
The 2008 World Congress in Computer Science, Computer Engineering, and Applied Computing. pp. 69 - 75, July 14 - 17, 2008

An Efficient Routing Algorithm for Mesh-Hypercube

(M-H) Networks

Abstract - This paper presents an efficient routing algorithm

for the Mesh-Hypercube (M-H) network. The M-H network is

one of the new interconnection networking techniques use to

build high performance parallel computers. The combination

of M-H networks offers high connectivity among multiple

nodes, fault-tolerance, and load scalability. However, the

performance of M-H networks may degrade significantly in

the presence of frequent link or node failures. When a link or

node failure occurs, neither the hardware schemes nor point

to point and multistage routing algorithms can be used

without adding extra links. This paper presents an efficient

single bit store and forward (SBSF) routing algorithm for M-

H network that based on the round robin scheduling

algorithm. Simulation and numerical results suggest that the

proposed routing algorithm improves the overall performance

of M-H network by both reducing the transmission delay and

increasing the total data throughput even in the presence of

faulty nodes.

Keywords: High performance systems, Mesh-Hypercube

networks, routing algorithm, fault-tolerance, and load

scalability

1 Introduction

A key component of high performance parallel computer

architecture is the interconnection network topology which

enables the communication among different nodes of a large

parallel computer. Several different interconnection network

topologies have been proposed over the years [1, 2, 3]. One of

the most popular, new, and an efficient network topology is

the mesh-hypercube (M-H) networks. This network has been

used in different systems such as n-Cube, Intel IPSC [13, 14,

15].

With the continuous growth in network size, it is hard to

find a large size network such as an M-H network without

the presence of faulty nodes and or links. It has been shown

that the performance of M-H networks degrades as the

number of faulty links increases in a large parallel network

[11, 12]. When the numbers of faulty links or nodes increase

in the parallel system, the non-faulty reachable nodes of the

network decrease proportionally. This, therefore, results

performance degradation due to the lack of efficient routing

algorithm that can provide full reachability to each non-faulty

node of the parallel network.

This paper presents a new and an efficient single bit

store and forward (SBSF) routing algorithm for M-H network

that based on the round robin scheduling algorithm. The

proposed SBSF routing algorithm can be implemented on a

large parallel network which may consist of multiple nodes

where each node can send and receive random point-to-point

messages. The primary objective of this paper is to simulate

the data throughput of an M-H network as well as its

performance in the presence of faulty nodes and or links and

hot spots. In addition, the simulation results of this paper

allow one to examine the impact of different architectures on

the overall performance of the M-H networks. These different

architectures include dimension of the M-H networks, input

parameter values such as the variation in the total message

generation rate per clock cycle, and the introduction of faulty

links. We show that the performance of M-H networks

remains consistent even in the presence of multiple faulty

nodes. Our numerical analysis shows that the proposed

algorithm maintains a consistent performance even in the

presence of faulty nodes by making non-faulty nodes fully

reachable.

The combination of M-H network offers several

attractive features. First, it has high connectivity between the

various processors [5]. In a P processor system, a message

must traverse no more than log2 (P) links before reaching its

final destination. Second, it is a multiple instructions

multiple data (MIMD) machine, allowing different nodes of a

network to implement different component models [2]. Third,

the architecture has good scaling properties for a large value

of P [3].

As the numbers of nodes grow in an M-H network, the

number of links required at each node increases

logarithmically where as the required communication

bandwidth increases linearly. Nodes in an M-H network can

also be viewed as a directed graph where all interconnections

between the nodes occur in a synchronous order. In addition,

for the sake of experimental verification, we assume that each

link in an M-H network may carry no more than one unit

Syed S. Rizvi
1
, Khaled M. Elleithy

1
, and Aasia Riasat

2

1
Computer Science and Engineering Department, University of Bridgeport, Bridgeport, CT USA

2
Department of Computer Science, Institute of Business Management, Karachi, Pakistan

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UB ScholarWorks

https://core.ac.uk/display/52955963?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The 2008 World Congress in Computer Science, Computer Engineering, and Applied Computing. pp. 69 - 75, July 14 - 17, 2008

message in one step where each node during a step can send

at most one message to each of its neighboring node.

The remainder of this paper is organized as follows.

Section 2 presents some of the well known routing

algorithms for M-H networks. Section 3 presents the

proposed SBSF routing algorithm along with a

comprehensive discussion on its implementation. In Section

4, we examine and simulate the data throughput and the hot

spot properties to determine the overall performance of the

proposed algorithm. Finally, section 5 concludes the paper.

2 Routing algorithms for M-H networks

Substantial efforts have been devoted to the study of

message routing for M-H networks [1, 4, 5]. Routing

algorithms for M-H network are broadly classified into two

categories: oblivious routing and adaptive routing [9, 10]. In

an oblivious routing algorithm, the path of one message is

unaffected by the presence of other messages in the network

[6]. On the other hand, in an adaptive routing algorithm,

messages may be directed away from the congested parts of

the network [5, 7]. Optimal routing for given paths on

arbitrary networks has been studied extensively in the context

of store-and-forward algorithms. Routing algorithms, in

which packets do not strictly follow specific paths, are

matching routing and hot-potato routing [7, 8].

In randomized routing, a message is sent from a source

to a destination in two stages [9, 10]. In the first stage, the

message is sent from the source to a random intermediate

node. In the second stage, the intermediate node forwards the

received message to the intended destination. In each stage of

randomized routing, the message is routed using the bit-

fixing algorithm, which is also known as dimension-order

and the e-cube routing algorithms. The randomized routing

algorithms are fast and can solve any one-to-one packet

routing problems on a P-node hypercube in the order of O

(log2 P) packet steps [9]. One drawback to such algorithm,

however, is that they all require in order of O (log2 P) bit

steps when implemented on real parallel machines such as

the connection machines. Since packets always contain at

least in order of log (P) bits of addressing information, a

typical packet step really consists of O (log P) bit steps [10].

In bit-fixing routing algorithm, dimensions are ordered

in an arbitrary way and a message is always typically directed

along the lowest dimension of the network in which its

current position and its final destination differ [11]. A simple

implementation of this algorithm is shown in Fig. 1. The

routing via bit-fixing algorithm can take exponential time.

Consider a permutation on the n-cube where n = 4 and to

route a packet from 0000 to 1111, the bit-fixing routing

algorithm uses the following path:

0000 1000 1100 1110 1111→ → → → . It has been shown [9] that

this simple permutation causes the bit-fixing routing

algorithm to take in order of 2(2)n
Ω steps to route a

message. From the performance point of view, the resultant

computational complexity is not desirable.

3 Proposed SBSF routing algorithm for

the M-H networks

We propose an efficient SBSF message routing

algorithm for the M-H networks which based on a simple

round robin scheduling algorithm. The proposed SBSF

algorithm shows some good load-scalability characteristics

among the M-H nodes. One of the reasons for achieving high

scalability is due to the use of round robin scheduling

algorithm. Instead of separately using a scheduling algorithm

on each output queue, we implement the round robin

algorithm as a part of our proposed routing algorithm. By

doing this, we greatly reduce the average waiting time of

each output queue associated with each outgoing link. Our

choice for using the round robin scheduling algorithm with

the proposed SBSF algorithm is due to the fact that it is both

simple and easy to implement as well as starvation-free. The

advantages of the proposed SBSF routing algorithm such as

the reduced average waiting time per output queue and

consequently the improved data throughput can be seen in

our simulation results.

3.1 Proposed M-H model and assumptions

Before going to present the proposed SBSF routing

algorithm for an M-H network, it is worth mentioning some

of our key assumptions:

1. We assume that the total number of nodes ‘P’ in the

M-H network is equal to 2k where k represents the

dimension of a hypercube.

2. The total nodes P are identified with a unique node

number in the range of 0 to 2k – 1.

3. Every node in an M-H network has k bi-directional

links with the other nodes.

S(j)

0, 0, 0, 0

S(j)

0, 0, 0, 1

S(j)

0, 0, 1, 1

S(j)

0, 0, 0, 0

S(j)

1, 0, 0, 1

Fig.1. Bit-fixing routing algorithm

The 2008 World Congress in Computer Science, Computer Engineering, and Applied Computing. pp. 69 - 75, July 14 - 17, 2008

4. Two nodes are said to be connected if and only if their

binary addresses representation differs in exactly one

bit order.

5. The binary representation of a node in an M-H

network with k dimension has k bits (the exception is

the singular case of hypercube with k = 0).

A shortest path between any two nodes of an M-H

network is represented as a sequence of nodes
0 1
, ,......,

i
P P P

where subscript i indicates the length of the path. In an M-H

network, multiple shortest paths may exist between any two

nodes. For instance, if there are P total nodes exist in an M-H

network which is numbered from 0 to P-1 in such a way that

addresses of connected nodes differ exactly by one bit in their

binary representation (see Fig. 2), then the M-H network

exhibits some desirable properties.

It can be seen in Fig. 2 that the routing in the cube is

simplified to find any direct neighbor that reduces the

number of bit differences between the address of the recipient

and the messenger. As an illustration, let P0 and P7 be the

nodes in a k-dimensional M-H network. The total number of

bit positions at which these binary equivalents of P0 and P7

differ can be considered as the hamming distance H. In other

words, the length of the shortest path between P0 and P7 is

equal to the hamming distance H. For instance, in Fig. 2, in

order to route a message from a node P0 (000)2 to a node P7

(111)2, nodes P4 (100)2 and P6 (110)2 provides an optimal

route since at each given node along the path, the bit

differences with P7 (111)2 are reduced by one.

3.2 Proposed SBSF message passing algorithm

Fig. 3 provides the formal description of the proposed

SBSF algorithm. The proposed SBSF routing algorithm starts

by searching nodes in an M-H network. The searching is

performed in a sequential manner starting from the minimum

value of the node-address to a maximum value. For instance,

in a three dimensional hypercube within an M-H network,

the proposed routing algorithm starts searching the node

addresses from 000 and proceeds in a sequential manner until

it reaches the maximum value (i.e., 111). In other words, this

sequential searching of nodes will continue until the node

array becomes empty. Once it reaches to the end of the array,

the algorithm starts over again and this cycle of searching

goes on.

We assume that each node in an M-H network can either

generate or receive a message but not both during the same

clock cycle. Fig. 4 shows the internal architecture of each

node in an M-H network that includes one processor P, one

communication interface C, and four incoming and outgoing

links. Each link in the node architecture has an output queue

for outgoing messages. Also, it should be noted that there is

no input queue for the incoming messages as shown in Fig. 4.

This assumption implies that each incoming message for a

destination node simply goes into sink. We assume that a

node can receive or send a message during a cycle. This

implies that while C receives a message from a different node

through one of its incoming links, it can not send a message

using an output queue from a link different than the one

currently receiving a message as shown in Fig. 4. This

assumption further leads us to the following two facts: An

incoming message for a destination node can either directly

go into an output queue or be absorbed by the processor. A

message needs to wait at least one cycle before it can be sent

once it is received. In other words, you cannot receive a

message and send it out during the same cycle as if the node

did not exist.

For the sake of simulation, we assume that an M-H

network can have at most 256 nodes at one time. In other

words, for ease of understanding, our simulation supports at

most 8 dimensional hypercube within an M-H network that

can have at most 256 nodes. In addition, step 2.3 of Fig. 3

shows the use of round robin scheduling algorithm for

selecting appropriate communication link to receive

messages. For instance, when a certain node is in the busy

state (i.e., the current state of the node is either sending or

receiving or idle), it can not receive messages from other

nodes. Once the proposed routing algorithm gets a free-node,

it implements the round robin scheduling algorithm to check

the status (Busy or Free) of each outgoing link attached to the

output queue. These communication links are further

attached to other nodes as shown in Fig. 5.

Once the proposed SBSF algorithm gets a non-busy link,

it performs the following tasks. First, it checks the output

queue of the attached node (destination node) to determine is

there any message left in the queue. If the output queue does

not contain a single message, the round robin scheduling

 P0

P1

P2

P3

P4

P5

P6

P7

 P0 = 0 = 000

P1 = 1 = 001

P2 = 2 = 010

P3 = 3 = 011

P4 = 4 = 100

P5 = 5 = 101

P6 = 6 = 110

P7 = 7 = 111

For example:

P0 = 0 = 000 can go to P1, P2, and

P4. This can also be represented

as:

P0 =0=000 P1 = 1 = 001

P2 = 2 = 010

P4 = 4 = 100

H. Distance One Bit

Fig.2. Numbering scheme for three dimensional M-H

networks

The 2008 World Congress in Computer Science, Computer Engineering, and Applied Computing. pp. 69 - 75, July 14 - 17, 2008

algorithm will move to the next immediate communication

link. Secondly, if the output queue contains at least one or

more messages, the sinking node starts retrieving the

message(s) from the output queue of the attached destination

node. Finally, the round robin scheduling algorithm changes

the status of both the sinking node and the communication

link and set them as busy.

The important point that we should note here is the

advancement of the round robin scheduling algorithm from

the current link to the next communication link. If we do not

advance to the next link, the proposed SBSF routing

algorithm does not achieve the load-scalability that results

higher values of average waiting time in each output queue.

The higher values of average waiting time in each output

queue would likely to reduce the overall data throughput of

an M-H network.

4 Experimental verifications and the

simulation results

We categorize our performance analysis of proposed

SBSF routing algorithm for an M-H network in two parts. In

Formal Specification of Proposed SBSF Routing Algorithm for M-H Networks

1- Starts searching the nodes

 Search Node_ Address [Minimum] to Node_ Address [Maximum]

2- Check the status of each visiting node

2.1. [Set Node status]

 Set Node Status = = Sending or

 Set Node Status = = Receiving

 [Repeat Step 2.2 or Step 2.3] While Node ≠ NULL

2.2. [Check the Condition] If Node Status = Sending Then

 Set Node Status = = Creating a Message or

 Set Node Status = = Receiving a Message or

 Set Node Status = = Sending a Message or

 Set Node Status = = Idle

 [End of Step 2.2]

 [Go back to step-2] Advanced to Next Node

 2.3. [Check the Condition] If Status = Receiving Then

 2.3.1. Implement Round Robin Scheduling Algorithm

 [Start Sequential Search for Node Status]

 2.3.1.1. If Node = Busy Then

 2.3.1.1.1. Advanced to Next Node

 2.3.1.1.2. Go back to Step 2.3.1

2.3.1.2 If Node ≠ Busy Then

[Start Sequential Search for each outgoing link status]

 2.3.1.2.1. If Link = Busy Then

 Advanced to Next Lin

2.3.1.2.2. If Link ≠ Busy Then

 [Get message from the free-node]

 [Change the status of each node]

 Set Sink Node ==BUSY

 Set Destination Node = BUSY

2.3.1.2.3. Advanced the Link

2.3.1.2.4. Go back to Step 2.3.1

 [End of Step 2.3(Round Robin Scheduling Algorithm for Message Reception)]

 [Go back to Step 2] Advance to Next Node

 2.4. [End of Step-2]

 [Go back to Step-1]

 3- [End of Step-1]

 [EXIT]

Fig. 3. Formal description of the proposed SBSF routing algorithm

The 2008 World Congress in Computer Science, Computer Engineering, and Applied Computing. pp. 69 - 75, July 14 - 17, 2008

the first part, we present our performance analysis when all

communication links are in the operational mode where as in

the second part faulty links or nodes will be considered.

4.1 Performance analysis in the absence of

faulty links or nodes

For this section, a three dimensional M-H network is

considered that can have at most 8 nodes. Furthermore, we

run all simulations for 10000 cycles. In addition, the hot spot

property is also set to zero (i.e., the probability of creating hot

spot is set to zero to ensure an ideal condition for an M-H

network).

Fig. 6 shows the average waiting time in the output

queue and the maximum output queue size with respect to a

range of message transmission probabilities. Average waiting

time in the output queue is the amount of time by which each

packet needs to wait until it reaches to the final destination

node as shown in Fig. 6. On the other hand, the maximum

link output queue size is the size found on any given node

during the simulation. As we increase the probability of

message transmission, nodes in M-H network create more

messages and send them to one or more output queues where

they reside until they get a chance to transmit to other nodes.

It can be seen in Fig. 6 that the increase in probability of

message transmission results a large number of message

creation which might make the output queue congested. As

the output queue becomes congested due to a linear increase

in the probability of message transmission, the average

waiting time per node in the output queue increases

significantly. In addition, the simulation result of Fig. 6

proves the correctness of our proposed SBSF routing

algorithm.

Fig. 7 shows the data throughput with respect to the

probability of message transmission. The data throughput is

the product of utilization per node and the total messages

received successfully. In harmony to our expectations, the

reduction in the messages received per node causes a

reduction of data throughput for the M-H network. It should

be noted that the data throughput in Fig.7 represents the

number of messages received per node in total cycles (i.e., we

set the design parameter CTotal 10000 cycles for all

simulations that we run). For instance, according to our

numerical analysis, when we have 25% of probability, the

total number of messages received is around 13043 that

generate approximately 4891 messages per node. This

implies that each node processes approximately half

messages (0.489 messages) of information per clock cycle. It

can be seen in Fig. 7 that the throughput reduces due to the

reduction in the total messages received successfully.

4.2 Performance analysis in the presence of

faulty links or nodes

For this section, we introduce faulty links and nodes. As

one can easily observe that the introduction of faulty links

and nodes in M-H network reduces message transmission and

Fig.4. Internal architecture of a node in a hypercube

network

Fig.5. Implementation of the proposed SBSF message

passing routing algorithm

0 10 20 30 40 50 60 70 80 90 100
500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

Average Waiting Time(Cycles) and the Maxim um Queue Size (Messages) versus

Probability of Message Transm ission

Probablity Of Transmission (%)

A
v

e
ra

g
e

 W
a

it
in

g
 T

im
e

 &
 T

h
e

 S
iz

e
 O

f
O

u
tp

u
t

Q
u

e
u

e

Avg Waiting time

Max Queue Size

Fig.6. Average waiting time (Cycles) and the maximum

queue size (Messages) versus probability of message

transmission

The 2008 World Congress in Computer Science, Computer Engineering, and Applied Computing. pp. 69 - 75, July 14 - 17, 2008

reception as well as a slight decrease in overall data

throughput.

By carefully looking at the simulation results of Fig. 8,

one can make a conclusion that broken links in M-H network

are more affected to message reception as compared to

message transmission. With harmony to our expectations, the

simulation results of Fig. 8 shows a nice reduction in both

message transmission and reception.

Fig. 9 shows the simulation results for utilization per

node and the data throughput in the presence of faulty links.

It should be noted in Fig. 9 that an average utilization per

node in the presence of faulty link is the same as in the

presence of no faulty link except at one place. This is due to

the fact that the utilization per node heavily relies on the total

number of messages generated and received. As we have

mentioned in Fig. 8 that the presence of faulty links and

nodes does not have any sever effects on the message creation

as compared to the message reception. This implies that the

message creation in the presence of faulty link dominates the

total number of messages created and received per node and

thus cancels out the effects of reduced message reception on

the utilization.

This is one of the reasons that why utilization per node

remains the same for both faulty and non-faulty link. On the

other hand, the data throughput in the presence of faulty link

has decreased slightly as shown in Fig. 9. It should be noted

that the data throughput is a product of utilization per node

and the total number of messages received successfully. Since

the utilization is same for both faulty and non-faulty links,

the reduction in the total number of received messages due to

a faulty link causes a slight decrease in the data throughput.

However, the overall data throughput performance is almost

overlapping for most of the values of transmission probability

as shown in Fig. 9.

5 Conclusion

In this paper, we presented a new SBSF routing

algorithm for an efficient transmission and reception of

messages between the nodes within an M-H network. Our

simulation results have shown that the proposed algorithm

maintains a consistent performance even in the presence of

faulty nodes or links. In addition, our experimental

verifications suggest that the proposed routing algorithm

improves the overall performance of the M-H networks by

providing scalable performance for large networks. In

addition, both numerical and simulation results presented in

this paper show the effectiveness of the proposed SBSF

0 10 20 30 40 50 60 70 80 90 100
0

2000

4000

6000

8000

10000

12000

14000

Data Throughput versus

Probability of Message Transmission

Probablity Of Transmission (%)

M
e

s
s

a
g

e
s

 R
e

c
e

iv
e

d
 &

 D
a

ta
 T

h
ro

u
g

h
p

u
t

Message Receive

Data Throughput

Fig.7. Data throughput versus probability of message

transmission

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8
x 10

4
Message Creation and Rece ption Versus

Probability Of Me ssage Transmission With Faulty Link

Probablity Of Transm is sion (%)

M
e

s
s

a
g

e
s

 C
re

a
te

 &
 R

e
c

e
iv

e
 W

it
h

 F
L

 &
 N

o
 F

L

Message Create(No FL)

Message Receive(No FL)

Message Create(FL)

Message Receive(FL)

Fig.8. Message creation and reception versus probability

of message transmission with faulty link (FL)

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Utilization Per Node & Data Throughput Versus

Probability Of Message Transmission With Faulty Link

Probablity Of Transm ission (%)

U
ti

li
z

a
ti

o
n

 P
e

r
N

o
d

e
 &

 D
a

ta
 T

h
ro

u
g

h
p

u
t

W
it

h
 F

L
 &

 N
o

 F
L

Utilization/Node(No FL)

Data Throughput(No FL)

Utilization/Node(FL)

Data Throughput(FL)

Fig.9. Utilization per node and data throughput versus

probability of message transmission with faulty link (FL)

The 2008 World Congress in Computer Science, Computer Engineering, and Applied Computing. pp. 69 - 75, July 14 - 17, 2008

algorithm by minimizing the average waiting time per output

queue as well as increasing the total data throughput for both

faulty and non-faulty links.

6 Reference

[1] S. Cheng and J. Chuang, “Varietal hypercube-a new

interconnection network topology for large scale

multicomputer,” International Conference on Parallel and

Distributed Systems, Vol. 19, Issue 22, pp. 703 – 708, Dec

1994.

[2] Z. Sergio N., “Analysis of Cluster Interco connection Network

Topologies,” M. S. Thesis, The University of Texas At El

Paso, July 2004.

[3] A. Louriand and H. Sung, “An optical multi-mesh hypercube: a

scalable optical interconnection network for massively parallel

computing,” Journal of Lightwave Technology, Vol. 12, Issue.

4, pp. 704 – 716, Apr 1994.

[4] T. Liu, W. Huang, F. Lombardi et al. “A submesh allocation

scheme for mesh-connected multiprocessor systems,” In Proc.

Int. Conf. Parallel Processing II, 1995, pp.159-163.

[5] B. Al-Mahadeen and M. Omari, “Adaptive wormhole routing

in mesh-hypercube network,” Journal of Ap- plied Sciences,

vol. 4, no. 4, pp. 568–574, 2004

[6] C. Kaklamanism, D. Krizanc, and T. Tsantilas, “Tight bounds

for oblivious routing in the hypercube,” Proceedings of the

second annual ACM symposium on Parallel algorithms and

architectures, pp. 31 – 36, 1990.

[7] I. Ben-Aroya, D. Chinn, A. Schuster, “A lower bound for

nearly minimal adaptive and hot potato algorithms,”

Algorithmica, vol. 21, pp. 347-376, 1998.

[8] C. Busch, M. Herlihy, R. Wattenhofer, “Hard-potato routing,”

in Proceedings of the 32
nd

 Annual ACM Symposium on Theory

of Computing, pp. 278-285, 2000.

[9] M. Mitzenmacher and E. Upfal, Probability and Computing:

Randomized Algorithms and Probabilistic Analysis,

Cambridge University Press, January 31, 2005.

[10] R. Motwani and P. Raghavan, Randomized Algorithms,

Cambridge University Press, Cambridge, UK, 2000.

[11] M. Harrington, “New method for synchronizing distributed

systems in the presence of faults,” MSEE thesis, Dep. Elec.

Eng., Univ. of Washington, March. 1991.

[12] M. Harrington and A. Somani, “Synchronizing hypercube

networks in the presence of faults,” IEEE Trans. on Computers

Archive, vol. 43, Issue 10, pp. 1175 – 1183, 1994.

[13] C. McCreary, M. McArdle, J. McCreary, “Broadcast

communication delay metric for the iPSC/2 and iPSC/860

hyper-cubes,” Proceedings of the 30th annual Southeast

regional conference, Session 3A, pp. 53 – 60, 1992.

[14] A. Littlefield, “Characterizing and tuning communication

performance on the Touchstone DELTA and iPSC/860,” In

Proceedings of the 1992 Intel User's Group Meeting, Dallas,

TX, October 4-7 1992, Intel Corp

[15] L. Bomans and D. Roose, "Communications Benchmarks for

the iPSC/2", Hypercube and Distributed Computers, Elsevier

Science Publishers B.V., North-Holland, 1989.

