requirements with the multidimensional structure of the data 

warehouse. For instance, given the semantic category of a concept in a multidimensional model, 

its characterization as a categorical data (denoted as Ʃ * in Table 1) or as a ratio scale (R) may 

be ontologically inferred. 
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Table 1.  Information requirements for the visualization techniques used by Many Eyes. It is 

assumed that R is ordered and Ʃ * has no order defined. m, n are non-negative natural numbers. 

Category Name Format 

See the world World map 

Country maps 
Ʃ * x R 

Ʃ * x R 

Track rises and falls over time Line graph 

Stack graph 

Stack graph for cat. 

R x R
 n 

R x R
 n 

(Ʃ *)
m

 x R
 n 

Compare a set of values Bar chart 

Block histogram 

Bubble chart 

Matrix chart 

Ʃ * x R
 n 

Ʃ * x R 

Ʃ * x R 

(Ʃ *)
j
 x R

 k
: j >1 and k ∈ 0,1{ } 

See relationships among data pts. Scatterplot 

Network diagram 
Ʃ * x R

 3
 

(Ʃ *)
2 

See the parts of a whole Pie chart 

Treemap 

Change treemap 

Ʃ * x R n 

(Ʃ *)
m

 x R 

(Ʃ *)
m

 x R
 2 
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2.10. Shortcoming: Security Constraint Validation 

Security is commonly specified in data warehouses in an ad-hoc basis. Security 

constraints can be inferred by the ontological reasoning about credentials, permissions 

and rights. 

2.10.1. Description 

Security is recognized as one main concern on which a data warehouse should be aware. Data 

warehouses are large repositories of sensible data that may drive organizations to make 

important decisions. Therefore, security issues such as access control and audition are as critical 

as the actual data quality that the data warehouse and ETL processes can assure. 

 

An archetypal example of what is followed up till now comes from works such as [37]. These 

authors define an access control and audit (ACA) model for data warehouses. This model 

enriches the multidimensional structures of an OLAP model with the information describing 

users, privileges and policies that finally serve to articulate an ACA policy. These policies are 

focused on the derivation of platform-specific security policies. For instance, if ORACLE is 

chosen as the target platform for implementing the data warehouse, the ACA model provided by 

[37] will be translated into the ORACLE Label Security. 
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2.10.2. Discussion 

Models such as ACA may be generalized as ontologies. In fact, there are several ontologies 

already proposed for capturing the semantics involved. Some of them are [38] proposing a 

credentials ontology oriented to the domain of web services and requesting agents based on 

DAML (http://www.daml.org), the eXtensible Access Control Markup Language (XACML) or 

the NRL Security Ontology [39]. For instance, the last one, a comprehensive ontology 

composed by several security-related ontologies such as the main security ontology (describing 

security concepts), credentials ontology (specifying authentication credentials), etc. 

 

Importantly, security ontologies open the door to the reasoning about security constraints and 

privileges. First, security constraints are specified without any aid but the actual knowledge of 

data modelers in model-driven approaches such as [37]. However, thanks to the ontological 

definitions of these constraints, the provided reasoning capabilities can check conflicts among 

constraints. Moreover, access policies may be articulated by reasoning. Data warehouse models 

may be marked with security annotations (that act as authorization rules <target, effect, 

condition>) that refer to the selected ontology and then, by matching these rules to the user 

credentials, the access control may be resolved. For this aim, security reasoners decide 

relationships between information requirements and user capabilities using automatic 

subsumption. For instance, security reasoning on multidimensional models is managed along 

aggregation hierarchies: if a given set of privileges do not permit that a user access to a 

particular aggregation level data, this restriction should be properly propagated to the rest of the 

hierarchy (to upper levels for allowing access and to the lower for denying it). In the 

propagation of authorization rules ontologies thus may formalize the ad-hoc mechanisms 

encountered in the current literature. 

3. CONCLUSIONS 

This article is focused on describing how data warehouse design can take advantage of 

ontologies. We have described several shortcomings that we have detected during the 

development of several real-world projects. Furthermore, we do not only describe each 

shortcoming but also we discuss how ontologies can be considered to overcome them. 

Ontologies formalize specific-domain knowledge that may benefit data warehousing by: 

• reusing expert knowledge from different domains, 

• enriching specific metadata by completing definitions and annotating their semantics, 

• enabling metadata interchange among repositories, 

• populating the designed databases from public data sources, 

• empowering data integration, and analysis, 

• automatizing reasoning on metadata, 

• validating data instances and models, and 

• helping to understand the meaning of the notions that are actually modeled. 
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Therefore, we have given reasons for the convenience of managing ontological knowledge and 

tools for ameliorating many of the heavy tasks involved in data warehousing. This article 

pretends to start such discussion, thus posing a starting point for further research in the area, by 

also considering other related aspects, such as schema evolution [40], data quality [41], or data 

fusion [42]. 
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