2,931 research outputs found

    Shared versus distributed memory multiprocessors

    Get PDF
    The question of whether multiprocessors should have shared or distributed memory has attracted a great deal of attention. Some researchers argue strongly for building distributed memory machines, while others argue just as strongly for programming shared memory multiprocessors. A great deal of research is underway on both types of parallel systems. Special emphasis is placed on systems with a very large number of processors for computation intensive tasks and considers research and implementation trends. It appears that the two types of systems will likely converge to a common form for large scale multiprocessors

    An Efficient Routing Algorithm for Mesh-Hypercube (M-H) Networks

    Get PDF
    Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA'08, ISBN Set # 1-60132-084-1), Editors: Hamid R. Arabnia and Youngsong Mun, 2008.This paper presents an efficient routing algorithm for the Mesh-Hypercube (M-H) network. The M-H network is one of the new interconnection networking techniques use to build high performance parallel computers. The combination of M-H networks offers high connectivity among multiple nodes, fault-tolerance, and load scalability. However, the performance of M-H networks may degrade significantly in the presence of frequent link or node failures. When a link or node failure occurs, neither the hardware schemes nor point to point and multistage routing algorithms can be used without adding extra links. This paper presents an efficient single bit store and forward (SBSF) routing algorithm for MH network that based on the round robin scheduling algorithm. Simulation and numerical results suggest that the proposed routing algorithm improves the overall performance of M-H network by both reducing the transmission delay and increasing the total data throughput even in the presence of faulty nodes.http://www.world-academy-of-science.org

    Visualization of program performance on concurrent computers

    Get PDF
    A distributed memory concurrent computer (such as a hypercube computer) is inherently a complex system involving the collective and simultaneous interaction of many entities engaged in computation and communication activities. Program performance evaluation in concurrent computer systems requires methods and tools for observing, analyzing, and displaying system performance. This dissertation describes a methodology for collecting and displaying, via a unique graphical approach, performance measurement information from (possibly large) concurrent computer systems. Performance data are generated and collected via instrumentation. The data are then reduced via conventional cluster analysis techniques and converted into a pictorial form to highlight important aspects of program states during execution. Local and summary statistics are calculated. Included in the suite of defined metrics are measures for quantifying and comparing amounts of computation and communication. A novel kind of data plot is introduced to visually display both temporal and spatial information describing system activity. Phenomena such as hot spots of activity are easily observed, and in some cases, patterns inherent in the application algorithms being studied are highly visible. The approach also provides a framework for a visual solution to the problem of mapping a given parallel algorithm to an underlying parallel machine. A prototype implementation applied to several case studies is presented to demonstrate the feasibility and power of the approach

    Design and analysis of a 3-dimensional cluster multicomputer architecture using optical interconnection for petaFLOP computing

    Get PDF
    In this dissertation, the design and analyses of an extremely scalable distributed multicomputer architecture, using optical interconnects, that has the potential to deliver in the order of petaFLOP performance is presented in detail. The design takes advantage of optical technologies, harnessing the features inherent in optics, to produce a 3D stack that implements efficiently a large, fully connected system of nodes forming a true 3D architecture. To adopt optics in large-scale multiprocessor cluster systems, efficient routing and scheduling techniques are needed. To this end, novel self-routing strategies for all-optical packet switched networks and on-line scheduling methods that can result in collision free communication and achieve real time operation in high-speed multiprocessor systems are proposed. The system is designed to allow failed/faulty nodes to stay in place without appreciable performance degradation. The approach is to develop a dynamic communication environment that will be able to effectively adapt and evolve with a high density of missing units or nodes. A joint CPU/bandwidth controller that maximizes the resource allocation in this dynamic computing environment is introduced with an objective to optimize the distributed cluster architecture, preventing performance/system degradation in the presence of failed/faulty nodes. A thorough analysis, feasibility study and description of the characteristics of a 3-Dimensional multicomputer system capable of achieving 100 teraFLOP performance is discussed in detail. Included in this dissertation is throughput analysis of the routing schemes, using methods from discrete-time queuing systems and computer simulation results for the different proposed algorithms. A prototype of the 3D architecture proposed is built and a test bed developed to obtain experimental results to further prove the feasibility of the design, validate initial assumptions, algorithms, simulations and the optimized distributed resource allocation scheme. Finally, as a prelude to further research, an efficient data routing strategy for highly scalable distributed mobile multiprocessor networks is introduced

    A Dag Based Wormhole Routing Strategy

    Get PDF
    The wormhole routing (WR) technique is replacing the hitherto popular storeand- forward routing in message passing multicomputers. This is because the latter has speed and node size constraints. The wormhole routing is, on the other hand, susceptible to deadlock. A few WR schemes suggested recently in the literature, concentrate on avoiding deadlock. This thesis presents a Directed Acyclic Graph (DAG) based WR technique. At low traffic levels the proposed method follows a minimal path. But the routing is adaptive at higher traffic levels. We prove that the algorithm is deadlock-free. This method is compared for its performance with a deterministic algorithm which is a de facto standard. We also compare its implementation costs with other adaptive routing algorithms and the relative merits and demerits are highlighted in the text

    Future benefits and applications of intelligent on-board processing to VSAT services

    Get PDF
    The trends and roles of VSAT services in the year 2010 time frame are examined based on an overall network and service model for that period. An estimate of the VSAT traffic is then made and the service and general network requirements are identified. In order to accommodate these traffic needs, four satellite VSAT architectures based on the use of fixed or scanning multibeam antennas in conjunction with IF switching or onboard regeneration and baseband processing are suggested. The performance of each of these architectures is assessed and the key enabling technologies are identified

    Implementation and evaluation of the sensornet protocol for Contiki

    Get PDF
    Sensornet Protocol (SP) is a link abstraction layer between the network layer and the link layer for sensor networks. SP was proposed as the core of a future-oriented sensor node architecture that allows flexible and optimized combination between multiple coexisting protocols. This thesis implements the SP sensornet protocol on the Contiki operating system in order to: evaluate the effectiveness of the original SP services; explore further requirements and implementation trade-offs uncovered by the original proposal. We analyze the original SP design and the TinyOS implementation of SP to design the Contiki port. We implement the data sending and receiving part of SP using Contiki processes, and the neighbor management part as a group of global routines. The evaluation consists of a single-hop traffic throughput test and a multihop convergecast test. Both tests are conducted using both simulation and experimentation. We conclude from the evaluation results that SP's link-level abstraction effectively improves modularity in protocol construction without sacrificing performance, and our SP implementation on Contiki lays a good foundation for future protocol innovations in wireless sensor networks

    ATAC: A Manycore Processor with On-Chip Optical Network

    Get PDF
    Ever since industry has turned to parallelism instead of frequency scaling to improve processor performance, multicore processors have continued to scale to larger and larger numbers of cores. Some believe that multicores will have 1000 cores or more by the middle of the next decade. However, their promise of increased performance will only be reached if their inherent scaling and programming challenges are overcome. Meanwhile, recent advances in nanophotonic device manufacturing are making chip-stack optics a reality; interconnect technology which can provide significantly more bandwidth at lower power than conventional electrical analogs. Perhaps more importantly, optical interconnect also has the potential to enable new, easy-to-use programming models enabled by an inexpensive broadcast mechanism. This paper introduces ATAC, a new manycore architecture that capitalizes on the recent advances in optics to address a number of the challenges that future manycore designs will face. The new constraints and opportunities associated with on-chip optical interconnect are presented and explored in the design of ATAC. Furthermore, this paper introduces ACKwise, a novel directory-based cache coherence protocol that takes advantage of the special properties of ATAC to achieve high performance and scalability on large-scale manycores. Early performance results show that a 1000-core ATAC chip achieves a speedup of as much as 39% when compared with a similarly sized manycore with an electrical mesh network
    • …
    corecore