31 research outputs found

    Design Techniques for Energy-Quality Scalable Digital Systems

    Get PDF
    Energy efficiency is one of the key design goals in modern computing. Increasingly complex tasks are being executed in mobile devices and Internet of Things end-nodes, which are expected to operate for long time intervals, in the orders of months or years, with the limited energy budgets provided by small form-factor batteries. Fortunately, many of such tasks are error resilient, meaning that they can toler- ate some relaxation in the accuracy, precision or reliability of internal operations, without a significant impact on the overall output quality. The error resilience of an application may derive from a number of factors. The processing of analog sensor inputs measuring quantities from the physical world may not always require maximum precision, as the amount of information that can be extracted is limited by the presence of external noise. Outputs destined for human consumption may also contain small or occasional errors, thanks to the limited capabilities of our vision and hearing systems. Finally, some computational patterns commonly found in domains such as statistics, machine learning and operational research, naturally tend to reduce or eliminate errors. Energy-Quality (EQ) scalable digital systems systematically trade off the quality of computations with energy efficiency, by relaxing the precision, the accuracy, or the reliability of internal software and hardware components in exchange for energy reductions. This design paradigm is believed to offer one of the most promising solutions to the impelling need for low-energy computing. Despite these high expectations, the current state-of-the-art in EQ scalable design suffers from important shortcomings. First, the great majority of techniques proposed in literature focus only on processing hardware and software components. Nonetheless, for many real devices, processing contributes only to a small portion of the total energy consumption, which is dominated by other components (e.g. I/O, memory or data transfers). Second, in order to fulfill its promises and become diffused in commercial devices, EQ scalable design needs to achieve industrial level maturity. This involves moving from purely academic research based on high-level models and theoretical assumptions to engineered flows compatible with existing industry standards. Third, the time-varying nature of error tolerance, both among different applications and within a single task, should become more central in the proposed design methods. This involves designing “dynamic” systems in which the precision or reliability of operations (and consequently their energy consumption) can be dynamically tuned at runtime, rather than “static” solutions, in which the output quality is fixed at design-time. This thesis introduces several new EQ scalable design techniques for digital systems that take the previous observations into account. Besides processing, the proposed methods apply the principles of EQ scalable design also to interconnects and peripherals, which are often relevant contributors to the total energy in sensor nodes and mobile systems respectively. Regardless of the target component, the presented techniques pay special attention to the accurate evaluation of benefits and overheads deriving from EQ scalability, using industrial-level models, and on the integration with existing standard tools and protocols. Moreover, all the works presented in this thesis allow the dynamic reconfiguration of output quality and energy consumption. More specifically, the contribution of this thesis is divided in three parts. In a first body of work, the design of EQ scalable modules for processing hardware data paths is considered. Three design flows are presented, targeting different technologies and exploiting different ways to achieve EQ scalability, i.e. timing-induced errors and precision reduction. These works are inspired by previous approaches from the literature, namely Reduced-Precision Redundancy and Dynamic Accuracy Scaling, which are re-thought to make them compatible with standard Electronic Design Automation (EDA) tools and flows, providing solutions to overcome their main limitations. The second part of the thesis investigates the application of EQ scalable design to serial interconnects, which are the de facto standard for data exchanges between processing hardware and sensors. In this context, two novel bus encodings are proposed, called Approximate Differential Encoding and Serial-T0, that exploit the statistical characteristics of data produced by sensors to reduce the energy consumption on the bus at the cost of controlled data approximations. The two techniques achieve different results for data of different origins, but share the common features of allowing runtime reconfiguration of the allowed error and being compatible with standard serial bus protocols. Finally, the last part of the manuscript is devoted to the application of EQ scalable design principles to displays, which are often among the most energy- hungry components in mobile systems. The two proposals in this context leverage the emissive nature of Organic Light-Emitting Diode (OLED) displays to save energy by altering the displayed image, thus inducing an output quality reduction that depends on the amount of such alteration. The first technique implements an image-adaptive form of brightness scaling, whose outputs are optimized in terms of balance between power consumption and similarity with the input. The second approach achieves concurrent power reduction and image enhancement, by means of an adaptive polynomial transformation. Both solutions focus on minimizing the overheads associated with a real-time implementation of the transformations in software or hardware, so that these do not offset the savings in the display. For each of these three topics, results show that the aforementioned goal of building EQ scalable systems compatible with existing best practices and mature for being integrated in commercial devices can be effectively achieved. Moreover, they also show that very simple and similar principles can be applied to design EQ scalable versions of different system components (processing, peripherals and I/O), and to equip these components with knobs for the runtime reconfiguration of the energy versus quality tradeoff

    Designing energy-efficient computing systems using equalization and machine learning

    Full text link
    As technology scaling slows down in the nanometer CMOS regime and mobile computing becomes more ubiquitous, designing energy-efficient hardware for mobile systems is becoming increasingly critical and challenging. Although various approaches like near-threshold computing (NTC), aggressive voltage scaling with shadow latches, etc. have been proposed to get the most out of limited battery life, there is still no “silver bullet” to increasing power-performance demands of the mobile systems. Moreover, given that a mobile system could operate in a variety of environmental conditions, like different temperatures, have varying performance requirements, etc., there is a growing need for designing tunable/reconfigurable systems in order to achieve energy-efficient operation. In this work we propose to address the energy- efficiency problem of mobile systems using two different approaches: circuit tunability and distributed adaptive algorithms. Inspired by the communication systems, we developed feedback equalization based digital logic that changes the threshold of its gates based on the input pattern. We showed that feedback equalization in static complementary CMOS logic enabled up to 20% reduction in energy dissipation while maintaining the performance metrics. We also achieved 30% reduction in energy dissipation for pass-transistor digital logic (PTL) with equalization while maintaining performance. In addition, we proposed a mechanism that leverages feedback equalization techniques to achieve near optimal operation of static complementary CMOS logic blocks over the entire voltage range from near threshold supply voltage to nominal supply voltage. Using energy-delay product (EDP) as a metric we analyzed the use of the feedback equalizer as part of various sequential computational blocks. Our analysis shows that for near-threshold voltage operation, when equalization was used, we can improve the operating frequency by up to 30%, while the energy increase was less than 15%, with an overall EDP reduction of ≈10%. We also observe an EDP reduction of close to 5% across entire above-threshold voltage range. On the distributed adaptive algorithm front, we explored energy-efficient hardware implementation of machine learning algorithms. We proposed an adaptive classifier that leverages the wide variability in data complexity to enable energy-efficient data classification operations for mobile systems. Our approach takes advantage of varying classification hardness across data to dynamically allocate resources and improve energy efficiency. On average, our adaptive classifier is ≈100× more energy efficient but has ≈1% higher error rate than a complex radial basis function classifier and is ≈10× less energy efficient but has ≈40% lower error rate than a simple linear classifier across a wide range of classification data sets. We also developed a field of groves (FoG) implementation of random forests (RF) that achieves an accuracy comparable to Convolutional Neural Networks (CNN) and Support Vector Machines (SVM) under tight energy budgets. The FoG architecture takes advantage of the fact that in random forests a small portion of the weak classifiers (decision trees) might be sufficient to achieve high statistical performance. By dividing the random forest into smaller forests (Groves), and conditionally executing the rest of the forest, FoG is able to achieve much higher energy efficiency levels for comparable error rates. We also take advantage of the distributed nature of the FoG to achieve high level of parallelism. Our evaluation shows that at maximum achievable accuracies FoG consumes ≈1.48×, ≈24×, ≈2.5×, and ≈34.7× lower energy per classification compared to conventional RF, SVM-RBF , Multi-Layer Perceptron Network (MLP), and CNN, respectively. FoG is 6.5× less energy efficient than SVM-LR, but achieves 18% higher accuracy on average across all considered datasets

    Energy-efficient embedded machine learning algorithms for smart sensing systems

    Get PDF
    Embedded autonomous electronic systems are required in numerous application domains such as Internet of Things (IoT), wearable devices, and biomedical systems. Embedded electronic systems usually host sensors, and each sensor hosts multiple input channels (e.g., tactile, vision), tightly coupled to the electronic computing unit (ECU). The ECU extracts information by often employing sophisticated methods, e.g., Machine Learning. However, embedding Machine Learning algorithms poses essential challenges in terms of hardware resources and energy consumption because of: 1) the high amount of data to be processed; 2) computationally demanding methods. Leveraging on the trade-off between quality requirements versus computational complexity and time latency could reduce the system complexity without affecting the performance. The objectives of the thesis are to develop: 1) energy-efficient arithmetic circuits outperforming state of the art solutions for embedded machine learning algorithms, 2) an energy-efficient embedded electronic system for the \u201celectronic-skin\u201d (e-skin) application. As such, this thesis exploits two main approaches: Approximate Computing: In recent years, the approximate computing paradigm became a significant major field of research since it is able to enhance the energy efficiency and performance of digital systems. \u201cApproximate Computing\u201d(AC) turned out to be a practical approach to trade accuracy for better power, latency, and size . AC targets error-resilient applications and offers promising benefits by conserving some resources. Usually, approximate results are acceptable for many applications, e.g., tactile data processing,image processing , and data mining ; thus, it is highly recommended to take advantage of energy reduction with minimal variation in performance . In our work, we developed two approximate multipliers: 1) the first one is called \u201cMETA\u201d multiplier and is based on the Error Tolerant Adder (ETA), 2) the second one is called \u201cApproximate Baugh-Wooley(BW)\u201d multiplier where the approximations are implemented in the generation of the partial products. We showed that the proposed approximate arithmetic circuits could achieve a relevant reduction in power consumption and time delay around 80.4% and 24%, respectively, with respect to the exact BW multiplier. Next, to prove the feasibility of AC in real world applications, we explored the approximate multipliers on a case study as the e-skin application. The e-skin application is defined as multiple sensing components, including 1) structural materials, 2) signal processing, 3) data acquisition, and 4) data processing. Particularly, processing the originated data from the e-skin into low or high-level information is the main problem to be addressed by the embedded electronic system. Many studies have shown that Machine Learning is a promising approach in processing tactile data when classifying input touch modalities. In our work, we proposed a methodology for evaluating the behavior of the system when introducing approximate arithmetic circuits in the main stages (i.e., signal and data processing stages) of the system. Based on the proposed methodology, we first implemented the approximate multipliers on the low-pass Finite Impulse Response (FIR) filter in the signal processing stage of the application. We noticed that the FIR filter based on (Approx-BW) outperforms state of the art solutions, while respecting the tradeoff between accuracy and power consumption, with an SNR degradation of 1.39dB. Second, we implemented approximate adders and multipliers respectively into the Coordinate Rotational Digital Computer (CORDIC) and the Singular Value Decomposition (SVD) circuits; since CORDIC and SVD take a significant part of the computationally expensive Machine Learning algorithms employed in tactile data processing. We showed benefits of up to 21% and 19% in power reduction at the cost of less than 5% accuracy loss for CORDIC and SVD circuits when scaling the number of approximated bits. 2) Parallel Computing Platforms (PCP): Exploiting parallel architectures for near-threshold computing based on multi-core clusters is a promising approach to improve the performance of smart sensing systems. In our work, we exploited a novel computing platform embedding a Parallel Ultra Low Power processor (PULP), called \u201cMr. Wolf,\u201d for the implementation of Machine Learning (ML) algorithms for touch modalities classification. First, we tested the ML algorithms at the software level; for RGB images as a case study and tactile dataset, we achieved accuracy respectively equal to 97% and 83.5%. After validating the effectiveness of the ML algorithm at the software level, we performed the on-board classification of two touch modalities, demonstrating the promising use of Mr. Wolf for smart sensing systems. Moreover, we proposed a memory management strategy for storing the needed amount of trained tensors (i.e., 50 trained tensors for each class) in the on-chip memory. We evaluated the execution cycles for Mr. Wolf using a single core, 2 cores, and 3 cores, taking advantage of the benefits of the parallelization. We presented a comparison with the popular low power ARM Cortex-M4F microcontroller employed, usually for battery-operated devices. We showed that the ML algorithm on the proposed platform runs 3.7 times faster than ARM Cortex M4F (STM32F40), consuming only 28 mW. The proposed platform achieves 15 7 better energy efficiency than the classification done on the STM32F40, consuming 81mJ per classification and 150 pJ per operation

    Tuning the Computational Effort: An Adaptive Accuracy-aware Approach Across System Layers

    Get PDF
    This thesis introduces a novel methodology to realize accuracy-aware systems, which will help designers integrate accuracy awareness into their systems. It proposes an adaptive accuracy-aware approach across system layers that addresses current challenges in that domain, combining and tuning accuracy-aware methods on different system layers. To widen the scope of accuracy-aware computing including approximate computing for other domains, this thesis presents innovative accuracy-aware methods and techniques for different system layers. The required tuning of the accuracy-aware methods is integrated into a configuration layer that tunes the available knobs of the accuracy-aware methods integrated into a system

    Embedded Machine Learning: Emphasis on Hardware Accelerators and Approximate Computing for Tactile Data Processing

    Get PDF
    Machine Learning (ML) a subset of Artificial Intelligence (AI) is driving the industrial and technological revolution of the present and future. We envision a world with smart devices that are able to mimic human behavior (sense, process, and act) and perform tasks that at one time we thought could only be carried out by humans. The vision is to achieve such a level of intelligence with affordable, power-efficient, and fast hardware platforms. However, embedding machine learning algorithms in many application domains such as the internet of things (IoT), prostheses, robotics, and wearable devices is an ongoing challenge. A challenge that is controlled by the computational complexity of ML algorithms, the performance/availability of hardware platforms, and the application\u2019s budget (power constraint, real-time operation, etc.). In this dissertation, we focus on the design and implementation of efficient ML algorithms to handle the aforementioned challenges. First, we apply Approximate Computing Techniques (ACTs) to reduce the computational complexity of ML algorithms. Then, we design custom Hardware Accelerators to improve the performance of the implementation within a specified budget. Finally, a tactile data processing application is adopted for the validation of the proposed exact and approximate embedded machine learning accelerators. The dissertation starts with the introduction of the various ML algorithms used for tactile data processing. These algorithms are assessed in terms of their computational complexity and the available hardware platforms which could be used for implementation. Afterward, a survey on the existing approximate computing techniques and hardware accelerators design methodologies is presented. Based on the findings of the survey, an approach for applying algorithmic-level ACTs on machine learning algorithms is provided. Then three novel hardware accelerators are proposed: (1) k-Nearest Neighbor (kNN) based on a selection-based sorter, (2) Tensorial Support Vector Machine (TSVM) based on Shallow Neural Networks, and (3) Hybrid Precision Binary Convolution Neural Network (BCNN). The three accelerators offer a real-time classification with monumental reductions in the hardware resources and power consumption compared to existing implementations targeting the same tactile data processing application on FPGA. Moreover, the approximate accelerators maintain a high classification accuracy with a loss of at most 5%

    ApproxHPVM: A retargetable compiler framework for accuracy-aware optimizations

    Get PDF
    With the increasing need for machine learning and data processing near the edge, software stacks and compilers must provide optimizations for alleviating the computational burden on low-end edge devices. Approximate computing can help bridge the gap between increasing computational demands and limited compute power on such devices. We present ApproxHPVM, a portable optimizing compiler and runtime system that enables flexible, optimized use of multiple software and hardware approximations in a unified easy-to-use framework. ApproxHPVM uses a portable compiler IR and compiler analyses that are designed to enable accuracy-aware performance and energy tuning on heterogeneous systems with multiple compute units and approximation methods. ApproxHPVM automatically translates end-to-end application-level quality metrics into accuracy requirements for individual operations. ApproxHPVM uses a hardware-agnostic accuracy-tuning phase to do this translation that provides greater portability across heterogeneous hardware platforms. ApproxHPVM incorporates three main components: (a) a compiler IR with hardware-agnostic approximation metrics, (b) a hardware-agnostic accuracy-tuning phase to identify error-tolerant computations, and (c) an accuracy-aware hardware scheduler that maps error-tolerant computations to approximate hardware components. As ApproxHPVM does not incorporate any hardware-specific knowledge as part of the IR, it can serve as a portable virtual ISA that can be shipped to all kinds of hardware platforms. We evaluate ApproxHPVM on 9 benchmarks from the deep learning domain and 5 image-processing benchmarks. Our results show that our framework can offload chunks of approximable computations to special-purpose accelerators that provide significant gains in performance and energy, while staying within user-specified application-level quality metrics with high probability. Across the 14 benchmarks, we observe from 1-9x performance speedups and 1.1-11.3x energy reduction for very small reductions in accuracy. ApproxTuner extends ApproxHPVM with a flexible system for dynamic approximation tuning. The key contribution in ApproxTuner is a novel three-phase approach to approximation-tuning that consists of development-time, install-time, and run-time phases. Our approach decouples tuning hardware-independent and hardware-specific approximations, thus providing retargetability across devices. To enable efficient autotuning of approximation choices, we present a novel accuracy-aware tuning technique called predictive approximation-tuning. It can optimize the application during development-time and can also refine the optimization with (previously unknown) hardware-specific approximations at install time. We evaluate ApproxTuner across 11 benchmarks from deep learning and image processing domains. For the evaluated convolutional neural networks, we show that using only hardware-independent approximation choices provides a mean speedup of 2.2x (max 2.7x) on GPU, and 1.4x mean speedup (max 1.9x) on the CPU, while staying within 2 percentage points of inference accuracy loss. For two different accuracy-prediction models, our predictive tuning strategy speeds up tuning by 13.7x and 17.9x compared to conventional empirical tuning while achieving comparable benefits

    Flexible Multiple-Precision Fused Arithmetic Units for Efficient Deep Learning Computation

    Get PDF
    Deep Learning has achieved great success in recent years. In many fields of applications, such as computer vision, biomedical analysis, and natural language processing, deep learning can achieve a performance that is even better than human-level. However, behind this superior performance is the expensive hardware cost required to implement deep learning operations. Deep learning operations are both computation intensive and memory intensive. Many research works in the literature focused on improving the efficiency of deep learning operations. In this thesis, special focus is put on improving deep learning computation and several efficient arithmetic unit architectures are proposed and optimized for deep learning computation. The contents of this thesis can be divided into three parts: (1) the optimization of general-purpose arithmetic units for deep learning computation; (2) the design of deep learning specific arithmetic units; (3) the optimization of deep learning computation using 3D memory architecture. Deep learning models are usually trained on graphics processing unit (GPU) and the computations are done with single-precision floating-point numbers. However, recent works proved that deep learning computation can be accomplished with low precision numbers. The half-precision numbers are becoming more and more popular in deep learning computation due to their lower hardware cost compared to the single-precision numbers. In conventional floating-point arithmetic units, single-precision and beyond are well supported to achieve a better precision. However, for deep learning computation, since the computations are intensive, low precision computation is desired to achieve better throughput. As the popularity of half-precision raises, half-precision operations are also need to be supported. Moreover, the deep learning computation contains many dot-product operations and therefore, the support of mixed-precision dot-product operations can be explored in a multiple-precision architecture. In this thesis, a multiple-precision fused multiply-add (FMA) architecture is proposed. It supports half/single/double/quadruple-precision FMA operations. In addition, it also supports 2-term mixed-precision dot-product operations. Compared to the conventional multiple-precision FMA architecture, the newly added half-precision support and mixed-precision dot-product only bring minor resource overhead. The proposed FMA can be used as general-purpose arithmetic unit. Due to the support of parallel half-precision computations and mixed-precision dot-product computations, it is especially suitable for deep learning computation. For the design of deep learning specific computation unit, more optimizations can be performed. First, a fixed-point and floating-point merged multiply-accumulate (MAC) unit is proposed. As deep learning computation can be accomplished with low precision number formats, the support of high precision floating-point operations can be eliminated. In this design, the half-precision floating-point format is supported to provide a large dynamic range to handle small gradients for deep learning training. For deep learning inference, 8-bit fixed-point 2-term dot-product computation is supported. Second, a flexible multiple-precision MAC unit architecture is proposed. The proposed MAC unit supports both fixed-point operations and floating-point operations. For floating-point format, the proposed unit supports one 16-bit MAC operation or sum of two 8-bit multiplications plus a 16-bit addend. To make the proposed MAC unit more versatile, the bit-width of exponent and mantissa can be flexibly exchanged. By setting the bit-width of exponent to zero, the proposed MAC unit also supports fixed-point operations. For fixed-point format, the proposed unit supports one 16-bit MAC or sum of two 8-bit multiplications plus a 16-bit addend. Moreover, the proposed unit can be further divided to support sum of four 4-bit multiplications plus a 16-bit addend. At the lowest precision, the proposed MAC unit supports accumulating of eight 1-bit logic AND operations to enable the support of binary neural networks. Finally, a MAC architecture based on the posit format, a promising numerical format in deep learning computation, is proposed to facilitate the use of posit format in deep learning computation. In addition to the above mention arithmetic units, an improved hybrid memory cube (HMC) architecture is proposed for weight-sharing deep neural network processing. By modifying the HMC instruction set and HMC logic layer, the major part of the deep learning computation can be accomplished inside memory. The proposed design reduces the memory bandwidth requirements and thus reduces the energy consumed by memory data transfer

    Novel characterization of materials using THz spectroscopic techniques

    Get PDF
    Significant scientific and technical challenges within the terahertz (THz) frequency regime have recently motivated an array of new research activities. This involves numerous applications of this region of the electromagnetic spectrum between approximately 100 GHz (3mm) and 3 THz (100 µm) for both spectroscopy and imaging purposes. THz time domain spectroscopy is unique in that the time domain waveforms are measured and the complex optical constants are deduced directly without resorting to the Kramers-Kronig Analysis. In this work, THz spectroscopy has been used to characterize different types of materials. Materials investigated consisted of semiconductors, gate dielectric materials, high energetic materials and cyclic olefin polymers. Besides demonstrating that surface roughness affects the THz transmission, one of the most significant contributions of this work has been to deduce the number of defect states in buried layers. The study also attempts to develop a preliminary model based on effective medium approximations to predict the thickness of the interfacial layer which might be having a myriad of applications in the semiconductor industry. The characterization of a cyclic olefin polymer showed that it is probably the candidate of the future for fabrication of far infrared optics mainly because of its low loss and transparency in both the visible and far infrared region of the EM spectrum

    Exploiting Natural On-chip Redundancy for Energy Efficient Memory and Computing

    Get PDF
    Power density is currently the primary design constraint across most computing segments and the main performance limiting factor. For years, industry has kept power density constant, while increasing frequency, lowering transistors supply (Vdd) and threshold (Vth) voltages. However, Vth scaling has stopped because leakage current is exponentially related to it. Transistor count and integration density keep doubling every process generation (Moore’s Law), but the power budget caps the amount of hardware that can be active at the same time, leading to dark silicon. With each new generation, there are more resources available, but we cannot fully exploit their performance potential. In the last years, different research trends have explored how to cope with dark silicon and unlock the energy efficiency of the chips, including Near-Threshold voltage Computing (NTC) and approximate computing. NTC aggressively lowers Vdd to values near Vth. This allows a substantial reduction in power, as dynamic power scales quadratically with supply voltage. The resultant power reduction could be used to activate more chip resources and potentially achieve performance improvements. Unfortunately, Vdd scaling is limited by the tight functionality margins of on-chip SRAM transistors. When scaling Vdd down to values near-threshold, manufacture-induced parameter variations affect the functionality of SRAM cells, which eventually become not reliable. A large amount of emerging applications, on the other hand, features an intrinsic error-resilience property, tolerating a certain amount of noise. In this context, approximate computing takes advantage of this observation and exploits the gap between the level of accuracy required by the application and the level of accuracy given by the computation, providing that reducing the accuracy translates into an energy gain. However, deciding which instructions and data and which techniques are best suited for approximation still poses a major challenge. This dissertation contributes in these two directions. First, it proposes a new approach to mitigate the impact of SRAM failures due to parameter variation for effective operation at ultra-low voltages. We identify two levels of natural on-chip redundancy: cache level and content level. The first arises because of the replication of blocks in multi-level cache hierarchies. We exploit this redundancy with a cache management policy that allocates blocks to entries taking into account the nature of the cache entry and the use pattern of the block. This policy obtains performance improvements between 2% and 34%, with respect to block disabling, a technique with similar complexity, incurring no additional storage overhead. The latter (content level redundancy) arises because of the redundancy of data in real world applications. We exploit this redundancy compressing cache blocks to fit them in partially functional cache entries. At the cost of a slight overhead increase, we can obtain performance within 2% of that obtained when the cache is built with fault-free cells, even if more than 90% of the cache entries have at least a faulty cell. Then, we analyze how the intrinsic noise tolerance of emerging applications can be exploited to design an approximate Instruction Set Architecture (ISA). Exploiting the ISA redundancy, we explore a set of techniques to approximate the execution of instructions across a set of emerging applications, pointing out the potential of reducing the complexity of the ISA, and the trade-offs of the approach. In a proof-of-concept implementation, the ISA is shrunk in two dimensions: Breadth (i.e., simplifying instructions) and Depth (i.e., dropping instructions). This proof-of-concept shows that energy can be reduced on average 20.6% at around 14.9% accuracy loss

    Microwave Sensing and Imaging

    Get PDF
    In recent years, microwave sensing and imaging have acquired an ever-growing importance in several applicative fields, such as non-destructive evaluations in industry and civil engineering, subsurface prospection, security, and biomedical imaging. Indeed, microwave techniques allow, in principle, for information to be obtained directly regarding the physical parameters of the inspected targets (dielectric properties, shape, etc.) by using safe electromagnetic radiations and cost-effective systems. Consequently, a great deal of research activity has recently been devoted to the development of efficient/reliable measurement systems, which are effective data processing algorithms that can be used to solve the underlying electromagnetic inverse scattering problem, and efficient forward solvers to model electromagnetic interactions. Within this framework, this Special Issue aims to provide some insights into recent microwave sensing and imaging systems and techniques
    corecore