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An Efficient Routing Algorithm for Mesh-Hypercube 

(M-H) Networks 

  

Abstract - This paper presents an efficient routing algorithm 

for the Mesh-Hypercube (M-H) network. The M-H network is 

one of the new interconnection networking techniques use to 

build high performance parallel computers. The combination 

of M-H networks offers high connectivity among multiple 

nodes, fault-tolerance, and load scalability. However, the 

performance of M-H networks may degrade significantly in 

the presence of frequent link or node failures. When a link or 

node failure occurs, neither the hardware schemes nor point 

to point and multistage routing algorithms can be used 

without adding extra links. This paper presents an efficient 

single bit store and forward (SBSF) routing algorithm for M-

H network that based on the round robin scheduling 

algorithm. Simulation and numerical results suggest that the 

proposed routing algorithm improves the overall performance 

of M-H network by both reducing the transmission delay and 

increasing the total data throughput even in the presence of 

faulty nodes. 

 

Keywords: High performance systems, Mesh-Hypercube 

networks, routing algorithm, fault-tolerance, and load 
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1 Introduction 

A key component of high performance parallel computer 

architecture is the interconnection network topology which 

enables the communication among different nodes of a large 

parallel computer. Several different interconnection network 

topologies have been proposed over the years [1, 2, 3]. One of 

the most popular, new, and an efficient network topology is 

the mesh-hypercube (M-H) networks. This network has been 

used in different systems such as n-Cube, Intel IPSC [13, 14, 

15].  

With the continuous growth in network size, it is hard to 

find a large size network such as an M-H network without 

the presence of faulty nodes and or links. It has been shown 

that the performance of M-H networks degrades as the 

number of faulty links increases in a large parallel network 

[11, 12]. When the numbers of faulty links or nodes increase 

in the parallel system, the non-faulty reachable nodes of the 

network decrease proportionally. This, therefore, results 

performance degradation due to the lack of efficient routing 

algorithm that can provide full reachability to each non-faulty 

node of the parallel network.  

This paper presents a new and an efficient single bit 

store and forward (SBSF) routing algorithm for M-H network 

that based on the round robin scheduling algorithm. The 

proposed SBSF routing algorithm can be implemented on a 

large parallel network which may consist of multiple nodes 

where each node can send and receive random point-to-point 

messages. The primary objective of this paper is to simulate 

the data throughput of an M-H network as well as its 

performance in the presence of faulty nodes and or links and 

hot spots. In addition, the simulation results of this paper 

allow one to examine the impact of different architectures on 

the overall performance of the M-H networks. These different 

architectures include dimension of the M-H networks, input 

parameter values such as the variation in the total message 

generation rate per clock cycle, and the introduction of faulty 

links. We show that the performance of M-H networks 

remains consistent even in the presence of multiple faulty 

nodes. Our numerical analysis shows that the proposed 

algorithm maintains a consistent performance even in the 

presence of faulty nodes by making non-faulty nodes fully 

reachable. 

The combination of M-H network offers several 

attractive features. First, it has high connectivity between the 

various processors [5]. In a P processor system, a message 

must traverse no more than log2 (P) links before reaching its 

final destination. Second, it is a multiple instructions 

multiple data (MIMD) machine, allowing different nodes of a 

network to implement different component models [2]. Third, 

the architecture has good scaling properties for a large value 

of P [3]. 

As the numbers of nodes grow in an M-H network, the 

number of links required at each node increases 

logarithmically where as the required communication 

bandwidth increases linearly. Nodes in an M-H network can 

also be viewed as a directed graph where all interconnections 

between the nodes occur in a synchronous order. In addition, 

for the sake of experimental verification, we assume that each 

link in an M-H network may carry no more than one unit 
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message in one step where each node during a step can send 

at most one message to each of its neighboring node.  

The remainder of this paper is organized as follows. 

Section 2 presents some of the well known routing 

algorithms for M-H networks. Section 3 presents the 

proposed SBSF routing algorithm along with a 

comprehensive discussion on its implementation. In Section 

4, we examine and simulate the data throughput and the hot 

spot properties to determine the overall performance of the 

proposed algorithm. Finally, section 5 concludes the paper.  

2 Routing algorithms for M-H networks 

Substantial efforts have been devoted to the study of 

message routing for M-H networks [1, 4, 5]. Routing 

algorithms for M-H network are broadly classified into two 

categories:  oblivious routing and adaptive routing [9, 10]. In 

an oblivious routing algorithm, the path of one message is 

unaffected by the presence of other messages in the network 

[6]. On the other hand, in an adaptive routing algorithm, 

messages may be directed away from the congested parts of 

the network [5, 7]. Optimal routing for given paths on 

arbitrary networks has been studied extensively in the context 

of store-and-forward algorithms. Routing algorithms, in 

which packets do not strictly follow specific paths, are 

matching routing and hot-potato routing [7, 8]. 

In randomized routing, a message is sent from a source 

to a destination in two stages [9, 10]. In the first stage, the 

message is sent from the source to a random intermediate 

node. In the second stage, the intermediate node forwards the 

received message to the intended destination. In each stage of 

randomized routing, the message is routed using the bit-

fixing algorithm, which is also known as dimension-order 

and the e-cube routing algorithms. The randomized routing 

algorithms are fast and can solve any one-to-one packet 

routing problems on a P-node hypercube in the order of O 

(log2 P) packet steps [9]. One drawback to such algorithm, 

however, is that they all require in order of O (log2 P) bit 

steps when implemented on real parallel machines such as 

the connection machines. Since packets always contain at 

least in order of log (P) bits of addressing information, a 

typical packet step really consists of O (log P) bit steps [10].  

In bit-fixing routing algorithm, dimensions are ordered 

in an arbitrary way and a message is always typically directed 

along the lowest dimension of the network in which its 

current position and its final destination differ [11]. A simple 

implementation of this algorithm is shown in Fig. 1. The 

routing via bit-fixing algorithm can take exponential time. 

Consider a permutation on the n-cube where n = 4 and to 

route a packet from 0000 to 1111, the bit-fixing routing 

algorithm uses the following path: 

0000 1000 1100 1110 1111→ → → → . It has been shown [9] that 

this simple permutation causes the bit-fixing routing 

algorithm to take in order of 2(2 )n
Ω steps to route a 

message. From the performance point of view, the resultant 

computational complexity is not desirable. 

 

3 Proposed SBSF routing algorithm for 

the M-H networks 

We propose an efficient SBSF message routing 

algorithm for the M-H networks which based on a simple 

round robin scheduling algorithm. The proposed SBSF 

algorithm shows some good load-scalability characteristics 

among the M-H nodes. One of the reasons for achieving high 

scalability is due to the use of round robin scheduling 

algorithm. Instead of separately using a scheduling algorithm 

on each output queue, we implement the round robin 

algorithm as a part of our proposed routing algorithm. By 

doing this, we greatly reduce the average waiting time of 

each output queue associated with each outgoing link. Our 

choice for using the round robin scheduling algorithm with 

the proposed SBSF algorithm is due to the fact that it is both 

simple and easy to implement as well as starvation-free. The 

advantages of the proposed SBSF routing algorithm such as 

the reduced average waiting time per output queue and 

consequently the improved data throughput can be seen in 

our simulation results. 

3.1 Proposed M-H model and assumptions 

Before going to present the proposed SBSF routing 

algorithm for an M-H network, it is worth mentioning some 

of our key assumptions: 

1. We assume that the total number of nodes ‘P’ in the 

M-H network is equal to 2k where k represents the 

dimension of a hypercube. 

2. The total nodes P are identified with a unique node 

number in the range of 0 to 2k – 1.  

3. Every node in an M-H network has k bi-directional 

links with the other nodes. 

 

S(j) 

0, 0, 0, 0 

S(j) 

0, 0, 0, 1 

S(j) 

0, 0, 1, 1 

S(j) 

0, 0, 0, 0 

S(j) 

1, 0, 0, 1 

 
 

Fig.1. Bit-fixing routing algorithm 
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4. Two nodes are said to be connected if and only if their 

binary addresses representation differs in exactly one 

bit order. 

5. The binary representation of a node in an M-H 

network with k dimension has k bits (the exception is 

the singular case of hypercube with k = 0). 

 

A shortest path between any two nodes of an M-H 

network is represented as a sequence of nodes 
0 1
, ,......,

i
P P P  

where subscript i indicates the length of the path. In an M-H 

network, multiple shortest paths may exist between any two 

nodes. For instance, if there are P total nodes exist in an M-H 

network which is numbered from 0 to P-1 in such a way that 

addresses of connected nodes differ exactly by one bit in their 

binary representation (see Fig. 2), then the M-H network 

exhibits some desirable properties. 

It can be seen in Fig. 2 that the routing in the cube is 

simplified to find any direct neighbor that reduces the 

number of bit differences between the address of the recipient 

and the messenger. As an illustration, let P0 and P7 be the 

nodes in a k-dimensional M-H network. The total number of 

bit positions at which these binary equivalents of P0 and P7 

differ can be considered as the hamming distance H. In other 

words, the length of the shortest path between P0 and P7 is 

equal to the hamming distance H. For instance, in Fig. 2, in 

order to route a message from a node P0 (000)2 to a node P7 

(111)2, nodes P4 (100)2 and P6 (110)2 provides an optimal 

route since at each given node along the path, the bit 

differences with P7 (111)2 are reduced by one. 

3.2 Proposed SBSF message passing algorithm 

Fig. 3 provides the formal description of the proposed 

SBSF algorithm. The proposed SBSF routing algorithm starts 

by searching nodes in an M-H network. The searching is 

performed in a sequential manner starting from the minimum 

value of the node-address to a maximum value. For instance, 

in a three dimensional hypercube within an M-H network, 

the proposed routing algorithm starts searching the node 

addresses from 000 and proceeds in a sequential manner until 

it reaches the maximum value (i.e., 111). In other words, this 

sequential searching of nodes will continue until the node 

array becomes empty. Once it reaches to the end of the array, 

the algorithm starts over again and this cycle of searching 

goes on. 

We assume that each node in an M-H network can either 

generate or receive a message but not both during the same 

clock cycle. Fig. 4 shows the internal architecture of each 

node in an M-H network that includes one processor P, one 

communication interface C, and four incoming and outgoing 

links. Each link in the node architecture has an output queue 

for outgoing messages.  Also, it should be noted that there is 

no input queue for the incoming messages as shown in Fig. 4. 

This assumption implies that each incoming message for a 

destination node simply goes into sink. We assume that a 

node can receive or send a message during a cycle.  This 

implies that while C receives a message from a different node 

through one of its incoming links, it can not send a message 

using an output queue from a link different than the one 

currently receiving a message as shown in Fig. 4. This 

assumption further leads us to the following two facts: An 

incoming message for a destination node can either directly 

go into an output queue or be absorbed by the processor. A 

message needs to wait at least one cycle before it can be sent 

once it is received. In other words, you cannot receive a 

message and send it out during the same cycle as if the node 

did not exist.  

For the sake of simulation, we assume that an M-H 

network can have at most 256 nodes at one time. In other 

words, for ease of understanding, our simulation supports at 

most 8 dimensional hypercube within an M-H network that 

can have at most 256 nodes. In addition, step 2.3 of Fig. 3 

shows the use of round robin scheduling algorithm for 

selecting appropriate communication link to receive 

messages. For instance, when a certain node is in the busy 

state (i.e., the current state of the node is either sending or 

receiving or idle), it can not receive messages from other 

nodes. Once the proposed routing algorithm gets a free-node, 

it implements the round robin scheduling algorithm to check 

the status (Busy or Free) of each outgoing link attached to the 

output queue. These communication links are further 

attached to other nodes as shown in Fig. 5. 

Once the proposed SBSF algorithm gets a non-busy link, 

it performs the following tasks. First, it checks the output 

queue of the attached node (destination node) to determine is 

there any message left in the queue. If the output queue does 

not contain a single message, the round robin scheduling 

 P0 

P1 

P2 

P3 

P4 

P5 

P6 

P7 
 

 

 P0 = 0 = 000 

P1 = 1 = 001 

P2 = 2 = 010 

P3 = 3 = 011 

P4 = 4 = 100 

P5 = 5 = 101 

P6 = 6 = 110 

P7 = 7 = 111 

For example: 

P0 = 0 = 000 can go to P1, P2, and 

P4. This can also be represented 

as: 

P0 =0=000        P1 = 1 = 001 

P2 = 2 = 010 

P4 = 4 = 100 

H. Distance One Bit 

 
 

Fig.2. Numbering scheme for three dimensional M-H 

networks 
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algorithm will move to the next immediate communication 

link. Secondly, if the output queue contains at least one or 

more messages, the sinking node starts retrieving the 

message(s) from the output queue of the attached destination 

node. Finally, the round robin scheduling algorithm changes 

the status of both the sinking node and the communication 

link and set them as busy.   

The important point that we should note here is the 

advancement of the round robin scheduling algorithm from 

the current link to the next communication link. If we do not 

advance to the next link, the proposed SBSF routing 

algorithm does not achieve the load-scalability that results 

higher values of average waiting time in each output queue. 

The higher values of average waiting time in each output 

queue would likely to reduce the overall data throughput of 

an M-H network. 

4 Experimental verifications and the 

simulation results 

We categorize our performance analysis of proposed 

SBSF routing algorithm for an M-H network in two parts. In 

 

Formal Specification of Proposed SBSF Routing Algorithm for M-H Networks 

 

1- Starts searching the nodes 

 Search Node_ Address [Minimum] to Node_ Address [Maximum]   

2- Check the status of each visiting node 

2.1. [Set Node status]  

 Set Node Status = = Sending or 

  Set Node Status = = Receiving 

 [Repeat Step 2.2 or Step 2.3] While Node ≠ NULL 

2.2. [Check the Condition] If Node Status = Sending Then 

  Set Node Status = = Creating a Message or 

  Set Node Status = = Receiving a Message or 

  Set Node Status = = Sending a Message or 

  Set Node Status = = Idle 

  [End of Step 2.2]  

  [Go back to step-2] Advanced to Next Node  

 2.3. [Check the Condition] If Status = Receiving Then   

  2.3.1. Implement Round Robin Scheduling Algorithm 

   [Start Sequential Search for Node Status]  

   2.3.1.1. If Node = Busy Then 

    2.3.1.1.1. Advanced to Next Node 

    2.3.1.1.2. Go back to Step 2.3.1 

2.3.1.2 If Node ≠ Busy Then 

[Start Sequential Search for each outgoing link status]   

    2.3.1.2.1. If Link = Busy Then 

      Advanced to Next Lin 

2.3.1.2.2. If Link ≠ Busy Then 

  [Get message from the free-node] 

  [Change the status of each node] 

  Set Sink Node ==BUSY  

  Set Destination Node = BUSY 

2.3.1.2.3. Advanced the Link  

2.3.1.2.4. Go back to Step 2.3.1 

   [End of Step 2.3(Round Robin Scheduling Algorithm for Message Reception)]  

   [Go back to Step 2] Advance to Next Node   

  2.4. [End of Step-2] 

   [Go back to Step-1] 

 3- [End of Step-1]      

 [EXIT] 

 

Fig.  3. Formal description of the proposed SBSF routing algorithm 
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the first part, we present our performance analysis when all 

communication links are in the operational mode where as in 

the second part faulty links or nodes will be considered. 

 

4.1 Performance analysis in the absence of 

faulty links or nodes 

For this section, a three dimensional M-H network is 

considered that can have at most 8 nodes. Furthermore, we 

run all simulations for 10000 cycles. In addition, the hot spot 

property is also set to zero (i.e., the probability of creating hot 

spot is set to zero to ensure an ideal condition for an M-H 

network). 

Fig. 6 shows the average waiting time in the output 

queue and the maximum output queue size with respect to a 

range of message transmission probabilities. Average waiting 

time in the output queue is the amount of time by which each 

packet needs to wait until it reaches to the final destination 

node as shown in Fig. 6. On the other hand, the maximum 

link output queue size is the size found on any given node 

during the simulation. As we increase the probability of 

message transmission, nodes in M-H network create more 

messages and send them to one or more output queues where 

they reside until they get a chance to transmit to other nodes.   

It can be seen in Fig. 6 that the increase in probability of 

message transmission results a large number of message 

creation which might make the output queue congested. As 

the output queue becomes congested due to a linear increase 

in the probability of message transmission, the average 

waiting time per node in the output queue increases 

significantly. In addition, the simulation result of Fig. 6 

proves the correctness of our proposed SBSF routing 

algorithm.  

Fig. 7 shows the data throughput with respect to the 

probability of message transmission. The data throughput is 

the product of utilization per node and the total messages 

received successfully. In harmony to our expectations, the 

reduction in the messages received per node causes a 

reduction of data throughput for the M-H network. It should 

be noted that the data throughput in Fig.7 represents the 

number of messages received per node in total cycles (i.e., we 

set the design parameter CTotal 10000 cycles for all 

simulations that we run). For instance, according to our 

numerical analysis, when we have 25% of probability, the 

total number of messages received is around 13043 that 

generate approximately 4891 messages per node. This 

implies that each node processes approximately half 

messages (0.489 messages) of information per clock cycle. It 

can be seen in Fig. 7 that the throughput reduces due to the 

reduction in the total messages received successfully. 

4.2 Performance analysis in the presence of 

faulty links or nodes 

For this section, we introduce faulty links and nodes. As 

one can easily observe that the introduction of faulty links 

and nodes in M-H network reduces message transmission and 

 

 
Fig.4. Internal architecture of a node in a hypercube 

network 

 

 

 

 
 

Fig.5. Implementation of the proposed SBSF message 

passing routing algorithm 
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reception as well as a slight decrease in overall data 

throughput.  

By carefully looking at the simulation results of Fig. 8, 

one can make a conclusion that broken links in M-H network 

are more affected to message reception as compared to 

message transmission. With harmony to our expectations, the 

simulation results of Fig. 8 shows a nice reduction in both 

message transmission and reception.  

Fig. 9 shows the simulation results for utilization per 

node and the data throughput in the presence of faulty links. 

It should be noted in Fig. 9 that an average utilization per 

node in the presence of faulty link is the same as in the 

presence of no faulty link except at one place. This is due to 

the fact that the utilization per node heavily relies on the total 

number of messages generated and received. As we have 

mentioned in Fig. 8 that the presence of faulty links and 

nodes does not have any sever effects on the message creation 

as compared to the message reception. This implies that the 

message creation in the presence of faulty link dominates the 

total number of messages created and received per node and 

thus cancels out the effects of reduced message reception on 

the utilization.  

This is one of the reasons that why utilization per node 

remains the same for both faulty and non-faulty link. On the 

other hand, the data throughput in the presence of faulty link 

has decreased slightly as shown in Fig. 9. It should be noted 

that the data throughput is a product of utilization per node 

and the total number of messages received successfully. Since 

the utilization is same for both faulty and non-faulty links, 

the reduction in the total number of received messages due to 

a faulty link causes a slight decrease in the data throughput. 

However, the overall data throughput performance is almost 

overlapping for most of the values of transmission probability 

as shown in Fig. 9. 

5 Conclusion 

In this paper, we presented a new SBSF routing 

algorithm for an efficient transmission and reception of 

messages between the nodes within an M-H network. Our 

simulation results have shown that the proposed algorithm 

maintains a consistent performance even in the presence of 

faulty nodes or links. In addition, our experimental 

verifications suggest that the proposed routing algorithm 

improves the overall performance of the M-H networks by 

providing scalable performance for large networks. In 

addition, both numerical and simulation results presented in 

this paper show the effectiveness of the proposed SBSF 
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algorithm by minimizing the average waiting time per output 

queue as well as increasing the total data throughput for both 

faulty and non-faulty links.  
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