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Abstract

Sensornet Protocol (SP) is a link abstraction layer betweenthe network layer and
the link layer for sensor networks. SP was proposed as the core of a future-oriented
sensor node architecture that allows flexible and optimizedcombination between mul-
tiple coexisting protocols.

This thesis implements the SP sensornet protocol on the Contiki operating system
in order to: evaluate the effectiveness of the original SP services; explore further re-
quirements and implementation trade-offs uncovered by theoriginal proposal.

We analyze the original SP design and the TinyOS implementation of SP to design
the Contiki port. We implement the data sending and receiving part of SP using Con-
tiki processes, and the neighbor management part as a group of global routines. The
evaluation consists of a single-hop traffic throughput testand a multihop convergecast
test. Both tests are conducted using both simulation and experimentation.

We conclude from the evaluation results that SP’s link-level abstraction effectively
improves modularity in protocol construction without sacrificing performance, and our
SP implementation on Contiki lays a good foundation for future protocol innovations
in wireless sensor networks.
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Chapter 1

Introduction

1.1 Sensornets Overview

Sensornets have emerged as a highly competitive technologyfor a wide range of
existing and future applications, which encompass diversedistributed sensing and con-
trolling tasks in different environments. The main reasonsfor adoption of sensornets
in such applications are low cost, good scalability, and ability of collaborative opera-
tion. In a typical sensornet application, tens, hundreds orthousands of sensor nodes
are deployed, collaboratively forming a sensornet to perform a common task. A sen-
sornet provides services of data retrieval, event detection, and in-network information
processing in an autonomous manner.

A typical sensor node comprises the following components: sensors, microproces-
sor, radio transceiver, and battery. The sensors monitor real-time physical phenomena
in the environment. The microprocessor stores and processes the sensed data. The
radio transceiver exchanges data and networking information with neighboring nodes.

A sensornet may consist of a single type of nodes, or heterogeneous nodes with dif-
ferent capacities and functions, depending on requirements and constraints. Moreover,
the nodes may form different types of network topologies, such as tree, cluster, mesh
or hybrid. Typically, there is a base station node that acts as a data sink as well as a
gateway to the user.

Communication and collaboration between sensor nodes require that they follow a
set of protocols. Each protocol provides a service for its user and/or regulates commu-
nication between its peers. Like other communication protocols, sensornet protocols
are often organized as a stack of layers, in which a lower layer provides service to its
next higher layer. The protocol stack as a whole forms an abstraction of communica-
tion mechanisms that the application is executed upon. Figure 1.1 illustrates a layered
protocol stack commonly adopted by network designers.

A sensornet designer is confronted with a number of well known limitations and
difficulties. Firstly, sensor node hardware is highly constrained in bandwidth, process-
ing power, memory, and most critically, energy capacity. These precious resources
need to be used in an efficient manner to insure normal networkoperation over a long
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Figure 1.1: Layered Protocol Stack Architecture

lifetime. Secondly, channel fluctuation and network dynamics often bring challenges
because a sensornet typically has a large number of nodes spread across a vast geo-
graphical area. These uncertainties tend to undermine a sensornet’s stability and per-
formance, and put a potential limit on network scalability.

1.2 The Modularity Issue with Existing Sensornet Pro-
tocols

The application specific requirements and resource constraints forced many earlier
sensornet designs to resort to customized protocol stacks that aggressively integrate
functionality of the network and datalink layers into a complex monolithic entity, or
make arbitrary decisions on layer boundaries. This holistic approach usually aims at
achieving optimal results for particular design goals, at the cost of however compro-
mised modularity. Consequently, the vertically integrated system often suffers from
blurred component boundaries and tightly coupled operations, which hampers code
reuse and interoperability, making future improvement andinnovation of sensornet
protocols a difficult task.

1.3 The Sensornet Protocol

To promote the ease of protocol composition and design reuse, Culler et al. have
proposed a sensornet architecture [1]. Drawing analogy to the IP-based Internet archi-
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tecture, the authors argues that a similar “narrow waist”, i.e., a common service that
separate applications above and technologies below as IP does for Internet, would bring
greatly improved modularity to sensornets. Such an architecture would be adaptable to
future developments at both the application level and device level.

Unlike IP, the proposed “narrow waist” layer, named Sensornet Protocol (SP), is a
single hop service that resides above the datalink layer andbelow the network layer.
The lowered waist allows various multihop protocols to takeadvantage of the common
link-level abstraction provided by SP while optimizing their own core functionality. In
addition, the architecture includes cross-layer servicesthat are shared among different
layers, such as power management and time synchronization.

1.4 The Contiki Operating System

Contiki is an operating system for memory-constrained embedded systems devel-
oped by SICS [2]. It is an open-source OS written in the C programming language.
Its concurrency model provides an event-based inter-process communication mecha-
nism naturally suited for typical sensornet applications.Each Contiki process consists
of a Protothread, a program control abstraction that hides the yielding points within a
multi-state task behind straightforwardwait statements [3], whereby implementation
of communication protocols can be simplified.

1.5 Thesis Overview

This thesis’s main objective is implementing SP on the Contiki operating system,
in order to further evaluate SP as a link abstraction serviceand explore possible im-
provement on the existing SP design. We also want to show thatsensornet protocols
such as SP can be more easily developed using Contiki’s programming abstractions.

We perform an analysis of the SP services to capture the salient features of the
protocol. We find similarity between SP’s data transfer service and IEEE 802.2 [4]. On
the other hand, SP’s neighbor management service provides additional support for link
state maintenance required by low power MACs.

We implement the SP components and primitives using a combination of ordi-
nary routines and Contiki processes and events. We experiment with a number of data
structures to implement the SP message pool and compare their advantages and disad-
vantages in terms of functionality and complexity. We implement the SP management
service as a set of globally accessible routines to enhance information sharing.

To show how a link-level protocol interacts with SP, we adapta simple link protocol
that sends individual packets using Automatic Repeat Request (ARQ) and switches the
radio according to a preconfigured sleep/wake up scheme. We evaluate SP’s throughput
performance by running a traffic generation program on both anetwork simulator and
a hardware platform.

We also port the Treeroute protocol that combines convergecast and dissemina-
tion to two SP-based network-layer architectures. We examine the feasibility of SP
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to support higher-layer protocols, and explore the implications the SP interface has on
composition of higher-layer protocols.

1.5.1 Results

Our evaluation of the experimental results reveals that: SP’s communication mech-
anism provides good link-level abstraction without sacrificing link performance, and
our implementation of SP on Contiki supports multiple coexisting network layer pro-
tocols with better modularity than the integrated approach, and may bring potential
saving in code size. Finally, our work may serve as a solid basis for future sensornet
protocol development, in particular on the Contiki operating system.

1.6 Document Structure

The rest of this thesis is structured as following: Chapter 2provides background
information about sensor network protocols and Contiki; Chapter 3 gives an analysis
of SP services and interfaces; Chapter 4 outlines the methods used to carry out the
work; Chapter 5 provides details of the implementation of SPservices on Contiki;
Chapter 6 presents evaluation results from single hop communication tests, and discuss
the porting of the Treeroute protocol to SP; Chapter 7 draws our conclusion and outlines
future work.
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Chapter 2

Background

In the chapter We go over first the general communication design problem in sensor
networks, followed by a description of Contiki’s supporting features for implementa-
tion of communication protocols.

2.1 Communication Protocols for Sensornets

We focus our considerations on the network layer and the datalink layer of the OSI
Reference Model [5], which are present in the majority of sensornet applications, and
have attracted a large amount of research efforts in the academia.

2.1.1 Link Layer Functionality Overview

The datalink layer consists of two sublayers: medium accesscontrol (MAC) and
logic link control (LLC).

The MAC sublayer directly interacts with the radio. It provides unique device
address, performs framing/deframing, and most importantly, regulates the points in
time for neighboring nodes to access the shared radio medium. Sensornet MAC pro-
tocols often adopt additional power-saving mechanisms in order to preserve battery
energy. Such mechanisms include: slotted protocols such asS-MAC [6] and T-MAC
[7], in which neighboring nodes are synchronized to a time slot structure whereby ran-
dom channel contention concentrates in short listening intervals interleaved with long
sleeping intervals; preamble listening protocols such as WiseMAC [8] and B-MAC [9],
in which the transmitter sends a long preamble to wake up its intended recipient be-
fore sending the actual data packet; and IEEE 802.15.4 [10] beaconed mode, in which
a coordinatornode organizes channel access of its associateddevicenodes using a
superframe structure that includes contention-based and contention-free periods. All
these MAC protocols aim at reducing major components of energy overhead in ra-
dio communication: packet collision, packet overhearing,idle listening, and protocol
overhead.
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The LLC sublayer resides on top of MAC and below the network layer. The main
functionality of LLC is link management and protocol multiplexing, and may option-
ally include error control and flow control. A reference LLC standard is IEEE 802.2
[4]. The protocol requires a common service interface provided by various IEEE 802
MAC protocols via the MAC Service Access Point (MSAP), in turn it provides a uni-
form service interface to each network layer protocol via a Link Service Access Point
(LSAP). The LLC sublayer/MAC sublayer interface defines data transfer primitives for
sending and receiving MAC packets in a connectionless datagram style.

Whereas the MAC sublayer is indispensable for its role in radio bandwidth pro-
visioning, wireless protocol architects make different choices about whether an LLC
sublayer is used to encapsulate the MAC sublayer. The reasonis that different MAC
protocols, apart from providing some common single hop packet transfer service, also
provide various control functions that can either be used bya dedicated management
component at the next higher layer or by a monolithic networklayer that handles both
data and control operations. As an example of the former approach, WLANs based on
IEEE 802.11 [11] use the 802.2 LLC on top of the 802.11 MAC dataservice, leaving
complementary MAC management functions to be exposed to theStation Manage-
ment Entity (SME) through the MAC Sublayer Management Entity (MLME) SAP. In
contrast, the ZigBee protocol [12] takes the latter approach of tight stack architecture,
whereby the network layer lies directly atop the IEEE 802.15.4 MAC sublayer, mo-
nopolizing both the MAC data service and management services.

2.1.2 Network-Layer Protocols for Sensornets

Whenever the diameter of a sensornet exceeds the radio transmission range and
nodes outside of their mutual range need to communicate, information must traverse
through intermediate nodes, resulting in a multihop network. The various aspects of
multihop networking are addressed by different network layer protocols.

Topology control insures that sensor nodes are connected toeach other in some way
so that there exists one or more communication paths betweentwo distant nodes. Under
a specific topology control protocol, a given node may only communicate directly with
a subset of its physical neighbors. The resulting reduced connectivity brings about
a number of benefits, including lower transmission power, reduced contention, and
simplified routing. In exchange, delay and fault tolerance are degraded. A flat topology,
such as a mesh, assigns equal roles to all nodes across the network. In contrast, a
hierarchical topology, such as a cluster tree, assigns special roles to a subset of nodes
who carry out resource allocation and/or packet routing. Topology control in sensornets
is often done in a partly or fully distributed manner.

Routing is essentially a path selection problem based on an established topology.
The goal of a specific routing protocol is often finding a minimum cost path in some
sense. Each node that participate in routing maintains a routing table. A router receives
a packet, checks its destination, finds a preferred neighborby looking up the routing
table, and forwards the packet to that neighbor. The forwarding process continues until
the packet reaches its destination. A rich variety of routing protocols exist. Internet-
style, node-centric unicast routing protocols such as DSDV[13], DSR [14], AODV
[15] provide general solutions, but fail to address the application-specific nature of
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sensornets, that often imply a certain dominant traffic pattern different from end-to-
end unicast, such as convergecast [16], dissemination [17], and diffusion [18]. What’s
more, some applications require location-centric or data-centric communication rather
than node-centric routing.

2.1.3 The Sensornet Protocol

The first attempt to define the services that SP should provideand to implement
useful interfaces for SP was described in [19] and [20]. The implementation features a
message pool that buffers outbound packets for link layer transmission, and a neighbor
table shared across layers. It defines a control and feedbackmechanism that passes
control and status information through the SP layer. To prove SP’s wide applicability,
the implementation drew in a number of existing link and network protocols in the
TinyOS [21] code repository, showing uncompromised overall performance and sig-
nificantly improved code reuse. This work serves to be the starting point of our own
implementation of SP on Contiki.

2.2 The Contiki Operating System

An application program written for Contiki typically consists of a number of pro-
cesses that communicate with each other by passing events. An application may inter-
act with system functions such as the communication stack bysending and receiving
events.

2.2.1 Contiki Processes

A Contiki process is defined as a C structure that consists of adescriptive text
string, a function pointer to a thread function, aprotothreaddata structure, and a state
variable. The user defines a process structure by specifyingthe process name and the
descriptive text string using the PROCESS(name, string) macro. The user then uses
PROCESSTHREAD(name, event, data) to define a thread function for theprocess,
which is essentially a C function that has the prototype “char thread(event, data)”,
whereeventis an ID for a specific event type anddata is a pointer used to pass user
data. The user may register a defined process to the automaticstart processes list so
that it is run at system start-up, or callprocessstart(&processname)to manually start
the process from another process. When a process is started,the system initializes
its protothread data structure and its state variable. System processes and application
processes communicate with each other by posting Contiki events, which consists of a
pointer to the destined process, an event ID, and a data pointer, to the system’s event
queue. The Contiki scheduler dispatches a queued event to the destined process by
calling its thread function with the event ID and the data pointer as arguments. When
the thread function returns, the Contiki scheduler dispatches the next event from the
queue. In additional to asynchronous event passing, processes may post synchronous
events to each other, which bypasses the scheduler and is equivalent to nested function
calls.
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2.2.2 Protothread

The user implements process logic in the thread function. A thread function is
structured as a protothread, where initialization code is followed by an infinite loop
that proceeds execution upon reception of specific events and stops at the next event
waiting point. Essentially, such a loop implements a state machine, whose state defi-
nitions and state transition rules are however implicitly expressed by the protothread’s
WAIT EVENT statements, which saves the current line number in thesource file to
the protothread data structure and returns. When the next event arrives, the thread
branches to the previous WAITEVENT statement and continues execution from there.
Therefore, a sequential program structure can be retained despite that the process logic
consists of multiple states. The following code segment shows a Contiki process that
turns the radio on and off at fixed intervals.

PROCESS_THREAD(LinkLowPower_process, ev, data)
{
static struct etimer etimer1;

PROCESS_BEGIN();

while(1) {
etimer_set(&etimer1, CLOCK_SECOND * 2);
radio_on();
link_state = LINK_IDLE;
process_poll(&SPSend_process);

PROCESS_WAIT_EVENT_UNTIL(etimer_expired(&etimer1) &&
link_state == LINK_IDLE);

etimer_set(&etimer1, CLOCK_SECOND * 3);
radio_off();
link_state = LINK_SLEEPING;
PROCESS_WAIT_EVENT_UNTIL(etimer_expired(&etimer1));

}

PROCESS_END();
}

2.2.3 Timers and Interrupts

The event timer process is a system process started by Contiki. The process is
polled by hardware timer interrupt at each system clock tick. The user defines event
timers that are associated to specific processes. When an event timer expires, the event
timer process posts a specific event to the user process that is associated with the event
timer. Similarly, other hardware interrupts, such as an pending packet signalled by the
radio chip, are converted to events by low level drivers.
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Chapter 3

Analysis of SP Services

In the chapter we investigate the main design features of thecurrent TinyOS SP im-
plementation. SP is a bridging layer between the network layer and the MAC sublayer.
Multiple network layer protocols may coexist above the SP layer, using the SP data
transfer service to exchange packets with their peer protocols in neighboring nodes.
The SP neighbor management service allows network layer protocols to participate in
the construction of a neighbor table together with available link level mechanisms. At
the low level, SP assumes a basic MAC packet transfer service. SP interacts with this
packet service and other protocol-specific link-level control services via a customized
adaptation sublayer that provides the gluing between generic SP primitives and specific
link mechanisms. We will refer to the combined SP adaptationsublayer and the MAC
sublayer as the link layer. Figure 3.1 illustrates the SP layer architecture.

Protocol A Protocol B Protocol C

SP (message pool, neighbor table)

MAC

SP Adapter

Figure 3.1: The SP layer architecture

3.1 Data Transfer Service

We disclose the similarity between SP’s data transfer service and IEEE 802.2 in
terms of interface and meta-data exchange. We then examine SP’s packet buffering and
scheduling policy, as well as its support for next higher layer protocol multiplexing.
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Table 3.1: Network layer/Datalink layer data transfer interfaces of SP and IEEE 802.2
acknowledged connectionless-mode

Primitive SP 802.2

Send packet, expecting status feedbackx x
Receive packet x x
Modify submitted packet x
Cancel submitted packet x
Fetch next packet to send x
Retrieve packet from neighbor x
Prepare packet to be retrieved x

3.1.1 Sending and Receiving Packets Using SP

The interface SP provides to network protocols for data transfer is very similar to
theacknowledged connectionless-modeof the IEEE 802.2 network layer/LLC sublayer
interface. Particularly, both SP and the 802.2 allow users to specify per-packet priority
and reliability, also both provide status feedback to each packet sending request. In
addition to single packet sending, SP also supportsmessage futures, allowing the user
to set the number of packets awaiting to be sent, so that SP mayfetch the remaining
unsent packets quickly. Table 3.1 shows a comparison between the primitives provided
by the two interfaces.

3.1.2 Packet Buffering and Scheduling

Each packet submitted to SP for transmission is bound with anSP message, a meta-
data tag containing control information that is to be used bythe link protocol, and feed-
back information resulted from the subsequent transmission. SP messages are stored
in a fixed-size message pool. Based on the availability of thelink to each message’s
destined neighbor, message priority, and submission time,SP selects the next message
to transmit. This message scheduling policy is illustratedby Figure 3.2.

If the reliability flag is set in an SP message, SP instructs the link protocol to use
any supported reliable transmission mechanism to send the packet, e.g., requiring an
acknowledgement from the recipient and retrying an unacknowledged packet up to a
specified number of times. The transmission status is storedback into the SP mes-
sage, so that the network layer user gets notified of whether the packet was transmitted
successfully and the whether the underlying channel is congested. The following list
summarizes the SP message fields used to pass cross-layer control and feedback infor-
mation between the network layer and the link layer:

Control (submitted together with a bounded packet)

• urgent

• reliability

• retries
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Next messageMessage C

Message B

Message A

Message X

no message

Message Pool Available messages

Link to destination is on

High priority first

Earliest submitted first

Figure 3.2: SP next message selection policy

Feedback (indicates the transmission result of the packet)

• success/failure

• congestion

3.1.3 Protocol Multiplexing

When the application requires that multiple network protocols share the datalink
service, outbound packets are multiplexed at the link layer. There needs to be a way for
the data link protocol to correctly reverse the procedure atthe receiving end. SP does
not prepend any protocol identifier to submitted packets, therefore it is the network
layer’s responsibility to handle demultiplexing of received packets. One SP-based net-
work layer design that performs packet demultiplexing using adispatchercomponent
based on packet protocol IDs can be found in [22]. In a specialcase, however, that there
are multiple packet sources above the datalink level but allpackets are directed toward
a single entity at the receiving end, no demultiplexing is needed. On the other hand,
the SP message’sservicefield is used by the SP sending process to direct feedback
information to the appropriate sending protocol.

In comparison to SP, IEEE 802.2 supports protocol multiplexing by explicit in-
clusion of two address fields into the 802.2 LLC header: Destination Service Access
Point (DSAP) and Source Service Access Point (SSAP). Often an SNAP (Subnetwork
Access Protocol) [23] header is also appended to the LLC header in order to identify
a specific network layer protocol, such as IP. The 802.2 approach is biased toward a
symmetric data link layer architecture that provides fine-grained service multiplexing,
but to use these additional headers in every packet would incur significant overhead for
many typical sensornet communications.
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3.2 Neighbor Management Service

SP provides its neighbor management service via a set of operations centered around
the neighbor table, which is a knowledge base that stores information about neighbor-
ing nodes. Special fields in the table are devoted to maintenance of the link state of
each neighbor in order to assist packet scheduling.

3.2.1 SP Neighbor Table

SP contains a neighbor table whose interface is open to both the network layer and
the link layer. Protocols can use the shared information stored in the table to perform
link management, routing, and other functions. Each recordin the SP neighbor table
contains the following fields:

• neighbor ID

• time-on (local time when neighbor will wake up)

• time-off (local time when neighbor will go to sleep)

• listen (listen to neighbor during its next wakeup period)

• messages pending (packets destined to neighbor awaiting)

• quality (link quality metric)

• extension (user defined parameters)

The SP neighbor interface defines several groups of primitives to operate against
the neighbor table:

• construct an entry (add, remove, update)

• query a neighbor by address or entry, query table size

• expire an obsolete neighbor, evict a neighbor from the table

• adjust link quality

• listen to neighbor during its next wakeup period

• populate neighbor table using active link scanning

The primitives listed above comprise data record manipulations and network opera-
tions. The former are synchronous, return-on-completion operations, whereas the latter
are of asynchronous nature. We will see later in Chapter 5 theprogramming choices
we made in order to simplify the implementation of neighbor management functions.
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3.2.2 Link State Maintenance

Maintaining the state of each neighbor is necessary to achieve reliability and effi-
ciency in data transfer. Low power MAC protocols using any forms of sleeping/wakeup
scheme for sensornets pose an additional challenge for linkstate maintenance, because
the local node needs to keep track of each neighbor’s schedule in order to know when
the link to a specific neighbor will become available.

SP constantly updates neighbor schedules using thetime-onandtime-off fields in
a neighbor table entry. The link protocol uses this information to schedule packet
sending. A network layer protocol can set a neighbor’slistenflag so that the local node
would wake up and listen to that specific neighbor on its next wakeup period.

Unlike IEEE 802.2, SP does not provide per-link packet sequencing. The user
may extend the SP neighbor table with extra columns for storage of packet sequence
numbers, or just let the network layer handle redundant packets.

The open interface to the SP neighbor table gives programmers the freedom to
construct customized semantics that optimize informationsharing among coexisting
protocols. However, the freedom to access the neighbor table from anywhere at any
time also means it is the user’s responsibility to protect against conflicting updates.

3.3 Applicability of SP

Based on the previous discussion, we have already revealed some notable features
of SP, which are summarized below:

• a unified link service interface

• customizable gluing of MAC and LLC functions

• time scheduling support for low power MACs

Single-hop applications may use SP as a decoupling layer to loosen the often strin-
gent temporal constraints imposed by the underlying MAC protocol. Multi-hop net-
works of various kinds, on the other hand, benefit from both the temporal decoupling
and cross-layer information sharing enabled by SP.

We will explore SP further through our implementation and evaluation in the fol-
lowing chapters.
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Chapter 4

Methods

4.1 Programming Patterns

Implementation of communication protocol primitives, especially those involving
inter-layer data transfer such asrequest- confirmprimitives shown in Figure 4.1, often
involves programming multi-phase operations whose execution flow is split into several
states. State transitions are triggered by occurrence of asynchronous events such as
arrival of a packet or expiry of a timer. The Contiki scheduler is non-preemptive, so
we cannot do block waiting for events. Instead we useProtothreads, a program control
abstraction in a Contiki process to yield the CPU at points where an event is waited on,
and resume execution after the event has arrived.

Request

Confirm

Request

Confirm

N + 1 Layer N Layer N − 1 Layer

Figure 4.1: Request - Confirm primitive pairs commonly used for inter-layer data trans-
fer

4.2 Tools

We use a combination of simulation and experimentation in the course of our pro-
tocol development. For function verification, the Contiki NETSIM simulator is used.
For timing-sensitive measurements, we use Moteiv Telos nodes to run our protocols.
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4.2.1 NETSIM

NETSIM is a network simulator for Contiki nodes that simulates a collection of
homogeneous nodes deployed in a two-dimensional area. Eachnode is run as a Linux
process that interacts with each other by writing packets toa radio medium emulation
process and reading from it. The radio propagation model in NETSIM is a simple
disc graph model, in which interference is determined by thepresence of packets with
overlapping signal range. Due to the nondeterministic nature of the Linux scheduler,
NETSIM simulations are not real-time.

We usually use the following work flow for each design iteration:

• configure simulation setup, including deployment and radioparameters

• compile and execute program

• observe network activities and examine log messages

• post-simulation analysis

The NETSIM graphical user interface provides an interactive way for the user to
create sensing events, as well as an intuitive view of the overall behaviour of the sensor
network under simulation.

4.2.2 Telos

A Telos sensor node [24] carries a 2.4 GHz radio transceiver,a 16-bit TI MSP
microcontroller, a user button and on-board sensors. Each Telos node comes with a
unique 64-bit ID that can be used as MAC address. The CC2420 radio transceiver
provides a packet-level data interface for the host controller. Therefore our radio driver
deals with whole packets rather than individual bytes as wasthe case with earlier radio
modules. We use an open-source GNU tool-chain for the MSP platform to compile
programs and load binaries to the nodes. Because the Contikibuild system manages
different hardware platforms using a hierarchical directory structure, programs written
for NETSIM can be recompiled for Telos without any change, except for code that
controls special peripherals.

For tests conducted at minimal scale, i.e., by only two nodes, we may conveniently
connect the nodes to a PC via USB ports to observe the log messages. As the the scale
goes up, we have to regress to using the on-board LEDs to observe the behaviour of
individual nodes.
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Chapter 5

Implementation

The SP services proposed in [1] have been implemented on the TinyOS operating
system [19] [20]. We use the TinyOS implementation as a reference, but do not reuse
their code. Rather, we develop our own SP services based on the understanding of the
design goals embodied in the original SP proposal. There aretwo main reasons for this:
SP has been proposed as a future standard, so its services areonly roughly defined, and
the existing implementation should be regarded as tentative and experimental. TinyOS
source code is written in the special programming language nesC [25], thus is not
directly portable to Contiki, which is based on standard C.

The strength of the TinyOS implementation lies in its provedadaptability with a
number of well known MAC protocols including IEEE 802.15.4 and B-MAC. When
we started this work, there was no low-power MAC protocol readily available for port-
ing from the Contiki repository. Therefore, we take anotherapproach of starting from a
draft vanilla MAC protocol and explore the problems of developing specific link mech-
anisms and adapting those mechanisms to an abstract set of link services in parallel.

5.1 Data Transfer Service

The SP data transfer service provides a uniform way for the next-higher layer user
to send unicast packets to any one-hop neighbor or broadcastpackets to all neighbors,
and to receive packets from them.

5.1.1 SP Message Pool

When application data such as sensor readings become available, the communica-
tion channel might not be immediately ready to deliver the packet generated, e.g., the
destined neighbor node may be in sleep mode at the moment, butwill wake up some-
time in the future depending on the power-saving MAC mechanism adopted. The SP
message pool is designed to provide both necessary buffering of untransmitted packets
and to maintain the control and status information associated with each packet.
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We implement the message pool in several stages, starting from a simple but in-
complete design that evolves into the final full featured structure.

FIFO

We begin with the simple assumption that the MAC protocol is CSMA/CA based,
allowing nodes to access the channel at any time in conformance to a synchronized
sleep/wake up scheme. The beaconed mode of IEEE 802.15.4 satisfies this assump-
tion. Since neighboring nodes are synchronized with the local node, transmission of
submitted packets can be scheduled in a first-come-first-served manner.

We implement this FIFO-style message pool as a cyclic buffer. Two operations
can be performed against the message pool: enqueue and dequeue. Figure 5.1 shows
the typical procedures involved in packet sending. The application first generates an
outbound packet, then issues asend requestevent to the SP sending process, which
in turn enqueues the packet to the FIFO along with packet attributes. When the node
becomes idle, the link adaptor sending process fetches a previously enqueued packet
from the FIFO and transmits it. Upon completion, the link adaptor feeds back the
transmission status to SP, which in turn notifies the application with ansend confirm
event. The application then handles the event and releases the allocated packet buffer.
A link state variable keeps track of the current state of the radio driver, protecting
the link protocol in sleeping or busy state from being affected by events such as a
newly queued message. Figure 5.2 shows the link state transition diagram. FIFOs are
very efficient: insertion or removal of an element takes a constant number of cycles
regardless of the buffer size.

Priority Queue

Later we duplicate the FIFO into two queues, for low priorityand high priority
packets respectively. Packets tagged with theurgent flag are enqueued in the high
priority queue, so that they get transmitted ahead of ordinary packets. We provide the
same enqueue/dequeue interface to the user by means of a pairof wrapper functions
that direct the actual packet insertion or removal operation to either of the queues. This
introduces a small overhead over the case with a simple FIFO,but the performance is
still scalable in respect to buffer size. Also traded off is the effective capacity of the
message pool: if either of the queues becomes full, it beginsto reject packets of that
priority, despite that the other queue might still have empty slots. Figure 5.3 illustrates
the double queue structure.

Link State-Aware Message Pool

As long as the previous assumption of synchronized, randomly accessible neigh-
borhood holds, queues suffice to provide fair and efficient scheduling. TDMA-based
MAC protocols that distribute each neighboring node’s sleep/wake up schedule across
the channel period, however, require the local node to be able to schedule packet trans-
missions according to the knowledge of its neighbors’ schedules. In such a case, in
order to filter out the not schedulable packets, the SP message pool needs to be aware
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Link Adaptor send process

Link−level packet

Application

Message Queue

SP message

send_done_call_back ()

dequeue

event: send_confirm

(1)

(3)

(5)

(6)

(7)

(4)

enqueue

sp_send ()
(2)

SP send complete process

Figure 5.1: Sending a packet via SP using FIFO message pool. (1) Application gen-
erates a packet. (2) Application callssp send()to bind packet and attributes with an
SP message, then enqueues the message. (3) Link adaptor wakes up and dequeues the
message. (4) The link adaptor notifies the SP send complete process about completion
of packet transmission by signaling a send confirm event along with the SP message.
(5) The SP send complete process invokes the application’s callback routine that han-
dles send completion. (6) The application frees the sent packet. (7) SP frees the SP
message.

of the link state of the neighbor that each submitted packet is destined, so that those
schedulable are scheduled based on priority and submissiontime. Such a next packet
selection policy has been illustrated in Figure 3.2, which reflects significant added com-
plexity compared with FIFO queues.

We implement the link state-aware message pool as a static array of SP messages.
Two operations, post and pend, can be performed against it and are shown in Figure 5.4.
The post operation inserts to the array an SP message tagged with submission time.
The pend operation carries out link state querying as well aspriority and submission
time comparison. Link states are stored in the SP neighbor table’s time-one/time-off
columns. Since the neighbor table is implemented as an unsorted array, the time it takes
to determine a neighbor’s link state is O(N), where N is the array size. If the message
pool has a size M, the time it takes to find the highest priorityamong the schedulable
messages is therefore O(M*N). A second iteration through the message pool is needed
to choose the earliest submitted packet from the result of the first iteration, thus the
algorithm’s complexity is O(2*M*N).

The inter-process communication pattern among the application, SP, and the link
adaptor also needs to be changed to properly handle link state-aware packet scheduling.
Instead of simply letting the application posting messagesto SP and the link adaptor
pending messages from SP as in the case of FIFO queues, now theapplication still does
the posting, whereas SP takes the initiative to invoke pending for the next message.
Figure 5.5 illustrates the event-triggered operations involved in packet sending. This
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Figure 5.2: State transition diagram of a node’s link state

Enqueue High

Low

Dequeue (high priority packet first)

Link Adaptor Send Process

Application

SP message
sp_send ()

Figure 5.3: The priority queue has the same enqueue/dequeueinterface as FIFO.

implementation of the SP message pool resembles our TinyOS counterpart, except that
the TinyOS message pool lets SP also fetch packets from the application by taking
advantage of user supplied information calledmessage futures, a feature we have not
found to be of great necessity.

Link State-Driven Message Pool

The link state-aware message pool is a full feature design that supports various
power saving MACs. We use this design in most of the evaluations. The coupling of
neighbor state maintenance to data transfer, however, has prompted us to contemplate
a message pool data structure whose posting and pending operations are directly driven
by changes of link states in the neighbor table. In such a datastructure, a message is
posted to the entry for the destined node in the neighbor table, and is to be transmitted
when the link to the specific neighbor becomes idle. The implementation and evalua-
tion is left to future work. Figure 5.6 illustrates this conceptual link state-tied message
pool.
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message
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Figure 5.4: Link state-aware message pool

5.1.2 Control and Feedback

We implement a vanilla link protocol to work together with SP. The protocol is
capable of automatic retransmissions based on link acknowledgement timeout. We de-
fine a link-level packet header format that contains a data type field, a packet sequence
number, destination address and source address, and payload size. The application may
order a packet to be transmitted reliably or not, by specifying in the packet’s bounded
SP message thereliability flag and theretries value, which are in turn interpreted by
the link adaptor to construct the packet header’s data type field, and to invoke the
automatic retransmissions mechanism. The reliability flagis reused to notify the trans-
mission result (success/failure) of a packet, so that the application may act accordingly.
Our vanilla link protocol does not make use of theurgentcontrol flag or thecongestion
status flag.

5.2 Neighbor Management Service

The SP neighbor table is another core data structure besidesthe message pool. It
stores shared information about the local node’s neighborson behalf of various differ-
ent components in the protocol stack.

We implement the table as a fixed size array of records, each ofthem containing in-
formation about a neighbor node. A record contains mandatory fields including neigh-
bor ID, time-on and time-off, listen flag, number of messagespending, link quality, as
well as user-defined extension fields.

5.2.1 Neighbor Table Operations

We implement the operations against the neighbor table as global C functions. They
are listed as follows:

• insert a record

• set a neighbor’s properties

• query neighbor properties
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event = ?
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sp_send ()
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no more messages

other

SP send complete process

Figure 5.5: Flow charts showing thesp send()routine and SP send complete process
working with the link state-aware message pool

• query whether a neighbor is idle

• query table size

• evict a record

• find an empty record

• clear a stored record

• clear the whole table

5.2.2 Neighbor Management Policy

Our previous discussion about packet scheduling has shown the usefulness of neigh-
bor management for link state maintenance. Neighbor management is useful in at least
two other important aspects: 1. topology control; 2. routing and forwarding. We will
show in Chapter 6 how a network protocol ported to SP makes useof the neighbor
management utilities.
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Figure 5.6: Link state-driven message pool. The message slots are matched to neighbor
records in the neighbor table one by one.

During the lifetime of a sensor node, neighbor information can be collected in two
ways: active probing or passive monitoring. Active probingusually implies broadcast-
ing a scanning packet to the neighborhood, or sending a probing packet to a known
neighbor, and expecting responses from the probed neighbors. Passive monitoring, or
packet sniffing, instead relies on processing of received and overheard packets cap-
tured in data traffic to construct a map of one’s neighborhood. Woo et al. [16] have
investigated the major design considerations related to passive monitoring, including
neighbor insertion and eviction policies.

Our SP implementation does not enforce a neighbor management policy in terms of
specific criteria for insertion, removal and updating of neighbor information. Rather,
we only provide the necessary interface to operate the neighbor table and leave the
choice of neighbor management policy to the user.
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Chapter 6

Evaluation

In this chapter we present the results from a number of singlehop communication
tests, and then discuss the findings made by porting of a multihop protocol to SP.

6.1 Single Hop Evaluation

We develop an artificial traffic generator program to test theperformance of SP. The
program may generate a single-hop packet stream based on user-specified burstiness
and transmission rates.

We conduct a one-to-one throughput test between two Telos nodes whose radios
are configured to communicate using a certain duty cycle. TheSP message pool size
is set to one. Retransmission is turned off. The sending nodegenerates a new packet
for SP to send when a previous packet has been acknowledged bythe receiving node.
The result shown in Figure 6.1 verifies that SP’s performanceis consistent as the radio
duty-cycle changes.

We configure the traffic generator to generate bursts of packets at 200 ms intervals.
We want to put SP under full load by generating traffic at an average packet rate that
slightly exceeds the maximum channel bandwidth so that excessive packets are rejected
by SP, and then examine how throughput varies with differentsettings of the message
pool size. If the message pool is set to contain only one message at most, the channel
becomes fully loaded when the burst size reaches 14 packets,as shown in Figure 6.2.
We then set a constant burst size to be 14, but vary the size of the message pool to
see if a larger buffer improves throughput. Surprisingly, results shown in Figure 6.3
indicates that the throughput begins to degrade when the buffer size is larger than two.
We attribute this performance loss to the inefficient posting and pending operations
against the link-state aware message pool.

6.2 Multihop Networking Using SP

One salient feature of SP is its support for coexisting network layer protocols. The
TinyOS implementation has shown SP working with three such protocols: MintRoute
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Figure 6.1: Telos throughput under different duty cycles. The transmitting node feeds
100 packets, each 45 bytes in size, to a receiving node as quickly as possible. The
radio transceiver’s carrier sensing capability tends to extend the wake-up interval by
a small amount at each switching point, which introduces a small residual throughput
gain observed at lower duty-cycles.

[16], Trickle [17] and Synopsis Diffusion [18], which have been ported from the TinyOS
code repository.

We choose to port instead theTreerouteprotocol from the Contiki repository to SP.
Treeroute allows a large number of sensor nodes to cooperatively form a tree topology
rooted at a designated basestation and report collected sensor readings to the basesta-
tion. Treeroute consists of two protocols: a route construction protocol adapted from
the Trickle protocol [17], and a data forwarding protocol based on the routing tree
established.

6.2.1 The Treeroute Protocol

The original Treeroute protocol has been developed to use the uIP [26] stack in
Contiki as the underlying communication service. Route packets and data packets are
delivered in two separate UDP broadcast connections.

The route construction protocol establishes a tree topology by having each node to
overhear route updates broadcast by neighbors to learn its shortest distance to the root
node in terms of number of hops, and broadcasts its own hop count to neighbors. Upon
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Figure 6.2: Telos burst throughput versus burst size. Message pool size is set to be 1.

receiving a route update, a node compares its hop count with the sending neighbor’s
hop count: a difference larger than one would imply inconsistency and prompt the node
to adjust its hop count. Initially, nodes have maximum hop counts. As the root node
starts broadcasting, one-hop neighbors detect inconsistency, update their hop counts to
one, and then propagate the information further down to lower level nodes, forming
a tree across all nodes in the network. After the tree topology has stabilized, nodes
continue broadcasting at diminishing rates. Any future changes in the topology will be
detected by neighbors of the spots of the changes and then propagated across the whole
network.

A node starts its data forwarding protocol as soon as it has obtained a valid hop
count, i.e., a route to the root. Each node periodically carries out sensor readings and
reports the data to the root, by sending a unicast data packetto its best parent node, i.e.,
the neighbor that is one hop closer to the root and has the bestlink quality, which in turn
relays the packet one level up in the tree, and so on, until thepacket reaches the root.
In order to save bandwidth, the relaying node appends its ownsensor reading to the
packet to be forwarded, thus only as many packets as the number of branches are origi-
nated within each sensor reading interval. To alleviate packet loss, the data forwarding
protocol performs per-hop retransmissions based onimplicit acknowledgements, i.e.,
overheard packets forwarded by its parent to its grandparent.

Figure 6.4 illustrates the Treeroute route construction and data forwarding pro-
cesses.
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Figure 6.3: Telos burst throughput versus message pool size. Burst size is set to be 14
packets every 200 ms.

6.2.2 Porting Treeroute to A Modular Network Layer Architec ture

The major considerations for the porting of the original Treeroute include:

• partitioning functionality and defining component interfaces including the inter-
face with SP.

• defining packet header formats

• making use of SP neighbor management

As we consider the porting of Treeroute to SP, we first attemptto adopt the modular
Network Layer Architecture (NLA) proposed by Cheng et al. [22]. Similar to IP, NLA
provides a best-effort, connectionless multihop communication abstraction to applica-
tions. NLA proposes a general, component-based framework to host network layer
protocols. Each protocol is functionally partitioned intocomponents interacting with
each other via standard interfaces. Coexisting protocols are multiplexed together by an
output queue and a dispatcher, which use SP as a single-hop communication service.

We redraw the NLA architecture in Figure 6.5, which resembles a classic IP router
architecture consisting of a control plane and a data plane.To enable finer code reuse
and run-time sharing, NLA further partitions the control plane and the data plane into
smaller, standardized components that implement particular policies or mechanisms.
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Figure 6.4: Treeroute route construction and data forwarding. A node’s hop count is
denoted by the number beside it. (a) to (e) show the route construction process. (f) to
(i) show the data forwarding process.

The control plane is partitioned intorouting topology(RT) androuting engine(RE),
whereby RT is responsible for discovering and maintaining the network topology and
RE computes and maintains routes over the topology. The dataplane consists offor-
warding engine(FE) that obtains next hop(s) andoutput queue(OQ) that buffers pack-
ets across different protocols at the network layer. Multiple RTs, REs and FEs may
coexist in the architecture, allowing flexible combinationof protocols. Aprotocol ser-
vicecomponent provides a wrapping service interface to the application layer on behalf
of a specific network layer protocol. Furthermore, thedispatcherdemultiplexes pack-
ets to the FEs for different protocols, whereas thenetwork service managerenables the
application to intercept packets flowing through FEs.

In addition to defining functional components, NLA defines a generic packet header
format. The network layer packet header of NLA consists of four sub-fields. Each sub-
field is used by a component involved in packet forwarding andis opaque to other
components. Figure 6.6 shows the packet header format.

In order to test if the architecture is suitable to use together with our SP implemen-
tation, we partition the Treeroute route construction and data forwarding services into
NLA components, define an NPDU header compliant with the NLA header format, and
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Figure 6.5: NLA architecture overview.

Protocol IDLink Layer Headers OQ Header FE Header RE Header
{e.g., dst address}{e.g., priority} {e.g., seqno, ttl}

APDU

NPDU (Netork Layer Protocol Data Unit)

Figure 6.6: NLA packet header format. Each sub-header contains packet attributes to
be inspected by a specific component in the forwarding path.

use the SP neighbor table to store topology and routing information.
Figure 6.7 illustrates our NLA-style implementation SP-based Treeroute. We parti-

tion each of the two network layer services into: a service process that performs NPDU
header construction and destruction for outgoing and incoming packets respectively; a
forward process that queries a routing function to obtain the next hop and determines
whether a submitted packet should be forwarded or passed to the service process. The
forward processes are also responsible for constructing the link-level header and spec-
ifying the SP attributes before submitting a packet to the SPmessage pool. Both out-
going and incoming NPDUs are passed to the dispatcher process, which inspects their
protocol IDs and submits them to the appropriate forwardingprocesses.

Our NPDU header consists of sub-header fields as shown in Figure 6.8. Since we
use the SP message pool in place of the NLAoutput queue, the OQ sub-header is used
to specify of SP message attributes. The FE sub-header includes a sequence number
to suppress redundant packets and a hop limit counter to avoid potential routing loops.
The RE sub-header includes the network addresses of the destination node and the
source node.
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Figure 6.8: NPDU packet format for NLA-adapted Treeroute.

We extend the SP neighbor table to use it as also a routing table for Treeroute. Two
columns are added: hop count and expiry timeout. When the route process receives a
route update, it either inserts the source node as a new neighbor to the neighbor table,
or updates the neighbor’s record with the newly received hopcount and link quality.
The process then adjusts the local hop count to be the best parent’s hop count plus
one. The operation involves querying the neighbor table’s ’hop count’ column. When
handling originating or forwarding data packets, the data forward process queries the
neighbor table to find the best parent and use it as the next hop. To cope with topology
changes caused by node mobility, the neighbor expiry process evicts obsolete records
from the neighbor table based on expiry timeouts.

Because SP provides per-hop reliability, we are able to remove the retransmission
mechanism used for packet forwarding in the original Treeroute, which simplifies the
code of the data forward process.
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6.2.3 Verification of SP-based Treeroute

We verify SP-based Treeroute on NETSIM. We deploy a 4 x 4 grid network where
each node can reach its immediate neighbors in the same row orcolumn. After we
set a corner node to become the root, a tree begins to take shape, growing towards the
opposite corner. When the Trickle interval is set to be 1 second, the time it takes to form
a 6-hop tree across the grid is 30 seconds in the worst case. Experiments conducted
under different deployment and signal range settings show consistent performance of
the protocol.

We notice however a tension between the potentially large number of detectable
neighbors and the limited neighbor table size, which further raises the question of how
to balance link diversity and link utility in neighbor management policies. In the case
of Treeroute, links to parents are of much higher utility than links to children and
siblings, because only parents can serve as next hop destination. Therefore we modify
the neighbor insertion policy so that only neighbors with lower hop counts are admitted,
greatly reducing the size of the neighbor table.

A second issue arises as overhearing of network layer acknowledgements is re-
placed by automatic link layer retransmission. In Treeroute, because our link adaptor
consumes acknowledgements from the parent, the network layer needs to hook a neigh-
bor refreshment routine to SP’s send done callback function, otherwise the neighbor
expiry process would expire the parent inadvertently if no route updates are heard from
the parent within the neighbor expiry timeout interval, which is very likely given the
low broadcast rate maintained by the route process’s Trickle mechanism. A more sub-
tle side effect caused by reduced overhearing is the ignorance of second best parents
who reside on other branches. Lack of activity heard from these next hop candidates
would expire them prematurely. We can imagine that in reality, if a node’s current par-
ent becomes unavailable temporarily, then the node has no choice to switch to another
branch, but can only resets its hop count and try to rejoin thetree.

We deploy a 7-node Treeroute application in a corridor. A PC connecting to the
root node monitors the operation of the protocol. The overall stability and performance
is consistent with the simulation, in spite of a few problemsnot previously discovered
by simulation. First, because the routing algorithm prefers shortest paths, sometimes
a weak link in the trunk or a main branch causes significant service degradation. We
modify the best parent algorithm to filter out candidates with low hop counts but weak
signal strengths, and add a filtering function to smooth out link quality fluctuations.
This results in considerably improved path robustness, albeit at the cost of reduced
routing diversity. The problem exposes Treeroute’s lack ofend-to-end route metric, a
shortcoming not addressed by SP either. Secondly, if a branch of nodes has only one
parent, then if the crucial link to the parent is broken, the whole branch should return to
initial states immediately. In reality, however, the head of the orphaned branch would
update its hop count so that it becomes a child of one of its original children, initiating
a sequence of Ping Pong route updates between the nodes in thedead branch until
the crucial link reappears or the full branch dies out when the maximum hop count is
reached.
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6.2.4 Issues With the NLA Architecture

Our porting of Treeroute to NLA/SP has not been without challenges. We summa-
rize our findings about the problems with the NLA/SP architecture below:

• Single hop protocols such as Trickle have little use of the fine grained compo-
nents in NLA, except the dispatcher for the purpose of coexistence with other
protocols. SP is sufficient for single hop communications. Further more, strict
compliance to the NLA header format might introduce unnecessary overhead.
For example, we have to duplicate the source link layer address in the RE sub-
header to allow neighbor insertion at the recipient node’s network layer.

• The NLA output queue has similar function as the SP message pool, thus can
be replaced by the latter, unless advanced packet scheduling policies are needed.
The OQ sub-header contains basically the same information as SP messages.
The header is needed if the information must traverse through a multihop path
together with the payload. In that case, however, it would mean SP messages
contain redundant information presented in the bound link packet, which cer-
tainly does not serve as a good argument to use SP.

• The NLA dispatcher’s symmetrical structure might potentially remove useful
distinction between inbound and outbound packets. For example, an inbound
packet’s link layer header are stripped off before enteringthe dispatcher. The
header might contain information such as source link layer address or received
signal strength (RSS) that the application wants to intercept.

• NLA assigns the duty of I/O packets diversion to the forwarding engine. This
works fine in pure-form forwarding, where the payload is never modified by in-
termediate routers. In Treeroute’s data forward process, however, we need to
append a locally produced payload to the payload of the packet being forwarded,
breaking the application-agnostic feature intended by theNLA forwarding en-
gine.

6.2.5 An Alternative Network Layer Architecture

Having learned precious experience from the NLA/SP Treeroute port, we design an
alternative network layer architecture that shares the same external interfaces as NLA
but has a simpler internal structure.

Figure 6.9 illustrates the architecture. In this architecture, the dispatcher’s respon-
sibility has been changed to passing inbound link packets totheir intended service
processes, which in turn parses the link layer header to e.g.invoke neighbor update op-
erations, as well as the network layer header to determine whether the packet should be
passed up to the application or forwarded. The forward processes now accept outbound
NPDUs directly from their respective service processes.

The modified network layer implements the same Treeroute services on SP. The
major gains over the previous NLA implementation is reducedcode size and easier
information sharing between components. The major drawback, on the other hand, is
loosened layer boundaries.
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Figure 6.9: Treeroute protocol reimplemented using a simpler network layer architec-
ture and SP.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

Our implementation and evaluation of the Sensornet Protocol on the Contiki op-
erating system show that SP is a suitable link abstraction service for construction of
modular protocol stacks that are growing more and more complex in sensor networks.
In addition, we have verified that SP is capable of supportingmultiple coexisting net-
work layer protocols when working together with a network layer architecture such as
NLA. We have also found a number of interesting trade-offs between functionality and
comlexity in the implementation.

We believe there is still much space for improvement, however, in aspects includ-
ing message pool throughput, support of different neighbormanagement policies, and
coordination with network layer components.

7.2 Future Work

We plan to further improve our SP implementation for Contikiin the near future,
in the following areas:

• develop link adaptors for representative MAC protocols to explore any unad-
dressed needs for the SP link abstraction.

• quantify the resource requirements of SP in terms of code size and memory, and
compare with IEEE 802.2.

• integrate SP with the-state-of-art features in Contiki, notably the Rime stack and
the COOJA cross-layer network simulator [27].

• streamline the searching and sorting operations of the SP message pool and
neighbor table to improve both memory and code efficiency.
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