-

View metadata, citation and similar papers at core.ac.uk brought to you byﬁ CORE

provided by Swedish Institute of Computer Science Publications Database

Implementation and Evaluation of the Sensornet
Protocol for Contiki

Zhitao He
Swedish Institute of Computer Science, Box 1263, SE-164 29
Kista, Sweden
Email: zhitao@sics.se

SICS Technical Report T2007:14
ISSN 1100-3154, ISRN:SICS-T-2007/14-SE

2007-12-18

https://core.ac.uk/display/11434065?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Sensornet Protocol (SP) is a link abstraction layer betvieemetwork layer and
the link layer for sensor networks. SP was proposed as theafoa future-oriented
sensor node architecture that allows flexible and optimcedbination between mul-
tiple coexisting protocols.

This thesis implements the SP sensornet protocol on thelkCoperating system
in order to: evaluate the effectiveness of the original SWises; explore further re-
quirements and implementation trade-offs uncovered bytlgnal proposal.

We analyze the original SP design and the TinyOS implemientaf SP to design
the Contiki port. We implement the data sending and recgipiart of SP using Con-
tiki processes, and the neighbor management part as a gfalpbal routines. The
evaluation consists of a single-hop traffic throughput éest a multihop convergecast
test. Both tests are conducted using both simulation andrerpntation.

We conclude from the evaluation results that SP’s linkdledstraction effectively
improves modularity in protocol construction without sficing performance, and our
SP implementation on Contiki lays a good foundation for fetprotocol innovations
in wireless sensor networks.

Contents

1 Introduction 1
1.1 Sensornets OVEerview o i i i it e e
1.2 The Modularity Issue with Existing Sensornet Protocals. 2
1.3 TheSensornetProtocol
1.4 The Contiki Operating System
1.5 ThesisOverview i

151 Results e
1.6 DocumentStructure e

-h'bwool\) =

)]

2 Background
2.1 Communication Protocols for Sensornets 5
2.1.1 Link Layer Functionality Overview 5
2.1.2 Network-Layer Protocols for Sensornets 6
2.1.3 TheSensornetProtocol
2.2 The ContikiOperatingSystem
221 ContikiProcesses
222 Protothread
2.23 TimersandiInterrupts

(eSS NEEN

3 Analysis of SP Services 9

3.1 DataTransferService 9
3.1.1 Sending and Receiving Packets UsingSP 10
3.1.2 Packet Bufferingand Scheduling. 10
3.1.3 Protocol Multiplexing 11

3.2 Neighbor Management Service 12
3.2.1 SPNeighborTable 12
3.2.2 Link State Maintenance 13

3.3 Applicabilityof SP 13

4 Methods 14
4.1 Programming Patterns 14
42 Tools. 14

421 NETSIM e 15
422 Telos 15

5 Implementation 16

5.1 DataTransferService 16
51.1 SPMessagePool 16
5.1.2 ControlandFeedback 20
5.2 Neighbor Management Service 20
5.2.1 NeighborTable Operations 20
5.2.2 Neighbor ManagementPolicy 21
6 Evaluation 23
6.1 SingleHopEvaluation 23
6.2 Multihop NetworkingUsingSP 23
6.2.1 The TreerouteProtocol 24
6.2.2 Porting Treeroute to A Modular Network Layer Archiiere . 26
6.2.3 \Verification of SP-based Treeroute 0 3
6.2.4 Issues With the NLA Architecture 31
6.2.5 An Alternative Network Layer Architecture 31
7 Conclusion and Future Work 33
7.1 Conclusion 33

7.2 FutureWork e 33

Chapter 1

Introduction

1.1 Sensornets Overview

Sensornets have emerged as a highly competitive technédogywide range of
existing and future applications, which encompass divéisteibuted sensing and con-
trolling tasks in different environments. The main reasforsadoption of sensornets
in such applications are low cost, good scalability, anditstof collaborative opera-
tion. In a typical sensornet application, tens, hundred$iousands of sensor nodes
are deployed, collaboratively forming a sensornet to perfa common task. A sen-
sornet provides services of data retrieval, event detectind in-network information
processing in an autonomous manner.

A typical sensor node comprises the following componergsssrs, microproces-
sor, radio transceiver, and battery. The sensors monitditime physical phenomena
in the environment. The microprocessor stores and prosdbgesensed data. The
radio transceiver exchanges data and networking infoonatith neighboring nodes.

A sensornet may consist of a single type of nodes, or heteegmes nodes with dif-
ferent capacities and functions, depending on requiresreerd constraints. Moreover,
the nodes may form different types of network topologieshsas tree, cluster, mesh
or hybrid. Typically, there is a base station node that asta data sink as well as a
gateway to the user.

Communication and collaboration between sensor nodesrecttpat they follow a
set of protocols. Each protocol provides a service for it asmd/or regulates commu-
nication between its peers. Like other communication prolsy sensornet protocols
are often organized as a stack of layers, in which a lowerlpyavides service to its
next higher layer. The protocol stack as a whole forms arrattshn of communica-
tion mechanisms that the application is executed upon.r&igj illustrates a layered
protocol stack commonly adopted by network designers.

A sensornet designer is confronted with a number of well kméimitations and
difficulties. Firstly, sensor node hardware is highly coasted in bandwidth, process-
ing power, memory, and most critically, energy capacity.e3é precious resources
need to be used in an efficient manner to insure normal netejoekation over a long

Application Layer

Network Layer

Datalink Layer

Radio PHY Layer

Figure 1.1: Layered Protocol Stack Architecture

lifetime. Secondly, channel fluctuation and network dyrnamuften bring challenges
because a sensornet typically has a large number of nodeadspcross a vast geo-
graphical area. These uncertainties tend to underminesogest’s stability and per-

formance, and put a potential limit on network scalability.

1.2 The Modularity Issue with Existing Sensornet Pro-
tocols

The application specific requirements and resource cangtrfmrced many earlier
sensornet designs to resort to customized protocol stheksaggressively integrate
functionality of the network and datalink layers into a cdaxomonolithic entity, or
make arbitrary decisions on layer boundaries. This holigtiproach usually aims at
achieving optimal results for particular design goals,hat tost of however compro-
mised modularity. Consequently, the vertically integdasystem often suffers from
blurred component boundaries and tightly coupled opematiovhich hampers code
reuse and interoperability, making future improvement ambvation of sensornet
protocols a difficult task.

1.3 The Sensornet Protocol

To promote the ease of protocol composition and design reiséer et al. have
proposed a sensornet architecture [1]. Drawing analoglyddR-based Internet archi-

tecture, the authors argues that a similar “narrow wais#., ia common service that
separate applications above and technologies below askfdolnternet, would bring
greatly improved modularity to sensornets. Such an archite would be adaptable to
future developments at both the application level and deleeel.

Unlike IP, the proposed “narrow waist” layer, named SensbRrotocol (SP), is a
single hop service that resides above the datalink layeratalv the network layer.
The lowered waist allows various multihop protocols to tallgantage of the common
link-level abstraction provided by SP while optimizing ith@wn core functionality. In
addition, the architecture includes cross-layer senibasare shared among different
layers, such as power management and time synchronization.

1.4 The Contiki Operating System

Contiki is an operating system for memory-constrained eddled systems devel-
oped by SICS [2]. It is an open-source OS written in the C pogning language.
Its concurrency model provides an event-based inter-gcemmunication mecha-
nism naturally suited for typical sensornet applicatidBach Contiki process consists
of a Protothread a program control abstraction that hides the yielding fsoivithin a
multi-state task behind straightforwawehit statements [3], whereby implementation
of communication protocols can be simplified.

1.5 Thesis Overview

This thesis’s main objective is implementing SP on the Gowjperating system,
in order to further evaluate SP as a link abstraction seraitg explore possible im-
provement on the existing SP design. We also want to shows#retornet protocols
such as SP can be more easily developed using Contiki’s gmoging abstractions.

We perform an analysis of the SP services to capture thensdéatures of the
protocol. We find similarity between SP’s data transfer merand IEEE 802.2 [4]. On
the other hand, SP’s neighbor management service provifthsanal support for link
state maintenance required by low power MACs.

We implement the SP components and primitives using a caatibm of ordi-
nary routines and Contiki processes and events. We expetinith a number of data
structures to implement the SP message pool and comparativeintages and disad-
vantages in terms of functionality and complexity. We inmpét the SP management
service as a set of globally accessible routines to enhafi@amation sharing.

To show how a link-level protocol interacts with SP, we adagimple link protocol
that sends individual packets using Automatic Repeat R#dA&Q) and switches the
radio according to a preconfigured sleep/wake up schemevsllieade SP’s throughput
performance by running a traffic generation program on batbtavork simulator and
a hardware platform.

We also port the Treeroute protocol that combines convaigieend dissemina-
tion to two SP-based network-layer architectures. We erarthe feasibility of SP

to support higher-layer protocols, and explore the impiaes the SP interface has on
composition of higher-layer protocols.

1.5.1 Results

Our evaluation of the experimental results reveals thas &mmunication mech-
anism provides good link-level abstraction without sacirify link performance, and
our implementation of SP on Contiki supports multiple cstrig network layer pro-
tocols with better modularity than the integrated approasid may bring potential
saving in code size. Finally, our work may serve as a solidstfas future sensornet
protocol development, in particular on the Contiki opergtsystem.

1.6 Document Structure

The rest of this thesis is structured as following: Chapter@vides background
information about sensor network protocols and Contikia@ter 3 gives an analysis
of SP services and interfaces; Chapter 4 outlines the methseld to carry out the
work; Chapter 5 provides details of the implementation of s@®vices on Contiki;
Chapter 6 presents evaluation results from single hop camization tests, and discuss
the porting of the Treeroute protocol to SP; Chapter 7 drawsgonclusion and outlines
future work.

Chapter 2

Background

In the chapter We go over first the general communicatiorgtigmioblem in sensor
networks, followed by a description of Contiki’'s suppogifeatures for implementa-
tion of communication protocols.

2.1 Communication Protocols for Sensornets

We focus our considerations on the network layer and thdidktayer of the OSI
Reference Model [5], which are present in the majority ofssenet applications, and
have attracted a large amount of research efforts in theemciad

2.1.1 Link Layer Functionality Overview

The datalink layer consists of two sublayers: medium accesgrol (MAC) and
logic link control (LLC).

The MAC sublayer directly interacts with the radio. It prdes unique device
address, performs framing/deframing, and most impogangéigulates the points in
time for neighboring nodes to access the shared radio meddensornet MAC pro-
tocols often adopt additional power-saving mechanismsraeoto preserve battery
energy. Such mechanisms include: slotted protocols suGiMAC [6] and T-MAC
[7], in which neighboring nodes are synchronized to a tino¢ sructure whereby ran-
dom channel contention concentrates in short listeningnals interleaved with long
sleeping intervals; preamble listening protocols such a&WAC [8] and B-MAC [9],
in which the transmitter sends a long preamble to wake umptended recipient be-
fore sending the actual data packet; and IEEE 802.15.4 [@&¢dned mode, in which
a coordinatornode organizes channel access of its associdg¢sitenodes using a
superframe structure that includes contention-based antkotion-free periods. All
these MAC protocols aim at reducing major components of @newerhead in ra-
dio communication: packet collision, packet overhearidtg listening, and protocol
overhead.

The LLC sublayer resides on top of MAC and below the netwoyletaThe main
functionality of LLC is link management and protocol muléging, and may option-
ally include error control and flow control. A reference LL&sdard is IEEE 802.2
[4]. The protocol requires a common service interface piediby various IEEE 802
MAC protocols via the MAC Service Access Point (MSAP), inrtitrprovides a uni-
form service interface to each network layer protocol viaigklService Access Point
(LSAP). The LLC sublayer/MAC sublayer interface definesadednsfer primitives for
sending and receiving MAC packets in a connectionless datagtyle.

Whereas the MAC sublayer is indispensable for its role iriacdsndwidth pro-
visioning, wireless protocol architects make differenvicles about whether an LLC
sublayer is used to encapsulate the MAC sublayer. The rdagbat different MAC
protocols, apart from providing some common single hop patfnsfer service, also
provide various control functions that can either be used loledicated management
component at the next higher layer or by a monolithic netwayler that handles both
data and control operations. As an example of the formeraggbr, WLANSs based on
IEEE 802.11 [11] use the 802.2 LLC on top of the 802.11 MAC d&tavice, leaving
complementary MAC management functions to be exposed t&thgton Manage-
ment Entity (SME) through the MAC Sublayer Management ErftlLME) SAP. In
contrast, the ZigBee protocol [12] takes the latter appnazdight stack architecture,
whereby the network layer lies directly atop the IEEE 802418AC sublayer, mo-
nopolizing both the MAC data service and management sexvice

2.1.2 Network-Layer Protocols for Sensornets

Whenever the diameter of a sensornet exceeds the radiortissisn range and
nodes outside of their mutual range need to communicaternretion must traverse
through intermediate nodes, resulting in a multihop nekwdrhe various aspects of
multihop networking are addressed by different networletgyrotocols.

Topology control insures that sensor nodes are connectattoother in some way
so that there exists one or more communication paths betimeedistant nodes. Under
a specific topology control protocol, a given node may onimowinicate directly with
a subset of its physical neighbors. The resulting reduceshectivity brings about
a number of benefits, including lower transmission poweduoed contention, and
simplified routing. In exchange, delay and fault tolerarmestiegraded. A flat topology,
such as a mesh, assigns equal roles to all nodes across therinetin contrast, a
hierarchical topology, such as a cluster tree, assignsapetes to a subset of nodes
who carry out resource allocation and/or packet routingaology control in sensornets
is often done in a partly or fully distributed manner.

Routing is essentially a path selection problem based orstabléshed topology.
The goal of a specific routing protocol is often finding a minimcost path in some
sense. Each node that participate in routing maintainstingtable. A router receives
a packet, checks its destination, finds a preferred neigbypdooking up the routing
table, and forwards the packet to that neighbor. The forimgrgrocess continues until
the packet reaches its destination. A rich variety of ragifmotocols exist. Internet-
style, node-centric unicast routing protocols such as D$I8], DSR [14], AODV
[15] provide general solutions, but fail to address the iagibn-specific nature of

sensornets, that often imply a certain dominant trafficgrattlifferent from end-to-

end unicast, such as convergecast [16], disseminationdhd] diffusion [18]. What's

more, some applications require location-centric or daatric communication rather
than node-centric routing.

2.1.3 The Sensornet Protocol

The first attempt to define the services that SP should praadieto implement
useful interfaces for SP was described in [19] and [20]. Thelémentation features a
message pool that buffers outbound packets for link laygrsimission, and a neighbor
table shared across layers. It defines a control and feedbhackanism that passes
control and status information through the SP layer. To e®’s wide applicability,
the implementation drew in a number of existing link and retprotocols in the
TinyOS [21] code repository, showing uncompromised ovgraiformance and sig-
nificantly improved code reuse. This work serves to be theistapoint of our own
implementation of SP on Contiki.

2.2 The Contiki Operating System

An application program written for Contiki typically corsss of a number of pro-
cesses that communicate with each other by passing evemi&pglication may inter-
act with system functions such as the communication stackebgling and receiving
events.

2.2.1 Contiki Processes

A Contiki process is defined as a C structure that consists ddszriptive text
string, a function pointer to a thread functionp@tothreaddata structure, and a state
variable. The user defines a process structure by specifimgrocess name and the
descriptive text string using the PROCESS(name, stringgrmaThe user then uses
PROCESSTHREAD(name, event, data) to define a thread function forpitueess,
which is essentially a C function that has the prototype fdhaead(event, data)”,
whereeventis an ID for a specific event type amthtais a pointer used to pass user
data. The user may register a defined process to the autostatiqprocesses list so
that it is run at system start-up, or cplocessstart(&processname)to manually start
the process from another process. When a process is stéredystem initializes
its protothread data structure and its state variable.efygrocesses and application
processes communicate with each other by posting Contédtsywhich consists of a
pointer to the destined process, an event ID, and a datagppiatthe system’s event
queue. The Contiki scheduler dispatches a queued evenetdetstined process by
calling its thread function with the event ID and the datanpei as arguments. When
the thread function returns, the Contiki scheduler didpegcthe next event from the
gueue. In additional to asynchronous event passing, pgesanay post synchronous
events to each other, which bypasses the scheduler andivglemqi to nested function
calls.

2.2.2 Protothread

The user implements process logic in the thread function.higad function is
structured as a protothread, where initialization codeolbbived by an infinite loop
that proceeds execution upon reception of specific evertstps at the next event
waiting point. Essentially, such a loop implements a stadéehine, whose state defi-
nitions and state transition rules are however implicitpiessed by the protothread’s
WAIT _EVENT statements, which saves the current line number irsthece file to
the protothread data structure and returns. When the nextterives, the thread
branches to the previous WAIEVENT statement and continues execution from there.
Therefore, a sequential program structure can be retaiespii@ that the process logic
consists of multiple states. The following code segmentvsha Contiki process that
turns the radio on and off at fixed intervals.

PROCESS THREAD(Li nkLowPower _process, ev, data)
{

static struct etiner etinerl;
PROCESS _BEG N();

while(1) {
etimer_set(&etinerl, CLOCK SECOND * 2);
radi o_on();
link state = LI NK | DLE;
process_pol | (&SPSend_pr ocess);

PROCESS WAI T_EVENT_UNTI L(etiner_expired(&etinmerl) &&
link state == LINK I DLE);
etimer_set(&etinerl, CLOCK SECOND * 3);
radi o_of f();
link_state = LI NK_SLEEPI NG,
PROCESS WAI T_EVENT_UNTI L(etiner_expired(&etinerl));
}

PROCESS_ENDX) ;
}

2.2.3 Timers and Interrupts

The event timer process is a system process started by Cofftile process is
polled by hardware timer interrupt at each system clock titke user defines event
timers that are associated to specific processes. When atitewer expires, the event
timer process posts a specific event to the user processthsgociated with the event
timer. Similarly, other hardware interrupts, such as andirempacket signalled by the
radio chip, are converted to events by low level drivers.

Chapter 3

Analysis of SP Services

In the chapter we investigate the main design features afitrent TinyOS SP im-
plementation. SP is a bridging layer between the networgrlapd the MAC sublayer.
Multiple network layer protocols may coexist above the SRefausing the SP data
transfer service to exchange packets with their peer patddaa neighboring nodes.
The SP neighbor management service allows network laye¢oquts to participate in
the construction of a neighbor table together with avaddinlk level mechanisms. At
the low level, SP assumes a basic MAC packet transfer ser8iednteracts with this
packet service and other protocol-specific link-level colrgervices via a customized
adaptation sublayer that provides the gluing between ges8erprimitives and specific
link mechanisms. We will refer to the combined SP adaptatidsiayer and the MAC
sublayer as the link layer. Figure 3.1 illustrates the Sdaychitecture.

Protocol A Protocol B Protocol C

SP (message pool, neighbor table)

SP Adapter
MAC

Figure 3.1: The SP layer architecture

3.1 Data Transfer Service

We disclose the similarity between SP’s data transfer serand IEEE 802.2 in
terms of interface and meta-data exchange. We then exarRia@&cket buffering and
scheduling policy, as well as its support for next higheelagrotocol multiplexing.

Table 3.1: Network layer/Datalink layer data transfer ifdees of SP and IEEE 802.2
acknowledged connectionless-mode

| Primitive | SP 802.2
Send packet, expecting status feedback X
Receive packet X X
Modify submitted packet X
Cancel submitted packet X
Fetch next packet to send X
Retrieve packet from neighbor X
Prepare packet to be retrieved X

3.1.1 Sending and Receiving Packets Using SP

The interface SP provides to network protocols for datasi@mis very similar to
theacknowledged connectionless-modfithe IEEE 802.2 network layer/LLC sublayer
interface. Particularly, both SP and the 802.2 allow usesptcify per-packet priority
and reliability, also both provide status feedback to eamtkpt sending request. In
addition to single packet sending, SP also suppudssage futureallowing the user
to set the number of packets awaiting to be sent, so that SHetatythe remaining
unsent packets quickly. Table 3.1 shows a comparison batthegrimitives provided
by the two interfaces.

3.1.2 Packet Buffering and Scheduling

Each packet submitted to SP for transmission is bound withRamessaga meta-
data tag containing control information that is to be usethieylink protocol, and feed-
back information resulted from the subsequent transmiss8P messages are stored
in a fixed-size message pool. Based on the availability ofittketo each message’s
destined neighbor, message priority, and submission 8Reselects the next message
to transmit. This message scheduling policy is illustrdtgdrigure 3.2.

If the reliability flag is set in an SP message, SP instruadittk protocol to use
any supported reliable transmission mechanism to sendabkep e.g., requiring an
acknowledgement from the recipient and retrying an unaskedged packet up to a
specified number of times. The transmission status is stoae#f into the SP mes-
sage, so that the network layer user gets notified of whetiegpacket was transmitted
successfully and the whether the underlying channel is esteg. The following list
summarizes the SP message fields used to pass cross-layret aod feedback infor-
mation between the network layer and the link layer:

Control (submitted together with a bounded packet)

e urgent
o reliability
e retries

10

Message Pool Available messages
Link to destination is on

Message A I ———_ High priority first

[T———_ Earliest submitted first
Message B

=

Message C . Next messag
Message X

[
no message L —

[

Figure 3.2: SP next message selection policy

Feedback (indicates the transmission result of the packet)

e success/failure
e congestion

3.1.3 Protocol Multiplexing

When the application requires that multiple network protscshare the datalink
service, outbound packets are multiplexed at the link lal/kere needs to be a way for
the data link protocol to correctly reverse the procedurthateceiving end. SP does
not prepend any protocol identifier to submitted packetsrefore it is the network
layer’s responsibility to handle demultiplexing of reaaivpackets. One SP-based net-
work layer design that performs packet demultiplexing gsadispatchercomponent
based on packet protocol IDs can be found in [22]. In a speai#, however, that there
are multiple packet sources above the datalink level bytaadkets are directed toward
a single entity at the receiving end, no demultiplexing isdedl. On the other hand,
the SP message&ervicefield is used by the SP sending process to direct feedback
information to the appropriate sending protocol.

In comparison to SP, IEEE 802.2 supports protocol multipigy explicit in-
clusion of two address fields into the 802.2 LLC header: Desibn Service Access
Point (DSAP) and Source Service Access Point (SSAP). Ofte8NAP (Subnetwork
Access Protocol) [23] header is also appended to the LLCdraadrder to identify
a specific network layer protocol, such as IP. The 802.2 aprds biased toward a
symmetric data link layer architecture that provides fimakged service multiplexing,
but to use these additional headers in every packet would significant overhead for
many typical sensornet communications.

11

3.2

Neighbor Management Service

SP provides its neighbor management service via a set ohtipes centered around
the neighbor table, which is a knowledge base that storesnrgtion about neighbor-
ing nodes. Special fields in the table are devoted to maintenaf the link state of
each neighbor in order to assist packet scheduling.

3.2.1 SP Neighbor Table

SP contains a neighbor table whose interface is open to hethetwork layer and
the link layer. Protocols can use the shared informatiorest@n the table to perform
link management, routing, and other functions. Each re@gotte SP neighbor table
contains the following fields:

neighbor ID

time-on (local time when neighbor will wake up)

time-off (local time when neighbor will go to sleep)

listen (listen to neighbor during its next wakeup period)
messages pending (packets destined to neighbor awaiting)
quality (link quality metric)

extension (user defined parameters)

The SP neighbor interface defines several groups of priesitte operate against
the neighbor table:

construct an entry (add, remove, update)

guery a neighbor by address or entry, query table size
expire an obsolete neighbor, evict a neighbor from the table
adjust link quality

listen to neighbor during its next wakeup period

populate neighbor table using active link scanning

The primitives listed above comprise data record manipriatand network opera-
tions. The former are synchronous, return-on-completjmarations, whereas the latter
are of asynchronous nature. We will see later in Chapter thgramming choices
we made in order to simplify the implementation of neighb@magement functions.

12

3.2.2 Link State Maintenance

Maintaining the state of each neighbor is necessary to eehaiability and effi-
ciency in data transfer. Low power MAC protocols using anyrie of sleeping/wakeup
scheme for sensornets pose an additional challenge fostaik maintenance, because
the local node needs to keep track of each neighbor’s schédorder to know when
the link to a specific neighbor will become available.

SP constantly updates neighbor schedules usingjrtteeonandtime-off fields in
a neighbor table entry. The link protocol uses this infoliorato schedule packet
sending. A network layer protocol can set a neighblistenflag so that the local node
would wake up and listen to that specific neighbor on its neséteup period.

Unlike IEEE 802.2, SP does not provide per-link packet saqung. The user
may extend the SP neighbor table with extra columns for g packet sequence
numbers, or just let the network layer handle redundantgiack

The open interface to the SP neighbor table gives prograsther freedom to
construct customized semantics that optimize informasioaring among coexisting
protocols. However, the freedom to access the neighboe fabin anywhere at any
time also means it is the user’s responsibility to proteeitiagt conflicting updates.

3.3 Applicability of SP

Based on the previous discussion, we have already reveaed sotable features
of SP, which are summarized below:

¢ a unified link service interface
e customizable gluing of MAC and LLC functions
e time scheduling support for low power MACs

Single-hop applications may use SP as a decoupling layeoseh the often strin-
gent temporal constraints imposed by the underlying MACQqwol. Multi-hop net-
works of various kinds, on the other hand, benefit from bothtémporal decoupling
and cross-layer information sharing enabled by SP.

We will explore SP further through our implementation andlaation in the fol-
lowing chapters.

13

Chapter 4

Methods

4.1 Programming Patterns

Implementation of communication protocol primitives, esjally those involving
inter-layer data transfer such ejuest confirmprimitives shown in Figure 4.1, often
involves programming multi-phase operations whose exactibw is split into several
states. State transitions are triggered by occurrenceysfcasonous events such as
arrival of a packet or expiry of a timer. The Contiki schedugnon-preemptive, so
we cannot do block waiting for events. Instead we Be#othreadsa program control
abstraction in a Contiki process to yield the CPU at pointemglan event is waited on,
and resume execution after the event has arrived.

N + 1 Layer N Layer N -1 Layer

Request

Request
Confirm

Confirm

Figure 4.1: Request - Confirm primitive pairs commonly usadriter-layer data trans-
fer

4.2 Tools

We use a combination of simulation and experimentationénciburse of our pro-
tocol development. For function verification, the ContikEINSIM simulator is used.
For timing-sensitive measurements, we use Moteiv Telogsdalrun our protocols.

14

4.2.1 NETSIM

NETSIM is a network simulator for Contiki nodes that simekata collection of
homogeneous nodes deployed in a two-dimensional area. rieatehis run as a Linux
process that interacts with each other by writing packetsradio medium emulation
process and reading from it. The radio propagation model HT8IM is a simple
disc graph model, in which interference is determined bypitesence of packets with
overlapping signal range. Due to the nondeterministic neaddi the Linux scheduler,
NETSIM simulations are not real-time.

We usually use the following work flow for each design itevati

e configure simulation setup, including deployment and rgdicameters
e compile and execute program

e observe network activities and examine log messages

e post-simulation analysis

The NETSIM graphical user interface provides an interactiray for the user to
create sensing events, as well as an intuitive view of theadigehaviour of the sensor
network under simulation.

42.2 Telos

A Telos sensor node [24] carries a 2.4 GHz radio transcead6-bit TI MSP
microcontroller, a user button and on-board sensors. EattsThode comes with a
unique 64-bit ID that can be used as MAC address. The CC24#06 teansceiver
provides a packet-level data interface for the host coletror herefore our radio driver
deals with whole packets rather than individual bytes asthegase with earlier radio
modules. We use an open-source GNU tool-chain for the MS#opia to compile
programs and load binaries to the nodes. Because the Conilki system manages
different hardware platforms using a hierarchical diregtstructure, programs written
for NETSIM can be recompiled for Telos without any change;ept for code that
controls special peripherals.

For tests conducted at minimal scale, i.e., by only two npdesmay conveniently
connect the nodes to a PC via USB ports to observe the log gessas the the scale
goes up, we have to regress to using the on-board LEDs towebdes behaviour of
individual nodes.

15

Chapter 5

Implementation

The SP services proposed in [1] have been implemented onink®F operating
system [19] [20]. We use the TinyOS implementation as a esfes, but do not reuse
their code. Rather, we develop our own SP services baseccamtiterstanding of the
design goals embodied in the original SP proposal. Thermarenain reasons for this:
SP has been proposed as a future standard, so its servicagyareughly defined, and
the existing implementation should be regarded as teetatid experimental. TinyOS
source code is written in the special programming languaggCn25], thus is not
directly portable to Contiki, which is based on standard C.

The strength of the TinyOS implementation lies in its proeeldptability with a
number of well known MAC protocols including IEEE 802.15 AdaB-MAC. When
we started this work, there was no low-power MAC protocotiieavailable for port-
ing from the Contiki repository. Therefore, we take anotigproach of starting from a
draft vanilla MAC protocol and explore the problems of dehg specific link mech-
anisms and adapting those mechanisms to an abstract sgk etlivices in parallel.

5.1 Data Transfer Service

The SP data transfer service provides a uniform way for thx¢-higher layer user
to send unicast packets to any one-hop neighbor or broapaekets to all neighbors,
and to receive packets from them.

5.1.1 SP Message Pool

When application data such as sensor readings becomeldgatlze communica-
tion channel might not be immediately ready to deliver thekea generated, e.g., the
destined neighbor node may be in sleep mode at the momentjlbutake up some-
time in the future depending on the power-saving MAC mectraradopted. The SP
message pool is designed to provide both necessary buffefumntransmitted packets
and to maintain the control and status information assediaith each packet.

16

We implement the message pool in several stages, starting drsimple but in-
complete design that evolves into the final full featureddtire.

FIFO

We begin with the simple assumption that the MAC protocol 8M2/CA based,
allowing nodes to access the channel at any time in confacméma synchronized
sleep/wake up scheme. The beaconed mode of IEEE 802.1&Hesathis assump-
tion. Since neighboring nodes are synchronized with thalloode, transmission of
submitted packets can be scheduled in a first-come-firgedenanner.

We implement this FIFO-style message pool as a cyclic huffero operations
can be performed against the message pool: enqueue andudedtigure 5.1 shows
the typical procedures involved in packet sending. Theiepfibn first generates an
outbound packet, then issues@and requesgvent to the SP sending process, which
in turn enqueues the packet to the FIFO along with packebatés. When the node
becomes idle, the link adaptor sending process fetchesviopsly enqueued packet
from the FIFO and transmits it. Upon completion, the link ptia feeds back the
transmission status to SP, which in turn notifies the apfdinavith ansend confirm
event. The application then handles the event and relelasedlbcated packet buffer.
A link state variable keeps track of the current state of theia driver, protecting
the link protocol in sleeping or busy state from being afelcby events such as a
newly queued message. Figure 5.2 shows the link state ticandiagram. FIFOs are
very efficient; insertion or removal of an element takes astamt number of cycles
regardless of the buffer size.

Priority Queue

Later we duplicate the FIFO into two queues, for low prioryd high priority
packets respectively. Packets tagged with dingentflag are enqueued in the high
priority queue, so that they get transmitted ahead of orglipackets. We provide the
same enqueue/dequeue interface to the user by means of @ paapper functions
that direct the actual packet insertion or removal operdticeither of the queues. This
introduces a small overhead over the case with a simple RbECthe performance is
still scalable in respect to buffer size. Also traded offhie effective capacity of the
message pool: if either of the queues becomes full, it begimsject packets of that
priority, despite that the other queue might still have gmgbots. Figure 5.3 illustrates
the double queue structure.

Link State-Aware Message Pool

As long as the previous assumption of synchronized, ranglaadessible neigh-
borhood holds, queues suffice to provide fair and efficiehedaling. TDMA-based
MAC protocols that distribute each neighboring node’s gleake up schedule across
the channel period, however, require the local node to betaldchedule packet trans-
missions according to the knowledge of its neighbors’ salesd In such a case, in
order to filter out the not schedulable packets, the SP megsag needs to be aware

17

send_done_call_back ()

Link-level packet

®)

Application

event: send_confirm
SP send complete proce:

@

SP message
sp_send ()

(©)

Message Queue
()]

dequeue

enqueue

Link Adaptor send process

Figure 5.1: Sending a packet via SP using FIFO message pbolpplication gen-
erates a packet. (2) Application cafip.send()to bind packet and attributes with an
SP message, then enqueues the message. (3) Link adapterupaied dequeues the
message. (4) The link adaptor notifies the SP send completegs about completion
of packet transmission by signaling a send confirm eventgalaith the SP message.
(5) The SP send complete process invokes the applicatiafitsack routine that han-
dles send completion. (6) The application frees the serkgiad7) SP frees the SP
message.

of the link state of the neighbor that each submitted packeestined, so that those
schedulable are scheduled based on priority and submisien Such a next packet
selection policy has been illustrated in Figure 3.2, whadtects significant added com-
plexity compared with FIFO queues.

We implement the link state-aware message pool as a stadig @ir SP messages.
Two operations, post and pend, can be performed against @@shown in Figure 5.4.
The post operation inserts to the array an SP message tagtedulsmission time.
The pend operation carries out link state querying as weiraity and submission
time comparison. Link states are stored in the SP neighlixde’tatime-one/time-off
columns. Since the neighbortable is implemented as an tatsamay, the time it takes
to determine a neighbor’s link state is O(N), where N is thraysize. If the message
pool has a size M, the time it takes to find the highest pri@ityong the schedulable
messages is therefore O(M*N). A second iteration throughtiessage pool is needed
to choose the earliest submitted packet from the result efitist iteration, thus the
algorithm’s complexity is O(2*M*N).

The inter-process communication pattern among the apjgitaSP, and the link
adaptor also needs to be changed to properly handle lird-ataare packet scheduling.
Instead of simply letting the application posting messdgeSP and the link adaptor
pending messages from SP as in the case of FIFO queues, nappiieation still does
the posting, whereas SP takes the initiative to invoke penébr the next message.
Figure 5.5 illustrates the event-triggered operationslved in packet sending. This

18

idle interval expires — Sp receive process returns

Idle

sleep interval expires link adaptor receives packet

dequeue sp send completed

Sleeping Transmitting Receiving

Figure 5.2: State transition diagram of a node’s link state

Application

SP message

sp_send ()

Enqueue High Dequeue (high priority packet first)

Link Adaptor Send Process|

Figure 5.3: The priority queue has the same enqueue/deduied@ce as FIFO.

implementation of the SP message pool resembles our TingO&erpart, except that
the TinyOS message pool lets SP also fetch packets from thiecaton by taking
advantage of user supplied information calfedssage futures feature we have not
found to be of great necessity.

Link State-Driven Message Pool

The link state-aware message pool is a full feature desighghpports various
power saving MACs. We use this design in most of the evalnati@he coupling of
neighbor state maintenance to data transfer, however,roagyped us to contemplate
a message pool data structure whose posting and pendiraftioperare directly driven
by changes of link states in the neighbor table. In such astatature, a message is
posted to the entry for the destined node in the neighboetalnld is to be transmitted
when the link to the specific neighbor becomes idle. The implatation and evalua-
tion is left to future work. Figure 5.6 illustrates this captual link state-tied message
pool.

19

message {destination, priority, time submitted, ..[}

message

post () empty pend ()

message

Figure 5.4: Link state-aware message pool

5.1.2 Control and Feedback

We implement a vanilla link protocol to work together with.Se protocol is
capable of automatic retransmissions based on link acladyement timeout. We de-
fine a link-level packet header format that contains a date field, a packet sequence
number, destination address and source address, and gajzea The application may
order a packet to be transmitted reliably or not, by spegiyin the packet’'s bounded
SP message theliability flag and theretries value, which are in turn interpreted by
the link adaptor to construct the packet header’'s data tygd, fand to invoke the
automatic retransmissions mechanism. The reliabilityi8agused to notify the trans-
mission result (success/failure) of a packet, so that tiiegiion may act accordingly.
Our vanilla link protocol does not make use of tirgentcontrol flag or thecongestion
status flag.

5.2 Neighbor Management Service

The SP neighbor table is another core data structure betfidanessage pool. It
stores shared information about the local node’s neightwotsehalf of various differ-
ent components in the protocol stack.

We implement the table as a fixed size array of records, eattteof containing in-
formation about a neighbor node. A record contains mangdigds including neigh-
bor ID, time-on and time-off, listen flag, number of messgg@sding, link quality, as
well as user-defined extension fields.

5.2.1 Neighbor Table Operations

We implement the operations against the neighbor tablesdimfC functions. They
are listed as follows:

e insert arecord
e set a neighbor’s properties

e query neighbor properties

20

[sp_send () } [SP send complete process}

send confirm other
no space
sp_mq_post () — |

more messages pending
sp_send_done ()
busy
link state = ? |
.
idle busy
link state = ?
sp_mq_pend () idle
more messages pending

no more messages — sp_mq_pend ()

[return J no more messages

[return J

Figure 5.5: Flow charts showing tlsp.send()routine and SP send complete process
working with the link state-aware message pool

e query whether a neighbor is idle
e query table size

e evictarecord

¢ find an empty record

e clear a stored record

e clear the whole table

5.2.2 Neighbor Management Policy

Our previous discussion about packet scheduling has shmwrsefulness of neigh-
bor management for link state maintenance. Neighbor manegeis useful in at least
two other important aspects: 1. topology control; 2. rogitamd forwarding. We will
show in Chapter 6 how a network protocol ported to SP makestiiee neighbor
management utilities.

21

Neighbor Table

—= neighbor{ID, quality ...} | link state timer| message
—= neighbor link state timer empty
Post
Pend —= neighbor link state timer message
Neighbor operationg
—= neighbor link state time message

Figure 5.6: Link state-driven message pool. The messatgeaie matched to neighbor
records in the neighbor table one by one.

During the lifetime of a sensor node, neighbor informatian be collected in two
ways: active probing or passive monitoring. Active probirsgially implies broadcast-
ing a scanning packet to the neighborhood, or sending a pgaiécket to a known
neighbor, and expecting responses from the probed neighBPaissive monitoring, or
packet sniffing, instead relies on processing of receivetl arerheard packets cap-
tured in data traffic to construct a map of one’s neighborhoddo et al. [16] have
investigated the major design considerations related ssipa monitoring, including
neighbor insertion and eviction policies.

Our SP implementation does not enforce a neighbor manageroléey in terms of
specific criteria for insertion, removal and updating ofgtéior information. Rather,
we only provide the necessary interface to operate the beigtable and leave the
choice of neighbor management policy to the user.

22

Chapter 6

Evaluation

In this chapter we present the results from a number of singfecommunication
tests, and then discuss the findings made by porting of amopliprotocol to SP.

6.1 Single Hop Evaluation

We develop an artificial traffic generator program to testgadormance of SP. The
program may generate a single-hop packet stream based papesdfied burstiness
and transmission rates.

We conduct a one-to-one throughput test between two Teldesywhose radios
are configured to communicate using a certain duty cycle. Senessage pool size
is set to one. Retransmission is turned off. The sending gederates a new packet
for SP to send when a previous packet has been acknowledgée bgceiving node.
The result shown in Figure 6.1 verifies that SP’s performascensistent as the radio
duty-cycle changes.

We configure the traffic generator to generate bursts of gaet€00 ms intervals.
We want to put SP under full load by generating traffic at arraye packet rate that
slightly exceeds the maximum channel bandwidth so thatssioepackets are rejected
by SP, and then examine how throughput varies with diffesettings of the message
pool size. If the message pool is set to contain only one rgessmost, the channel
becomes fully loaded when the burst size reaches 14 paelgeshiown in Figure 6.2.
We then set a constant burst size to be 14, but vary the siZeeafnessage pool to
see if a larger buffer improves throughput. Surprisinggsults shown in Figure 6.3
indicates that the throughput begins to degrade when tHensite is larger than two.
We attribute this performance loss to the inefficient pagtamd pending operations
against the link-state aware message pool.

6.2 Multihop Networking Using SP

One salient feature of SP is its support for coexisting nétdayer protocols. The
TinyOS implementation has shown SP working with three sucdtogols: MintRoute

23

Telos throughput under various duty-cycles
45

throughlput in kbps —+—

Throughput (kbps)

5 1 1
12.5 25 50 100

Duty-cycle (%)

Figure 6.1: Telos throughput under different duty cyclebe Transmitting node feeds
100 packets, each 45 bytes in size, to a receiving node aklyais possible. The
radio transceiver’s carrier sensing capability tends tted the wake-up interval by
a small amount at each switching point, which introduces allsrasidual throughput
gain observed at lower duty-cycles.

[16], Trickle [17] and Synopsis Diffusion [18], which havedn ported from the TinyOS
code repository.

We choose to port instead tieserouteprotocol from the Contiki repository to SP.
Treeroute allows a large number of sensor nodes to coopelaform a tree topology
rooted at a designated basestation and report collectestiseradings to the basesta-
tion. Treeroute consists of two protocols: a route consimagrotocol adapted from
the Trickle protocol [17], and a data forwarding protocoked on the routing tree
established.

6.2.1 The Treeroute Protocol

The original Treeroute protocol has been developed to useaith [26] stack in
Contiki as the underlying communication service. Routekptecand data packets are
delivered in two separate UDP broadcast connections.

The route construction protocol establishes a tree togydbyghaving each node to
overhear route updates broadcast by neighbors to learhattest distance to the root
node in terms of number of hops, and broadcasts its own hapt toneighbors. Upon

24

One-to-one Telos throughput under various burst sizes
53.8

throughput in kbps -

53.6

53.4

53.2

53

52.8

Throughput (kbps)

52.6

52.4

52.2

52 ¥

51.8 L L
12 13 14 15

Burst size (No. packets)

Figure 6.2: Telos burst throughput versus burst size. Mgspaol size is set to be 1.

receiving a route update, a node compares its hop count hatlsénding neighbor’s
hop count: a difference larger than one would imply incalesisy and prompt the node
to adjust its hop count. Initially, nodes have maximum hoprits. As the root node
starts broadcasting, one-hop neighbors detect inconsigtepdate their hop counts to
one, and then propagate the information further down to tdexel nodes, forming
a tree across all nodes in the network. After the tree topoloas stabilized, nodes
continue broadcasting at diminishing rates. Any futurengfes in the topology will be
detected by neighbors of the spots of the changes and thpagmated across the whole
network.

A node starts its data forwarding protocol as soon as it hasidd a valid hop
count, i.e., a route to the root. Each node periodicallyiearout sensor readings and
reports the data to the root, by sending a unicast data ptacistest parent node, i.e.,
the neighbor that is one hop closer to the root and has théiblegality, which in turn
relays the packet one level up in the tree, and so on, untjpéieiet reaches the root.
In order to save bandwidth, the relaying node appends its semsor reading to the
packet to be forwarded, thus only as many packets as the mahbeanches are origi-
nated within each sensor reading interval. To alleviat&kegloss, the data forwarding
protocol performs per-hop retransmissions basedgslicit acknowledgementse.,
overheard packets forwarded by its parent to its grandparen

Figure 6.4 illustrates the Treeroute route constructiod data forwarding pro-
cesses.

25

One-to-one Telos burst throughput under various message pool sizes
56

Ithrouglhput inI kbps —+—

Throughput (kbps)

42 1 1 1 1 r
1 2 3 4 8 16

Message pool size (No. messages)

Figure 6.3: Telos burst throughput versus message pool Bizest size is set to be 14
packets every 200 ms.

6.2.2 Porting Treeroute to A Modular Network Layer Architec ture

The major considerations for the porting of the original@nmute include:

e partitioning functionality and defining component intexs including the inter-
face with SP.

e defining packet header formats
e making use of SP neighbor management

As we consider the porting of Treeroute to SP, we first attemptiopt the modular
Network Layer Architecture (NLA) proposed by Cheng et aR][2Similar to IP, NLA
provides a best-effort, connectionless multihop commation abstraction to applica-
tions. NLA proposes a general, component-based frameveorost network layer
protocols. Each protocol is functionally partitioned imdomponents interacting with
each other via standard interfaces. Coexisting protocelsailtiplexed together by an
output queue and a dispatcher, which use SP as a single-hupwaication service.

We redraw the NLA architecture in Figure 6.5, which reseralalelassic IP router
architecture consisting of a control plane and a data pl&aenable finer code reuse
and run-time sharing, NLA further partitions the contrchpé and the data plane into
smaller, standardized components that implement paatiqudlicies or mechanisms.

26

o0 oLy

O o
) O
o 5 o o5 e}
O O
() (b) (c)
OO 0 OO
Ol
o1 o1 5 o1
Q? 4 0% o2
g2 0?2 0?2
(d) (e) ®
00 00 00
Ol \\ Ql O’I
Yl \ 1 1
02 42 o 022 © 02 42 o
) &) O
02 0?2 0?2
(@ (h) @i

Figure 6.4: Treeroute route construction and data forweydiA node’s hop count is
denoted by the number beside it. (a) to (e) show the routeteati®n process. (f) to
(i) show the data forwarding process.

The control plane is partitioned intouting topology(RT) androuting engine(RE),
whereby RT is responsible for discovering and maintainfregrietwork topology and
RE computes and maintains routes over the topology. Thepdate consists dfor-
warding engin€FE) that obtains next hop(s) andtput queudOQ) that buffers pack-
ets across different protocols at the network layer. MigtiRTs, REs and FEs may
coexist in the architecture, allowing flexible combinatadrprotocols. Aprotocol ser-
vicecomponent provides a wrapping service interface to theiegpn layer on behalf
of a specific network layer protocol. Furthermore, thspatcherdemultiplexes pack-
ets to the FEs for different protocols, whereastikévork service managenables the
application to intercept packets flowing through FEs.

In addition to defining functional components, NLA define&aeric packet header
format. The network layer packet header of NLA consists af fub-fields. Each sub-
field is used by a component involved in packet forwarding endpaque to other
components. Figure 6.6 shows the packet header format.

In order to test if the architecture is suitable to use togettith our SP implemen-
tation, we partition the Treeroute route construction aathdorwarding services into
NLA components, define an NPDU header compliant with the Neader format, and

27

Application

A A
I I
| |
| |
| |

Protocol Service Network Service
Manager
[

|
T
| ! |
I v I

Dispatcher M

Routing Enginel¢ N Routing Topolag

Output Queue [« ----1

LI:

Control Plane

4 Forwarding Engine¢
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

SP

Message Interface - ---- > Function Call&—>

Figure 6.5: NLA architecture overview.

0OQ Header FE Header RE Header APDU
{e.qg., priority} {e.g., segno, ttl} | {e.g., dst address

%/_/—//

NPDU (Netork Layer Protocol Data Unit)

Link Layer Headers Protocol ID

Figure 6.6: NLA packet header format. Each sub-header aonpacket attributes to
be inspected by a specific component in the forwarding path.

use the SP neighbor table to store topology and routingnimégion.

Figure 6.7 illustrates our NLA-style implementation SPs&é Treeroute. We parti-
tion each of the two network layer services into: a servicepss that performs NPDU
header construction and destruction for outgoing and inegmpackets respectively; a
forward process that queries a routing function to obtamribxt hop and determines
whether a submitted packet should be forwarded or passéx tgervice process. The
forward processes are also responsible for constructmdjrik-level header and spec-
ifying the SP attributes before submitting a packet to ther@Rsage pool. Both out-
going and incoming NPDUs are passed to the dispatcher moetsch inspects their
protocol IDs and submits them to the appropriate forwargiragesses.

Our NPDU header consists of sub-header fields as shown ind-&8. Since we
use the SP message pool in place of the NiuAput queugthe OQ sub-header is used
to specify of SP message attributes. The FE sub-headediegla sequence number
to suppress redundant packets and a hop limit counter tol @aténtial routing loops.
The RE sub-header includes the network addresses of thmatést node and the
source node.

28

Application Layer

Route process hopcount Data process

Route Service proces Data Service process|

Network Layer

Route Forward proce}ss

,,,,,,,,,,, =l add/update neighbgr - -- -~
update hopcount

Data Forward proces%

)
' query next hop

SAm oo - --- best parent
)

NPDU extraction

sp_send () sp_receive ()|

SP message pogl - —
incoming link packet

Figure 6.7: Treeroute protocol reimplemented using NLA Sird

,,,,,, _=| sp neighbor table|_ |

s
%]
[
(5]
o
)
o
>

=
o
X

Ji1]
-
o

Ke)

=

°
[

=z

route | data urgent reliabili}wretries segno | hop limit destination source APDU

Protocol ID 0O Header FE Header RE Header

Figure 6.8: NPDU packet format for NLA-adapted Treeroute.

We extend the SP neighbor table to use it as also a routing tabl'reeroute. Two
columns are added: hop count and expiry timeout. When thie ronocess receives a
route update, it either inserts the source node as a newhbmigh the neighbor table,
or updates the neighbor’s record with the newly received tmmt and link quality.
The process then adjusts the local hop count to be the bemsttfsahop count plus
one. The operation involves querying the neighbor tabledp’count’ column. When
handling originating or forwarding data packets, the datavard process queries the
neighbor table to find the best parent and use it as the nexfliwogope with topology
changes caused by node mobility, the neighbor expiry peoeeists obsolete records
from the neighbor table based on expiry timeouts.

Because SP provides per-hop reliability, we are able to ventioe retransmission
mechanism used for packet forwarding in the original Tregzowhich simplifies the
code of the data forward process.

29

6.2.3 \Verification of SP-based Treeroute

We verify SP-based Treeroute on NETSIM. We deploy a 4 x 4 getsvork where
each node can reach its immediate neighbors in the same roalamn. After we
set a corner node to become the root, a tree begins to take sir@wing towards the
opposite corner. When the Trickle interval is set to be 1 sd¢the time it takes to form
a 6-hop tree across the grid is 30 seconds in the worst caggerifients conducted
under different deployment and signal range settings shmwsistent performance of
the protocol.

We notice however a tension between the potentially largaber of detectable
neighbors and the limited neighbor table size, which furtheses the question of how
to balance link diversity and link utility in neighbor maregent policies. In the case
of Treeroute, links to parents are of much higher utilityrthanks to children and
siblings, because only parents can serve as next hop destin@herefore we modify
the neighborinsertion policy so that only neighbors witlvdo hop counts are admitted,
greatly reducing the size of the neighbor table.

A second issue arises as overhearing of network layer adegig@ments is re-
placed by automatic link layer retransmission. In Treegpbecause our link adaptor
consumes acknowledgements from the parent, the netwagkteaeds to hook a neigh-
bor refreshment routine to SP’s send done callback functtimerwise the neighbor
expiry process would expire the parent inadvertently if oate updates are heard from
the parent within the neighbor expiry timeout interval, alhis very likely given the
low broadcast rate maintained by the route process’s ®iokkchanism. A more sub-
tle side effect caused by reduced overhearing is the igierahsecond best parents
who reside on other branches. Lack of activity heard fronséheext hop candidates
would expire them prematurely. We can imagine that in ngdfia node’s current par-
ent becomes unavailable temporarily, then the node hasaioecto switch to another
branch, but can only resets its hop count and try to rejoirirde

We deploy a 7-node Treeroute application in a corridor. A P@necting to the
root node monitors the operation of the protocol. The ovstability and performance
is consistent with the simulation, in spite of a few problams previously discovered
by simulation. First, because the routing algorithm prefarortest paths, sometimes
a weak link in the trunk or a main branch causes significantiseidegradation. We
modify the best parent algorithm to filter out candidateswatv hop counts but weak
signal strengths, and add a filtering function to smooth mkt ¢uality fluctuations.
This results in considerably improved path robustnessgialit the cost of reduced
routing diversity. The problem exposes Treeroute’s lackmd-to-end route metric, a
shortcoming not addressed by SP either. Secondly, if a hrahnodes has only one
parent, then if the crucial link to the parent is broken, thmie branch should return to
initial states immediately. In reality, however, the he&the orphaned branch would
update its hop count so that it becomes a child of one of itgrwal children, initiating
a sequence of Ping Pong route updates between the nodes dedbebranch until
the crucial link reappears or the full branch dies out whenrttaximum hop count is
reached.

30

6.2.4 Issues With the NLA Architecture

Our porting of Treeroute to NLA/SP has not been without dradles. We summa-
rize our findings about the problems with the NLA/SP archiiez below:

e Single hop protocols such as Trickle have little use of the firained compo-
nents in NLA, except the dispatcher for the purpose of caemie with other
protocols. SP is sufficient for single hop communicationgttier more, strict
compliance to the NLA header format might introduce unnsassoverhead.
For example, we have to duplicate the source link layer asdirethe RE sub-
header to allow neighbor insertion at the recipient nodetswork layer.

e The NLA output queue has similar function as the SP messagk s can
be replaced by the latter, unless advanced packet schgghdlities are needed.
The OQ sub-header contains basically the same informasdBFRamessages.
The header is needed if the information must traverse threumultihop path
together with the payload. In that case, however, it wouldm8P messages
contain redundant information presented in the bound liagket, which cer-
tainly does not serve as a good argument to use SP.

e The NLA dispatcher's symmetrical structure might potehtisemove useful
distinction between inbound and outbound packets. For plignan inbound
packet’s link layer header are stripped off before entethngydispatcher. The
header might contain information such as source link lageiress or received
signal strength (RSS) that the application wants to infgtce

e NLA assigns the duty of 1/0O packets diversion to the forwagdengine. This
works fine in pure-form forwarding, where the payload is mewedified by in-
termediate routers. In Treeroute’s data forward procesgjeler, we need to
append a locally produced payload to the payload of the paeheg forwarded,
breaking the application-agnostic feature intended byNh@a forwarding en-
gine.

6.2.5 An Alternative Network Layer Architecture

Having learned precious experience from the NLA/SP Tregerpart, we design an
alternative network layer architecture that shares theesaxternal interfaces as NLA
but has a simpler internal structure.

Figure 6.9 illustrates the architecture. In this architeetf the dispatcher’s respon-
sibility has been changed to passing inbound link packetbeo intended service
processes, which in turn parses the link layer header tarezgke neighbor update op-
erations, as well as the network layer header to determirattvein the packet should be
passed up to the application or forwarded. The forward ppeegnow accept outbound
NPDUs directly from their respective service processes.

The modified network layer implements the same Treeroutdcses on SP. The
major gains over the previous NLA implementation is reducede size and easier
information sharing between components. The major dralybatthe other hand, is
loosened layer boundaries.

31

Application Layer

Route process hopcount Data process

,,,,,,,,,,,, APDUs | . |.AeDUs T
Route Service proces% ,,,,,,,,,,, = add/update neighbar - - - -~ Data Service process|
update hopcount < - -
NPDUs T LPDUs LPDUs T NPDUs

Network Layer

Route Forward proce}ss Dispatcher process

LPDUs LPDUs LPDUs | Query nexthop

AT - -~ best parent §

| I =

sp_send () sp_receive () } i g
,,, I

al : : le-l

I I}

I Ke)

I ey

=

[

z

SP message pogl - — [_| sp neighbor table|_ .|
incoming link packet !
I

Figure 6.9: Treeroute protocol reimplemented using a ssmpétwork layer architec-
ture and SP.

32

Chapter 7

Conclusion and Future Work

7.1 Conclusion

Our implementation and evaluation of the Sensornet Prbtmedhe Contiki op-
erating system show that SP is a suitable link abstractioricgefor construction of
modular protocol stacks that are growing more and more ceriplsensor networks.
In addition, we have verified that SP is capable of supportingtiple coexisting net-
work layer protocols when working together with a networkdaarchitecture such as
NLA. We have also found a number of interesting trade-oftsveen functionality and
comlexity in the implementation.

We believe there is still much space for improvement, howemeaspects includ-
ing message pool throughput, support of different neiglbanagement policies, and
coordination with network layer components.

7.2 Future Work

We plan to further improve our SP implementation for Coniikithe near future,
in the following areas:

e develop link adaptors for representative MAC protocols xplere any unad-
dressed needs for the SP link abstraction.

e quantify the resource requirements of SP in terms of codeasii memory, and
compare with IEEE 802.2.

e integrate SP with the-state-of-art features in Contikiahdy the Rime stack and
the COOJA cross-layer network simulator [27].

e streamline the searching and sorting operations of the S&sage pool and
neighbor table to improve both memory and code efficiency.

33

Bibliography

[1]

D. Culler, P. Dutta, Cheng T., R. Fonseca, J. Hui, P. Leasl J. Zhao. Towards
a sensor network architecture: Lowering the waistline. Pmoceedings of the
International Workshop on Hot Topics in Operating Systeirat@S) 2005.

[2] A. Dunkels, B. Gronvall, and T. Voigt. Contiki - a lighwight and flexible oper-

ating system for tiny networked sensors.|HEE Emnets;12004.

[3] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali. ProtothresidSimplifying event-

[4]

[5]

driven programming of memory-constrained embedded systémProceedings
of the 4th ACM Conference on Embedded Networked SensonSy&senSys
2006) Boulder, Colorado, USA, 2006.

IEEE Standard for Information technology — Telecomnuation and information
exchange between systems — Local and metropolitan areamstw Specific
requirements. Part 2: Logical Link Control. IEEE Computecigty, 1998.

H. Zimmermann. OSI Reference Model - The ISO Model of Aretture
for Open Systems InterconnectionlEEE Transactions on Communications
28(4):425-432, 1980.

[6] W. Ye, J. Heidemann, and D. Estrin. An Energy-Efficient @A°rotocol for

Wireless Sensor Networks. Proceedings of the 21st International Annual Joint
Conference of the IEEE Computer and Communications Sesi@iNFOCOM
2002) New York, NY, USA, June 2002.

[7] T.van Dam and K. Langendoen. An adaptive energy-effidi®&C protocol for

wireless sensor networks. Rroceedings of the first international conference on
Embedded networked sensor systgmages 171-180. ACM Press, 2003.

[8] A. El-Hoiydi, J.-D. Decotignie, C. C. Enz, and E. Le Rouwisemac, an ultra

low power mac protocol for the wisenet wireless sensor nekwdn SenSys
pages 302-303, 2003.

[9] J. Polastre, J. Hill, and D. Culler. Versatile low poweedia access for wireless

sensor networks. 18enSys '04:; Proceedings of the 2nd international conferenc
on Embedded networked sensor systgmagies 95-107, New York, NY, USA,
2004. ACM Press.

34

[10] IEEE Standard for Information technology — Telecomieation and information
exchange between systems — Local and metropolitan areameatw Specific
requirements. Part 15.4: Wireless Medium Access Contréd@Yland Physical
Layer (PHY) Specifications for Low-Rate Wireless Persona@aNetworks (LR-
WPANS). IEEE Computer Society, October 2003.

[11] IEEE Standard for Information technology — Telecomieation and information
exchange between systems — Local and metropolitan arearkastw Specific re-
quirements. Part 11: Wireless LAN Medium Access Control (8)4And Phsical
Layer (PHY) Specifications. IEEE Computer Society, 1999.

[12] zigBee Specification 2006. ZigBee Alliance, Decemh20&

[13] C. Perkins and P. Bhagwat. Highly dynamic destinatenuenced distance-
vector routing (DSDV) for mobile computers. ACM SIGCOMM’'94 Conference
on Communications Architectures, Protocols and Applaadi pages 234—-244,
1994.

[14] J.Broch, D. B. Johnsona, and D. A. Maltz. The Dynamict8etRouting Protocol
for Mobile Ad Hoc Networks (DSR). Internet-draft, IETF MANEWorking
Group, March 1998.

[15] C. Perkins, E. Belding-Royer, and S. Das. Ad-hoc on-gledndistance vector
routing. IETF Internet RFC 3561, October 2003.

[16] A. Woo, T. Tong, and D. Culler. Taming the underlying tbages of reliable
multihop routing in sensor networks. BenSys '03: Proceedings of the 1st inter-
national conference on Embedded networked sensor sygtages 1427, New
York, NY, USA, 2003. ACM Press.

[17] P. Levis, N. Patel, D. Culler, and S. Shenker. Tricklesé¥f-regulating algorithm
for code propagation and maintenance in wireless sensaoniet. InProceed-
ings of NSDI'04 March 2004.

[18] S. Nath, P. B. Gibbons, S. Seshan, and Z. R. Andersono&ys diffusion for
robust aggregation in sensor networks. SanSys '04: Proceedings of the 2nd
international conference on Embedded networked senseeragspages 250—
262, New York, NY, USA, 2004. ACM Press.

[19] J. Polastre, J. Hui, P. Levis, J. Zhao, D. Culler, S. %enand |. Stoica. A
unifying link abstraction for wireless sensor networks SenSys2005.

[20] J. PolastreA unifying link abstraction for wireless sensor networRhD disser-
tation, Univerisity of California, Berkerly, 2005.

[21] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and Rister. System archi-
tecture directions for networked sensors ABPLOS-1X2000.

[22] ChengT., R. Fonseca, S. Kim, D. Moon, A. Tavakoli, D.l€ylS. Shenker, and
I. Stoica. A modular network layer for sensornets. Rroceedings of OSDI
August 2006.

35

[23] IEEE Standard for Local and metropolitan area networkserview and Archi-
tecture. IEEE Computer Society, March 2002.

[24] J. Polastre, R. Szewczyk, and D. Culler. Telos: Enaililtra-low power wireless
research. IProc. IPSN/SPOTS’Q%0s Angeles, CA, USA, April 2005.

[25] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, andCDller. The nesC
language: A holistic approach to networked embedded systémProceedings
of the ACM SIGPLAN 2003 conference on Programming languageyd and
implementationpages 1-11, 2003.

[26] A. Dunkels. Full TCP/IP for 8-bit architectures. Proceedings of The First
International Conference on Mobile Systems, Applicati@msl Services (MO-
BISYS ‘03)May 2003.

[27] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigto§s-level sensor
network simulation with COOJA. IfProceedings of Proceedings of the First
IEEE International Workshop on Practical Issues in BuilgliSensor Network
Applications (SenseApp 200@rge 8, Tampa, Florida, USA, 2006.

36

