131 research outputs found

    New results on rewrite-based satisfiability procedures

    Full text link
    Program analysis and verification require decision procedures to reason on theories of data structures. Many problems can be reduced to the satisfiability of sets of ground literals in theory T. If a sound and complete inference system for first-order logic is guaranteed to terminate on T-satisfiability problems, any theorem-proving strategy with that system and a fair search plan is a T-satisfiability procedure. We prove termination of a rewrite-based first-order engine on the theories of records, integer offsets, integer offsets modulo and lists. We give a modularity theorem stating sufficient conditions for termination on a combinations of theories, given termination on each. The above theories, as well as others, satisfy these conditions. We introduce several sets of benchmarks on these theories and their combinations, including both parametric synthetic benchmarks to test scalability, and real-world problems to test performances on huge sets of literals. We compare the rewrite-based theorem prover E with the validity checkers CVC and CVC Lite. Contrary to the folklore that a general-purpose prover cannot compete with reasoners with built-in theories, the experiments are overall favorable to the theorem prover, showing that not only the rewriting approach is elegant and conceptually simple, but has important practical implications.Comment: To appear in the ACM Transactions on Computational Logic, 49 page

    Abstract Canonical Inference

    Full text link
    An abstract framework of canonical inference is used to explore how different proof orderings induce different variants of saturation and completeness. Notions like completion, paramodulation, saturation, redundancy elimination, and rewrite-system reduction are connected to proof orderings. Fairness of deductive mechanisms is defined in terms of proof orderings, distinguishing between (ordinary) "fairness," which yields completeness, and "uniform fairness," which yields saturation.Comment: 28 pages, no figures, to appear in ACM Trans. on Computational Logi

    Proof Certificates for Equality Reasoning

    Get PDF
    International audienceThe kinds of inference rules and decision procedures that one writes for proofs involving equality and rewriting are rather different from proofs that one might write in first-order logic using, say, sequent calculus or natural deduction. For example, equational logic proofs are often chains of replacements or applications of oriented rewriting and normal forms. In contrast, proofs involving logical connectives are trees of introduction and elimination rules. We shall illustrate here how it is possible to check various equality-based proof systems with a programmable proof checker (the kernel checker) for first-order logic. Our proof checker's design is based on the implementation of focused proof search and on making calls to (user-supplied) clerks and experts predicates that are tied to the two phases found in focused proofs. It is the specification of these clerks and experts that provide a formal definition of the structure of proof evidence. As we shall show, such formal definitions work just as well in the equational setting as in the logic setting where this scheme for proof checking was originally developed. Additionally, executing such a formal definition on top of a kernel provides an actual proof checker that can also do a degree of proof reconstruction. We shall illustrate the flexibility of this approach by showing how to formally define (and check) rewriting proofs of a variety of designs

    Rewrite-based equational theorem proving with selection and simplification

    No full text
    We present various refutationally complete calculi for first-order clauses with equality that allow for arbitrary selection of negative atoms in clauses. Refutation completeness is established via the use of well-founded orderings on clauses for defining a Herbrand model for a consistent set of clauses. We also formulate an abstract notion of redundancy and show that the deletion of redundant clauses during the theorem proving process preserves refutation completeness. It is often possible to compute the closure of nontrivial sets of clauses under application of non-redundant inferences. The refutation of goals for such complete sets of clauses is simpler than for arbitrary sets of clauses, in particular one can restrict attention to proofs that have support from the goals without compromising refutation completeness. Additional syntactic properties allow to restrict the search space even further, as we demonstrate for so-called quasi-Horn clauses. The results in this paper contain as special cases or generalize many known results about Knuth-Bendix-like completion procedures (for equations, Horn clauses, and Horn clauses over built-in Booleans), completion of first-order clauses by clausal rewriting, and inductive theorem proving for Horn clauses

    Set of support, demodulation, paramodulation: a historical perspective

    Get PDF
    This article is a tribute to the scientific legacy of automated reasoning pioneer and JAR founder Lawrence T. (Larry) Wos. Larry's main technical contributions were the set-of-support strategy for resolution theorem proving, and the demodulation and paramodulation inference rules for building equality into resolution. Starting from the original definitions of these concepts in Larry's papers, this survey traces their evolution, unearthing the often forgotten trails that connect Larry's original definitions to those that became standard in the field

    Smart matching

    Full text link
    One of the most annoying aspects in the formalization of mathematics is the need of transforming notions to match a given, existing result. This kind of transformations, often based on a conspicuous background knowledge in the given scientific domain (mostly expressed in the form of equalities or isomorphisms), are usually implicit in the mathematical discourse, and it would be highly desirable to obtain a similar behavior in interactive provers. The paper describes the superposition-based implementation of this feature inside the Matita interactive theorem prover, focusing in particular on the so called smart application tactic, supporting smart matching between a goal and a given result.Comment: To appear in The 9th International Conference on Mathematical Knowledge Management: MKM 201

    OTTER 3.3 Reference Manual

    Full text link
    OTTER is a resolution-style theorem-proving program for first-order logic with equality. OTTER includes the inference rules binary resolution, hyperresolution, UR-resolution, and binary paramodulation. Some of its other abilities and features are conversion from first-order formulas to clauses, forward and back subsumption, factoring, weighting, answer literals, term ordering, forward and back demodulation, evaluable functions and predicates, Knuth-Bendix completion, and the hints strategy. OTTER is coded in ANSI C, is free, and is portable to many different kinds of computer.Comment: 66 page
    • …
    corecore