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Abstract

Deep Learning has achieved great success in recent years. In many fields of applications,

such as computer vision, biomedical analysis, and natural language processing, deep learning

can achieve a performance that is even better than human-level. However, behind this

superior performance is the expensive hardware cost required to implement deep learning

operations. Deep learning operations are both computation intensive and memory intensive.

Many research works in the literature focused on improving the efficiency of deep learning

operations. In this thesis, special focus is put on improving deep learning computation and

several efficient arithmetic unit architectures are proposed and optimized for deep learning

computation. The contents of this thesis can be divided into three parts: (1) the optimization

of general-purpose arithmetic units for deep learning computation; (2) the design of deep

learning specific arithmetic units; (3) the optimization of deep learning computation using

3D memory architecture.

Deep learning models are usually trained on graphics processing unit (GPU) and the

computations are done with single-precision floating-point numbers. However, recent works

proved that deep learning computation can be accomplished with low precision numbers. The

half-precision numbers are becoming more and more popular in deep learning computation

due to their lower hardware cost compared to the single-precision numbers. In conventional

floating-point arithmetic units, single-precision and beyond are well supported to achieve a

better precision. However, for deep learning computation, since the computations are inten-

sive, low precision computation is desired to achieve better throughput. As the popularity

of half-precision raises, half-precision operations are also need to be supported. Moreover,

the deep learning computation contains many dot-product operations and therefore, the

support of mixed-precision dot-product operations can be explored in a multiple-precision

architecture. In this thesis, a multiple-precision fused multiply-add (FMA) architecture is

proposed. It supports half/single/double/quadruple-precision FMA operations. In addi-

tion, it also supports 2-term mixed-precision dot-product operations. Compared to the con-

ventional multiple-precision FMA architecture, the newly added half-precision support and

mixed-precision dot-product only bring minor resource overhead. The proposed FMA can be
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used as general-purpose arithmetic unit. Due to the support of parallel half-precision com-

putations and mixed-precision dot-product computations, it is especially suitable for deep

learning computation.

For the design of deep learning specific computation unit, more optimizations can be

performed. First, a fixed-point and floating-point merged multiply-accumulate (MAC) unit

is proposed. As deep learning computation can be accomplished with low precision number

formats, the support of high precision floating-point operations can be eliminated. In this

design, the half-precision floating-point format is supported to provide a large dynamic range

to handle small gradients for deep learning training. For deep learning inference, 8-bit fixed-

point 2-term dot-product computation is supported. Second, a flexible multiple-precision

MAC unit architecture is proposed. The proposed MAC unit supports both fixed-point op-

erations and floating-point operations. For floating-point format, the proposed unit supports

one 16-bit MAC operation or sum of two 8-bit multiplications plus a 16-bit addend. To

make the proposed MAC unit more versatile, the bit-width of exponent and mantissa can

be flexibly exchanged. By setting the bit-width of exponent to zero, the proposed MAC

unit also supports fixed-point operations. For fixed-point format, the proposed unit supports

one 16-bit MAC or sum of two 8-bit multiplications plus a 16-bit addend. Moreover, the

proposed unit can be further divided to support sum of four 4-bit multiplications plus a

16-bit addend. At the lowest precision, the proposed MAC unit supports accumulating of

eight 1-bit logic AND operations to enable the support of binary neural networks. Finally, a

MAC architecture based on the posit format, a promising numerical format in deep learning

computation, is proposed to facilitate the use of posit format in deep learning computation.

In addition to the above mention arithmetic units, an improved hybrid memory cube

(HMC) architecture is proposed for weight-sharing deep neural network processing. By mod-

ifying the HMC instruction set and HMC logic layer, the major part of the deep learning

computation can be accomplished inside memory. The proposed design reduces the memory

bandwidth requirements and thus reduces the energy consumed by memory data transfer.
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Chapter 1

Introduction

This chapter presents the performance advantage and the popularity of deep learning in

many fields of applications. Due to the superior performance and the popularity, optimizing

hardware deep learning operations becomes necessary. This motivates the research works

to be presented in this thesis that are to design arithmetic units based on the requirements

of the deep learning computation. Section 1.1 presents the performance advantage and the

potential of deep learning applications. The motivation of the research works are presented

in Section 1.2. Section 1.3 presents the overview of the research works. The contributions of

these research works are summarized in Section 1.4.

1.1 Deep Learning Advantages and Potentials

The idea to make an intelligent system dates back to 1950s when the term artificial intelligence

(AI) was coined by John McCarthy. After that, many significant algorithms were proposed

by AI researchers. However, due to the limitation of the computation power in the early

days, training a large scale AI model may take months, and thus AI algorithms still stayed

in small scale. In early 2000s, the development of computation power made the research

on large scale AI algorithms and deep learning algorithms becoming possible. Around the

same time, many large database became available which boosted the development of deep

learning. A major breakthrough happens in 2012 when the AlexNet [1] achieved significant

improvements on image classifications over preceding methods.

After that many research works have been done on applying deep learning methods in

many applications. In 2015, the ResNet [2] achieves the image classification accuracy that

is even higher than human. In the field of medical imaging analysis, deep learning methods
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Figure 1.1: Performance comparison of deep learning methods with previous methods
(Reproduced from: B. Catanzaro, “Computer Arithmetic in Deep Learning [Keynote
Talk],” in ARITH26, 2016.)

are also extensively investigated. In 2017, researchers from Stanford University proposed

and trained a convolutional neural network to perform skin cancer classification [3] and the

network achieved a performance that was at the same level as dermatologists. In more

complex tasks, such as the Go game, the deep learning method, the AlphaGo [4], can already

beat the human champion. In addition to the above mentioned achievements, deep learning

techniques are also widely applied in applications such as natural language processing, big-

data analysis and autonomous driving.

Deep learning methods are quickly applied in many fields of applications because of two

main advantages: (1) promising performance in large database, as shown in Figure 1.1.

The performance of many conventional AI methods become saturated with the amount of

available data goes higher. This may be limited by the computation and analysis capability

of small scale models. However, in deep learning, as the model can have much larger scale,

the potential of analyzing big database is also expected to be significant. (2) Reducing human

workload. On one hand, deep learning is running in an end-to-end way so that the features

required by performing classification or other tasks are hierarchically extracted from the input

data in deep learning methods. Whereas, in conventional AI methods, features extraction

and selection needs to be done manually which take a lot of time. On the other hand, in

some applications, with the same level of accuracy, deep learning model can perform a task

much faster than human. One example is the computer tomography (CT) image analysis.

3



Table 1.1: Memory and computation requirements of various deep neural networks

LeNet-5 AlexNet Overfeat VGG16 GoogLeNet ResNet-50

Top-5 Error N/A 16.4 14.2 7.4 6.7 5.3

# of weights 60K 61M 146M 138M 7M 25.5M

# of MACs† 341K 724M 2.8G 15.5G 1.43G 3.9G

† MAC refers to the multiply-accumulate operation, and it includes one multiplication followed by one
addition.

A human radiologist usually needs 5 to 10 minutes to read and analyzes a CT scan while a

deep learning model can do the same task in only several seconds. Therefore, deep learning

can significantly reduce the human radiologists’ workload.

Deep learning can provide promising results in many fields of applications. However,

the cost of implementing deep learning operations is expensive. As shown in Table 1.1, a

deep neural network may have millions of parameters and a single operation may require

billions of computations. As the popularity of deep learning methods raises, many recent

hardware designs target to optimizing deep learning operations, both in reducing the energy

consumption and in improving the speed performance. In recent years, many research works

have been done on optimizing the datapath for deep learning operations [5]. As the core of

computation, the arithmetic unit can determine the efficiency and functionality of the whole

hardware design. In this thesis, special focuses are put on the design of arithmetic units for

efficient deep learning computation. Several novel arithmetic unit architectures are proposed

based on the characteristics of deep learning computation.

1.2 Motivation of Research Works

Deep neural networks are usually trained on graphics processing units (GPUs). Many deep

learning frameworks, such as Tensorflow [6] and Caffe [7], perform deep neural network com-

putations using 32-bit single-precision (SP) floating-point numbers [8] by default. However,

the data-path of single-precision floating-point units is complex and the hardware cost of im-

plementing single-precision units are expensive. These lead to a high energy consumption and

a large latency when implementing deep neural networks in customized hardware. In order
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to reduce the hardware cost, some research works in recent years are focused on reducing the

numerical precision required by deep neural network computation. In [9], the authors suc-

cessfully implemented deep neural networks with 16-bit half-precision numbers [8]. In some

other works, half-precision numbers are also used in deep learning training and inference

operations.

In the floating-point unit (FPU) of general-purpose processors, single-precision and higher

precision formats are well supported in order to provide a better accuracy for scientific com-

putations. However, for deep learning computation, on one hand, using low precision formats

(half-precision) is able to maintain high accuracy. On the other hand, deep learning is compu-

tation intensive and thus low precision computation is desired to improve the overall speed

performance. Considering these factors, the support of half-precision operations in FPU

should be added to speed up deep learning computation in general-purpose processors.

In deep learning computation, the reduced precision computation is usually applied to-

gether with the mixed-precision computation in order to manage the accuracy [10]. Reduced

precision method is usually applied to the multiplication because the multiplication opera-

tion is slow and the multiplier consumes large amount of resources. With reduced precision

multiplication, the area of the multiplier can be reduced and the speed of the multiplica-

tion operations can be improved. When performing accumulation, a high precision adder

is applied. In deep learning computation, a high precision data is kept. Before multiplica-

tion, this data is truncated to low precision in order to perform low precision multiplication.

When performing accumulation, the product will be accumulated to the higher precision

copy so that the accuracy can be recovered. In conventional multiple-precision FPU, both

low precision multiplication data-path and high precision accumulation data-path already

exist. Therefore, the support of mixed-precision computation in a multiple-precision FPU

can be explored. When designing deep learning specific arithmetic unit, the mixed-precision

computation feature should also be considered.

For deep neural network training, a number format with large dynamic range, such as

floating-point format, is required to handle very small gradient values during the last few

iterations of training. For deep neural network inference, as there is no gradient computation,

the numerical precision can be further reduced. In many cases, fixed-point format can provide
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enough accuracy in inference [11] [12]. When performing fixed-point computations, compared

to floating-point computations, both energy consumption and speed performance can be

improved. Therefore, for a deep learning processor that needs to handle both training and

inference operations, both floating-point operations and fixed-point operations are required

to be supported.

Reduced precision computation is feasible for deep learning computation. However, the

minimum required precisions for different deep neural networks or different layers of a deep

neural network are not identical [11] [13] [14]. Therefore, using a computation unit that

supports only one numerical precision to perform all computations is not efficient and in

this case, a multiple-precision computation unit is desired. For example, if only one 16-bit

fixed-point unit is used, when one layer can be computed with 4-bit number, the other 12-bit

of the computation unit is not utilized. However, if a multiple-precision 16-bit unit, that

can be reconfigured to dual 8-bit units or quad 4-bit units at runtime, is applied, for 4-bit

computation, four parallel computations can be performed and thus the throughput can be

improved. In addition, the improvement in throughput can also be helpful to improve energy

efficiency. Therefore, for a computation unit that is designed specific for general purpose

deep learning computation, multiple-precision unit is preferred.

The floating-point format defined in [8] contains a sign, an exponent, and a mantissa. The

bit-width of the exponent corresponds to the dynamic range of the numerical format while

the bit-width of the mantissa corresponds to the representation precision of the format. In

deep learning computation, the importance of exponent and mantissa to the neural network

accuracy is different [13] [15]. According to the results in [15], the dynamic range is more

important than representation precision for neural network accuracy. By using this finding,

the deep neural network computation unit can be designed with a constant total bit-width

but the bit-width of exponent and mantissa can be dynamically exchanged. So that the

requirement of exponent can be met first and the remaining bits can be allocated to the

mantissa. By designing with this method, more flexibility can be provided for deep learning

computation.

The research on deep learning computation focuses not only on the conventional compu-

tation system such as fixed-point and floating-point computation system. In recent years,
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deep learning computation using logarithmic number system and other new number formats

are also investigated. The recent proposed posit number system [16] is one of them. Posit

encodes numbers in a non-uniform way which fits well with the deep neural network data

distribution. In addition, with the same total bit-width, the posit format can provide much

larger dynamic range than floating-point format. Therefore, the use of posit in deep learn-

ing computation is promising. As posit is relatively new, there is only hardware adder and

hardware multiplier available in the literature. In order to facilitate the use of posit in deep

learning applications, a posit based multiply-accumulate (MAC) unit or other fused unit is

required.

In recent years, the 3D memory architectures, such as hybrid memory cube (HMC) [17]

and high-bandwidth memory (HBM) [18], are proposed. In 3D memory, the storage layers

are stacked vertically and the communication among storage layers is achieved by the through

silicon via (TSV). At the bottom of the 3D memory architecture, there is a logic layer where

the memory controller and some simple logic functions are implemented. Due to the integra-

tion of the logic layer, data processing inside memory, termed processing-in-memory (PIM),

becomes possible. With PIM, the bandwidth requirements of the memory interface can be

significantly reduced. Memory data transfer is also reduced because some data processing

can be done inside memory. Both of these reduces the energy consumed by memory data

transfer. As deep learning is memory and computation intensive, using 3D memory in deep

learning processing is expected to significantly improve the energy efficiency of deep learning

computation.

1.3 Overview of Research Works

In this thesis, based on the computation characteristics discussed in Section 1.2, several

arithmetic unit architectures optimized for deep learning computation are proposed. We

provide the solutions both to optimize general-purpose FPU for deep learning computation

and to design deep learning specific computation units. The arithmetic units proposed in

this thesis are based on multiple-precision arithmetic unit architectures and are target for

general support for as many neural network models and operations as possible. This is
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different from the design of an architecture that is optimized for a specific model or operation.

Therefore, the proposed arithmetic units are more useful in application specific integrated

circuit (ASIC) based processor designs that are used in servers and datacenters. The whole

thesis is composed of five parts with eight chapters shown as follows:

• Part I Preface includes:

– Chapter 1 Introduction: presents the importance of deep learning and the motivations,

the overview, and the contributions of the research works.

– Chapter 2 Background : introduces the background information required to present

the proposed research works.

• Part II Arithmetic Unit for General Purpose Computing includes:

– Chapter 3 Multiple-Precision Floating-Point Fused Multiply Add : presents the de-

sign of a multiple-precision floating-point fused multiply add (FMA) architecture. In

this chapter, the solution to optimize general purposed FPU for deep learning com-

putation is presented. The architecture presented is designed for general purposed

FPU. However, the newly added parallel half-precision supports and mixed-precision

dot-product supports make the proposed design especially suitable for deep learn-

ing computation. Compared to the state-of-the-art multiple-precision floating-point

FMA architectures, the newly added features make the proposed FMA supporting

more functions with only minor resource overhead.

• Part III Arithmetic Unit for Deep Learning Computing includes:

– Chapter 4 Multiple-Precision Multiply Accumulate Unit : presents an efficient fixed-

point and floating-point merged MAC unit architecture. This unit is proposed for

deep learning processors that need to handle both deep learning training and inference

operations. The support for floating-point computations can be used in deep learning

training and the support for fixed-point computations can be used in deep learning

inference. In addition, the mixed-precision computation feature is introduced to this
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unit to make it more suitable in deep learning computation. Compared to a floating-

point MAC unit, the proposed design has negligible resource overhead but enables

the deep learning processors to support both training and inference operations.

– Chapter 5 Flexible Multiple-Precision Multiply Accumulate Unit : presents a flexible

multiple-precision MAC unit architecture. The proposed unit also supports both

floating-point operations and fixed-point operations. In floating-point mode, both

16-bit or dual 8-bit operations are supported. In fixed-point mode, 16-bit or dual

8-bit or quad 4-bit operations are supported. At the lowest precision, the proposed

unit also supports logic operations for binary neural networks. In order to make the

proposed unit more flexible, in floating-point mode, the bit-width of exponent and

mantissa can be mutually exchanged. In fixed-point mode, the bit-width of integer

and fraction can also be exchanged. Compared to a 16-bit floating-point MAC unit,

the proposed unit provides more flexibility for deep learning computation with only

minor resource overhead.

– Chapter 6 Posit Multiply Accumulate Unit : presents an MAC architecture designed

based on the posit number format. Posit number format encodes the numbers in a

non-uniform way which fits well with the deep learning data distribution. In addi-

tion, with the same bit-width, posit can provide much larger dynamic range than

the floating-point format. As the range is more important than precision for deep

learning accuracy, posit is expected to be promising in deep learning applications.

The proposed posit MAC unit in this chapter is intended to facilitate the use of posit

format in deep learning applications.

• Part IV Arithmetic Unit for 3D Memory includes:

– Chapter 7 Improved Hybrid Memory Cube Architecture: presents an improved HMC

architecture for deep neural network processing. The proposed architecture is de-

signed based on the original HMC architecture with minimal modification in order

to avoid thermal problem. Two new instructions are added for weight-sharing deep

learning computation. The memory vault controller is also modified to support par-

allel vault operations. Moreover, a simple MAC unit is added to the logic layer for
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each memory vault to achieve deep learning computation. A software simulation

of the proposed architecture is performed and the results show a reduced memory

bandwidth requirement and thus an improved speed performance.

• Part V Conclusion includes:

– Chapter 8 Summary and Future Work : includes the summary of all presented research

works and the plan for future works.

1.4 Summary of Contributions

In this thesis, several new arithmetic unit architectures are designed and implemented for

efficient deep learning computation. Some of them are the first published designs which

introduced new computation features or combined multiple features into a single architecture.

Those proposed arithmetic units are ready to be combined with memory module and control

module into a flexible and efficient deep neural network processors. For each of the proposed

arithmetic units, the hardware design merits, including timing, area, power, and energy,

are analyzed in detail. The designs are also compared with related designs available in

the literature to show their advantages and improvements. For the flexible MAC design,

a simplified neural network case study is included to show its performance under different

application scenarios. Finally, a hybrid memory cube architecture is proposed to overcome

the limitations of the conventional memory interface to achieve better speed performance

and energy efficiency for deep learning computation. Moreover, our proposed posit based

MAC unit could be a starting point of research works that utilize the posit number system

in deep learning applications.

Below is the list of publications, arranged according to the order of appearance in this

thesis:

• Chapter 3 Multiple-Precision Floating-Point Fused Multiply Add :

– H. Zhang, D. Chen and S. Ko, “Efficient Multiple-Precision Floating-Point Fused

Multiply-Add with Mixed-Precision Support,” in IEEE Transactions on Computers,

vol. 68, no. 7, pp. 1035-1048, Jul 2019.
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ternational Symposium on Circuits and Systems (ISCAS), May 2018, pp. 1-5.

• Chapter 5 Flexible Multiple-Precision Multiply Accumulate Unit :

– H. Zhang, D. Chen and S. Ko, “New Flexible Multiple-Precision Multiply Accumu-

late Unit for Deep Neural Network Training and Inference,” IEEE Transactions on

Computers, accepted August 2019.

• Chapter 6 Posit Multiply Accumulate Unit :

– H. Zhang, J. He and S. Ko, “Efficient Posit Multiply-Accumulate Unit Generator

for Deep Learning Applications,” 2019 IEEE International Symposium on Circuits

and Systems (ISCAS), May 2019, pp. 1-5.

• Chapter 7 Improved Hybrid Memory Cube Architecture:

– H. Zhang, J. He and S. Ko, “Improved Hybrid Memory Cube for Weight-Sharing

Deep Convolutional Neural Networks,” 2019 IEEE International Conference on Ar-

tificial Intelligence Circuits and Systems (AICAS), March 2019, pp. 1-5.

• Other publications that are not included in this thesis:

– H. Zhang, D. Chen and S. Ko, “Area- and Power-Efficient Iterative Single/Double-

Precision Merged Floating-Point Multiplier on FPGA,” in IET Computers and Digital

Techniques, vol. 11, no. 4, pp. 149-158, Jul 2017.
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Precision and Double-Precision Merged Floating-Point Adder on FPGA,” in IET
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Chapter 2

Background

This chapter presents the background information of the proposed works in this thesis.

Various numerical formats that are used in the proposed works are presented in Section 2.1.

Section 2.2 presents the basic architectures of fused arithmetic units including fused multiply

add unit and multiply accumulate unit. Section 2.3 presents the concepts and advantages

of mixed-precision computing. Section 2.4 presents the characteristics of deep learning com-

puting in detail which motivate the research works in this thesis. Section 2.5 presents the

architecture of a hybrid memory cube.

2.1 Numerical Formats

2.1.1 Floating-Point Format

The binary floating-point number formats defined in IEEE 754-2008 contain three compo-

nents: 1-bit sign (S), w-bit biased exponent (E), and p-bit mantissa (M), as shown in

Figure 2.1. The biased exponent E is obtained by e + bias, where e is the actual exponent

value and bias = 2w−1 − 1. There is always an implicit bit in front of the mantissa.

The basic precision formats defined in IEEE 754-2008 are 16-bit half-precision (HP), 32-

bit single-precision (SP), 64-bit double-precision (DP), and 128-bit quadruple-precision (QP).

For these four formats, the bit-width of each component, the bias value, and the maximum

and minimum exponent for normal number is summarized in Table 2.1.

S E M

1-bit w-bit p-bit

Figure 2.1: Binary floating-point format defined in IEEE 754-2008
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Table 2.1: Floating-Point format defined in IEEE 754-2008

Format Sign Exponent Mantissa Bias emax emin

16-bit HP 1 5 10 15 15 -14

32-bit SP 1 8 23 127 127 -126

64-bit DP 1 11 52 1023 1023 -1022

128-bit QP 1 15 112 16383 16383 -16382

The IEEE 754-2008 floating-point format also reserves some special values for exceptional

cases handling. The floating-point number T represented in IEEE 754-2008 format and its

actual value v can be summarized as follows:

• If E = 2w − 1 and M 6= 0, then T is not a number (NaN).

• If E = 2w − 1 and M = 0, then T is infinity (Inf) and v = (−1)S × (+∞).

• If 1 ≤ E ≤ 2w − 2, then T is normal number and v = (−1)S × (1 + M) × 2E−bias.

Normal number has an implicit bit of 1.

• If E = 0 and M 6= 0, then T is subnormal number and v = (−1)S × M × 21−bias.

Subnormal number has an implicit bit of 0.

• If E = 0 and M = 0, the T is zero and v = (−1)S × (+0).

Rounding in IEEE 754-2008

When performing floating-point operations, such as addition and multiplication, the infinitely

precise intermediate results will usually have larger bit-width than the format defined bit-

width. In order to make these results be accommodated into the IEEE 754-2008 defined

formats, rounding operations are required. In IEEE 754-2008, five rounding modes are de-

fined:

• roundTiesToEven: the infinitely precise result should be rounded to the nearest repre-

sentable floating-point number. If two numbers are equally near to the result, the one

with an even least significant bit (LSB) should be used. This is the default rounding

mode of IEEE 754-2008 standard.
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• roundTiesToAway : the infinitely precise result should be rounded to the nearest repre-

sentable floating-point number. If two numbers are equally near to the result, the one

with a larger magnitude should be used.

• roundTowardPositive: the infinitely precise result should be rounded to the floating-

point number that is closet to and no less than the result.

• roundTowardNegative: the infinitely precise result should be rounded to the floating-

point number that is closet to and no greater than the result.

• roundTowardZero: the infinitely precise result should be rounded to the floating-point

number that is closet to and no greater in magnitude than the result.

Exception Handling in IEEE 754-2008

IEEE 754-2008 standard also defines several default exception handling: invalid operation,

division by zero, overflow, underflow, and inexact. When these exception cases happen, the

corresponding flags are required to be raised.

• Invalid operation: this exception is signaled when there is no definable result.

– any computational operation on a signaling NaN.

– multiplication in a form of 0×∞ or ∞× 0.

– fused multiply-add in a form of 0×∞+ c or ∞× 0 + c unless c is a quiet NaN.

– addition, subtraction, or fused multiply-add: magnitude subtraction of infinities.

– division: 0÷ 0 or ∞÷∞.

– remainder: remainder(x, y) when y is zero or x is infinite and neither is NaN.

– square root if the operand is less than zero.

– quantize when the result does not fit in the destination format or when one operand

is finite and the other is infinite.

– conversion of a floating-point number to an integer format, when the source is

NaN, infinity, or a value that would convert to an integer outside the range of the

result format under the applicable rounding attribute.
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– comparison by way of unordered-signaling predicates when operands are unordered.

– logB(NaN), logB(∞), or logB(0) when the output of logB is an integer format.

• Division by zero: this exception is signaled when an exact infinite result is defined for

an operation on finite operands.

– for division, when the divisor is zero and the dividend is a finite non-zero number,

the sign of the infinity is the exclusive OR of the operands’ signs.

– logB(0) when result of logB is a floating-point format, the sign of the infinity is

minus (−∞).

• Overflow: this exception is signaled when the format’s largest finite number is exceeded

in magnitude. The default result is determined by the rounding method and the sign

of the intermediate result:

– roundTiesToEven and roundTiesToAway carry all overflow to ∞ with the sign of

the intermediate result.

– roundTowardZero carries all overflows to the format’s largest finite number with

the sign of the intermediate result.

– roundTowardNegative carries positive overflows to the format’s largest finite num-

ber and carries negative overflows to −∞.

– roundTowardPositive carries negative overflows to the format’s most negative

number and carries positive overflows to +∞.

• Underflow: this exception is signaled when a tiny non-zero result is detected. A rounded

result should be provided which might be zero, subnormal, or ±bemin.

– after rounding: a non-zero result computed as though the exponent range were

unbounded would lie strictly between ±bemin.

– before rounding: a non-zero result computed as though both the exponent range

and the precision were unbounded would lie strictly between ±bemin.

• Inexact: this exception is signaled when the rounded result is different from what would

have been computed if both exponent range and precision were unbounded.
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Table 2.2: Results when both addition/subtraction operands are zeros

x op y
Rounding Mode

RTN, RTZ, RTPos† RTNeg†

(+0) + (+0) +0 +0

(+0) + (−0) +0 −0

(−0) + (+0) +0 −0

(−0) + (−0) −0 −0

(+0)− (+0) +0 −0

(+0)− (−0) +0 +0

(−0)− (+0) −0 −0

(−0)− (−0) +0 −0

† RTN: roundTiesToEven; RTZ: roundTowardZero; RTPos: roundTowardPositive;
RTNeg: roundTowardNegative.

The Sign of the Operational Result

In IEEE 754-2008 standard, the sign is not interpreted if either an input or result is NaN. If

neither the inputs nor results are NaN, the sign of a product or quotient is the exclusive OR

of the operands’ signs.

The sign of an addition or subtraction is determined by the relationship between the

two operands. When the sum of two operands with opposite signs (or the difference of

two operands with the same sign) is exactly zero, the sign of the sum is positive except

roundTowardNegative where the sign of an exact zero sum is negative. However, x + x =

x − (−x) retains the same sign as x even when x is zero. When both operands are zero,

depending on the rounding methods, the results are summarized in Table 2.2.

For FMA operations, if the infinite precise result is exactly zero, the sign of the result

should be determined by the rules for a sum of operands. When the exact result is non-zero

but the result is zero because of rounding, the resulting zero takes the sign of the exact result.

In this thesis, the research work presented in Chapter 5 uses customized floating-point

formats. Although they may have different bit-width from the standard ones, the floating-

point conventions defined in IEEE 754-2008, such as the biased exponent, implicit mantissa

bit, and subnormal cases handling, still apply.
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q-bit p-bit

Figure 2.2: Binary fixed-point format

2.1.2 Fixed-Point Format

Fixed-point format is much simpler than the floating-point format. It does not have the

exponent field and all bits belong to the significand as shown in Figure 2.2. Therefore, with

the same total bit-width, the fixed-point format has smaller representation range than that

of the floating-point format.

There are two categories of fixed-point format: signed and unsigned. For unsigned num-

ber, its value can be determined by

v =

q−1∑
i=0

Ii × 2i +

p−1∑
j=0

Fj × 2−(p−j) (2.1)

where Ii represents the i-th bit of the integer and Fj represents the j-th bit of the fraction.

For signed number, the most significant bit (MSB) represents its sign. For zero and

positive number, the sign is equal to 0 and for negative number, the sign is equal to 1. For

signed number, its value can be determined by

v = (−1)Iq−1 × 2q−1 +

q−2∑
i=0

Ii × 2i +

p−1∑
j=0

Fj × 2−(p−j) (2.2)

The signed fixed-point formats used in this thesis use the two’s complement encoding which

is widely used in modern computer systems. In two’s complement encoding, a non-negative

number has the same notation as the number written in unsigned notation. For a negative

number, the encoding can be obtained by inverting all bits of the notation of its absolute

value and then adding one to the LSB.

For fixed-point numbers, extension is often required when converting from one numerical

format to another format with larger bit-width. For a pure fractional number, the extension

can be done by simply adding multiple zero bits to the right of the LSB. When extending the

integer part, there is some differences between the unsigned number and signed number. For

unsigned numbers, the extension can be done with prefixing zero bits. For signed numbers
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represented in two’s complement format, the extension is done with replicating the sign bit.

On the other hand, when converting a number with large bit-width to a format with smaller

bit-width, the rounding process that is used in floating-point operations can be used for

fractional part. For integer part, usually a truncation is performed to remove the unused

most significant several bits.

In deep neural networks, weights contain both positive and negative values and should

be represented with signed numbers if fixed-point format is used. For activations, as most

current deep neural networks use rectified linear unit (ReLU) as their activation function,

the activations are always non-negative numbers and thus can be represented with unsigned

fixed-point format. For hardware design, the unsigned format can always be prefixed with

one more bit zero to be converted to signed format. In this thesis, the fixed-point units are

designed with signed format.

2.1.3 The Posit Format

The floating-point format and fixed-point format described in the above sections use uni-

formed encoding for all numbers. In this way, after the format is determined (for example

32-bit floating-point numbers with 8-bit exponent and 23-bit mantissa), all the numbers

within the representation range are represented using the same format. This is fine for

general-purpose computing. However, for some applications with non-uniformed data dis-

tribution, such as deep learning (this will be discussed in Section 2.4), uniformed encoding

become inefficient. For these applications, on one hand, data with small values are densely

appeared so that a high precision (large bit-width of mantissa) is required to distinguish these

small values. On the other hand, data with large values and tiny values can also appear, and

thus a large dynamic range (large bit-width of exponent) is required to correctly represent

these numbers. Consequently, a large floating-point format is required to meet these two

requirements which leads to an expensive cost in arithmetic and memory operations. How-

ever, in these applications, the large exponent bit-width and large mantissa bit-width are

not always required at the same time. For densely distributed small values, a large bit-width

mantissa is needed but the exponent bit-width can be small. For sparsely distributed large

or tiny values, a large bit-width exponent is needed but the mantissa bit-width can be small.

19



s (r, r, …, ~r), (ees-1, ...e0), (fraction)

sign regime, exponent, fraction

Figure 2.3: Format of posit number

Therefore, the encoding for the numerical values in these applications can be improved.

In posit number system [16], a non-uniformed encoding method is applied where the total

bit-width is a constant but the bit-width of components can be changed. This characteristic

fits well with the data distribution of deep learning applications. For densely distributed

small values, more bits can be allocated to the mantissa. For sparsely distributed large

or tiny values, the exponent can occupy more bits. Therefore, the total bit-width of posit

numbers when compared to the conventional floating-point numbers can be reduced in deep

learning applications.

The general format of a posit number is shown in Figure 2.3. A posit format, Posit(nb,

es), is defined with the total bit-width nb and the maximum exponent bit-width es. Except

the sign bit has a fixed 1-bit bit-width, the bit-width of all other components, the regime,

the exponent, and the mantissa, are flexible. Exponent and fraction appear only when there

is remaining bits for them. A sign bit of zero represents a positive number and a sign bit of

one represents a negative number. If a number is negative, two’s complement will be taken

before decoding components.

The regime part is first considered. It is a series of 0s or 1s followed by a bit with an

opposite value. The number of 1s or 0s is corresponding to the regime value rg. If the regime

bits start with m-bit zeros followed by a one bit, then rg = −m. On the other hand, if the

regime bits start with m-bit ones followed by a zero bit, then rg = m− 1. Then if the sign

and regime do not occupy the whole nb-bit, the exponent is followed. Its maximum bit-width

is defined with es. Exponent is an unsigned value without bias. Then the remaining bits are

allocated to fraction frac. There is always an implicit one bit for the frac. The value of a

number represented in posit format is:

v = (−1)s × useedrg × 2exp × (1 + frac) (2.3)

where useed = 22es . Zero is represented as all zero bits and infinity is represented as 1-bit

one followed by all zeros. There is no subnormal in posit format.

20



Table 2.3: Comparison of the dynamic range of Posit format and floating-point format

Format Min. Value† Max. Value† Dynamic Range∗

Std FP8 2× 10−3 3× 102 1.5× 105

Posit(8,4) 1× 10−29 8× 1028 8.0× 1057

Std FP16 6× 10−8 7× 104 1.2× 1012

Posit(16,5) 1× 10−135 7× 10134 7.0× 10269

Std FP32 1× 10−45 4× 1038 4.0× 1083

Posit(32,8) 8× 10−2309 8× 102311 1.0× 104620

† absolute value.
∗ dynamic range = max. value / min. value.

The comparison of the dynamic range of some posit formats with standard floating-

point formats is shown in Table 2.3. Due to the use of a dynamic regime component, the

representation of posit is much larger than the conventional floating-point format with the

same bit-width. However, due to the bit-width of each component is dynamic during runtime,

extra hardware is required to correctly extract each component from input operands and to

correctly pack the resulting components into the output format. The details of the posit

hardware designs will be discussed in Chapter 6.

2.2 Fused Arithmetic Units

Multiplier and adder are two common operators used in many applications. Conventionally

the multiplier and adder are usually designed as separate hardware units. However, consecu-

tive multiplication and addition operations (for example, y =
∑
x×w+b) are commonly used

in many applications, such as signal processing and machine learning. In these applications,

a fused arithmetic unit is desired to improve the computing performance.

There are three categories of fused arithmetic units that are popularly used: the FMA,

MAC, and dot-product (DOT, or sum of product, SoP). FMA is usually referred to floating-

point operations while MAC is usually referred to fixed-point operations. Both of them are

designed to perform the operations in the form of A×B ±C. For FMA, three operands, A,

B, and C, are in the same numerical precision, while in MAC, the precision of C is usually

higher than A and B. DOT is common for both fixed-point and floating-point. The i-way
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Figure 2.4: Implementing floating-point A × B + C with separate arithmetic units
and fused arithmetic unit

DOT is designed to perform the operation of
∑

i(Ai ×Bi) + C.

The first floating-point FMA architecture was proposed and used in IBM RS/6000 pro-

cessor [19]. It combined the floating-point multiplication and addition into a single operation.

The right part of Figure 2.4 shows a simplified FMA data-path when computing A×B+C.

The p-bit mantissa of A and B are multiplied. The multiplier contains a partial product

generation unit and partial product accumulate unit and a carry-save format product is gen-

erated. In parallel to the multiplication, the alignment of C is performed. After the product

is generated, the aligned C should also be available. The aligned C and the product then

go through one stage of (3,2) carry save adder (CSA) to be accumulated into two vectors.

Then the generated two vectors are added using a carry propagate adder (CPA). Only the

LSB 2p+ 2-bit vectors should go into the CPA. The MSB p+ 2-bit only contains one vector

and can be added with an incrementer. Then the addition result is normalized and rounded

and the output is generated.
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Figure 2.4 also compares the whole data-path when implementing A×B+C using separate

multiplier and adder and FMA unit. In the separate units implementation, the multiplier

and the adder use separate adders (A1 and A2) while in the FMA unit, the multiplication

and addition can share one CPA. This will lead to a reduction in hardware area. Moreover,

FMA can generate a result with better accuracy than separate multiplier and adder. On one

hand, in the separate units implementation, rounding operations are performed twice while

FMA only performs one rounding. On the other hand, the addition data-path of the FMA is

larger than that of the separate adder. Therefore, more bits can be reserved to participate the

future computation stages. In addition, the FMA unit can also be used to perform normal

multiplication operation or addition operation: by setting B = 1, the FMA can compute

A+C and by setting the absolute value of C to 0, the FMA can compute A×B. In order to

ensure the multiplication is compliant with IEEE 754-2008 standard [8], the sign of C must

be determined according to the sign of A×B and the rounding mode. In roundTiesToEven,

roundTowardZero, or roundTowardPositive modes, if the sign of A × B is positive, then C

can be set to +0 or −0. However, when the sign of A×B is negative, C also needs to be set

to −0. Moreover, in roundTowardNegative mode, the sign of C must be the same as that of

A×B.

Due to the above mentioned advantages, FMA was added into the IEEE 754-2008 stan-

dard and many processors use FMA as their basic FPU architecture. The MAC unit has

similar data-path to the FMA except that the bit-width of the carry propagate adder may be

larger since the precision of C is larger than A and B in MAC. DOT unit can be designed by

implementing multiple multipliers followed by a large carry propagate adder. When floating-

point formats are used, the products are needed to be aligned with each other before the

final addition.

For those arithmetic units proposed in this thesis, if only floating-point formats are sup-

ported, such as the design discussed in Chapter 3, the design is called FMA unit. When both

floating-point and fixed-point are supported, such as the ones in Chapter 4 and Chapter 5,

the design is termed as MAC unit. The posit based design discussed in Chapter 6 is termed

as MAC unit since the format of A, B and C could be different.
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Figure 2.5: Datapath of a mixed-precision FMA

2.3 Mixed-Precision Arithmetic Units

Mixed-precision arithmetic units use different precisions at different computation phases.

The conventional MAC architecture is a mixed-precision unit since C has different precision

from A and B. The FMA unit can be modified by extending the precision of C and the

adder data-path to realize mixed-precision operations. Mixed-precision arithmetic units are

usually used in application-specific computing system designs. Due to the mixed-precision

feature, it usually designed in a fused arithmetic unit. The use of mixed-precision arithmetic

unit has mainly two advantages: (1) the multiplication can be done with low precision to

improve the computing speed. (2) the addition is done with high precision to maintain a

highly accurate result.

Mixed-precision operations are suggested to be used in deep learning together with re-

duced precision computing in [10]. Many reduced precision deep neural network training

methods require the mixed-precision computing to maintain the accuracy [9] [20]. In the

field of linear algebra, the mixed-precision method is also widely used to perform the itera-
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Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5× 5× 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 × 3 ×
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 × 3 × 192 , and the fifth convolutional layer has 256
kernels of size 3× 3× 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224× 224 patches (and their horizontal reflections) from the
256×256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 × 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224× 224× 3-dimensional.

5

Figure 2.6: Architecture of AlexNet (From: Figure 2 of reference [1].)

tive refinement operations. In [21], a two precisions mixed-precision method is proposed and

in [22], a three precisions mixed-precision method is proposed. Both methods can maintain

the same level of accuracy as the one when computing with only high precision numbers

while achieving significant speedup.

A simplified hardware mixed-precision FMA architecture is shown in Figure 2.5. It is

also used to compute A × B + C but now C has higher numerical precision than A and

B. The data-path shown in Figure 2.5 assumes the mantissa bit-width of C is larger than

twice the mantissa bit-width of A and B. (For other cases, the data-path bit-width should

be modified accordingly.) The multiplication is done in p precision while the alignment,

addition, normalization, and rounding are done with q precision.

2.4 Deep Learning Computing

2.4.1 Overview

Deep neural networks are usually composed of convolutional layers (CONV), fully-connected

layers (FC), activation layers, and pooling layers. The architecture of AlexNet, which is a

popular convolutional neural network (CNN) architecture, is shown in Figure 2.6. It consists

of 5 CONVs followed by 3 FCs. Activation layers are used after each FC and CONV and

pooling layers are applied after the second, third and fifth CONVs.

The majority of the computations happens in convolutional layers [5]. For AlexNet, to

generate one output, a total of 724 million multiply-accumulate operations are required where

the five CONVs contain 665 million MAC operations.
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Figure 2.7: Process of convolution computation in deep neural network

The process of calculating a convolution in a deep neural network is shown in Figure 2.7.

There are ID input feature maps (Ifmap) of size IH × IW and KN kernels (Ker) of size

KD × KH × KW . They are used to generate OD output feature maps (Ofmap) of size

OH ×OW . In deep neural network, KD = ID and OD = KN . Assume the amount of zero

padding is P for input feature maps and the stride of kernel, which is the amount of pixels

of each kernel sliding, is represented with S, then size of the Ofmap can be generated from

the size of Ifmap with equation (2.4):

OH = (IH + 2P −KH)/S + 1

OW = (IW + 2P −KW )/S + 1
(2.4)

Then, the value of each pixel in Ofmaps can be calculated with equation (2.5):

O[m][x][y] = act(B[m] +
KW−1∑
i=0

KH−1∑
j=0

ID−1∑
k=0

I[k][Sx+ i][Sy + j]×W [m][k][i][j])

0 ≤ m < OD, 0 ≤ x < OW, 0 ≤ y < OH

(2.5)

where O, B, I, W represent output feature map, bias, input feature map (after padding),

and kernel, respectively, and act() represents the activation function. When the feature map

size is large or the number of feature maps is large, the amount of required computations will

be large. In addition, the majority of computations is in the form of multiply-accumulate.

For FC layer computation, similar equations can be applied with KW = IW and KH = IH.
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Figure 2.8: Weights and activations distribution of AlexNet Convolution Layer 2

2.4.2 Reduced Precision Computations

Deep neural networks are usually trained using GPUs where the 32-bit single-precision

floating-point format is the default computing format. Therefore, many pre-trained neu-

ral network models come with single-precision floating-point parameters. However, the costs

of implementing single-precision operators are expensive. For deep neural networks, they

are computationally intensive. Therefore, the overall cost, including timing and energy, of

implementing deep neural network with single-precision format is high. In order to reduce

the implementation cost, many research works focus on reduced precision computations for

deep neural networks.

The feasibility of using reduced precision computation is derived from the distributions of

deep neural network data. An example is shown in Figure 2.8 where the histogram of weights

and activations of CONV 2 of AlexNet [1] are plotted. As shown in Figure 2.8, both weights

and activations are distributed in narrow ranges and thus fewer number of bits (than 32-bit)

can be used to correctly represent and compute for weight and activation. Although only

one example is shown here, this form of data distribution is not uncommon in deep neural

network models [5] [13].

Many research works focused on reduced precision deep learning computing are available

in the literature. In [9], the authors proposed to train deep neural network with 16-bit

half-precision number format. The 12-bit floating-point format is utilized in training in [23].
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In [11] and [13], 8-bit floating-point format is used.

In addition to floating-point numbers, fixed-point numbers are also used in deep neural

network computing. The works in [11] and [12] show that inference can be accomplished

with 8-bit fixed-point numbers. The 16-bit fixed-point format is used by some deep neural

network accelerators [24] [25]. Moreover, for more efficiency, binarized neural network [26] is

proposed where neural network parameters are constrained to ±1.

Generally, when using reduced precision computing, floating-point format is preferred

in training. During training, in addition to the normal forward computations, weight and

bias parameter are required to be tuned in each training iteration. At the last few training

iterations, the parameter changes, which is called gradient, are usually very small. Therefore,

a number format with large dynamic range is required to handle such small values. However,

in inference, there is no gradient issue and therefore, smaller precision or even fixed-point

format can be used to achieve more timing and resource benefit.

2.4.3 Range vs Precision

When using reduced precision floating-point, the contribution of the exponent and the man-

tissa on neural network accuracy should be figured out so that the number format could be

more efficient. This question has been investigated in [15]. In this section, the conclusion

from [15] will be discussed.

The results of range and precision in [15] are reproduced and shown in Figure 2.9. The

accuracy shown is the relative accuracy that is the ratio between the accuracy of current

configuration and the accuracy when using single-precision format. For exponent, as shown

in Figure 2.9(a), when the bit-width is small (< 3), the neural network cannot be used. With

the increase of exponent bit-width, the neural network gradually reaches the full accuracy.

The results of mantissa are quite different as shown in Figure 2.9(b). Even when the mantissa

only has 1-bit, these neural networks can still maintain a relatively high accuracy. When the

mantissa has 2-bit or more bits, the full accuracy is achieved and more mantissa bits do not

lead to the increase in accuracy.

Comparing the accuracy under different exponent and mantissa bit-width, we can find

that the exponent bit-width (representation range) is more important than the mantissa
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Figure 2.9: Normalized neural network accuracy under different exponent and man-
tissa bit-width (Reproduced from Figure 8 and Figure 11 of [15].)
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bit-width (representation precision) for neural network accuracy. As long as the exponent

bit-width is large enough, no matter what the bit-width of mantissa is, the neural network

accuracy can always stay at high level. Therefore, when designing a numerical format for

neural network computing, the requirement of exponent bit-width should be met first and

the remaining bits can be allocated to the mantissa.

2.5 Hybrid Memory Cube

Dynamic random-access memory (DRAM) has been used as the main memory of modern

computer systems and GPUs. The bandwidth and speed of DRAM get improved through

each architecture evolution. However, in recent years, the improvement of computing power

is much larger than the improvement of memory and the DRAM gradually becomes the per-

formance bottleneck of computer systems. In addition, there is an increased demand in large

memory capacity. However, as the DRAM unit is a 2D planar, the high capacity DRAM will

occupy too many board area. Moreover, the energy consumed by data transfer through the

memory interface is high, especially for data intensive applications. To solve these problems,

the 3D memory [17] [18] architecture is proposed. In 3D memory architecture, DRAM dies

are stacked vertically and thus reduces their board area consumption. In addition, a logic

layer is added in the 3D memory. Many logic and arithmetic functions can be implemented

in the logic layer. As a result, the memory bandwidth requirement and thus the energy

consumed by data transfer can be reduced.

Hybrid memory cube (HMC) [17] is one of the available 3D memory architectures. The
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Table 2.4: HMC Specifications

Configurations

Number of links in package 2, 4

Link lane speed 12.5, 15, 25, 28, 30

Memory density 8GB

Number of vaults 32

Memory bank 512 banks

Maximum DRAM data bandwidth 320GB/s

Maximum vault data bandwidth 10GB/s

basic organization of a HMC architecture is shown in Figure 2.10. It consists of up to 8

DRAM dies. The bottom layer is a logic layer. As shown in Figure 2.10, each memory die

is divided into 32 memory partitions. Each partition contains many memory banks (usually

8 or 16 depending on the memory density). The memory partitions in the same vertical

location form a vault. The communication within a vault is realized by the through silicon

via (TSV). The vault controller is implemented in the logic layer. In addition, some logic or

arithmetic functions are also performed in the logic layer. The specifications of HMC defined

in [17] are presented in Table 2.4.
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Chapter 3

Multiple-Precision Floating-Point Fused Mul-

tiply Add1

This chapter presents the design of a multiple-precision floating-point FMA unit for

general-purpose computing. Compared to other multiple-precision FMA units available in

the literature, the proposed FMA unit introduces the support of parallel half-precision oper-

ations and the support of mixed-precision dot-product operations. Due to these newly added

computing features, the proposed unit is especially suitable for deep learning computing.

Section 3.1 presents the motivations to design such an FMA unit. The proposed FMA archi-

tecture is presented in Section 3.2. Section 3.3 presents the synthesis results of the proposed

design. Section 3.4 concludes this chapter.

3.1 Introduction

The concept of the floating-point FMA unit is first proposed in the IBM RS/6000 processor

[19]. The FMA operation itself is a basic operation for many scientific and engineering

applications. In addition, compared to the separate multiplier and adder, the FMA unit has

the advantage of smaller area and higher accuracy. Moreover, the FMA unit can also be used

to perform basic multiplication or addition operations. Due to these advantages, nowadays

many processors use the FMA unit as the basic design unit. FMA operations were also added

1The content of this chapter is originally published in IEEE Transactions on Computers [27]. The
manuscript has been reformatted for inclusion in this thesis.

Hao Zhang (HZ), Dongdong Chen (DC) and Seok-Bum Ko (SK) designed the study. HZ developed and
optimized the architecture, developed the HDL code of the architecture, and performed logic synthesis and
results analysis. DC gave suggestions on improving the architecture and analyzing the results. HZ prepared
the manuscript with contributions from DC and SK to the manuscript structure, readability and analysis
and discussion of the results.
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in the IEEE 754-2008 standard [8].

In recent years, a lot of research effort has been put into the design of FMA architecture

to reduce latency, area, and power consumption [28–32]. In addition to these works, in

order to efficiently support multiple precisions operations for different applications in a single

architecture and to support the applications that require multiple-precision operations at the

same time [33], some dual-mode FMAs [34–36] are proposed in the literature. These FMA

designs support both double-precision operations and single-precision operations. Moreover,

multiple-precision FMAs that also support quadruple-precision operations, [37] and [38], are

proposed in order to support the quadruple-precision operations for scientific applications

[39].

In addition to these three precisions, the 16-bit half-precision is also included in the

IEEE 754-2008 standard [8]. It was originally designed as a storage format to save memory

resources. However, due to its smaller bitwidth, the implementation of arithmetic units based

on half-precision is much more efficient than other floating-point formats [40]. Recently,

half-precision is used more and more often to accelerate floating-point applications. Use of

half-precision is suggested in deep learning applications to take the place of the conventional

32-bit floating-point format [10] [5]. Use of half-precision is also recommended in linear

algebra [22] to speed up the iterative refinement process. Given these increasing applications,

half-precision arithmetic units are suggested to be revisited in [41] where an FMA architecture

for exact half-precision FMA operations is proposed. In many recent commercial central

processing units (CPUs), such as Intel Knights Mill [42], and GPUs, such as NVIDIA Tesla

P100 [43], half-precision operations are supported in hardware.

In addition to normal FMA operations, mixed-precision FMA operations are getting more

popular recently. In order to increase the performance while maintaining high accuracy, many

applications suggest performing multiplication in lower precision while accumulating prod-

ucts in higher precision. In the field of linear algebra, mixed-precision method is widely

applied. In [44], single-precision is used for the majority of the computations while double-

precision is used at the last few stages to refine the results. In [22], a similar mixed-precision

method is extended by applying three different precisions in various computation stages. In a

recent work [21], half-precision and double-precision mixed-precision operations are proposed
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to utilize the half-precision Tensor Cores in GPUs to speed up iterative refinement solvers.

The mixed-precision method is also widely used in deep learning applications. In deep learn-

ing applications, when computing an output feature map, a large amount of accumulation

operations are required where the rounding errors are also accumulated. In order to reduce

the accumulated rounding error, accumulation using higher precision is suggested in [10].

In [45], a mixed-precision FMA where the single-precision product is added to the double-

precision addend was first proposed. Compared to a normal FMA, the mixed-precision

FMA consumes more hardware due to the wider datapath for high precision accumulation.

However, for a multiple-precision FMA architecture, the datapath for higher precision addend

and addition are already available. Therefore, the possibility of implementing mixed-precision

FMA with multiple-precision FMA can be explored. Furthermore, in a multiple-precision

FMA architecture, multiple lower precision operations can be done in parallel. Therefore,

the mixed-precision dot-product operations can be explored to increase the throughput of

the accumulation. The area overhead will only be the hardware used for the alignment of

multiple products. In [46], the dot-product operation is supported. However, in that design,

the addend and the products are in the same precision, and thus it cannot benefit from the

advantages of mixed-precision operations.

In this chapter, an efficient multiple-precision floating-point FMA architecture is pro-

posed. Half-precision support is added in addition to the support of single-precision, double-

precision, and quadruple-precision. Specifically, the proposed multiple-precision FMA ar-

chitecture supports one quadruple-precision operation, or two parallel double-precision op-

erations, or four single-precision operations, or eight parallel half-precision operations. The

architecture of the proposed FMA is fully-pipelined so that each set of operations can be

started every clock cycle. In addition to normal FMA operations, mixed-precision oper-

ations are supported. The mixed-precision operation in the proposed design is a 2-term

dot-product accumulating to a higher precision addend. For double-precision, the proposed

FMA supports one such mixed-precision dot-product operation. For single-precision and half-

precision, two parallel and four parallel mixed-precision dot-products are supported, respec-

tively. Quadruple-precision can already provide enough precision for most applications [47]

and accumulating quadruple-precision to even higher precision is hardware expensive; there-
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fore, mixed-precision operation is not applicable to quadruple-precision. The mixed-precision

FMA operation can be realized by setting the operands of one multiplication of the 2-term

dot-product to zeros.

The contributions of the proposed design in this chapter are summarized as follows:

• Proposing an efficient multiple-precision FMA architecture that supports half-precision,

single-precision, double-precision, and quadruple-precision operations.

• Modifying the proposed FMA to also support mixed-precision dot-product and mixed-

precision FMA operations.

• Supporting more functionalities compared to a conventional quadruple-precision FMA

with only minor area overhead.

• Performing accumulation and dot-product operations with higher throughput compared

to a standard mixed-precision FMA architecture.

3.2 The Proposed Design

The proposed FMA unit supports normal FMA operations A×B+C. It can perform eight HP

operations, four SP operations, two DP operations, or one QP operation with a latency of 3

pipeline stages. In addition to normal FMA operation, the proposed unit also supports mixed-

precision FMA and mixed-precision dot-product operations. As discussed in Section 3.1,

mixed-precision FMA operation [45] is recommended in many applications [10] [22]. It uses

lower precision for multiplications to improve the performance while accumulating the results

to higher precision to maintain high accuracy.

Different from the mixed-precision functionality in [45], where A × B + C (A and B in

single-precision and C in double-precision) is supported, in the proposed design, A1 × B1 +

A2 × B2 + C (A1, B1, A2, and B2 are in lower precision and C is in higher precision) can

be supported. This is due to the datapath for multiple-precision operations, since in the

proposed FMA design, for example, one QP addend corresponds to two DP multiplications.

Similarly, two DP addends each corresponds to two SP multiplier operands. Therefore, the

proposed FMA will support one DP mixed-precision dot-product (A1 ×B1 +A2 ×B2 + C),
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Figure 3.1: Datapath of the proposed multiple-precision fused multiply-add unit
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or two parallel SP mixed-precision dot-products, or four parallel HP mixed-precision dot-

products. For QP operation, since it can already provide enough precision for most of the

applications [47], we do not provide higher precision accumulation support for QP operation.

The dot-product operation was supported in [46], however, in that design, the addend was

with the same precision as that of multiplication operands. In the proposed design, the

addend is with higher precision that can help reduce the accumulated rounding error.

In addition to the supported 2-term dot-product operations, for SP (HP) numbers, 4-

term dot-product with accumulating to DP (SP) addend, or for HP numbers, 8-term dot-

product with accumulating to SP addend can also be realized. However, these modes are

not supported in the proposed architecture. On one hand, multiple 2-term dot-product,

compared to one 4-term or one 8-term dot-product, is more flexible in real applications

where multiple independent dot-product operations can be implemented in parallel. For

example, the FFT butterfly architecture [48] requires 2-term dot-product. If 4-term or 8-

term dot-product is used to implement this FFT architecture, the hardware will not be fully

utilized. In addition, the 8-term or 4-term dot-product can always be realized by using 2-

term dot-product hardware. However, there may exist minor rounding errors since when

using 2-term dot-product unit, a rounding will be performed after accumulating every two

terms instead of only one final rounding as the 4-term or 8-term dot-product units do. On the

other hand, the hardware cost to support 4-term or 8-term dot-product is much higher than

2-term dot-product because a more complex alignment shifter and control logic are required

to align the products. Therefore, in order to make the proposed architecture more hardware

efficient and more flexible for applications, the proposed FMA is chosen to support 2-term

dot-product operation.

The datapath of the proposed multiple-precision FMA is shown in Figure 3.1. The whole

datapath is split into four pipeline stages. The grey blocks represent the position of pipeline

registers. The first pipeline contains the mantissa multiplier for A and B. It also contains the

alignment shifter of C and the corresponding shifting control logic. The leading zero counting

(LZC) logic in the first pipeline stage is used in mixed-precision operations to renormalize the

subnormal products. The second pipeline stage contains the logic for newly added mixed-

precision support. It includes the alignment shifter to align the two products and the carry
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save adder to add two products together. The third pipeline stage contains the carry save

adder to combine the aligned C and product of A × B, the carry select adder to add the

combined vectors, and the leading zero anticipation and counting (LZAC) logic to generate

the leading zero numbers in the result. Finally, the normalization and rounding of the result

is performed in the last pipeline stage.

When performing normal FMA operations, the logic for mixed-precision operations in the

first pipeline stage can be gated and the second pipeline stage can be bypassed. Therefore,

normal FMA operation has a latency of 3 clock cycles. When performing mixed-precision

operations, four pipeline stages are required.

The 128-bit input can accommodate one QP number, two DP numbers, four SP numbers,

and eight HP numbers. The proposed architecture is fully-pipelined, therefore each set of

operations for different precisions can be started every clock cycle. A 1-bit signal mixp is

used to control whether the proposed design works in normal FMA mode or mixed-precision

mode. The 2-bit mode signal is used to distinguish different precisions operations. In mixed-

precision mode, the mode is set to the precision of multiplier operands.

In the following subsections, the components for normal FMA, mixed-precision FMA, and

mixed-precision dot-product operations are discussed.

3.2.1 Input Processing

The input processing module basically extracts each component from the IEEE 754-2008

format inputs and processes the sign, exponent, and mantissa into a unified format for dif-

ferent precision operations. The sign of each operand is organized into a 8-bit signal s. For

HP operation, each bit represents the sign of one sub-operand. For SP operation, s[1], s[3],

s[5], and s[7] are respectively used for each sub-operand while the other bits are set to zero.

Similarly, for DP operation, s[3] and s[7] are used and, for QP operation, only s[7] are used.

The exponents are also extracted and their values are evaluated to determine the implicit

bit of the mantissa. When the exponent is zero, the implicit bit will be 0. Otherwise, the

implicit bit will be 1. A total of eight exponent processing units are built. The first, third,

fifth, and seventh units are of 5-bit each and are dedicated to HP operations. The second

(sixth) unit is of 8-bit and is shared by SP1 and HP2 (SP3 and HP6). The fourth unit is
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Figure 3.3: Partial products of the 15× 15 radix-4 Booth multiplier

of 11-bit and is shared by DP1, SP2, and HP4. The eighth unit is of 15-bit and is shared

by QP, DP2, SP4, and HP8. After determining implicit bit for mantissa, each of the eight

unified exponent is extended by 2-bit for further processing. The 2-bit are used to prevent

overflow during exponent addition and to handle subnormal cases.

The mantissa is also processed into a unified format for the multiple-precision multiplier.

The unified format is shown in Figure 3.2. The total bidwidth of the unified mantissa is set

to 120-bit. For lower precisions, each of the mantissa is prefixed with zeros to fill the 120-bit

bitwidth. The value of each mantissa is evaluated to determine whether the corresponding

operand is subnormal when the exponent is zero. This will affect alignment shifting amount

calculation since for subnormal number, the actual exponent value is e = E−bias+1 instead

of E − bias.

3.2.2 Mantissa Multiplier

According to Figure 3.2, each unified mantissa format is divided into 8 parts. Each part

contains the complete mantissa for a HP operand and contains partial mantissa for other

precision operands. The higher precision multiplications are accomplished in a recursive

40



pp57
pp58

pp59
pp60

pp61
pp62

pp63
pp64

pp49
pp50

pp51
pp52

pp53
pp54

pp55
pp56

pp41
pp42

pp43
pp44

pp45
pp46

pp47
pp48

pp33
pp34

pp35
pp36

pp37
pp38

pp39
pp40

pp25
pp26

pp27
pp28

pp29
pp30

pp31
pp32

pp17
pp18

pp19
pp20

pp21
pp22

pp23
pp24

pp09
pp10

pp11
pp12

pp13
pp14

pp15
pp16

pp01
pp02

pp03
pp04

pp05
pp06

pp07
pp08

0306090120150180210239 215181111141171201231

hp1hp2hp3hp4hp5hp6hp7hp8

(a) Half-precision mode

pp57
pp58

pp59
pp60

pp61
pp62

pp63
pp64

pp49
pp50

pp51
pp52

pp53
pp54

pp55
pp56

pp41
pp42

pp43
pp44

pp45
pp46

pp47
pp48

pp33
pp34

pp35
pp36

pp37
pp38

pp39
pp40

pp25
pp26

pp27
pp28

pp29
pp30

pp31
pp32

pp17
pp18

pp19
pp20

pp21
pp22

pp23
pp24

pp09
pp10

pp11
pp12

pp13
pp14

pp15
pp16

pp01
pp02

pp03
pp04

pp05
pp06

pp07
pp08

060120180239 47107167227

sp1sp2sp3sp4

(b) Single-precision mode

pp57
pp58

pp59
pp60

pp61
pp62

pp63
pp64

pp49
pp50

pp51
pp52

pp53
pp54

pp55
pp56

pp41
pp42

pp43
pp44

pp45
pp46

pp47
pp48

pp33
pp34

pp35
pp36

pp37
pp38

pp39
pp40

pp25
pp26

pp27
pp28

pp29
pp30

pp31
pp32

pp17
pp18

pp19
pp20

pp21
pp22

pp23
pp24

pp09
pp10

pp11
pp12

pp13
pp14

pp15
pp16

pp01
pp02

pp03
pp04

pp05
pp06

pp07
pp08

0120239 105225

dp1dp2

(c) Double-precision mode

pp57
pp58

pp59
pp60

pp61
pp62

pp63
pp64

pp49
pp50

pp51
pp52

pp53
pp54

pp55
pp56

pp41
pp42

pp43
pp44

pp45
pp46

pp47
pp48

pp33
pp34

pp35
pp36

pp37
pp38

pp39
pp40

pp25
pp26

pp27
pp28

pp29
pp30

pp31
pp32

pp17
pp18

pp19
pp20

pp21
pp22

pp23
pp24

pp09
pp10

pp11
pp12

pp13
pp14

pp15
pp16

pp01
pp02

pp03
pp04

pp05
pp06

pp07
pp08

0239 225

qp

(d) Quadruple-precision mode

Figure 3.4: Enabled multipliers and product regions in different precision modes

method. Therefore, to support the multiplication of QP numbers, a total of 64 small multi-

pliers of size 15×15 are required. Each part of the mantissa in one operand a is multiplied by

each part of the mantissa in operand b. Each 15× 15 multiplier is implemented with radix-4

Booth multiplication algorithm [49]. Each 15 × 15 multiplier generates 8 partial products,

as shown in Figure 3.3. These 8 partial products are accumulated with two levels of (4,2)

carry-save adders to generate one carry-save format pp. There are a total of 64 carry-save

format products pp generated, as shown in Figure 3.4(a). Assume x is the index of subword

in operand a and y is the index of subword in operand b, then the index of pp is calculated

by (x− 1)× 8 + y, for example, pp16 = m2a ×m8b.

For each precision mode, only the required 15×15 multipliers are enabled. Figure 3.4(a)-

(d) shows the enabled 15 × 15 multipliers (gray rectangles) in each precision mode. When

one 15 × 15 multiplier is not enabled, its outputs are all zeros so that they will not affect

the results. In Figure 3.4, each rectangle represents one set of carry-save format product

of one 15 × 15 multiplier. Therefore, the product array contains 32 rows of vectors. These

32 vectors will be accumulated by 4 levels of (4,2) carry-save adders to generate the final

carry-save format product of the whole 120× 120 multiplier.
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In HP mode, eight 15×15 multipliers are enabled for each HP operation. The locations of

these eight multipliers are shown in Figure 3.4(a). For modified Booth multiplier, there will

be a carry-out of 1. For a single multiplier, this carry-out is out of the range of the possible

product location and can be neglected. However, in the proposed design, this carry-out might

affect the results of the adjacent multiplier. In order to ensure correct product computation,

in HP mode, when performing partial product accumulation, any carry propagating through

bit30, bit60, bit90, bit120, bit150, bit180, and bit210 will be discarded. As for HP operands,

the effective mantissa is 11-bit. Therefore, the product cannot be larger than 22-bit. As a

result, in HP mode, the products can be found in the least significant 22-bit of every 30-bit,

as shown in Figure 3.4(a).

In SP mode, results of four of the 15 × 15 multipliers need to be combined to generate

one SP result, as shown in Figure 3.4(b). As the result of each Booth multiplier has a

carry-out which should not be considered as product bit, when combining results of small

Booth multipliers for larger multipliers, these carry-out should be removed or be propagated

outside the larger product range. In the proposed design, the sum vector of each carry-save

format Booth multiplier result is extended with multiple 1s to reach the most significant bit

(MSB) location of the larger product so that the carry-out bit will be propagated out of the

larger product range. These extended vectors are then accumulated using (4,2)-compressors.

Similar to the HP case, any carry propagation through bit60, bit120, and bit180 is discarded.

As a SP product can be at most 48-bit, the products can be found in the least significant

48-bit of every 60-bit, as shown in Figure 3.4(b). For DP and QP mode, similar extension

method and carry suppression method will be applied to ensure the correct product. The DP

result can be found in the least significant 106-bit of every 120-bit, as shown in Figure 3.4(c).

For QP, the result can be extracted from the least significant 226-bit of the result, as shown

in Figure 3.4(d).

The designs in [37] and [38] use array multiplier as their mantissa multiplier. The reason is

that, according to their unified mantissa format, the partial product of Booth multiplier [49]

contains subword carry bits that require extra logic to handle when performing low precision

operations. In order to avoid these extra delay, they choose to use array multiplier. In

addition, the control logic for Booth encoding will be more complex when handling multiple
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precisions.

For the proposed design, in order to reduce the number of partial products and to improve

the performance, the radix-4 Booth multiplier [49] is applied. The subword carry is properly

handled. In addition, in the proposed design, the multiplier operands of each precision are

divided into multiple 15-bit subwords as shown in Figure 3.2. The Booth encoding is applied

to each of the 15× 15 multiplier. As unified operand format is used, there is no need for the

control logic for Booth encoding to handle multiple precisions. The only control logic used

is to determine whether to enable the 15× 15 multiplier according to precision mode.

Another way to handle the subword carry and signed partial product is to use full mul-

tiplier for each 15 × 15 multiplier. The result of each 15 × 15 multiplier will then be one

vector instead of being in carry-save format. In this case, as the floating-point mantissa is

unsigned number, the product will also be an unsigned number. Then the following stage

accumulation will be simplified since there is no need to perform extension and the number

of remaining partial products will be reduced from 32 to 16. In addition, there is no need

to handle subword carry propagation. For example, for SP operation, the actual products of

two adjacent operations are separated by 12-bit zeros. For the later 3 levels of (4,2) carry-

save adders, the carry bit can propagate at most 3-bit more positions. Therefore, it cannot

propagate into the position of the next SP product and thus there is no need to worry about

the subword carry bit. This method will increase the critical path delay and is not applied in

the proposed design. However, if more pipeline stages can be applied in the architecture and

the multiplier can be divided into multiple pipeline stages, this method can be considered.

Radix-8 Booth multiplier can bring even fewer partial products compared to radix-4

Booth multiplier. However, for small size 15×15 multiplier, radix-8 Booth can generate only

2 fewer partial products than radix-4 Booth but the encoding logic is more complex and it

needs additional logic to calculate 3×Multiplicand. Therefore, for a more efficient multiplier

implementation, radix-4 Booth multiplier is used instead of radix-8 Booth multiplier.

3.2.3 Alignment Shifter

The alignment shifter runs in parallel to the mantissa multiplier to reduce the latency of the

FMA datapath. Similar to the alignment shifting method used in the basic FMA architecture,
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Figure 3.5: Alignment of C operand in the proposed fused multiply-add unit

the product is anchored and the addend C is placed to the left of the product, as shown in

Figure 3.5(a). Two additional bits between the addend C and the product are inserted to

avoid overflow and to ensure correct rounding of C. The maximum alignment amount is

reached when the most significant bit (MSB) of C is placed 2-bit to the right of the least

significant bit (LSB) of the product, as shown in Figure 3.5(b), when all bits of C can be

ORed to the sticky bit. The 2-bit gap is to ensure correct rounding for subnormal operands.

Therefore, for the number format with mp-bit mantissa, a (3mp + 4)-bit alignment shifter

is required. Specifically for QP, DP, SP, and HP operations, a 343-bit, 163-bit, 76-bit, and

37-bit alignment shifter is required, respectively. For mixed-precision mode, as the possible

subnormal products will be renormalized, the maximum shift amount can be 2mq + 4 where

mq is the bitwidth of the higher precision addend.

To generate the alignment shifting amount, the exponent difference d between addend

C and product A × B will be calculated, where d = eC − (eA + eB). As subnormal cases

are handled, the exponent value is e = E − bias + 1 for subnormal numbers instead of

e = E − bias. In addition, in mixed-precision mode, the bias for addend and product are

different. Therefore, to simplify the design, the actual exponent value will be first calculated

and later operations are all based on exponent instead of biased exponent. In mixed-precision

mode, the exponents of two products, A1 × B1 and A2 × B2, are compared and the larger

one will be used to compare with C exponent. With exponent difference d, the alignment

shift amount can be calculated as const− d, where the const is due to the initial position of

C and A×B. The value of const is mp + 3 or mq + 3 in mixed-precision mode.

To enable resource sharing among all four precisions operations, the mantissa of addend C
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is rearranged. The unified format of the input for the alignment shifter is shown in Figure 3.6.

The mantissa of each precision is extended with zeros to fill the required shifting bitwidth.

For lower precision, the extended vectors are right aligned, so that the bit shifted out of the

shifter can be used to generate the partial sticky bit.

The implementation of the alignment shifter is shown in Figure 3.7. It is composed of 8

smaller alignment shifters. In HP mode, all these 8 shifters run independently for shifting

levels 0-5. In SP mode, every two of these shifters are combined where the bits shifted out

from the former shifters need to be sent to the later shifters. Similarly, in DP mode, the first

four and the last four shifters are combined as groups for the two DP operations. In QP

mode, all eight shifters are combined.

The alignment shifter runs in multiple levels. The QP alignment requires a 9-bit shifting

amount, the DP alignment needs a 8-bit shifting amount, the SP alignment requires a 7-bit

shifting amount, and the HP alignment requires a 6-bit shifting amount. The eight shifters

contain 6 shifting levels (lvl 0-5 in Figure 3.7) which consider the [5 : 0] of the shifting amount.

For the next level (lvl 6 in Figure 3.7), four one stage shifters will consider the seventh bit

of the shifting amount for SP, DP, and QP operations. Then two one-stage shifters (lvl 7 in

Figure 3.7) will consider the eighth bit of shifting amount for the DP and QP operations.

Finally, the last one stage 343-bit shifter (lvl 8 in Figure. 3.7) will consider the 9th bit of the

shifting amount for QP operation.

In mixed-precision mode, in addition to the alignment of the addend C, the two products

are also required to be aligned. In the proposed architecture, the alignment of two products

is put in an additional pipeline stage so that in normal FMA operation, these operations can

be bypassed.
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When performing multiplication, the product might become a subnormal number. How-

ever, this product is still a normal number in higher precision [45] [41]. For example, according

to Table 2.1, for two subnormal numbers in HP, the minimum exponent is -14. The minimum

exponent of the product is -28 which is still much larger than the minimum exponent of SP

which is -126. Therefore, subnormal product in lower precision needs to be renormalized to

perform normal operation in mixed-precision operations [45]. In the proposed design, we use

two LZCs, each for one operand of the multiplication, in parallel to the multiplier, to generate

the leading zero count in multiplication operand. The leading bit count in the product is

equal to the sum of the leading bit counts of two operands.

Besides renormalizing the product, another way to handle subnormal product is to extend

datapath. However, this method will lead to a significantly larger hardware cost. In this

method, the adder datapath will be 3mq + 5 instead of 2mq + 5. The LZA bitwidth will

become 2mq instead of mq + 3. And the alignment shifter for product will become 2mq + 2

instead of mq + 2. Although these datapath are available in a multiple-precision FMA, using

the wider datapath will lead to increased power consumption. Therefore, to reduce hardware

cost, in the proposed design, we choose to renormalize the product.

The exponent difference between the two products are already obtained when preparing

the larger product exponent to compare with that of C. The exponent difference will be fur-

ther adjusted according to the leading bit count. That means if subnormal product happens,

the exponent value after being normalized will be used to determine the alignment shifting

amount. According to the status of the operands, there will be three different cases:

1. When both operands A and B are normal numbers, although the result might be

subnormal in the same precision, the exponent value is still a normal exponent in higher

precision. In addition, both A and B have no leading zeros, therefore, the leading zero

count for their product is either one, in case A× B in [1, 2), or zero, in case A× B in

[2, 4). The final exponent value of A × B is eA + eB − lzcP (eA and eB are exponent

values without bias, lczP is the leading zero number in the product).

2. When both A and B are subnormal numbers, their exponents are both emin in their

precision. Assuming A has lzcA leading zeros and B has lzcB leading zeros, the product
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range of higher precision (mq) mantissa
mq-bit

2mp-bit

larger product

2mp-bit
smaller product

(a) Initial position of the products

sticky

mq-bit

range of higher precision (mq) mantissa
mq-bit

larger product

smaller product

(b) Maximum alignment of product with smaller exponent

Figure 3.8: Alignment of products in mixed-precision dot-product mode

will have lzcP = lzcA + lzcB or lzcA + lzcB + 1 leading zeros. A leading digit detection

will be performed to determine whether lzcA + lzcB or lzcA + lzcB + 1 is the correct

count. Then, the final exponent of A×B after being normalized is 2emin − lzcP .

3. When one of A and B is subnormal, for example A, the exponent of their product is

emin + eB. Assuming the leading zeros count for A is lzcA, the product has lzcP = lzcA

or lzcA + 1 leading zeros. Therefore, the final exponent of A × B after compensating

the leading zeros count will be emin + eB − lzcP .

The three cases can be combined that the final exponent used in exponent comparison

module can be calculated as eP = eA + eB − lzcP . The larger eP of two products will be

used to compare with addend exponent eadd to generate the alignment amount for addend

as the normal FMA does. The exponent difference of two products will also be calculated as

dprod = |ePA1B1 − ePA2B2|. The product with smaller exponent will need to be right shifted

dprod-bit to be aligned with the product with larger exponent.

When implementing the alignment for the products, the renormalizing amount lzcP and

the alignment amount dprod will be considered together in order to reduce the delay. For the

two products, the one with larger eP only needs to consider the renormalizing. Therefore,

a left shifter is required for the larger product. For the one with smaller eP , both lzcP and

dprod are required to be considered. Both left shift and right shift are possible for the smaller
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product. In order to simplify the shifter design, the smaller product is initially put to the

right of the LSB of the higher precision product, as shown in Figure 3.8(a). Then, only a

left shift of amount shiftprod = shiftmax + lzcP − dprod is required, where the shiftmax is the

bitwidth of the mantissa in higher precision. For HP, SP, and DP mixed-precision operations,

the shiftmax is 26-bit, 55-bit, and 115-bit, respectively.

The minimum value of shiftprod is zero, because in the initial position, all bits of the

smaller product will be compressed into the sticky bit and there is no need to further right

shift the smaller product. The maximum value of shiftprod is shiftmax + lenprod − 1 where

lenprod is the bitwidth of the product. It happens when the two exponent eP are equal (and

thus dprod = 0) and the first non-zero bit of the smaller product is in LSB. In this case, the

product needs to be left shift lenprod − 1 first for renormalizing and then left shift shiftmax

to align with the other product. This process is shown in Figure 3.8(b). For the product

with larger exponent, the maximum renormalizing amount is lenprod − 1.

In mixed-precision mode, the operations among products and addend are always addition.

Therefore, the effective operations (eopc for addend and eopprod for product A2×B2) are only

determined by the sign s of products and addend. The dot-product A1×B1+A2×B2 is treated

as a whole to simplify the analysis of eopc. For A1 ×B1 +A2 ×B2 +C, the eopc and eopprod

and the tentative sign of the result stmp can be determined by equation (3.1), where sABlarge

is the sign of the larger product between A1 × B1 and A2 × B2. After multiplication, the

second product of each mixed-precision operation needs to be inverted according to eopprod.

eopprod = sA1B1 ⊕ sA2B2

eopc = sABlarge
⊕ sc

stmp = sABlarge

(3.1)

After inversion, these two sets of carry-save format products are swapped, where the one

with larger exponent will be placed in the first place and the other one will be put in the

second place. Then the alignment based on previous discussions will be performed. After

alignment, these aligned products will be combined by one level of 4-2 carry save adder,

and then passed to the normal FMA datapath to perform the remaining operations. For

example, in HP mixed-precision dot-product mode, the rest of the FMA will run in SP
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48-bit48-bit

106-bit

Figure 3.9: Unified input format of products alignment in mixed-precision operation
mode

mode. To support product alignment in various precision modes, the corresponding products

are rearranged as shown in Figure 3.9.

In [46], when performing dot-product operation, the alignment of products is done before

the multiplication where the multiplier operands are shifted. However, in the proposed design,

in order to handle the subnormal numbers in mixed-precision mode, renormalization after

the multiplication is necessary. Therefore, in order to reduce the latency, the alignment of

products is moved after the multiplication operation and combined with the renormalization

shifting.

After combining the aligned products with one-stage carry save adder, the following

processes will reuse the same hardware of the higher precision operations in normal FMA

operations.

3.2.4 Adder

The diagram of the adder data-path used in the proposed FMA unit is shown in Figure 3.10.

For QP operations, a total of 343-bit vectors need to be added. For the most significant

115-bit, an incrementer is used since only one of the two vectors contains useful data. For

the less significant 228-bit, they need to be added using a carry propagate adder. In order to

improve the performance, the 228-bit adder is divided into two smaller adders, one 108-bit

adder for higher part and one 120-bit adder for lower part. For 108-bit higher adder, the

results of both input carry 0 and 1 are calculated. And the correct result is selected by the

carry out of the lower adder. Each of the two adders are further divided to fit lower precision

operations. In lower precision, each sub-adder runs independently and in higher precision,

the carry out from the lower order adder is sent to the higher order adder.
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115-bit incrementer 228-bit carry propagate adder

120-bit adder
108-bit   adder cin=0

108-bit   adder cin=1

0 1

cout

sum0

sum1

sumh suml

Figure 3.10: Diagram of the adder used in the proposed fused multiply-add

In normal FMA operation, the adder used for each precision is of 2mq + 3 in bitwidth

(without considering the incrementer bitwidth for higher order part), where mq is the man-

tissa precision of the addend (in normal FMA, this is also the precision of multiplier operand).

In mixed-precision mode, the adder used for each precision becomes mq + 3-bit. This mq + 3-

bit adder will occupy the higher order mq + 3-bit of the available 2mq + 3-bit adder and the

rest part will be disabled to save power.

3.2.5 Leading Zero Anticipation and Counting

The leading zero anticipator and counting unit runs in parallel with the mantissa adder. In

order to support all four precision operations in a single unit, the inputs to the LZAC are

rearranged as shown in the upper part of Figure 3.11. For lower precision operations, the

input vectors are left aligned so that the LZAC can generate the correct amount of leading

zeros. The trailing zeros will not affect the LZAC result.

The LZAC used in the proposed architecture is designed based on [50]. Since both positive

and negative results can be generated by the adder, both leading zero (for positive result) and

leading one (for negative result) need to be anticipated. Therefore, for the LZAC indicator,

we use the unified indicator of both leading zero and leading one in [50]. According to [50],

for k-bit operands A and B, the indicator generated by leading zero anticipator (LZA) unit

should be:
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Figure 3.11: Unified input format for the leading zero anticipator and counting of the
proposed fused multiply-add unit

fk−1 =T k−1Tk−2

fi =Ti+1(GiZi−1 + ZiGi−1)+

T i+1(ZiZi−1 +GiGi−1) i < k − 1

(3.2)

where T = A⊕B, G = AB, and Z = A B.

The detail of the LZAC is shown in Figure 3.11. The proposed design contains 8 smaller

LZAC for each of the HP operations. LZAC results of every two LZACs are combined to

determine the leading bit count for the four SP operations. For the next level, results of the

first four LZACs are combined to determine the leading bit count for the one DP operation

and the results of the last four LZACs are used for the other DP operation. In the last level,

all 8 LZACs are combined to determine the leading bit count for QP operation.

A tree based structure is used for counting the leading bit count. A valid signal v is

generated indicating not all bits of input indicator are zeros. The LZA used in the proposed

design is not an exact LZA. An 1-bit error might be generated by LZA where the counting

of the LZA will be 1-bit less than actual amount of leading bits. This 1-bit error can be
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corrected in the final stage of the normalization shifter by detecting whether the leading bit

of the result region is one (for subnromal result, this correction is disabled).

3.2.6 Normalization

The normalization shifter of the proposed FMA is similar to the alignment shifter, except

that the normalization shifting is a left shifting. In the proposed design, a two-stage shifting

method is applied where a constant shifter is applied first and then a dynamic shifter is used.

When the exponent difference of C and the product (the larger product in mixed-precision

mode) is larger than 2, the normalization amount is equal to the alignment amount. This

shifting will be handled by the dynamic shifter and the constant shifter is not applied.

Otherwise, a constant shifter is performed first with a shifting amount of mp + 2 (or mq + 2

in mixed-precision mode). Then a dynamic shifter will be performed with a shifting amount

determined by the LZAC.

For the dynamic shifter, still four levels of shifters are applied. The first level contains 8

shifters, one for each of the HP operations. They consider shifting amount [4 : 0]. The next

level contains 4 one-stage shifters that consider the sixth bit of shifting amount. They are

used for SP, DP, and QP mode. The next level contains 2 one-stage shifters that consider

the seventh bit of shifting amount. These two are used for DP and QP. Final level contains

1 one-stage shifter for QP operation to consider the eighth bit of shifting amount.

One more final stage shifting is added for correcting the error generated by the LZAC.

For each result region, the leading bit is detected and when it is not one, 1-bit more left

shifting is performed. For subnormal result (subnormal is detected when generating the

normalization amount), this leading bit detection is disabled. For normal result, before

performing the correction 1-bit shift, the exponent value will also be considered. When the

exponent already reaches the minimum value before the correction shifting, this 1-bit shifting

is not performed.

Before any shifting happens, the resulting exponent will be examined. If the resulting

exponent is smaller than the minimum allowed exponent, then the result is subnormal and

thus normalization shift will be performed with a shifting amount that makes the exponent

to be the minimum exponent.
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3.2.7 Rounding

In the proposed FMA architecture, 8 rounding units are designed. In HP mode, each opera-

tion uses one of the rounding units. The SP mode shares the first, third, fifth, and seventh

rounding units with the HP mode. The DP mode shares the fourth and eighth rounding

units with HP and SP mode. The QP mode will share the eighth rounding unit with HP,

SP, and DP mode. The roundT iestoEven rounding mode [8] is applied.

After rounding, the post processing module handles exceptional cases. And then the

generated mantissa is combined with the corresponding sign and exponent to form the IEEE

754-2008 format output.

3.3 Results and Analysis

The model of the proposed FMA architecture is implemented using Verilog. Simulations with

extensive testing vectors are performed to verify the functionality of the proposed design. The

testing vectors are generated with the help of TestFloat [51]. In addition to the proposed

architecture, the separate HP FMA, SP FMA, DP FMA, and QP FMA are also implemented

to compare with the proposed multiple-precision design. Moreover, a dual-mode FMA ar-

chitecture that uses the same techniques as the proposed FMA is also implemented. The

purpose to implement this architecture is to compare with previous dual-mode FMA designs.

The proposed dual-mode FMA supports DP FMA or two parallel SP FMA operations. It

also supports SP mixed-precision operation (mixed-precision dot-product and FMA).

All these designs are synthesized with STM-90nm technology with normal case parameters

(1.00V and 25℃) using Synopsys Design Compiler. The simulation of these designs are

done in Modelsim. The power estimation is done with Synopsys PrimeTime PX using the

synthesized netlist and value change dump (VCD) file generated from the post-synthesis

simulation.

Each pipeline stage of the proposed FMA architecture is synthesized first. The synthesis

results are shown in Table 3.1. Each pipeline stage is synthesized with a timing constraint

of 2.0 ns. As shown in Table 3.1, the first pipeline stage consumes the most area and power
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Table 3.1: Synthesis results of each pipeline stage of the proposed FMA

Stage
Delay

(ns)

Area

(µm2)

Power

(mW )

multiplication & addend alignment 2.0 466500 112.5

product alignment 2.0 45984 9.8

addition 2.0 175300 35.0

rounding & normalization 2.0 107006 19.7

Total 2.0 794790 177.0

due to the large mantissa multiplier. The area of the product alignment stage together

with the area of LZC in the multiplication stage are the area overhead to support mixed-

precision operations. As shown in Table 3.1, these extra logic only consumes 6.5% of the

total area. With this small area overhead, the FMA can perform more functionality, such as

mixed-precision dot-product and mixed-precision FMA, than conventional multiple-precision

FMAs.

The whole proposed FMA and the separate HP, SP, DP, QP FMA are then synthesized.

The synthesis results of each design are shown in Table 3.2. In Table 3.2, QP-MP-FMA

is the design obtained by removing all logic for mixed-precision support from the proposed

architecture. In addition, DP-MIX-FMA is the design obtained by removing all the QP

datapath from the proposed design. DP-MP-FMA is the design obtained by removing all

logic for mixed-precision support from DP-MIX-FMA. These DP-MP-FMA and DP-MIX-

FMA designs are added because the overwhelming cost of the QP datapath might hide the

cost or benefit of supporting mixed-precision operations. As shown in Table 3.2, the pro-

posed FMA consumes only 38% more area compared to a conventional QP FMA. However,

as discussed in previous sections, it can accomplish many more operations, such as parallel

HP/SP/DP FMAs and mixed-precision operations, in addition to the QP FMA operation.

The area overhead comes mainly from the multiplexers used to support multiple-precision

data selection and the logic to support mixed-precision operations. On the other hand, in

terms of functionality, we need 8 HP FMAs, 4 SP FMAs, 2 DP FMAs, 1 QP FMA, and

several other mixed-precision FMAs to realize the same functionality as the proposed FMA

provides. However, the combination of these FMAs consume much larger area compared to

the proposed FMA. In addition, compared to QP-MP-FMA, the proposed design only con-
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sumes 6.5% more area. Therefore, with small area overhead, the proposed FMA can support

many more functionalities, such as mixed-precision dot-product and mixed-precision FMA,

than conventional multiple-precision FMAs support. After removing the QP datapath, the

DP design with mixed-precision support, DP-MIX-FMA, only has 15% more area compared

to the standard DP FMA. The area overhead of DP-MIX-FMA to support mixed-precision

in a multiple-precision architecture compared to DP-MP-FMA is 5.8% after removing the

QP datapath. The energy consumption per operation for standalone FMA units and those

merged units are also shown in Table 3.2. Here the energy consumption of a single opera-

tion is reported. The total delay of the operation is calculated as the delay of each pipeline

stage multiplied by the number of clock cycles. Due to the sharing of resources among

different operation modes, the energy per operation is increased for each operation mode.

However, with the proposed architecture, multiple functionalities, such as multiple-precision

FMA, mixed-precision FMA, and mixed-precision dot-product, can be supported in a single

architecture.

The comparison of the functionality of the proposed FMA with previous multiple-precision

FMAs are shown in Table 3.3. Compared to other multiple-precision FMAs, the proposed

FMA supports HP operations in addition to SP/DP/QP operations. In addition, the pro-

posed FMA supports mixed-precision FMA (MIX-FMA) operations and mixed-precision dot-

product operations. The design in [46] also supports dot-product operations, however, its

addend and products are of the same precision. In addition, for dot-product operation, they

choose to sum all the products together (the 4-term dot-product) instead of supporting mul-

tiple parallel 2-term dot-products. The 4-term dot-product can perform a single dot-product

operation faster. However, for applications that require small size (2-term) of dot-product

operations, the 4-term dot-product unit is not fully utilized. In Table 3.3, the throughput is

compared in a unified method where op/FO4 is used. Within all the designs that support

QP operation, the proposed design can achieve the highest throughput.

The comparison of the dual-mode mixed-precision FMA using the same techniques as

the proposed FMA with some other dual-mode FMA works [34] [46] [35] [36] is shown in

the upper part of Table 3.4. All these designs support one DP FMA operations or two

parallel SP FMA operations. In addition, the proposed dual-mode FMA also supports mixed-
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Table 3.3: Comparison of functionality with multiple-precision FMA designs

Design Floating-Point Functions

Latency Throughput

cycle
delay

op/cycle
op/sec

(MOPS)

op/FO4

(×10−3)
ns FO4

[35]
one DP FMA/MUL/ADD 3 3.40 34.3 1 294 29

two SP FMA/MUL/ADD 3 3.40 34.3 1 294 29

[34]
one DP FMA/MUL/ADD 3 3.43 52.7 1 291 18

two SP FMA/MUL/ADD 3 3.43 52.7 1 291 18

[46]

DPFMA

one DP FMA 4 3.61 36.5 1 277 27

two SP MUL 4 3.61 36.5 1 277 27

one SP (2-term) Dot-Product 4 3.61 36.5 1 277 27

[46]

QPFMA

one QP FMA 4 4.74 47.8 1 210 21

two DP MUL 4 4.74 47.8 1 210 21

four SP MUL 4 4.74 47.8 1 210 21

one DP (2-term) Dot-Product 4 4.74 47.8 1 210 21

one SP (4-term) Dot-Product 4 4.74 47.8 1 210 21

[36]
one DP FMA/MUL/ADD 8 3.24 49.8 1 308 20

two SP FMA/MUL/ADD 8 3.24 49.8 1 308 20

[37]

one QP FMA/MUL 4 2.15 47.7 0.5 232 10

one QP ADD 3 2.15 47.7 1 465 21

two DP FMA/MUL/ADD 3 2.15 47.7 1 465 21

four SP FMA/MUL/ADD 3 2.15 47.7 1 465 21

[38]

one QP FMA/MUL/ADD 3 3.41 110 1 293 9

two DP FMA/MUL/ADD 3 3.41 110 1 293 9

four SP FMA/MUL/ADD 3 3.41 110 1 293 9

Proposed

one QP FMA/MUL/ADD 3 2.00 44.5 1 500 22

two DP FMA/MUL/ADD 3 2.00 44.5 1 500 22

four SP FMA/MUL/ADD 3 2.00 44.5 1 500 22

eight HP FMA/MUL/ADD 3 2.00 44.5 1 500 22

one DP MIX-FMA 4 2.00 44.5 1 500 22

two SP MIX-FMA 4 2.00 44.5 1 500 22

four HP MIX-FMA 4 2.00 44.5 1 500 22

one DP MIX (2-term) Dot-Product 4 2.00 44.5 1 500 22

two SP MIX (2-term) Dot-Product 4 2.00 44.5 1 500 22

four HP MIX (2-term) Dot-Product 4 2.00 44.5 1 500 22
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precision SP dot-product and mixed-precision SP FMA. The DPFMA in [46] supports SP

dot-product but the addend is also SP number. These designs are synthesized using different

semiconductor technologies. In order to make a fair comparison, the equivalent area (NAND2

gate count) and equivalent delay (FO4 delay) for each design are calculated. In terms of

delay, the proposed dual-mode design has a 3%-36% shorter critical path delay compared

to [34] [46] [35] [36]. The proposed design also requires 5 fewer pipeline stages than the design

of [36] when performing normal FMA operations. The critical path of the FMA is usually

located in the mantissa multiplier. In the proposed design, the radix-4 Booth multiplier

that has smaller critical path delay than the array multiplier is utilized which effectively

reduces the critical path delay. Compared to [34] and [35], the proposed dual-mode FMA

has 33% and 30% smaller area, respectively. Both [34] and [35] use array multiplier that can

simplify the multiple-precision design. However, the radix-4 Booth multiplier used in the

proposed design consumes less area than array multiplier used in [34] and [35]. Although

the mixed-precision support in the proposed design brings extra logic, the proposed design

still has smaller area compared to [34] and [35]. Compared to [46], the proposed design

has slightly (1.5%) larger area. The design in [46] only supports two SP multiplications

in SP mode as shown in Table 3.3 whereas the proposed design supports two parallel SP

FMA operations. Therefore, the logic for addend alignment in the proposed design is more

complex. In addition, the mixed-precision dot-product in the proposed design requires a

larger product alignment datapath than the normal dot-product in [46] which also leads to

a larger area. The design in [36] uses Karatsuba algorithm [52] to reduce the number of

required multiplier. In addition, the design in [36] uses 6 pipeline stages for the mantissa

multiplier. The timing constraints for each pipeline stage will be loose which further helps

to reduce the area during synthesis. Therefore, it has the smallest area among the four

compared dual-mode designs. In terms of power consumption, [36] has the smallest power

due to its small area. The proposed dual-mode design has 25% smaller power than the design

of [34].

In the lower part of Table 3.4, the comparison of the proposed multiple-precision FMA

with three previous multiple-precision FMAs that support up to QP operations, the QPFMA

in [46], [37], and [38], is provided. The proposed design still has the smallest critical path
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delay (6.7%-60% reduced) among these FMA designs due to the reduction of critical path

delay by using radix-4 Booth multiplier. In terms of throughput, all designs except [37]

have a throughput of 1 for all precisions. The QP support in [37] is designed with iterative

method. The iterative method can help to reduce the area, however, the QP throughput

is also reduced. In terms of area, compared to [38], the proposed design has 57% smaller

area. The design in [38] is based on the FMA architecture that optimized for floating-point

addition. When performing floating-point addition using that architecture, the mantissa

multiplier can be bypassed and the latency of floating-point addition is reduced. In that

architecture, the two-path floating-point addition algorithm is applied after the mantissa

multiplier which leads to a large area consumption. The proposed FMA has 22% larger

area compared to the QPFMA design in [46]. As shown in Table 3.3, the proposed design

has full support of QP/DP/SP/HP FMA operations. However, the QPFMA in [46] only

has full support for QP FMA and for DP and SP, only the multiplications are supported.

Therefore, the proposed design has a more complex addend alignment logic. In addition,

due to the fact that dot-product operation in the proposed design is supported in mixed-

precision method, the alignment datapath is wider than that of [46] which leads to a larger

area. Compared to [37], the proposed FMA has 10.6% larger area. The extra hardware comes

from two aspects. On one hand, the proposed FMA requires more hardware to support HP

FMA operations and the mixed-precision operations. On the other hand, because the QP

operation of [37] is done in iterative method, the area of their mantissa multiplier is reduced.

Therefore, although the proposed FMA uses resource efficient radix-4 Booth multiplier, it

still consumes more area than [37]. However, with only 10.6% area overhead, the proposed

FMA can support many more functionalities than [37], such as parallel HP FMAs, mixed-

precision FMAs, and mixed-precision dot-products, as shown in Table 3.3. In terms of power

consumption, the proposed design has 9.8% larger power consumption compared to [37] due

to a larger area. Compared to [38], although the synthesis technology of [38] has smaller

feature size than that used by the proposed design, the proposed design consumes 53% less

power than [38] due to the smaller area of the proposed design. Overall, the proposed FMA

can support more functionalities (HP FMA and mixed-precision operations) than the state-

of-the-art multiple-precision FMA design [37] with no significant area overhead.
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The design in [45] is a mixed-precision FMA that supports one SP multiplication result

accumulating to a DP addend. For the proposed FMA, in SP mixed-precision dot-product

mode, two dot-products work in parallel. Therefore, the proposed design can accumulate

multiple sets of two vectors faster than [45]. In addition, the proposed design supports mixed-

precision operations for other precisions, such as HP products accumulating to SP addend.

The multi-function FMA design in [46] also supports dot-product operation. However, the

addend has the same precision as the products. According to the discussion in [44] and

[10], mixed-precision accumulation can effectively reduce the rounding error. Therefore, in

practical applications, the proposed FMA design can provide more accurate results than [46],

especially when the size of two vectors to be accumulated is large.

3.4 Summary

In this chapter, an efficient multiple-precision FMA architecture is designed and imple-

mented. The proposed FMA architecture supports 1 quadruple-precision, 2 double-precision,

4 single-precision, or 8 half-precision operations. The proposed FMA also supports mixed-

precision operations. Due to the availability of the datapath for various precisions in the

proposed multiple-precision FMA architecture, the mixed-precision operations can be real-

ized without significant area overhead. By adding extra logic, the proposed FMA supports

mixed-precision FMA operation and mixed-precision 2-term dot-product operation for var-

ious precisions. Compared to a normal multiple-precision FMA, the mixed-precision FMA

also supports mixed-precision FMA operations and mixed-precision dot-product operations

with only 6.5% more area. The mixed-precision operations are favorable in many applications

that use lower precision to improve performance and use higher precision to maintain accu-

racy. Compared to the state-of-the-art multiple-precision FMA designs, the proposed FMA

newly adds support for half-precision FMA operations and mixed-precision operations with

only 10.6% more area. The proposed FMA architecture can be used in efficient processor de-

signs or specialized hardware accelerators. The support of parallel half-precision operations

and the mixed-precision operations makes the proposed design suitable in accelerating deep

learning applications.
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Part III

Arithmetic Unit for Deep Learning

Computation

63



Chapter 4

Multiple-Precision Multiply Accumulate Unit1

This chapter presents the design of a fixed-point and floating-point merged mixed-precision

MAC unit for deep neural network training and inference. The proposed MAC unit supports

both floating-point operations, for deep neural network training, and fixed-point operations,

for deep neural network inference. Section 4.1 presents the motivations to design the proposed

MAC unit. The design details of the proposed MAC architecture is presented in Section 4.2.

The synthesis results of the proposed MAC unit is presented in Section 3.3. Section 4.4

concludes this chapter.

4.1 Introduction

Deep learning [54] has achieved great success in recent years. However, the hardware cost to

implement a deep learning model is high since it contains large amount of parameters and

is computationally intensive. Many research works [5] have been done recently in order to

reduce the hardware cost. As the core of computation, the functionality of arithmetic unit

can determine the functionality of the whole hardware processor. In this paper, we will focus

on novel arithmetic unit design to enrich the functionality of deep learning processor.

For the inference operations of deep learning applications, 8-bit fixed-point or even lower

precisions have been proved to be sufficient to maintain high accuracy [11] [12]. However,

1The content of this chapter is originally published in the proceedings of 2018 IEEE International Sym-
posium on Circuits and Systems (ISCAS 2018) [53]. The manuscript has been reformatted for inclusion in
this thesis.

Hao Zhang (HZ), Hyuk-Jae Lee (HL) and Seok-Bum Ko (SK) designed this study. HZ developed the
architecture, developed the HDL model of the architecture, and performed logic synthesis and results analysis.
HZ prepared the manuscript with contributions from HL and SK to the manuscript structure, readability
and analysis and discussion of the results.
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for training operations, larger data range is still required to handle the computation of

gradients and back-propagation. Recent research work [9] has reported that 16-bit half-

precision operations can successfully train the deep learning models. Therefore, in order to

efficiently support both training and inference, a fixed/floating-point merged arithmetic unit

is required.

In deep learning applications, a large amount of multiplication results need to be ac-

cumulated to obtain a single output. Therefore, a number format with larger range and

higher precision is required to maintain the accuracy. This is suggested in [10] and [47]. The

results of half-precision multiplication can be accumulated to single-precision format. Simi-

larly, the results of 8-bit fixed-point multiplication can be accumulated to 32-bit fixed-point

format. The accumulation to higher precision can avoid data loss due to rounding. A mixed

single/double-precision fused multiply-add unit has been proposed in [45]. However, for deep

learning applications, lower precision operations are preferred.

In this chapter, a novel fixed/floating-point merged mixed-precision multiply-accumulate

unit is proposed to support the above mentioned deep learning training and inference oper-

ations. For deep learning training, the proposed architecture supports 16-bit half-precision

multiplications and the product will be accumulated to a 32-bit single-precision accumulator.

During inference operations, the two 16-bit inputs are filled with two sets of 8-bit fixed-point

operands. The proposed architecture will perform two parallel 8-bit multiplications. These

two products can be added and then accumulated to 32-bit fixed-point accumulator. The

fixed/floating-point merged multiplication is realized by the Karatsuba algorithm [52]. With

the proposed arithmetic unit, the deep learning processor can support training operations as

well as high-throughput inference operations.

4.2 The Proposed Design

The data-path of the proposed fixed/floating-point merged multiply-accumulate unit is shown

in Figure 4.1. It is similar to a standard FMA architecture [28], except the third operand

(accumulator) is in higher precision. The whole design contains three pipeline stages. The

first pipeline stage is for low-precision multiplication and alignment of the high-precision
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Figure 4.1: Data-path of the proposed fixed/floating-point merged mixed-precision
multiply-accumulate unit

66



accumulator. The second pipeline stage is for the accumulation operation and leading zero

detection for floating-point operations. The last pipeline stage is for floating-point normaliza-

tion and rounding operation. The floating-point operation requires the whole three pipeline

stages while the fixed-point operation requires the first two pipeline stages.

4.2.1 Floating-Point Mode

The proposed design accepts a control signal float which is to control whether floating-point

operation or fixed-point operation is performed. In floating-point (FLP) mode, A and B

are two half-precision numbers and accumulator is a single-precision number. The proposed

architecture can accomplish A×B + accumulator operation.

The mantissa of A and B, mantafp and mantbfp, are extracted and sent to the merged

multiplier to generate the carry-save format result. In half-precision multiplication, 22-bit

is enough for the product. However, in order to support 32-bit accumulation in fixed-point

mode, the products are extended to 32-bit by padding zeros to the right of the actual products.

At the same time, the accumulator is inverted in case of subtraction (eopflp = 1) and then

aligned to be ready for accumulation. Similar to the FMA design in [19], the accumulator is

placed two bits to the left of the carry-save format products. This is to ensure there will be

no overflow when accumulating and the accumulator only needs to be shifted to the right.

In the proposed design, a 58-bit shifter is required. When generating the shifting amount,

the exponents of A and B are first converted to single-precision exponent by adding the bias

difference of half-precision and single-precision.

In the next stage, the lower 32-bit of the aligned accumulator is combined with carry-save

format products and then go through the carry-propagate adder to generate the lower part

accumulation result. The higher part of the aligned accumulator is incremented and the out-

put carry of the lower carry-propagate adder determines whether incremented accumulator

is chosen. In parallel, an leading-zero anticipator and counter [50] is used to generate the

shifting amount for normalization shifter.

In the last stage, the accumulation result is normalized and rounded to single-precision

mantissa bit-length. The sign, exponent, and mantissa are combined to form the IEEE 754

single-precision format.
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Figure 4.2: Architecture of the proposed fixed/floating-point merged multiplier

4.2.2 Fixed-Point Mode

In fixed-point (FIX) mode, A (B) contains two sets of 8-bit fixed-point numbers Ah, Al

(Bh, Bl). The accumulator contains one 32-bit fixed-point number. The proposed design

can perform Ah ×Bh + Al ×Bl + accumulator operation.

Fixed-point numbers are in two’s complement format. Therefore, inversion is not required

for accumulator. In addition, the alignment is also not required and the 32-bit accumulator

is directly put to the lower 32-bit position. Moreover, complementer in the second stage is

not required since the fixed-point is in two’s complement format.

4.2.3 Merged Multiplier Design

The architecture of the merged FLP and FIX multiplier is shown in Figure 4.2. It contains

two 8-bit multipliers, mult8 1 and mult8 2, and one 3-bit multiplier mult3. Two 8-bit

multipliers, mult8 1 and mult8 2, are used for two parallel multiplications in FIX mode.

These two products are accumulated by (4, 2)CSA1 and then the results are sign extended

to 32-bit to form the final multiplier output.

In FLP mode, the mantafp ×mantbfp is calculated with the Karatsuba algorithm. Only

one more 3 × 3 multiplier, in addition to these two 8-bit multipliers, is enough to generate
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Figure 4.3: Partial products arrangement of modified booth multiplier

half-precision product. mantafp and mantbfp are rewritten as:

mantafp = mah · 28 +mal

mantbfp = mbh · 28 +mbl
(4.1)

Then according to the Karatsuba algorithm, mah×mbh is calculated by mult3, mal ×mbl
is calculated by mult8 2, and (mah−mal)× (mbh−mbl) is calculated by mul8 1. Here, an

addition in (4, 2)CSA1 is required to accumulate two products in FIX mode. Therefore, we

modify the last term in equation (2) to (A1−A2)× (B2−B1), so that the subtraction of this

term will become addition. Therefore, mult3 here calculates (mah −mal) × (mbl −mbh).

(4, 2)CSA2 will accumulate mah × mbh and mal × mbl. The accumulated result will be

combined with (mah−mal)×(mbl−mbh) by (4, 2)CSA1 to generate mah×mbl+mal×mbh.

Finally, mah×mbl+mal×mbh is shifted by 8-bit and mah×mbh is shifted by 16-bit. These

two together with mal × mbl are combined by (4, 2)CSA3 to generate the final carry-save

format product.

Since mult3 is used only for FLP mode, it is an unsigned multiplier. mult8 1 and mult8 2

are used in both FLP and FIX mode. In FLP mode, an unsigned multiplier is required while

in FIX mode, a signed multiplier is required. The modified booth multiplier [49] is used

for two 8-bit multiplier. The algorithm is modified to support both signed and unsigned

multiplication.

The partial product arrangement of signed and unsigned booth multiplier is shown in

Figure 4.3. The dots are either ±multiplicand or ±2×multiplicand. For unsigned case,

the multiplicand is always extended with zero and in signed cases, the multiplicand is sign

extended. This can be handled by the control signal float. The partial product generate

logic is same for signed and unsigned cases. So the S bit which is the complement bit in the
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Table 4.1: Synthesis results of the combinational logic of each pipeline stage

Pipeline
Delay

(ns)

Area

(µm2)

Power

(mW )

Stage 1 0.74 20003.75 7.5

Stage 2 0.70 7958.69 1.87

Stage 3 0.68 4227.95 0.63

case of negative partial product is used in common. In order to support signed cases, the E

bit, which is used to determine whether the partial product and multiplicand have the same

sign, is also generated. When extending ±1× or ±2×multiplicand, as shown in Figure 4.3,

whether to use S bit or E bit can be handled by float.

The unsigned case has one more partial product than the signed case. However, in 8-bit

case, the most significant two bits of the last group of multiplier bits to generate partial

product is always “00”. Therefore, the last partial product is either zero or 1×multiplicand.

We do not need partial product selector to generate the last partial product. In addition, in

signed case, the float control can be used to set the last partial product all zeros.

4.3 Results and Analysis

The proposed design is implemented with VHDL. Simulations with extensive testing vectors

are performed to verify the functionality of the proposed design. The proposed design is then

synthesized with STM-90nm technology with normal case parameters using Synopsys Design

Compiler.

The combinational logic of each pipeline stage is first synthesized. The synthesis result of

each pipeline stage is shown in Table 4.1. The critical path is in the first pipeline stage where

the time consuming multiplier is implemented. The first stage also has the largest area. The

multiplier is area consuming and alignment shifter also occupies large area.

The whole proposed architecture, including all pipeline registers, is synthesized as shown

in Table 4.2. The proposed design has a worst case delay of 0.8 ns, occupies 42710.90

µm2 area. The power consumption of the proposed design is 14.07 mW when running with

a 0.8 ns clock period. Two parallel 8-bit multiplications accumulating to 32-bit fixed-point
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Table 4.2: Comparison of the proposed multiply-accumulate unit with single-mode multiply
accumulate unit

Latency
Throughput

(GOPS)

Worst Delay Area Power

(mW )
ns FO4* µm2 NAND2*

FIX MAC† 2 1.43 0.7 15.56 13257.91 3013 6.65

FLP MAC‡ 3 1.25 0.8 17.78 40817.54 9276 13.59

Proposed MAC
2 (FIX)

3 (FLP)

2.50 (FIX)

1.25 (FLP)
0.8 17.78 42710.90 9707 14.07

† Two 8-bit fixed-point multiplication with 32-bit fixed-point accumulation
‡ 16-bit floating-point multiplication with 32-bit floating-point accumulation
* 1 FO4 ≈ 45ps, 1 NAND2 ≈ 4.4 µm2 @ 90nm

accumulator can be accomplished in two clock cycles. One 16-bit floating-point multiplication

accumulating to 32-bit floating-point accumulator can be accomplished in 3 clock cycles. The

proposed architecture is fully pipelined. Each new operation can be started every clock cycle.

The area and power consumption of the proposed design under different delay require-

ments is shown in Figure 4.4. With the delay constraint becomes larger, the area and power

of the proposed design become smaller. To achieve the best performance, in this paper, the

point with the smallest delay is chosen as the design point. In other cases, one can choose

the appropriate design point according to the requirements.

To the best of our knowledge, there is no such fixed/floating-point merged design appeared

in the literature. In order to show the advantage of our proposed design, two single-mode

multiply-accumulate units are designed. One is the fixed-point multiply-accumulate unit

which supports two parallel 8-bit fixed-point multiplications and accumulates the products

to 32-bit fixed-point number. This has the same functionality as the proposed design in FIX

mode. The other one is a floating-point multiply-accumulate unit which supports 16-bit half-

precision multiplication accumulating to 32-bit single-precision accumulator. This has the

same functionality as the proposed design in FLP mode. The comparison of these two designs

and our proposed design is shown in Table 4.2. The proposed design has similar worst case

delay as the floating-point multiply-accumulate. This is because the critical path is in the

multiplier. The support of fixed-point multiplication does not introduce much delay overhead.

In terms of area, the proposed design has 4.6% larger area. This is due to the multiplexers
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Figure 4.4: Area-Delay and Power-Delay curve of the proposed design

added to support fixed-point operations. The proposed design also consumes 3.5% more

power. These overhead are negligible. However, compared to the FIX+FLP design, which

is the pure combination of these two single-mode units, the proposed unit has 21% smaller

area and 30.4% smaller power consumption while achieving the same functionality.

4.4 Summary

In this chapter, a fixed/floating-point merged mixed-precision multiply-accumulate unit is

designed for deep learning processors. The proposed design supports 16-bit half-precision

multiplication and accumulating the product to a 32-bit floating-point accumulator. This

floating-point operation can be used for deep learning training. In addition, the proposed

design also supports two parallel 8-bit fixed-point multiplications and accumulating the prod-

ucts to a 32-bit fixed-point accumulator. This mode can be used in deep learning inference.

The Karatsuba algorithm is used to divide the mantissa multiplier of half-precision mul-

tiplication. The two 8-bit multipliers generated can be used to support two parallel 8-bit

fixed-point multiplications. The higher precision used in accumulation is to avoid data loss

during accumulation. The proposed unit can be used in deep learning processors to enable

training and high-throughput inference.
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Chapter 5

Flexible Multiple-Precision Multiply Accumu-

late Unit1

This chapter presents the design of a flexible multiple-precision MAC unit for deep learn-

ing training and inference operations. The proposed architecture is designed based on the

characteristics of deep learning computing. By using the proposed unit, a higher throughput

and improved energy efficiency can be achieved when processing deep learning applications.

Section 5.1 presents the motivations to design such a MAC unit. The supported numerical

formats of the proposed MAC unit are discussed in Section 5.2. Section 5.3 presents the de-

tails of the proposed design. The synthesis results of the proposed design and the comparison

with other MAC units are presented in Section 5.4. A case study is presented in Section 5.5

to show the advantage of the proposed design. Section 5.6 presents the discussions of some

questions related to the proposed design. Section 5.7 concludes this chapter.

5.1 Introduction

Deep learning [54] has achieved great success in recent years. In many applications, deep

learning can achieve a performance that is near to or even better than human level. Although

deep learning is powerful, the cost to implement a deep learning model is very expensive [5],

especially in terms of computational intensity. In recent years, many research works have

1The content of this chapter is originally published in IEEE Transactions on Computers [55]. The
manuscript has been reformatted for inclusion in this thesis.

Hao Zhang (HZ), Dongdong Chen (DC) and Seok-Bum Ko (SK) designed the study. HZ developed the
methodology, optimized the architecture, developed the HDL code of the architecture, and performed logic
synthesis and results analysis. DC gave suggestions on improving the architecture and analyzing the results.
HZ prepared the manuscript with contributions from DC and SK to the manuscript structure, readability
and analysis and discussion of the results.
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been done on efficient implementation of deep learning algorithms on hardware. Among these

works, the numerical format required by deep learning training and inference are extensively

investigated.

Currently, most of the deep learning training jobs are done using GPUs with 32-bit single-

precision floating-point [8] operations. However, the data-path of single-precision floating-

point units is complex and the hardware cost of implementing single-precision units are

expensive. These lead to a high energy consumption and a large latency when implement-

ing deep neural networks in customized hardware. In order to reduce the hardware cost, in

recent years, many research works [9, 11, 13, 23] are focused on reducing the numerical pre-

cision required by deep neural network training. In [9], the authors proposed to train deep

neural network with 16-bit half-precision number format. The 12-bit floating-point format is

utilized in training in [23]. In [11] and [13], 8-bit floating-point format is used. The standard

single-precision, double-precision, and quadruple-precision are well supported in many arith-

metic unit designs in the literature [27,37,56,57] and in many commercial products [42,43].

However, there are not many works discussing the support of 16-bit or even lower preci-

sion floating-point operations. Due to the small bit-width of 16-bit or even lower precision

floating-point formats, the implementation of arithmetic units based on half-precision and

even lower precision floating-point formats is much more efficient than other floating-point

formats [40]. As the interest of using low precision floating-point formats in deep neural

networks rises, the support of low precision in arithmetic units is required to be investigated.

Using low precision floating-point during the deep neural network training is expected

to reduce the energy consumption compared to using the standard single-precision floating-

point [58]. However, further energy reduction can be achieved when each operation step can

use its minimum required precision instead of being forced to use a uniform precision for

all steps. This idea is feasible for deep neural network implementation since the minimum

required numerical precision to maintain accuracy is different for different deep neural net-

works [13] [15] [14]. Furthermore, even within the same deep neural network, different layers

have different tolerance to the reduced numerical precision [13] [14]. Therefore, a flexible

precision arithmetic unit is desired to further reduce energy consumption and to improve the

performance of deep neural network operation.
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For deep neural network computing, the dynamic range of a floating-point format (bit-

width of exponent, BWe) is more important than the precision (bit-width of mantissa, BWm)

[15]. With enough BWe, the neural network can achieve satisfying accuracy and the accuracy

of network does not have significant difference with various BWm. The BFloat16 format

introduced in Tensorflow [6] directly truncates the mantissa of single-precision numbers from

23-bit to 7-bit while reserves the 8-bit exponent. However, if the BWe is not enough, the

accuracy of the neural network will have a significant degradation. According to this feature,

a flexible precision format can be achieved by a method where the total bit-width of a number

is a constant but BWe and BWm can be mutually exchanged. In this method, the requirement

of the representation range of the numerical format is first met and the remaining bits are

allocated to mantissa. When the required data range is large, BWe can be increased, so that

the flexible format can still represent the data properly for deep neural network applications.

When data range is small, BWe can be reduced and thus the flexible format can represent

the data more precisely with larger BWm.

In addition to floating-point numbers, fixed-point numbers are often used for deep neural

network inference. The works in [11] and [12] show that inference can be accomplished with

8-bit fixed-point numbers. The 16-bit fixed-point format is used by some deep neural network

accelerators [24] [25]. Moreover, for more efficiency, binarized neural network [26] is proposed

where neural network parameters are constrained to ±1. For a versatile deep neural network

processor, these fixed-point operations and binary operations are required to be supported.

In the literature, the Flexpoint [59], a software controlled flexible dynamic fixed-point

format is proposed. In this format, the shared exponent can be dynamically changed to meet

the dynamic range requirement of the deep learning computing. In addition, the flexible

floating-point precision method has been applied in a recent work [60]. In [60], a tunable

precision floating-point multiplier which supports 5 to 8-bit exponent and 4 to 24-bit mantissa

is proposed. Their results show significant improvement in energy consumption. However,

for deep learning applications, some improvements can be applied. First, as discussed in

[13–15], deep neural networks might not need large BWm when floating-point format is

used. Second, between floating-point format and fixed-point format, the latter one is desired

when performing inference. Although recent works [61] [62] show good inference results
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with logarithmic number system, conventional arithmetic unit is still more popular in many

different hardware designs. Third, parallel operations can be supported to compensate for

throughput degradation in lower precision operations of the conventional arithmetic unit.

Last but not the least, fused operation units, such as MAC [63] [64] and DOT, are preferred

compared to separate multiplier and adder due to smaller area and better accuracy.

With all these requirements in consideration, in this paper, a new flexible multiple-

precision multiply-accumulate unit is proposed. The proposed MAC unit supports both

floating-point operations (for deep neural network training) and fixed-point operations (for

deep neural network inference). For floating-point format, the proposed unit supports one

16-bit MAC operation (FLP16-MAC) or sum of two 8-bit multiplications plus a 16-bit ad-

dend (FLP8-DOT2). The bit-width of exponent and mantissa can be mutually exchanged to

realize the flexible precision support. For 16-bit floating-point format, up to 8-bit exponents

are supported, as 8-bit exponent, the exponent bit-width of standard single-precision format,

can already represent nearly all neural network parameters. In 8-bit mode, the dot-product

operation A1 × B1 + A2 × B2 + C is supported where products of two parallel 8-bit mul-

tiplications can be added together and then accumulated to a 16-bit floating-point addend

C. The BWe and BWm of the 16-bit addend can also be flexibly defined. For fixed-point

format, the proposed unit supports one 16-bit MAC operation (FIX16-MAC), or sum of two

8-bit multiplications plus a 16-bit addend (FIX8-DOT2), or sum of four 4-bit multiplications

plus a 16-bit addend (FIX4-DOT4). For fixed-point format, the location of the radix-point

can be flexibly defined. In other word, the bit-width of integer part and fractional part can

be exchanged. Furthermore, binary neural network operations are supported. The major

contributions of this paper are summarized as follows:

• Propose the architecture of flexible multiple-precision multiply-accumulate unit.

– Propose the method to correctly extract each component of all supported preci-

sions.

– Propose the method to correctly align the operands under all supported precisions

for addition.

– Propose the method to correctly round the results of all supported precisions,

76



Table 5.1: Supported formats of the proposed MAC unit

Operations

MAC Operands

A and B C

total exponent parallelism total exponent

FLP8-DOT2

(
∑2

i=1AiBi + C)
8-bit 1∼6-bit 2 16-bit 1∼8-bit

FLP16-MAC

(AB + C)
16-bit 1∼8-bit 1 16-bit 1∼8-bit

total fraction parallelism total fraction

FIX4-DOT4

(
∑4

i=1AiBi + C)
4-bit 0∼4-bit 4 16-bit 0∼15-bit

FIX8-DOT2

(
∑2

i=1AiBi + C)
8-bit 0∼7-bit 2 16-bit 0∼15-bit

FIX16-MAC

(AB + C)
16-bit 0∼15-bit 1 16-bit 0∼15-bit

where roundTiesToEven [8] is supported.

– Propose the method to support subnormal numbers of all supported precisions.

• A comprehensive analysis of the implementation results is performed. Compared to

the standard floating-point unit, the proposed unit supports many more functions with

only minor resource overhead.

• A case study of a simplified deep neural network application is performed with the

proposed multiply-accumulate unit to show the power efficiency of the proposed unit.

• The proposed multiply-accumulate unit can be used in deep learning processors in

datacenters or used as an neural network intellectual property (IP) core for FPGA

devices.
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5.2 Supported Numerical Formats

5.2.1 Numerical Format

Standard floating-point formats, including half-precision, single-precision, double-precision,

and quadruple-precision, are defined in IEEE754-2008 standard [8]. These formats are com-

posed of 1-bit sign (S), m-bit exponent (E), and n-bit mantissa (M). For half, single, double,

and quadruple precisions, m (n) equals to 5 (10), 8 (23), 11 (52), 15 (112), respectively. There

is always an implicit bit im for the mantissa part. For normal numbers, im = 1. For zero

and subnormal numbers, im = 0. The numerical value the IEEE 754 format represents is:

fp = (−1)S × (im+ 2−n ×M)× 2E−bias (5.1)

where bias = 2m−1 − 1.

In the proposed MAC design, although the bit-width of exponent and mantissa are flexi-

ble, all the supported floating-point formats follow the IEEE 754 rule where there is always

an implicit bit and the exponent part is biased.

When the exponent of a normalized number (with implicit bit equal to 1) is smaller than

the minimum exponent of the corresponding format, the mantissa needs to be right shifted

to bring the exponent back to the allowed range. If the difference between the exponent and

the minimum exponent is smaller than the bit-width of the mantissa, this number is still

representable and is called subnormal number. Otherwise, when using the IEEE 754-2008

default roundTiesToEven rounding mode, if the number is too small to be represented after

rounding, it will be flushed to zero.

Fixed-point format is less complicated compared to the floating-point format. In the fixed-

point format, numbers are encoded in two’s complement format. They have p-bit integer and

q-bit fraction. In the proposed design, p and q can be flexibly exchanged for different choices.

The numerical formats of each operand supported by the proposed multiply-accumulate

unit in each operational mode are summarized in Table 5.1.
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Figure 5.1: Datapath of the proposed flexible multiple-precision multiply-accumulate
unit and its usage in deep learning processor

5.3 The Proposed Design

A typical deep learning processor architecture [65–67] contains host interface, DDR memory,

on-chip buffer, sequencer, and processing elements (PE), as shown in Figure 5.1. The host

interface is used to communicate with the host processors. It receives instructions and input

data from host and sends results back to host. The sequencer receives the instructions and

coordinates the operations of all other components. The DDR memory is used to save the

data received from host and the processing results from PEs. The data to be processed in
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the current operation is buffered in on-chip buffer. All the computations are performed in

PEs.

Each PE unit contains many multiply-accumulate units and registers to perform dot-

product operations or matrix multiplication operations for convolution layer and fully con-

nected layer computations. Two multiplier inputs of the MAC unit are from activation buffer

and weight buffer, respectively. The addend input is from the accumulation registers. At the

initial cycle of a new operation, the addend is set to zero.

The core of the PE unit is the MAC unit. The functionality of the MAC unit can de-

termine the functionality of the PE unit. On one hand, if the MAC unit only supports one

precision format, then all the computations are forced to use the same precision format.

Although the operations of other precisions can be achieved by software implementation,

however, multiple iterations are usually required for that kind of operations and thus the

performance will be degraded. On the other hand, if the MAC unit is versatile, then opera-

tions of various precisions can be supported in hardware which will benefit the performance.

In addition, each application can choose to use their minimum required precisions so that

the energy consumption will be reduced compared to the case of using one precision for all

applications. In some cases, parallel operations can help improve the throughput and power

efficiency. Based on these considerations, this paper aims to propose a MAC architecture

with more functionality. It is designed to support various precisions at runtime. To make the

proposed MAC architecture efficient, resource sharing among different precisions are exten-

sively investigated to maintain the area overhead as small as possible compared to a single

mode MAC unit.

The datapath of the proposed MAC unit is shown in Figure 5.1. The whole design is

divided into three pipeline stages. The first pipeline stage contains the input processing

module, where each component of the operands are extracted, the flexible mantissa multi-

plier, and the alignment and invert control modules. The second pipeline stage contains the

alignment shifter for input C and products and then the carry select adder and in parallel the

LZAC logic. The third pipeline stage contains normalization shifter and rounding modules.

The pipeline allocation of the proposed design is different from the typical MAC or FMA

design, as shown in Figure 5.2, where the alignment of C is usually running in parallel
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Figure 5.2: Datapath of conventional multiply-accumulate unit based on standard
floating-point format

with the mantissa multiplier in the same pipeline stage. In the proposed design, due to the

support of flexible precision, the alignment control module will take larger delay than that

of a standard design. In this case, if alignment shifter of C still runs in the same pipeline

stage, although the delay of an alignment shifter is small, the critical path delay of the first

pipeline stage will be significantly larger than the following two pipeline stages. This can

lead to an imbalanced pipeline allocation which may increase the total latency of a single

operation. Through our preliminary experiment, we found that the second pipeline stage has

smaller delay than the other two. In addition, the alignment shifter for the product has to be

put in the second pipeline stage (products are not available until the multiplication finishes).

81



Therefore, we move the alignment shifter of C to the second pipeline stage. This makes the

three pipeline stages balanced. This can be verified through the synthesis results shown in

Table 5.2.

There are seven input signals to the proposed MAC unit. Three operands, A, B, and C,

are of 16-bit for each. The 1-bit FLP is used to control weather the proposed MAC unit

works in floating-point mode (FLP = 1) or fixed-point mode (FLP = 0). The 2-bit MODE

signal controls the precision mode of the proposed unit, where MODE = 00 represents

binary mode, MODE = 01 represents 4-bit mode, MODE = 10 represents 8-bit mode, and

MODE = 11 represents 16-bit mode. The 4-bit BWm represents the bit-width of mantissa

(in floating-point mode) or fraction (in fixed-point mode) in the operands A or B. The other

4-bit signal BWmc has similar functionality but is used for operand C.

For the following subsections, the design details of each of the modules will be discussed.

Emphasis will be put on design issues of flexible precision arithmetic unit, which include

(1) operands extraction; (2) flexible multiplier; (3) flexible alignment control; (4) flexible

rounding scheme; and (5) flexible subnormal handling.

5.3.1 Input Processing

For fixed-point operands, although the bit-width of integer part and fraction part might

vary, these two parts can be used as a whole and directly sent to the multiplier. For floating-

point operands, however, the exponent part and mantissa part must be correctly divided. In

addition, the implicit bit must be correctly prefixed to the mantissa.

To extract mantissa, a mask signal mm (mantissa mask) is generated from the input

BWm and applied to the input operands. For 8-bit floating-point, the bit-width of mantissa

may vary from 1 to 6. Therefore, the least significant 3-bit of BWm are used to represent

the number of mantissa for two sets of 8-bit operands. Two sets of 8-bit masks, mm hi and

mm lo will be generated for two sets of 8-bit operands.

In 16-bit floating-point mode, the bit-width of mantissa will be between 7 and 14, the

whole 4-bit BWm are required to represent the number of mantissa in operands. The two

masks, mm hi and mm lo are reused in 16-bit mode and they are combined to represent

the mantissa mask for 16-bit operands. Still, the lower 3-bit of BWm are used to generate
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(a) Generation of 8-bit mask
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mm_t[7:0]

mm_hi[7:0]

mm_lo[7:0]

(b) Correction for 16-bit mode

Figure 5.3: Circuit to generate the mantissa mask mm hi and mm lo

mm hi and mm lo, however, for 16-bit operations, one more step is required. On one hand, if

BWm[3] = 0, then mantissa bits are all in the least significant 8-bit of the operand, and thus

mm hi is set to all zeros while mm lo is not changed. On the other hand, if BWm[3] = 1,

then the bit-width of the mantissa is no less than 8-bit, and thus mm lo is set to all ones,

representing the whole least significant 8-bit contains mantissa bits, while mm hi is not

changed.

The circuit diagram of this process is shown in Figure 5.3. mm t is the 8-bit mask

generated using the least significant 3-bit of BWm. This mm t is further processed by the

circuit shown in Figure 5.3(b) to generate the mantissa masks mm hi and mm lo for 8-bit

mode and 16-bit mode. The mantissa mask is only used in floating-point mode. To distinguish

8-bit and 16-bit floating-point mode, the least significant bit (LSB) of MODE can be used.

In 8-bit floating-point mode, MODE[0] = 0 and BWm[3] = 0, therefore, mm hi and mm lo

are the same as mm t. In 16-bit floating-point mode, MODE[0] = 1. If BWm[3] = 0, mm lo

will be the same as mm t and mm hi will be set to all zeros. If BWm[3] = 1, mm lo will be

set to all ones and mm hi will be the same as mm t.
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(b) Floating-point 16-bit mode

Figure 5.4: Format of mantissa mask mm, exponent mask em, and implicit bit mask
mm pone

The exponent mask em can be generated by inverting the mantissa mask and then set

the MSB of the generated vector to zero because the MSB is always sign bit. For 8-bit mode,

bit 7 which is the sign bit of lower 8-bit number is also set to zero.

These two masks em and mm will be applied to input operands by performing an AND

operation to extract exponent and mantissa. To obtain the exponent value, the extracted

exponent needs to be right shifted with an amount of BWm. The extracted exponent will be

used to determine the implicit bit. To add implicit bit to the mantissa, the mm will be used

again. By adding 1 to mm (generating mm pone), there will be a 1 generated in the position

of implicit bit and leaving all other position as zeros. Then if the implicit bit is 1, mm pone

and generated mantissa vector can be ORed together to add implicit bit into mantissa. The

format of these three masks are graphically shown in Figure 5.4. For operand C, the signal

BWmc is used to perform exponent and mantissa extraction and the process is the same as A

and B. The overall diagram of input processing for operand A is shown in Figure 5.5. The

84



A
16

em
16

implicit bit generation
subnormal detection

incrementer

mm
16

16

1 0
implicit bit

masked_mantissa

mm_pone

exp_vector

……

AND Gates

A
16

mm
16

……

AND Gates

……

OR Gates

1 0
16

16

A

16

FLP

mantissaA

Figure 5.5: Diagram of input processing for A operand

same circuit can be applied to operands B and C.

5.3.2 Flexible Multiple-Precision Multiplier

For fixed-point operands, a signed multiplier is required. For floating-point operands, an

unsigned multiplier is required. However, as the bit-width of floating-point mantissa is always

smaller than the bit-width of fixed-point number (there is always at least 1-bit exponent for

floating-point format), the mantissa can always be sign extended with zeros and converted

to a signed positive number. Therefore, in a uniformed multiplier design, a signed multiplier

is implemented.

In the proposed design, in order to reduce the cost of 16-bit multiplication, the radix-4

modified Booth multiplier [49] is applied. The multiplicand, multiplier, and the generated

partial product (pp) array of the proposed flexible multiplier are shown in Figure 5.6. The

partial products are generated with the method proposed in [68]. For each precision mode,

the generated partial product array is shown in Figure 5.7. In Figure 5.7, S represents the

sign of the corresponding partial product and E is the extended bit to the partial product.

According to [68], E = 1 when the multiplicand and the partial product have the same sign
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(c) 4-bit mode

Figure 5.7: Partial product array of each precision mode (white dots represent the
bits not used; black dots represent partial products)

or partial product is +0. Otherwise, when the multiplicand and the partial product have

opposite signs or partial product is −0, E = 0.

In 16-bit mode, the whole multiplicand and the multiplier are used to generate partial

products. According to the radix-4 Booth multiplier algorithm, the multiplier is always

padded with 1-bit zero after the LSB. Then the resulting 17-bit vector is divided into eight

3-bit groups as shown in Figure 5.6. Each bit group is used to generate one partial product.

The generated partial product array in 16-bit mode is shown in Figure 5.7(a).

In order to support parallel multiplications in 8-bit and 4-bit mode, the partial product

array is divided into multiple regions as shown in Figure 5.6. In 8-bit mode, two parallel
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(a) Initial position of C and product
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2*(BWm+1)-bit

32-bit

(b) Maximum effective alignment shifting amount

Figure 5.8: Alignment shifting of C with product in FLP16 mode

multiplications, MUL8-1 and MUL8-2, are supported. The partial products of MUL8-1 are

in row r1 and row r2 in row direction, and col r1 and col r2 in column direction, as shown

in Figure 5.7(b). Similarly, the partial products of MUL8-2 are in row r3 and row r4, and

col r3 and col r4. To generate the four partial products in row r1 and row r2, the most

significant 8-bit of the multiplicand are set to zeros and only the least significant 8-bit are

used. When generating partial products in row r3 and row r4, the least significant 8-bit of

the multiplicand are set to zeros and only the most significant 8-bit are used. In addition, as

MUL8-2 is an independent multiplication, when generating pp5, the LSB of the corresponding

multiplier group is set to 0 instead of using the 8th bit of the multiplier. Similarly, in 4-bit

mode, as shown in Figure 5.7(c), only FIX4 − 1, FIX4 − 2, FIX4 − 3, or FIX4 − 4 is

used to generate the partial products in row r1, row r2, row r3, or row r4, respectively.

In addition, when generating pp3, pp5, and pp7, the LSBs of the corresponding multiplier

groups are set to zero.

To ensure correct multiplication results for low precision modes, carry propagation dur-

ing partial products accumulation is managed. In 8-bit mode, carry is not allowed to be

propagated through the second vertical dash line in Figure 5.6 (or the vertical dash line in

Figure 5.7(b)), and in 4-bit mode, carry is not allowed to be propagated through the three

vertical dash lines in Figure 5.6 or Figure 5.7(c).
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addition range = 47-bit

mantissaC

mult_onesum

mult_onecarry

mult_twosum

mult_twocarry

16-bit
(BWmc+1)-bit

2*(BWm+1)-bit

2*(BWm+1)-bit

Figure 5.9: Alignment shift of C and two products in 8-bit floating-point mode

5.3.3 Alignment Control and Shifter

In 16-bit floating-point mode, the general alignment shifting method used in many previous

FMA designs [28] is applied. The initial position of the processed mantissa of C operand

and product A × B is shown in Figure 5.8(a). The mantissa of C is placed 2-bit to the

left of the carry save format product. In 16-bit floating-point mode, BWm can be at most

14-bit. Therefore, the 2-bit zeros gap are already included in multsum and multcarry. The

mantissa of C is then right shifted according to the difference of exponents and the bit-width

of mantissa. The shifting amount can be determined by equation (5.2):

shiftc = 32 +BWmc − 2×BWm − d (5.2)

where d = ec − (ea + eb) is the exponent difference among the three input operands and ea,

eb, and ec are the exponent value of operand A, B, and C. The maximum effective shifting

amount, shiftcmax = 48-bit, occurs when all bits of the C mantissa are shifted to the right

of the product, which is shown in Figure 5.8(b).

In the initial alignment position, the 2-bit zeros gap between the product and the addend

is to ensure the alignment shifting of the addend is a single direction shifting so that the

shifter design can be simplified. In the proposed design, when the mantissa bit-width BWm

becomes smaller, the gap between the product and the addend becomes larger. However, in

those cases, the alignment shifter is still a single direction shifter. Therefore, in the proposed

design, in order to simplify the shifter design, we do not force the gap to be 2-bit. Instead,

a unified initial position of the addend and the product is used, as shown in Figure 5.8(a).

The alignment shifting amount can always be calculated with equation (5.2).

For 8-bit floating-point mode, in addition to the alignment of C, the two products gener-

ated also need to be aligned. To simplify the shifting circuit, in the proposed design, the two

products are compared first to determine the product with larger exponent. The product
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with larger exponent is used as the anchored product. Both C and the other product will

be aligned to the larger product. The initial position of the larger product mult onesum

and mult onecarry, the smaller product mult twosum and mult twocarry, and mantissa of C

is shown in Figure 5.9. The smaller product is placed to the right of the LSB of the addition

range. This is because in subnormal cases, it needs to be left renormalized first and then right

aligned. In the proposed design, the renormalization amount and the alignment amount will

be considered at the same time, where the effective renormalization amount will be generated

and the smaller product only needs a left shift. This can simplify the shifter design. The

addition range shown in Figure 5.9 is 47-bit. The MSB position of the mantissa of C before

alignment shifting is not included in the adder. This is because in floating-point mode, the

mantissa of C could only occupy at most 15-bit. In fixed-point mode, 47-bit adder is large

enough for 32-bit product accumulation.

In order to support subnormal numbers, the maximum alignment shifting happens when

the MSB of the addend is shifted 2-bit to the right of the LSB of the product [69]. By

extending the analysis in [69], when the multiplier operands and the addend have different

mantissa bit-width, the gap to the right of the LSB of the product can be calculated with

BWmc−BWm + 2. For 16-bit floating-point mode, when both the addend and the multiplier

operands have 14-bit mantissa, as the exponent is only 1-bit, the addend C can never reach

the maximum alignment shifting position as shown in Figure 5.8(b). For other mantissa

bit-width, as the range of the addend is usually chosen to be equal to or larger than the

range of the multiplier operands, the bit-width of the addend is smaller than the multiplier

operand. Therefore, at most 2-bit gap to the right of the product LSB is enough to handle

subnormal numbers. In this case, as the mantissa bit-width is smaller, there is more than

1-bit zero appear in the 16-bit addend. There is no need to add extra zero bit gap. For

8-bit floating-point mode, BWmc and BWm can be at most 14-bit and 6-bit, respectively.

Therefore, at most 10-bit gap is required. As shown in Figure 5.9, at least 15-bit gap is

available. Considering all these cases, there is no need to add extra zero gap to the right of

the product LSB.

For 16-bit fixed-point mode, although the bit-width of fraction part can be flexibly

changed, within a specific mode, the alignment shifting amount is a constant value.Therefore,

90



normal adder range = 32-bit

16-bit 32-bit

incrementer range = 16-bit

csa_one

csa_two

partial 
stk

lzac range = 48-bit
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Figure 5.11: Rounding method for floating-point modes

for 16-bit mode, the alignment shifting can reuse the alignment shifter designed for floating-

point mode by setting the shifting amount to a constant. The constant shifting amount for

C, shiftconst c, can be determined by equation (5.3):

shiftconst c = 32 +BWmc − 2×BWm (5.3)

where the BWm and BWmc represent the bit-width of fraction in fixed-point mode. For 8-bit

and 4-bit fixed-point mode, there is no need to used alignment shifter. In these two modes,

BWmc can be set to be equal to 2 × BWm (If BWmc > 2 × BWm, the extra fraction bits

can never be used. If BWmc < 2 × BWm, some data bits will be lost.). Before performing

addition, the LSB of the addend can be directly put to the LSB position of the product.

5.3.4 Addition

The aligned C and products will be accumulated with carry save adders. The generated

carry-save format vectors will be added using a carry propagate adder. For the proposed

design, a total of 47-bit addition is provided. The lower 32-bit addition will be implemented

with a carry select adder and the higher 15-bit will be implemented using an incrementer, as

shown in Figure 5.10. For the higher 15-bit addition, both the results of carry in = 0 and

carry in = 1 are generated. The output carry from the lower order adder will be used to

select these two results. As in 4-bit mode or 8-bit mode, dot-product operation is performed.

Therefore, for the adder there is no need to generate parallel separate results, instead only

one single addition result is generated.
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5.3.5 Leading Zero Anticipator and Counting

In parallel to the adder, the LZAC logic is implemented. As both positive result and negative

result can be generated, both leading zeros and leading ones can occur. Therefore, the general

case indicator presented in [50] is used.

The counting result of a normal LZA might have 1-bit error. This error can be easily cor-

rected in the normalization shifter for a standard precision design. However, as the proposed

unit supports flexible precision, it is complex to find the MSB position of the result and then

detect the MSB value to determine whether a correction should be performed. Therefore, in

order to reduce the cost of later normalization stage, the exact LZA unit in [70] is used in

the proposed design.

As shown in Figure 5.10, the LZAC is applied to whole 48-bit range of the adder. When

BWmc is small, there might exist some leading zeros that are not occupied by the mantissa.

Therefore this bit count should be subtracted from the LZAC count when determining the

normalization shifting amount. This can be achieved by equation 5.4:

norm shift = lzac count− (15−BWmc) (5.4)

5.3.6 Normalization Shifting

Normalization shifting is performed with a 6-level dynamic shifter to shift the 48-bit vector.

As the LZA can generate the exact leading zero count, there is no need to add one more stage

to compensate the LZA error. The normalization shifter will bring the MSB of the addition

result back to the left of the radix point position, as shown in Figure 5.11.

After alignment shifting, the base exponent becomes ebase = ec + shiftc. If ebase −
norm shift > emin, then result is still a normal number and the normalization shifting

amount is norm shift and the result exponent is set to ebase − norm shift. Otherwise,

the result will become a subnormal number. In this case, normalization shift amount is

ebase − emin and the result exponent is set to emin.
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Figure 5.12: Rounding method for 16-bit fixed-point mode

5.3.7 Rounding

For floating-point mode, roundTiesToEven, which is the default rounding mode in IEEE 754-

2008 [8], is implemented. After normalization, the result will be brought back to a position

shown in Figure 5.11. Therefore, the rounding position for floating-point is fixed, which is

the LSB position of the C operand. Therefore, the bits required to perform rounding, the

LSB, the rounding bit, and the sticky bit, can be easily generated.

For 16-bit fixed-point operations, the product has larger fractional bit-width than the

addend. Therefore, rounding is also required. Unlike the floating-point modes where the

rounding position is fixed, in fixed-point case, the rounding position depends on the number

of fraction bits in the input operands. To find the correct rounding position and generate

rounding bits, the masks, mm and mm pone, generated for input processing will be used

again. The process of using mm and mm pone to find three rounding bits, the LSB, the

round bit (RND), and the sticky bit (STK), is shown in Figure 5.12. Bothmm andmm pone

are extended with zeros to make 16-bit mm ext and mm pone ext. Then these two extended

vectors are right shifted by 1-bit. By ANDing mm pone ext with the result, the LSB can be

extracted. Similarly, by using the shifted mm ext and shifted mm pone ext, the STK and

the RND can be generated as shown in Figure 5.12. By using these three bits, the fixed-point

rounding can be performed. The floating-point mode and the fixed-point mode can share

the incrementer to perform rounding plus one operation. For the rounding in integer part, a
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simple truncation can be performed.

For other lower precision fixed-point operations, as the bit-width of C is always larger

than operands in A and B, C can have the same or more fraction bits than the product.

Therefore, there is no need to perform rounding for the fraction. Truncation can be performed

for the integer.

5.3.8 Output Processing

After processing the sign, exponent, and mantissa separately, they need to be combined again

to generate the final results. For fixed-point, a simple truncation can be used to generate the

final 16-bit result.

For floating-point, basically two operations are required. As the mantissa is already right

aligned to the LSB position, for mantissa part, we only need to remove the implicit bit. To

do so, the mantissa mask mm will be used. The mm contains all ones at the position of

mantissa (except implicit bit). By ANDing the mm with the result vector, the implicit bit

can be removed.

The second operation for floating-point is to shift the exponent back to the correct po-

sition. In order to obtain the actual value of exponent to generate the shifting amount,

exponent is right shifted with the amount of BWm or BWmc in alignment control module.

At the output processing module, the exponent is shifted back with the amount of BWmc.

Finally, the exponent vector and mantissa vector are ORed together and sign bit is added

into the MSB position to form the final floating-point result.

5.4 Results and Analysis

The model of the proposed MAC architecture is implemented with Verilog HDL. Since the

proposed design supports non-standard floating-point format, there is no simulation tool

that can generate test vectors for all supported precisions. In order to simulate and verify

the proposed design, a customized software model written in C language is built. With the

designed software model, extensive testing vectors for each of the supported precisions can

be generated. These testing vectors are used to simulate the proposed design in Modelsim.
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Table 5.2: Synthesis results of each pipeline stage of the proposed design

Pipeline Stage
Delay

(ns)

Area

(µm2)

Power

(mW )

Multiply and Control 0.21 1177 0.69

Align and Add 0.23 1356 0.60

Normalize and Round 0.19 319 0.18

The proposed design is verified to work properly in all supported modes.

The proposed design is then synthesized in Synopsys Design Compiler using STM-28nm

technology with typical case parameters (1.00V and 25℃). The timing and area metrics are

generated. For power consumption measurement, the Verilog netlist generated by synthesis is

simulated with the testing vectors again to obtain a signal activity file. Then the synthesized

netlist and the signal activity file are imported to Synopsys PrimeTime PX for an accurate

power estimation.

Each pipeline stage of the proposed design is synthesized first. The delay of each pipeline

stage is analyzed and the result is shown in Table 5.2. In the preliminary experiment, the

second pipeline stage (only contains carry save adder, carry propagate adder, and LZA) has

a delay of 0.14 ns which is smaller than the other two stages. The worst case delay 0.3

ns appears in the first pipeline stage (contains multiplication and alignment shifter). This

pipeline allocation is unbalanced. By moving the alignment shifter to the second pipeline

stage, as the results shown in Table 5.2, the pipeline stage allocation is more balanced.

The second pipeline stage consumes more area because it contains two alignment shifter in

addition to the adder and LZA circuit. Overall, the multiplier still consumes the largest area

and power consumption.

The whole design is then synthesized. The synthesis results show that after adding

pipeline registers, the worst case delay of the pipelined design is 0.27 ns. In this timing

constraint, the proposed design consumes an area of 2943 µm2 and an average power con-

sumption of 2.25 mW . The proposed design is also synthesized under different timing con-

straints to find the trade-off between timing and area, and timing and power. The area-delay

curve and power-delay curve can be found in Figure 5.13. To obtain the best performance,

the design point with the smallest worst case delay (0.27 ns) is chosen and the corresponding
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design metrics are compared with the standard arithmetic unit. In addition, this design point

is used to analyze the power consumption of the proposed unit under different operational

modes.

In different operational modes, the proposed design has different power value. In floating-

point mode, by using different number of mantissa, the power number is different. This comes

from the trade-off between multiplier and shifter. With larger bit-width for mantissa, more

logic of the multiplier will be enabled to perform multiplication. However, as the exponent

bit-width in this case is small, fewer levels of shifter can be enough. The power figure of the

proposed design in 16-bit floating-point mode is shown in Figure 5.14(a). As the mantissa

bit-width increases, the power consumption of the proposed design also increases.

The power figure of the proposed design in 8-bit floating-point mode is shown in Fig-

ure 5.14(b). It has similar trend as the 16-bit floating-point mode where the power increases

with the number of mantissa bit-width increases. The power consumption of a single 8-bit

floating-point operation should be less than that of a 16-bit floating-point operation. How-

ever, as the proposed MAC unit supports two parallel 8-bit floating-point operations, the

total power consumption is similar to a 16-bit floating-point operation as they actually share

the same hardware resources.
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Figure 5.14: Power consumption of the proposed design in various operational modes
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Table 5.3: Comparison of the proposed MAC unit with standard arithmetic units

Design Latency
Delay

(ns)

Area

(µm2)

Power

(mW )

Energy/op# (×10−13J)

FLP32 FLP16 FLP8 FIX16 FIX8 FIX4

FIX16-MAC 3 0.16 1509 1.16 - - - 5.57 - -

FLP16-MAC 3 0.25 2415 1.98 - 14.9 - - - -

BFL16-MAC* 3 0.25 2140 1.75 - 13.1 - - - -

FLP32-MAC 3 0.40 6689 5.65 67.8 - - - - -

MP-MAC† 3 0.26 2681 2.09‡ - 16.3 8.15 8.97 4.25 1.91

Proposed 3 0.27 2943 2.25‡ - 18.2 9.11 9.88 4.78 2.08

* MAC unit designed for BFloat16 format (1-bit sign, 8-bit exponent, and 7-bit mantissa).
† Multiple-Precision MAC unit supporting the same operation modes as the proposed design without flexible

precision support.
‡ Average power of all supported operation modes.
# energy/op = (latency × delay × power)/number parallel operations.

In fixed-point mode, the power consumption of the proposed unit is much smaller than

that of floating-point mode. The power figure of the proposed design under different fixed-

point mode is shown in Figure 5.14(c). In fixed-point mode, all the shifting and alignment

can be done with constant shifter. The alignment control and LZAC used in floating-point

mode are disabled. In addition, there is no need to handle exponent for fixed-point modes.

Moreover, the rounding unit for fixed-point mode is less complex compared to the floating-

point rounding unit. The subnormal handling logics are also not required in fixed-point

mode. Within fixed-point modes, when using lower precision, as shown in Figure 5.7, only

part of the multiplier array are used. In addition, in lower precision mode, the higher order

part of the adder is not used. All these lead to the power reduction.

To the best of our knowledge, there is no such flexible precision arithmetic unit design

appearing in the literature. In order to show the advantage of the proposed design, the

proposed design is compared with several standard arithmetic units, including a standard

16-bit fixed-point MAC (FIX16-MAC), a standard 16-bit floating-point MAC (FLP16-MAC),

a standard MAC unit designed for BFloat16 format [6] (BFL16-MAC), and a standard 32-

bit floating-point MAC (FLP32-MAC). Moreover, in order to measure the resource overhead

introduced by the flexible precision support, a multiple-precision MAC unit (MP-MAC) is

also designed. This MP-MAC unit does not have the flexible precision feature, but supports
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the same operation mode as the proposed design. The comparison results of these designs are

shown in Table 5.3. Compared to the standard 16-bit fixed-point MAC, the proposed design

required larger area and power, and has larger delay. However, in addition to 16-bit fixed-

point MAC operations, the proposed design also supports many other arithmetic operations

including floating-point operations.

Compared to the standard 16-bit floating-point MAC unit, the proposed design has only

22% area overhead and 13% power consumption overhead. The proposed design is only 8%

slower compared to the standard 16-bit floating-point unit. BFloat16 format has smaller

BWm than the standard half-precision format, and thus the area and power of the BFloat16

MAC become even smaller. Compared to the BFloat16 MAC unit, the proposed design has

37% area overhead and 28% power consumption overhead. However, in terms of functional-

ity, the proposed design can support many other operations, such as flexible floating-point

operations and fixed-point operations. With the proposed design, the applications will have

more choices to select their most suitable numerical precisions.

The proposed MAC unit is also compared to a standard 32-bit floating-point unit. The

standard 32-bit floating-point unit can provide 8-bit exponent for the application. In conven-

tional processors, when the required bit-width of exponent is larger than 5, half-precision unit

cannot perform the operations and one has to resort to the single-precision unit. However, in

the proposed design, because the flexible precision support, 8-bit exponent can be provided

in the same hardware. As discussed in the introduction, for neural network computing, the

exponent part is more important than mantissa part and the bit-width of exponent should

be satisfied first. The remaining bits are allocated to mantissa. Therefore, in terms of func-

tionality, the proposed design can be compared with 32-bit single-precision MAC unit. As

shown in Table 5.3, due to the large mantissa bit-width, the hardware costs of the single-

precision unit is much higher than those of the proposed unit. Therefore, for deep learning

applications, the proposed MAC unit can provide almost the same accuracy with much lower

hardware cost.

Compared to the MP-MAC design, the proposed design has the flexible precision support.

This flexible precision support introduces only 9.7% area overhead and 7.6% power overhead.

The overhead of energy consumption under each operation mode is also small. The resource
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overhead mainly comes from the mask operation during input and output processing. With

small resource overhead, the support of flexible precision will bring more flexibility for the

applications, especially the machine learning training and inference.

Note that the standard high precision unit can also be used to perform low precision

operations, for example FIX16-MAC can be used to calculate FIX8 MAC. However, as there

is no parallel low operations support, only one operation can be performed at each clock cycle.

Although the power consumption is slightly reduced due to a reduced toggle rate at higher

order bit positions, the energy per operation is almost the same as the one when performing

operations for the highest supported precision. On the other hand, for the proposed design,

parallel low precision operations are supported and thus the energy per operation at low

precision can be significantly improved.

5.5 Case Study

In order to show the power merits of the proposed MAC unit in actual deep neural network

applications, a case study of deep neural network inference operations is performed. In this

case study, the precision required by neural network inference are extracted from the results

of [71]. For inference operations, only the fixed-point formats are used in this study.

To simplify the testing process and to put emphasis on arithmetic unit of the deep learning

processor, we do not use a whole deep learning processor architecture to perform this case

study. Instead, we simulate the deep neural network computing process. For example,

when simulating LeNet, input image data are used as the test vectors in the testbench of

the proposed MAC unit. Then, the generated results, which are the first layer’s outputs,

are used again as the second layer’s input. This process is repeated until the final neural

network layer is processed. For each test case, 100 images are randomly selected from the

validation set of MNIST [72] (for LeNet) and ImageNet database [73]. The signal activity file

dumped during this simulation process is used to measure the power consumption of using

the proposed MAC unit in Synopsys PrimeTime PX. In addition, the inference results from

the simulation process are collected to evaluate the neural network accuracy when using the

proposed MAC unit as computing elements.
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This case study focuses on the different precision requirements of different layers and of

different neural network models. In this case study, six neural network models are included:

LeNet, AlexNet, NiN, GoogLeNet, VGG-M, and VGG-19. Only convolutional layers in these

neural networks are considered because most of the neural network computations are in

convolution layers [5]. The test set used in this case study contains both small scale and

large scale neural networks. In addition, according to the minimum precision requirements

of these networks in [71], this test set contains both small precision operations and large

precision operations. Specifically, the precision configuration is: LeNet (2-3), AlexNet (9-7-4-

5-7), NiN (8-8-7-9-7-8-8-9-9-8-7-8), GoogLeNet (10-8-9-8-8-9-10-8-9-10-8), VGG-M (6-8-7-7-

7), and VGG-19 (9-9-9-8-12-10-10-12-13-11-12-13-13-13-13-13), where the number represents

the bit-width of activation and weight in a layer. Under this configuration, these neural

networks can achieve 99% of the accuracy when using 32-bit floating-point numbers.

In addition to the proposed MAC unit, the standard 16-bit fixed-point MAC is also used

in this case study. The 16-bit fixed-point MAC is used in two ways: (1) FIX16: all activation

and weight of the six neural networks are quantized to 16-bit fixed-point numbers and then

fed to the 16-bit fixed-point MAC unit; (2) FIX16F: all activation and weight use the flexible

precision configuration (the same as the one used for the proposed unit) and they are then

sign extended to fit 16-bit bit-width. The results of the proposed MAC unit are compared

with these two units.

The average power consumption when implementing using the proposed unit is 1.18 mW

while the FIX16 implementation can achieve 1.61 mW and the FIX16F can achieve 1.16

mW . The FIX16 implementation consumes more power because it uses higher precision

format than the proposed unit and the FIX16F, and thus the signal toggle rate is higher.

The proposed unit consumes higher power than FIX16F because of the extra logic to support

other operation modes.

The power efficiency of these implementations is also estimated, as it is a common merit

to evaluate the performance of a deep learning hardware design [74]. In this case study,

power efficiency is measured in terms of image processed per second per watt (img/s/W ).

To calculate power efficiency, the throughput in terms of img/s is first calculated. As only

a simplified neural network computing model is used in this case study, we cannot actually
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Figure 5.15: Relative throughput of three implementations for six neural networks
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Figure 5.16: Relative power efficiency of three implementations for six neural networks

measure the exact processing time. Instead, the number of required MAC operations to

process each image is used to represent the processing time. Therefore, the throughput can

be computed with 1/(mac operations × delay of each cycle). The full results are shown in

Figure 5.15. Here the throughput of FIX16 and FIX16F relative to the proposed unit is

shown. Although FIX16 and FIX16F have smaller delay compared to the proposed design,

for some neural network models, as the proposed unit has the ability to perform parallel

low precision operations, the throughput of the proposed unit can be higher than FIX16

and FIX16F. For VGG-19, except the fourth layer, all other layers require more than 8-bit

precision. In this case, operations cannot be done in parallel which leads to the throughput

degradation for the proposed unit.

The power efficiency is then evaluated in terms of img/s/W . The full results are shown

in Figure 5.16. Although the average power consumption of the proposed unit is higher than

that of standard 16-bit fixed-point unit, as parallel low precision operations are supported
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in the proposed unit, the proposed design can achieve an improved power efficiency under

most of the neural network implementations. VGG-19 is still an exception since it cannot be

quantized to 8-bit or less. Therefore, when low precision operations are feasible for a neural

network mode, the proposed MAC unit can process with a good power efficiency.

Note that one may use parallel standard low precision units to improve the power effi-

ciency, however, in this case, higher precision operations will not be supported and thus some

neural networks, for example VGG-19, cannot be implemented. The proposed unit, on the

other hand, also supports high precision operations and even floating-point operations which

will be very flexible for neural network computing.

5.6 Discussion

The Primary Target of the Proposed Design

The primary target of the proposed unit is to provide the support for as many deep neural

network models as possible (instead of optimizing the hardware for a specific neural network

model). Up to now, different neural network models or different neural network operations

show very diverse computing requirements. As discussed in this chapter and many other

works in the literature, floating-point formats are preferred in neural network training. How-

ever, in inference, fixed-point operations are preferred. In addition, for different neural net-

work models, their minimum required numerical precisions can also be different. In the future,

with more new neural network related models or algorithms to be proposed, the diversity

in computing requirements could be more obvious. With these considerations, the multi-

precision unit becomes a good candidate to support as many precisions of computations as

possible. Admittedly, the multi-precision unit has resource overhead over conventional stan-

dalone single mode unit, however, it provides the support for many more functions to enable

a flexible yet efficient neural network computing capability. The general-purpose support for

neural network computing is suitable to be used in server applications where different models

and different operations are all required to be handled.

In practical applications, a 16-bit fixed-point unit can handle almost all inference oper-

ations. However, for some neural network models or layers, lower precisions are enough to
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provide satisfying accuracy. In these cases, the 16-bit unit can still perform low precision

computation. However, still only one computation can be performed each time while the

rest of the resources are not utilized. In order to improve the resource utilization, the 8-bit

and 4-bit fixed-point computation modes are included to make the computing unit a multi-

precision unit. The parallel operations can also improve the throughput and thus the energy

efficiency can be improved.

With multi-precision fixed-point unit, the inference operations can be handled efficiently.

However, the training operations are not well supported with only fixed-point computations.

Although the software emulation can use fixed-point hardware to accomplish floating-point

operation, the performance is significantly degraded. In order to support training efficiently,

the floating-point operational modes are included. In the proposed unit, both flexible 16-bit

and 8-bit floating-point modes are supported mainly for training operations.

As the computing requirements of neural networks are diverse, for neural network hard-

ware designs, it is important to find the balance between operational performance and flex-

ibility. The proposed flexible multi-precision hardware can be seen as an ‘extreme’ design

case for the flexibility (while the performance is not hurt significantly). It will be helpful in

server usage where the computation requirements from users are very diverse. In the edge

or end user sides, it is possible that not all supported modes are required. In these cases,

the required modes can be extracted and the others can be removed. For example, if only

inference engine is required for a specific application, then the floating-point support can be

removed.

The Rule of the Proposed Design

The proposed unit can be used to realize flexible precision computing in hardware platform.

However, it still depends on the deep learning algorithm itself to find the required precisions.

The proposed design is the hardware part of a software and hardware co-design project.

In the proposed unit, several arithmetic flags are used to indicate whether an overflow or

underflow happens during the computations. If overflow or underflow happens, then a larger

dynamic range format can be used.

In actual applications, the hardware platform always works together with the software
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platform. In the software side, one can decide which numerical format to use in the com-

putation base on accuracy requirements or algorithm requirements. Then the corresponding

control or configuration information will be passed to the hardware platform. The hardware

will be configured to a specific operational mode and perform the computation. After doing

the computations, the hardware will return the results and flags to the software. If overflow

or underflow happens, a change in numerical format is usually required. Otherwise, for ex-

ample for deep learning applications, the software will evaluate the current accuracy and to

determine whether changes in numerical format are required.

In the literature, these exists some works providing flexible floating-point libraries, such

as the FlexFloat in [75]. In [75], a software floating-point library, FlexFloat, is proposed to

support customized floating-point formats and arithmetic operations. It provides the flexibil-

ity to define arbitrary exponent and mantissa bit-width in order to support the transprecision

computing. When performing arithmetic operation, the data is stored in a hardware sup-

ported format and is then constrained by the customized format (the ‘sanitized’ process in

the reference paper). The computation is performed with the hardware supported format.

The result is sanitized again and returned to the user. The actual precision tuning is done

by another tool called ‘fp-PrecisionTuning’ [76].

When using such a software library in conventional hardware, a sanitizing process is

required which is to convert the customized format into the hardware supported format. This

process will slow down the computation and if the data value cannot be exactly represented by

the customized format, rounding operation is required which will cause the loss of information.

In addition, the precisions supported by the hardware may affect the exploration space when

using ‘fp-PrecisionTuning’ to look for the optimal precisions.

When using the proposed flexible unit, with more supported precision modes, in most

cases, the ‘sanitizing’ process can be avoided. In addition, the precision tuning tools are

able to perform precision optimization in a larger exploration space. The proposed hardware

architecture will facilitate the use of such software library.

In the literature, some software level reduced-precision deep learning tools are available,

such as the Ristretto [11] (based on Caffe) and Intel Distiller [77] (based on Pytorch). These

tools can be combined with our proposed hardware architecture to realize flexible deep neural
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network computing.

The Support of Binary Neural Network

In the proposed architecture, the binary neural network can be computed. However, the

performance cannot compete with pure binary neural network hardware (only XNOR logic

with counter) due to the support of normal 4-bit, 8-bit and 16-bit computations.

The support of binary neural network can be divided into inference and training because

the numerical formats required in these two process are different. For inference, the com-

putation is more straightforward. Only binary logic XNOR operation and counter are used.

To perform this operation, the XOR gate and inverter that are used in Booth decoding (the

logic to determine whether partial product is ±0 or ±Multiplicand or ±2 ×Multiplicand

using three bits of the multiplier) are reused as the XNOR gate. In addition, the deepest

column in the partial product accumulation array is reused as the counter. As there are 8

Booth decoders used in the proposed design and the deepest column has 8-bit, therefore, 8

binary pixels can be computed each time.

The training of binary neural network requires more than XNOR logic. According to [26],

during training, due to the computation of gradient, the parameters are still required to be

saved as real numbers (instead of binary numbers) and their values are in [-1, 1]. The

computation of these real valued parameters can be done with one supported mode of the

proposed unit. The mode to be used (4-bit or 8-bit or 16-bit or floating-point) can be

determined by the algorithm.

5.7 Summary

In this chapter, an efficient flexible multiple-precision multiply-accumulate (MAC) unit is de-

signed for deep neural network training and inference. The proposed MAC unit is designed

based on the requirements of deep neural network computing, for example, low-precision re-

quirements, multiple-precision requirements, and flexible precision requirements for different

operations and model. The proposed MAC unit supports both floating-point operations and

fixed-point operations. For floating-point operations, the proposed MAC unit supports one
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16-bit operations or two 8-bit operations. With flexible precision support, the bit-with of

the exponent and mantissa can be mutually exchanged. The proposed unit also supports

fixed-point operations for deep neural network inference. It supports one 16-bit operations,

or two 8-bit operations, or four 4-bit operations. At the lowest precision, it also supports

binary neural network operations. The proposed MAC unit can be used in deep learning

processors to enable both training and inference in the same architecture and used together

with reduced precision deep learning tools, such as Ristretto and Intel Distiller, to facilitate

the deep neural network accelerator design towards more functionality and more energy effi-

ciency. The proposed MAC architecture can also be used to design neural network IP cores

for FPGA devices.
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Chapter 6

Posit Multiply Accumulate Unit1

This chapter presents a posit based MAC architecture for deep learning computing. Posit

number format has been proved to be efficient in deep learning applications. The design

of a posit based MAC unit is expected to facilitate the use of posit number system in deep

learning computing. Section 6.1 presents the motivations to design such a MAC architecture.

The proposed posit MAC architecture is presented in Section 6.2. Section 6.3 presents the

synthesis results of the proposed architecture. Section 6.4 concludes this chapter.

6.1 Introduction

The single-precision and half-precision floating-point formats defined in IEEE 754-2008 [8]

have been widely used in deep learning [54] training and inference. However, since floating-

point formats use a uniform representation for numbers, they are not efficient in deep learning

applications where the network parameters are usually distributed non-uniformly [11].

Recently, the posit number format [16] is proposed. It is claimed to be more accurate than

floating-point numbers. Also with the same bit-width, it can provide larger dynamic range

than floating-point numbers. More importantly, the posit format represents numbers in a

non-uniformly method. For smaller value, the posit format can provide more precision and

for large value the precision is reduced. This non-uniform representation makes it suitable in

1The content of this chapter is originally published in the proceedings of 2019 IEEE International Sym-
posium on Circuits and Systems (ISCAS 2019) [78]. The manuscript has been reformatted for inclusion in
this thesis.

Hao Zhang (HZ), Jiongrui He (JH) and Seok-Bum Ko (SK) designed the study. HZ developed the parame-
terized architecture, developed the C-based generator and performed logic synthesis and results analysis. JH
helped to develop HDL reference model and performed verification of the HDL code created by the C-based
generator. HZ prepared the manuscript with contributions from SK and JH to the manuscript structure,
readability and analysis and discussion of the results.
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deep learning applications [16] [79], where it can achieve same level of accuracy with smaller

bit-width.

In the literature, some works have been performed on the design of hardware posit mul-

tiplier [80] and posit adder [80] [81]. However, to the best of our knowledge, there is no work

discussing the design of hardware posit fused arithmetic operations at the time of writing.

The fused arithmetic unit, such as MAC unit, has several advantages over separate multiplier

and adder. In the MAC unit, the multiplication part and addition part can share components

with each other which leads to a reduced area and power consumption. In addition, rounding

operation is performed only once after the final addition which can lead to a better accuracy.

Due to these advantages, in deep learning applications, MAC units are widely used to perform

convolution or dot-product operations [5] [53] [82]. Therefore, in order to facilitate the use

of posit in deep learning, the design of MAC unit is required to be investigated. Moreover,

due to the flexible posit format, the extraction of each component from posit format and

the packing of resulting components to form posit format are relatively hardware expensive.

In fused operations, more arithmetic operations can be done with performing only one ex-

traction and packing. This is expected to make the operations faster and more area efficient

compared to separate single arithmetic operation unit.

In this chapter, a posit MAC generator is proposed. The generator is developed with C

language. By providing the total bit-width nb and exponent bit-width es to the generator,

the Verilog HDL code of the corresponding posit MAC unit will be generated. The MAC

architecture created by the proposed generator is combinational design, however a 5-stage

pipeline strategy is also presented. The full rounding operation is performed on the result

where the rounding to nearest even method, as defined in [8], is implemented. The functional-

ity of the generated MAC designs under various design parameters are verified with extensive

testing vectors. The worst case delay, area, and power consumption of the generated MAC

unit under different design parameters are analyzed in this paper.
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Figure 6.1: Datapath of the proposed posit multiply-accumulate unit architecture
(The proposed generator will give combinational design. Pipeline in this figure is just
an example.)
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Figure 6.2: Diagram of posit format component extraction

6.2 The Proposed Design

The proposed posit MAC generator is designed based on the architecture shown in Figure 6.1.

It basically follows a standard floating-point MAC or fused multiply-add unit architecture.

The bit-widths of all datapath are parameterized so that it can be used to generate different

designs with different nb and es.

6.2.1 Posit Component Extraction

The diagram of posit component extraction is shown in Figure 6.2. The sign bit is first

evaluated to determine if the remaining parts need to be complemented. Then regime value

is evaluated according to the definition in [16]. Then the operand will be left shifted to
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Figure 6.3: Datapath of the alignment shifter

remove the regime bits. After shifting, the most significant es-bit will be exponent and the

remaining bit prefixed with implicit bit will be mantissa. In this module, the regime bit and

exponent bit are also combined together. The regime value rg is first left shift with es-bit

and then added with exponent to generate the effective exponent. This effective exponent

will be used in later stages for shifting control.

6.2.2 Mantissa Multiplier

Mantissa multiplier is a (nb−es)-bit unsigned multiplier. It is implemented with radix-4 mod-

ified Booth multiplication algorithm [49]. The partial products generated are accumulated

by several levels of (4,2) carry save adders. The mantissa multiplier is also parameterized so

that it can be generated for any required bit-width.

6.2.3 Alignment Shifter

The datapath of the alignment shifter is shown in Figure 6.3. The mantissa of C is first

put 2-bit to the left of the product. The shifting amount is determined by the exponent

difference and a constant value, shiftamount = const − (expcdiff − (expadiff + expbdiff ))

where const = (nb − es) + 3. C does not require any left shifting so the minimum shifting

amount is zero. The maximum shifting happens when the whole C is shifted out to the right
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of the product. The maximum shifting amount is 3(nb− es) + 2.

6.2.4 Adder

After alignment, the least significant 2(nb − es)-bit of aligned C will be combined with the

product using one level of (3,2) carry save adder. Then the resulting sum vector and carry

vector are added by a carry propagate adder. For the most significant (nb − es) + 2-bit

position of aligned C, the addition can be done with an incrementer. The output carry of

the lower order adder will determine whether the higher part need to be incremented or not.

The two part results are combined to form the adder result. If the result is negative, it needs

to be complemented.

6.2.5 Leading Zero Anticipator

The least significant 2(nb− es) + 1-bit of both adder operands are sent to LZA to count the

possible leading bit number in the adder result. As both positive and negative results are

possible, we use the indicator that consider both leading zero and leading one in [50]. The

counting of the indicator is done with a tree structure. The possible error of the leading zero

anticipation will be corrected in the last stage of normalization shifter.

6.2.6 Normalization Shifter

The normalization shifter is implemented with a 2-stage shifter where a constant shifter is

followed by a dynamic shifter. If exponent difference expdiff of the three operands is smaller

than 2, then a constant shifting with an amount (nb−es)+1 is first performed and followed by

a dynamic shifting with an amount counted by LZA. Otherwise, constant shifter is not used

and the shift is performed by dynamic shifter with an amount equal to alignment amount.

At the final stage, the possible 1-bit error introduced by LZA will be corrected. Also overflow

will be checked and if overflow happens, a 1-bit right shift is performed. The exponent will

be updated according to normalization shifting amount.
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6.2.7 Posit Output Process and Rounding

The diagram of posit output process is shown in Figure 6.4. The combined exponent is

first divided into regime and exponent. A nb-bit regime vector rg sin is also generated.

The resulting mantissa part will be prefixed with exponent and then regime vector. Then,

depending on the regime value, a right shift is performed to the combined vector. Finally,

the least significant nb− 1-bit are reserved and combined with sign bit.

The rounding process is shown in Figure 6.5. The result of addition will be a 3(nb−es)+2-

bit vector. It will be normalized and then the least significant 2(nb−es)+1-bit are condensed

into the sticky bit. The vector is then prefixed with exponent and regime vector and a right
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shifting is performed. During shifting, any bit shifted out are condensed into sticky bit.

Finally, according to sticky bit, round bit and least significant bit, the round to nearest even

can be performed.

6.3 Results and Analysis

The Verilog codes of 8-bit, 16-bit, and 32-bit posit MAC with various exponent bit-widths

are created by the proposed generator. For 8-bit, 16-bit, and 32-bit, the exponent bit-width

range is 0-4, 1-5, and 1-8, respectively, where the largest exponent bit-width of each case

is the same as that of the corresponding floating-point format. Each posit MAC design is

simulated with extensive testing vectors to verify its functionality. The testing vectors are

generated with the help of [83]. Then each MAC design is synthesized with Synopsys Design

Compiler using STM-28nm technology library with typical case parameters (25℃, 1.00V ).

The synthesis results are shown in Figure 6.6(a), Figure 6.6(b), and Figure 6.6(c). Within

the same total bit-width, the delay achieved by different designs with various exponent bit-

width is similar. Therefore, the 8-bit, 16-bit, and 32-bit posit MACs are synthesized with

a timing constraint of 1.0 ns, 1.3 ns, and 1.6 ns, respectively. For each set of designs, the

area and power consumption goes lower with the increase of the exponent bit-width. This is

because with larger exponent bit-width, the mantissa bit-width will be reduced. Therefore,

the bit-width of both mantissa multiplier and final adder will be reduced. Although the

alignment and normalization control logic will be larger, however, those components only

consume small portion of total resources.

In order to compare the posit MAC with standard floating-point MAC, three standard

floating-point MACs (8-bit, 16-bit, and 32-bit) are also designed and synthesized. The 8-bit

format uses 4-bit for exponent and 3-bit for mantissa. The comparison results are shown

in Table 6.1. Most of the internal operations are similar between posit MAC and floating-

point MAC. However, posit has complicated input process to extract each component from

posit format and complicated output process to pack each resulting component into the posit

format. This leads to the larger delay and higher resource consumption compared to floating-

point designs. Although the floating-point designs need to process subnormal numbers and
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Table 6.1: Comparison of the Posit MAC with floating-point MAC

Dynamic Range Delay Area Power

min max ns FO4 µm2 NAND2 mW

Std FP8 2× 10−3 3× 102 0.60 25 872 1817 0.59

Posit(8,4) 1× 10−29 8× 1028 1.00 42 1116 2325 0.68

Std FP16 6× 10−8 7× 104 0.75 31 2196 4575 1.80

Posit(16,5) 1× 10−135 7× 10134 1.30 54 3533 7360 2.48

Std FP32 1× 10−45 4× 1038 0.93 39 6081 12668 5.14

Posit(32,8) 8×10−2309 8× 102311 1.60 67 8992 18733 7.47

1 1 FO4 ≈ 24 ps, 1 NAND2 ≈ 0.48 µm2 @ 28nm;

Table 6.2: Delay of each pipeline stage of Posit MAC

Pipeline Stage Posit(8,0) Posit(16,1) Posit(32,3)

Input process 0.20 0.28 0.34

Multiply and Align 0.23 0.31 0.37

Adder and LZA 0.21 0.24 0.32

Normalize shift 0.19 0.20 0.28

Output process 0.20 0.29 0.35

perform exceptional cases handling, however, for the MAC architecture used in this paper,

these components do not consume many resources [84]. Compared to floating-point unit with

the same total bit-width, posit MAC consumes larger resources, however, the posit format

can provide much better accuracy and data range for deep learning applications [16] [79]. In

other word, to achieve the same level of accuracy, the posit format needs less total bit-width

compared to floating-point. Therefore, with posit format, a MAC unit with smaller total

bit-width, for example 8-bit instead of 16-bit, can be used in deep learning processor which

is expected to result in a hardware efficient design.

In order to improve the throughput of the posit MAC unit in practical applications,

pipeline method can be introduced to the posit MAC design. In this paper, a 5-stage pipeline

example is shown in Figure 6.1. The worst case delay of each pipeline stage of three example

posit MAC designs is shown in Table 6.2. As shown in Table 6.2, this pipeline strategy leads

to a balanced pipeline stages. For modern processor designs a critical path delay of 15-25

FO4 is desired [85]. For the 32-bit pipelined posit MAC, as shown in Table 6.2, the worst
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case delay of 0.37ns in 28nm library is roughly 15 FO4 which meets the speed requirements

of processor design. Depending on the actual requirements, one can increase or reduce the

number of pipeline stages in the posit MAC architecture.

6.4 Summary

In this chapter, a posit MAC unit generator is proposed to facilitate the use of posit number

format in deep learning applications. A MAC unit architecture based on posit number format

is proposed and the bit-widths of all datapath are parameterized to enable the design of MAC

unit generator. The Verilog codes generated by the proposed generator are simulated and

synthesized. The delay, area, and power merits of the generated MAC units with different

total bit-width and exponent bit-width are analyzed. Finally, a 5-stage pipeline strategy is

presented to make the design meet the speed requirements of modern processors.
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Part IV

Deep Learning Computation using 3D

Memory

119



Chapter 7

Improved Hybrid Memory Cube Architecture1

This chapter presents the design of an improved HMC architecture for accelerating weight-

sharing deep neural networks. The proposed architecture is designed based on the original

HMC architecture with minimal modifications to achieve deep neural network acceleration.

Section 7.1 presents the motivations to design such a HMC. Section 7.2 introduces the weight-

sharing methods applied in deep neural networks. The proposed HMC architecture, including

the modified vault controller and modified instructions, are presented in Section 7.3. Sec-

tion 7.4 presents the simulation results of the proposed HMC when performing convolution

operations and their comparison with previous designs. Finally, Section 7.5 concludes the

whole chapter.

7.1 Introduction

Deep learning [54] has achieved great success in recent years. It is widely used in many

applications. However, behind its superior performance there is expensive computation cost

and memory cost. In particular, the data transfer between processing unit and memory

consumes most of the energy [5]. In order to reduce the energy consumption, many efficient

hardware deep learning processors are proposed in the literature [5].

Currently, most of the deep learning processors are still designed using conventional

1The content of this chapter is originally published in the proceedings of 2019 IEEE International Confer-
ence on Artificial Intelligence Circuits and Systems (AICAS 2019) [86]. The manuscript has been reformatted
for inclusion in this thesis.

Hao Zhang (HZ), Jiongrui He (JH) and Seok-Bum Ko (SK) designed the study. HZ developed the
methodology and architecture and analyzed the results. JH modified the HMC simulator based on the
architecture proposed by HZ and performed performance simulation. HZ prepared the manuscript with
contributions from JH and SK to the manuscript structure, readability and analysis and discussion of the
results.
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DRAM [87] as their memory system. Theses are usually designed with Von Neumann ar-

chitecture where an interface is used between the processing unit and main memory. This

interface is becoming the limiting factor of the performance of deep learning processors. On

one hand, the bandwidth within the memory interface is limited where the data transferring

speed is much slower than the computing speed provided by modern processors. On the other

hand, the data transfer through this interface consumes a significant part of total energy con-

sumption of the whole system. In order to improve the memory performance from the above

mentioned two aspects, the HMC [17], one of the 3D memory architecture, is proposed. The

HMC stacks many DRAM layers vertically. The data exchange through different layers is

realized by the TSV. HMC also contains a bottom logic layer where the vault controller and

the interface to host processors are implemented. HMC also provides a lot of logic functions

and arithmetic functions in the logic layer. Therefore, data can be processed within the

logic layer instead of being transferred through interface to host processor. This ability can

significantly reduce memory traffic and thus reduce the energy consumption.

In the field of deep learning model research, many recent research works are focused

on compressing the deep neural network models to reduce their memory footprint [88–90].

In [89], the authors proposed to compress and quantize the weight parameters of the deep

neural network model. So that there will be only limited number of weights (16 weights used

in [89]). The advantage of this compression is that the input activations corresponding to

the same weight value can be accumulated first. Then only one final multiplication with the

shared weight is performed. Therefore, the total number of multiplications is reduced which

will benefit both speed performance and energy consumption.

In this paper, the support of weight-sharing deep neural network in HMC architecture

will be proposed by exploiting and applying the arithmetic functions provided by HMC to

deep learning applications. Most parts of the conventional HMC architecture are kept with

only minor modifications to the HMC architecture in order to avoid thermal problems [91].

The vault controllers and the HMC instructions are modified to perform the required weight-

sharing deep neural network operations. The accumulations of data that correspond to the

same weight are performed in memory using HMC atomic operation. The accumulated data

are then used in multiplication with shared weights and then the resulting products are

121



accumulated together. This process uses a multiply-accumulate unit integrated in HMC.

The major addition and multiplication are done inside memory and therefore, the memory

traffic and thus the power consumption is significantly reduced.

7.2 Weight-Sharing Deep Neural Network

The convolution operation in deep neural network is calculated by performing a dot-product

operation between the input activations and weight kernels. The dot-product result of each

input feature map needs to be accumulated through each channel. In conventional deep

learning operations, the deep neural network is trained with 32-bit single-precision floating-

point number [8]. Due to the large bit-width and large dynamic range of 32-bit floating-point

format, it is not uncommon that all weight parameters are of different values. Therefore, with

a kernel of size R×S and input channel C, the total number of computations to generate an

output point required are: R× S ×C multiplications and R× S ×C additions. For modern

deep neural network [92], C is usually large and thus a large number of multiplications and

additions are required.

To reduce the required number of multiplications, in [88] and [89], the authors proposed

the network compression and quantization method. They found that, with fine-tunning after

quantization, 16 different weight values can provide satisfying accuracy in most deep neural

networks. Therefore, they quantize all weight parameters into 16 different numbers. They

used 4-bit tag to identify each weight values. During computation, for the positions with

same weight tag, they are accumulated first. The multiplication with weights is performed

only once after the accumulation is finished. Therefore, the total number of multiplication

required to generate an output point is reduced. Depending on the kernel size, no more than

16 multiplications are required for one output.

The process of calculating convolution using weight-sharing method is shown in Fig. 7.1.

As shown in Fig. 7.1, 16 accumulation registers are used to accumulate the corresponding

data. Then the multiplication and accumulation across different weights are performed. In

Fig. 7.1, the multiplication and accumulation are performed in a parallel method. Besides,

the multiplication and accumulation can also be performed using a MAC unit in multiple
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Figure 7.1: Process of convolution using weight sharing method

cycles.

7.3 The Proposed HMC Architecture

The proposed HMC architecture modifies the HMC architecture presented in HMC specifi-

cation 2.1 [17]. The modifications are kept as small as possible. The newly introduced HMC

operations are still light weight arithmetic operations so that there will be no significant

thermal problems.

In order to support weight-sharing deep neural network operations, two HMC operations

are introduced: one for the accumulation of data corresponding to the same weight and

the other one is a MAC operation which is used for the multiplication of the accumulated

data and weights and the accumulation of those generated products. The architecture of the

modified HMC is shown in Fig. 7.2.

As discussed in Section 7.2, 16 different weight values are enough to maintain accuracy

for most of the modern deep convolutional neural networks. We also modified the HMC

architecture to accommodate the 16 weight cases. To enable parallel processing, 16 vaults

will be used in the HMC architecture. During data transfer, data corresponding to the same

weight are sent to the same vault in the HMC memory.

Both data and weight of the deep neural network are in the format of 16-bit fixed-

point numbers because the 16-bit fixed-point operations have relatively low cost compared to

floating-point operations and can still provide high accuracy for deep neural networks [93].

The data (the input to the deep neural network) will be transferred from storage or other
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Figure 7.2: Architecture of the modified HMC

devices to the HMC vaults. The weights are loaded to the registers of host processor since

there are only 16 different values. They will be used as the immediate value during the

multiply-accumulate operation.

7.3.1 Instruction Set

In order for the HMC devices to start an operation, the host processor needs to initiate the

operation by sending an instruction. To make the HMC operation more efficient, we use one

Table 7.1: Newly added instruction sets

Data Size Data Type Instruction Format

16 bytes Fixed-Point WS ACC RD, RS, CNT

16 bytes Fixed-Point WS MAC RD, RS

1 RD: Destination register address.
2 RS: Memory operand starting address.
3 CNT : number of accumulation operations.
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Figure 7.3: HMC memory request packet format

instruction to initiate the HMC operation and then HMC will perform consecutive operations

based on the number of operations it obtains through the instruction. During this process,

no new instruction is needed to trigger HMC operations from host processor.

To enable weight-sharing operations, two instructions are added to the HMC instruction

set: WS ACC for the accumulation of operation for data and WS MAC for the weight

multiplication and accumulation.

The format of the two added instructions is shown in Table 7.1. The WS ACC instruction

has 3 parameters: RD, RS, and CNT . RD represents the destination register address where

the results of the accumulation will be stored. For weight-sharing operation, since there is

a total of 16 weights, the number of accumulation registers is also 16. RS is the memory

address which represents the starting address of a series of data. Finally, CNT is the number

of accumulation operations required. CNT can be generated by host processor according to

the distribution of weight kernels and the number of input channels.

The WS MAC instruction only has 2 parameters: RD and RS since the CNT for

WS MAC is a constant number. We use 16 different weight values and thus use 16 registers

to save the accumulated data for each weight. Therefore, the MAC operation is a dot-product

of two 16-digit vectors. Similar as the parameters in WS ACC instruction, RD represents

the destination register address where the results of the MAC operation will be stored. RS

is the memory address which represents the starting address of the accumulated data.

7.3.2 HMC Request Format

The HMC controller will translate the newly added HMC instructions into HMC memory

request. The HMC memory request is in a packet format that is composed of a header, a

data field, and a tail [17], as shown in Fig 7.3.
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As shown in Fig. 7.3, one memory request packet has three reserved fields (marked as

RES in Fig 7.3). The header has two reserved fields: one is 3-bit and the other one is 1-bit.

The tail has one reserved field which is 4-bit. These three fields will be utilized to realize the

function of the newly added two instructions.

For WS ACC instruction, the CNT will be encoded in the RES regions. The three

RES regions are all used which have in total 8-bit to encode the accumulation count. The

8-bit code can represent up to 256 times accumulation which is enough for most deep neural

networks. When generating the memory request packet, the MSB of the CNT is put in 60th

bit of header and the LSB is put in the 22nd bit of tail. The 23rd bit of header is put in

between the other two RES fields. The command CMD field has a total of 7-bit so that a

total of 128 different operations can be supported. The number of HMC operations defined

in [17] is much less than 128. Therefore, the unused value in CMD field can be used to

encode the newly added WS ACC operation. In addition, RS is defined in ADRS region

and DATA field is occupied by host operand which is 0 for WS ACC because all data to be

accumulated are from DRAM stacks. All these related fields in the memory request packet

are highlighted in Fig. 7.3.

For WS MAC instruction, since the number of operation is a constant of value 16.

Therefore, only the 4-bit RES field in tail is used. Similar as the WS ACC instruction,

another unused value in CMD field is used to encode the WS MAC operation. The ADRS

field is used to represent the starting memory address. The DATA field now contains the

weight value to be multiplied with the accumulated data.

The newly added two operation instructions can be handled with the conventional HMC

memory request packet. Therefore, there is no need to modify the packet format of HMC

and thus avoiding significant modification of the HMC architecture.

7.3.3 HMC Memory Control

When using the modified HMC for weight-sharing deep neural network operations, multiple

vaults are used at the same time where each vault stores the data corresponding to the same

weight value. Therefore, when doing data accumulation, multiple vaults need to be visited

in parallel. However, as defined in [17], each HMC memory request can only visit one vault
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in conventional HMC architecture. Therefore, in order to enable the multiple vaults parallel

visit, the memory controller needs to be modified.

The modification to the HMC memory request controller is not complicated. In the

proposed design, the original memory request is analyzed and it will be used to generate

multiple vault access requests. So that each vault controller will receive the corresponding

access request and then start the accumulation operation.

Multiple vaults access is required both in WS ACC instruction and WS MAC instruc-

tion. As in WS ACC operation, each vault needs to perform the accumulation of data

corresponding the same weight value. The accumulated results are still stored in multiple

vaults. So that when doing the WS MAC operation, these accumulated data needs to be

collected from multiple vaults, each multiplied with the corresponding weight value and then

accumulated.

7.3.4 HMC Weight-Sharing Operation

When implementing WS ACC operation, the instruction contains the starting address and

the number of accumulation required. Then, each vault uses the starting address to find

the initial memory value and then perform consecutive accumulations. The accumulation

operation is implemented as the atomic integer addition [17]. The arithmetic unit required

is already available in conventional HMC architecture. There is no need to build extra logic

for this accumulation operation.

For WS MAC operation, a 16-bit fixed-point MAC unit is added to each vault controller.

Each MAC unit is followed by a register to store the partial accumulated results. When

processing, the 16 MAC units are used in a serial method where the MAC result of a previous

operation is used as a input to the next MAC operation and it is accumulated to product

generated in the next MAC operation. One operand of the MAC is from the vault memory

which is the accumulated data. The other operand of the MAC is from a set of registers in

host processor which is the weight value. As the operation of HMC should be initiated by

host processor, an immediate value from host processor is required in the memory request

packet. In the proposed design, we store weights in registers or buffers of host processor

and use them as the immediate value when initiating WS MAC operations. This method is
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feasible since in weight-sharing deep neural network, there is only limited number of weight

values.

7.4 Results and Analysis

The proposed HMC architecture supporting weight-sharing deep neural network operations is

implemented in CasHMC [94]. CasHMC is a cycle accurate simulator for HMC system. The

authors of CasHMC also provide an example of the method to modify CasHMC in [91]. We

follow the method in [91] to modify the CasHMC to realize the newly added two operations

in the proposed HMC architecture. We simulate the process of using 3×3 kernels to perform

weight-sharing convolution under different input channels.

The proposed HMC architecture is compared to the HMC-MAC design in [91] and two

CPU-based MAC execution models (ARM Cortex-A8 and ARM Cortex-A8 with NEON).

These architectures support MAC operations and are used to perform the 3× 3 convolution

operation under different input channels in a conventional computation method (non weight-

sharing, and 1 more input channel will lead to 9 more MAC operations). The simulation of

the ARM architecture is done with gem5 simulator [95].

The simulation results of performing convolutions in different platforms are shown in

Fig. 7.4. We simulate the timing performance when the number of input channels ranging

from 1 to 16. In conventional convolution operation method, by using 3×3 kernel, each input

channel will need 9 MAC operations. Therefore, the total number of MAC operations is equal

to 9 times the number of input channels. For the CPU-based MAC operation (Cortex-A8

and NEON), the timing has a significant increase with the increase of the number of MAC

operations. In weight-sharing method, with more input channels, the number of accumulation

is increased. However, the number of multiplication is always a constant. In addition, the

accumulation of data is performed in parallel in the proposed HMC architecture, therefore,

with different number of input channels, the timing of the proposed HMC only has minor

changes. The trend of timing of the proposed HMC is similar to that of [91] since both

designs are based on parallel HMC operations. Compared to [91], due to the weight sharing

operations, the number of multiplication required is significantly reduced and thus the timing
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of the proposed HMC is faster than [91].

As most of the HMC simulators do not support power consumption estimation yet, the

power comparison is not presented in this paper. However, we could expect that the pro-

posed HMC architecture has smaller power consumption than [91], Cortex-A8, and NEON

since both in-memory operations and weight-sharing method significantly reduce the mem-

ory interface traffic. In addition, the modification to the HMC architecture is not significant.

Therefore, there will be no thermal problems.

7.5 Summary

In this chapter, a HMC architecture is proposed for weight-sharing deep convolutional neural

networks. The proposed HMC architecture is modified based on the conventional HMC

architecture. Two new instructions are introduced to support the accumulation of data

corresponding to the same weight and to support the MAC operations between the weight

and accumulated data. The HMC controller is modified to support parallel vaults operations.

In addition, a simple MAC unit is integrated into vault controller to support in-memory

MAC operations. The proposed HMC architecture can perform convolution by on average

30% faster than other HMC. The execution time is relatively stable under different input

channels. The proposed HMC can be integrated in efficient deep learning implementation

for smart systems.
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Conclusion
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Chapter 8

Summary and Future Work

8.1 Summary

Deep learning is able to achieve superior performance in a variety of applications. However,

due to the intensive computation and high energy consumption, the cost of applying deep

learning methods in applications is still expensive. To facilitate the deployment of deep

learning methods in various applications, improving the speed performance and the energy

efficiency of deep learning implementations becomes necessary. In this thesis, several novel

fused arithmetic unit architectures are proposed in order to improve the speed and energy

efficiency of the deep learning computation. All the proposed works can be divided into

three categories: (1) optimizing the deep learning computation in general-purpose arithmetic

units. (2) optimizing deep learning specific arithmetic units. Within the second category,

the designs based on both the conventional fixed-point and floating-point number formats

and the new posit format are investigated. (3) optimizing deep learning computation in 3D

memory architecture.

The organization of the thesis and the deep learning computation features supported by

each proposed design are graphically shown in Figure 8.1. The optimization for deep learning

computation starts with the general-purpose arithmetic unit presented in Part II Chapter 3

of this thesis (denoted as MP-FMA in Figure 8.1). The MP-FMA is designed based on a

general-purpose multiple-precision floating-point FMA architecture. In order to be compat-

ible with the IEEE 754-2008 standard [8] for supporting general-purpose computation, only

the standard precisions defined in IEEE 754-2008 standard [8] are supported. The MP-FMA

design has four deep learning computation features: supporting floating-point computation

for deep learning training and inference; supporting low precision computation to improve
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Figure 8.1: Organization of the thesis and the deep learning computation features
supported by each proposed design

speed performance and to reduce energy consumption; supporting mixed-precision computa-

tion to maintain results accuracy; and supporting dot-product computation to increase deep

learning computation throughput. In addition to these deep learning computation features,

the proposed MP-FMA supports many other functions for various numerical precisions. The

functions supported by the proposed MP-FMA and their possible applications are summa-

rized in Table 8.1.

Compared to a normal multiple-precision FMA, the proposed MP-FMA also supports

mixed-precision FMA operations and mixed-precision dot-product operations with only 6.5%

more area. Compared to the state-of-the-art multiple-precision FMA designs, the proposed

FMA newly adds support for half-precision FMA operations and mixed-precision operations

with only 10.6% more area. The proposed FMA architecture can be used in efficient processor
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Table 8.1: Functions supported by the proposed MP-FMA and their applications

Precision Operation Throughput (op/cycle) Application

HP

FMA/MUL/ADD 8

Deep Learning ComputationMIX-FMA† 4

MIX-DOT-PRODUCT† 4

SP

FMA/MUL/ADD 4
Graphics Processing

Digital Signal Processing
MIX-FMA† 2

MIX-DOT-PRODUCT† 2

DP

FMA/MUL/ADD 2 Scientific Computation

Virtual Reality

Linear Algebra Simulation

MIX-FMA† 1

MIX-DOT-PRODUCT† 1

QP FMA/MUL/ADD 1 Financial Computation

† Reported with the precision of multiplier operands. The addend uses the next higher precision format.

designs or specialized hardware accelerators. The support of parallel half-precision operations

and the mixed-precision operations makes the proposed design suitable in accelerating deep

learning applications.

Then for deep learning processors, three deep learning specific arithmetic units are pro-

posed in Part III of this thesis. In this series of designs, more deep learning computation

features are considered, as shown in Figure 8.1. For example, the support of both fixed-

point operation and floating-point operation in a single architecture meets different precision

requirements of deep learning training and inference. In Chapter 4, a fixed-point and floating-

point merged mixed-precision multiply-accumulate unit (denoted as MP-MAC in Figure 8.1)

is designed for deep learning processors. In this design, the floating-point operations and

the fixed-point operations are merged and realized in a single architecture. Two operational

modes are supported in the proposed MP-MAC design. In floating-point mode, 16-bit mul-

tiplication is supported and the product is accumulated to a 32-bit addend. In fixed-point

mode, two parallel 8-bit multiplications are supported. These two products are accumulated

to a 32-bit fixed-point addend in the adder stage. The functions supported by the proposed

MP-MAC and their usage in deep learning applications are summarized in Table 8.2. Com-

pared to a half-precision multiply-accumulate unit (accumulating to single-precision), the

proposed architecture has only 4.6% area overhead. With the proposed MP-MAC architec-
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Table 8.2: Functions supported by the proposed MP-MAC and their usage

Mode Equation
Operand Bit-Width

Usage

Ai Bi C

Floating-Point AB + C 16-bit 16-bit 32-bit Deep Learning Training

Fixed-Point A1B1 +A2B2 + C 8-bit 8-bit 32-bit Deep Learning Inference

ture, floating-point operations and fixed-point operations are merged in a single architecture

whose area is smaller than a combination of a separate floating-point MAC and a fixed-point

MAC. For deep learning computation, within the same chip area, the arithmetic unit density

can be improved by using the proposed MP-MAC architecture and thus the computation

throughput is expected to be improved.

In Chapter 5, an efficient flexible multiple-precision multiply-accumulate unit (denoted

as Flex-MAC in Figure 8.1) is designed for deep neural network training and inference.

As shown in Figure 8.1, the Flex-MAC unit includes almost all deep learning computation

features using conventional numerical formats and in conventional computer architecture.

Similar to the MP-MAC design presented in Chapter 4, the Flex-MAC design also supports

both fixed-point operations and floating-point operations in a single architecture. However,

within each number category, more numerical precisions are supported (for example 4/8/16-

bit fixed-point versus 8-bit only in MP-MAC). In addition, a flexible precision support is

introduced for both floating-point modes and fixed-point modes. For floating-point modes,

with a constant total bit-width, the bit-width of exponent and mantissa can be mutually

exchanged. For fixed-point modes, the bit-width of integer and fraction can be flexibly

defined. The functions supported by the proposed Flex-MAC are shown in Table 8.3 (the

same content as Table 5.1 in Chapter 5). The flexible precision support enables computations

with different precisions for different deep learning models or layers. Moreover, the multiple-

precision architecture increases the throughput and the energy efficiency of low precision

computations. The proposed Flex-MAC provides the flexible precision computation support

in hardware level. It can be used together with software tools, such as Ristretto [11] and

Intel Distiller [77], to realize flexible precision deep learning training or inference.

Compared to the standard 16-bit half-precision MAC unit, the proposed Flex-MAC unit
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Table 8.3: Functions supported by the proposed Flex-MAC unit

Mode Equation

Operand Bit-Width

A and B C

total exponent parallelism total exponent

FLP8-DOT2
∑2

i=1AiBi + C 8-bit 1∼6-bit 2 16-bit 1∼8-bit

FLP16-MAC AB + C 16-bit 1∼8-bit 1 16-bit 1∼8-bit

total fraction parallelism total fraction

FIX4-DOT4
∑4

i=1AiBi + C 4-bit 0∼4-bit 4 16-bit 0∼15-bit

FIX8-DOT2
∑2

i=1AiBi + C 8-bit 0∼7-bit 2 16-bit 0∼15-bit

FIX16-MAC AB + C 16-bit 0∼15-bit 1 16-bit 0∼15-bit

provides more flexibility with only 21.8% area overhead. Compared to a standard 32-bit

single-precision MAC unit, the proposed Flex-MAC unit requires much less hardware cost

but still provides 8-bit exponent in the numerical format to maintain large dynamic range

for deep learning computation. The proposed Flex-MAC architecture can be used in sever

processors where various deep learning models are required to be processed. It can also be

used to design neural network IP cores for FPGA devices.

The conventional numerical formats, such as the fixed-point and floating-point formats,

are widely used in modern computation systems. However, for specific application, some

newly proposed number format may bring better hardware efficiency. Posit format [16] is

one of the recent proposed number format. Its non-uniform number encoding fits well with

the deep learning data distribution. In Chapter 6, a posit multiply-accumulate unit (denoted

as Posit-MAC in Figure 8.1) architecture is proposed to facilitate the use of posit number

format in deep learning applications. Unlike the floating-point format, posit does not have

standard number formats. Therefore, instead of designing a single architecture with specific

data-path bit-width, an architecture with parameterized data-path bit-width is proposed and

a Verilog code generator is implemented to generate MAC design for any posit format. The

process of generating Verilog code using the proposed generator is shown in Figure 8.2.

As shown in Figure 8.2, the proposed generator is written in C language. The total

bit-width and the exponent bit-width are used to configure the proposed generator. In

addition, a pipeline option can be used to determine whether a pipelined design is generated.
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Configurations: 
Total Bit-Width = 16 
Exp Bit-Width = 5 
Pipeline Enable = 1

Proposed C-Based 
Verilog Generator

module posit_mac_16_5 (  
input ….  
output …); 

……  
endmodule

config generate  

codes

Figure 8.2: Using the proposed posit MAC generator to generate Verilog code

The Verilog HDL codes generated by the proposed generator are verified with extensive

testing vectors. The delay, area, and power merits of the generated MAC units with different

total bit-width and exponent bit-width are analyzed. With the same total bit-width, the

hardware cost of posit MAC is larger than floating-point based MAC. However, deep learning

models are expected to achieve the same level of accuracy with smaller bit-width posit format

(than floating-point format). With smaller bit-width format and computation, the speed

performance and energy efficiency of deep learning computation are expected to be improved.

The arithmetic units proposed in this thesis are modeled using either Verilog HDL or

VHDL. Each of the proposed design is verified with extensive testing vectors using Modelsim.

The synthesis is done with corresponding CMOS libraries using Synopsys Design Compiler.

The power consumption merit is estimated using Synopsys PrimeTime PX. All the proposed

arithmetic units are designed for ASIC platform. However, it is not difficult to map them on

FPGA devices if required by some applications.

In various deep neural network accelerator or processor designs, the arithmetic unit can

occupy almost 30% of the total area [96] and consume around 40% of the total energy at

runtime [97] [98]. Therefore, the efficiency of the arithmetic unit is vital to the whole proces-

sor. For the proposed designs in this thesis, multiple-precision units are realized with minor

area overhead compared to the standard arithmetic unit. In addition, by applying multiple-

precision architecture, when low precision operations are being executed, both the throughput

and the energy efficiency can be improved due to the parallel operation support. Moreover,

by introducing parallel low precision operations, mixed-precision dot-product operations, and

flexible precision operations, the proposed unit can realize many more functionalities than the

conventional standard arithmetic unit. As the computation requirements of different deep

learning models or even different layers in a model are diverse, these newly added features
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enable a very flexible yet efficient deep learning computation.

Finally, the improvement of deep learning computation is explored with 3D memory ar-

chitecture. In Part IV Chapter 7, a HMC architecture (denoted as HMC-WS in Figure 8.1)

is proposed for weight-sharing deep convolutional neural networks. The HMC architecture

has a logic base layer where logic operations can be implemented. The proposed HMC-WS

is modified from the conventional HMC architecture. Two new instructions are introduced

to support weight sharing accumulation and weight sharing multiply-accumulate operations.

The adder included in the normal HMC architecture is used in each vault to perform accu-

mulation. In addition, a simple MAC unit is added to each vault to perform the multiply and

accumulate operation between accumulated data and weight. Moreover, in order to support

parallel vaults operations, the HMC controller is modified to regenerate parallel vaults access

instructions. The proposed HMC-WS architecture is simulated in CasHMC and the results

show that the proposed HMC architecture can perform convolution by on average 30% faster

than other HMC based designs. In conventional DRAM based system, because the memory

interface bandwidth is limited, the execution time is nearly proportional to the amount of

data to be processed. However, in HMC architecture, the computation is done inside the

memory, and thus the execution time is relatively constant under different numbers of input

channels. The proposed HMC can be integrated in artificial intelligence cores to achieve

faster yet energy efficient implementation.

8.2 Future Work

In the future, more research works can be performed based on the designs presented in this

thesis. Three short-term works are discussed below:

First, a flexible deep neural network accelerator can be designed based on the flexible

multiply-accumulate unit presented in Chapter 5 of this thesis. The proposed flexible MAC

unit will be used to build the processing elements. Correspondingly, the datapath, the

controller, and the memory system are required to be modified to accommodate the flexible

precision computation. When using such a flexible accelerator, the neural network model

to be implemented will be compressed with the help of software tools, such as Ristretto
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[11] and Intel Distiller [77]. Then the processed model can be ported to the deep neural

network accelerator to perform inference operations. As the proposed flexible MAC unit

also supports floating-point operations, deep neural network training can be accomplished

with the proposed flexible MAC unit. In order to perform training operations, the interface

between the flexible deep neural network accelerator and the deep learning frameworks needs

to be developed.

Second, more operational modes can be introduced to the flexible MAC unit presented

in Chapter 5 of this thesis. In the current design, although flexible precision operation is

supported, the two multiplication operands, corresponding to the activation and the weight

of a deep learning model, are still required to be in the same numerical format. In some

recent deep learning research works, different numerical formats are applied to the activation

and the weight [15]. In order to support this kind of deep learning computation, the design

of ‘asymmetric’ arithmetic unit can be investigated. Moreover, currently all the supported

operational modes in the flexible MAC unit are still performing exact computations. Ap-

proximate computation modes can be introduced along with the current computation modes

to achieve better energy efficiency.

Third, a posit based deep neural network accelerator can be designed based on the posit

multiply-accumulate unit proposed in Chapter 6 of this thesis. Based on the current imple-

mentation results, two major design questions are required to be solved during the design

of posit based deep neural network accelerator. First is the bit-width selection of the posit

numbers. According to the current analysis, posit has much larger dynamic range than the

conventional floating-point numbers. Therefore, a small bit-width posit format is expected

to meet the computation requirements of deep neural network. This can be explored with

the help of deep learning frameworks. Second, the posit implementation has resource over-

head compared to the floating-point implementation, such as the extra input and output

processing. Therefore, when designing deep neural network accelerator, the systolic array

architecture can be considered to achieve one input/output processing with multiple internal

computations. In this way, the posit hardware overhead can be reduced.

Related research works will continue focusing on the requirements of deep learning compu-

tation. In addition to the three aspects mentioned above, some other trends of deep learning
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computation will be considered, such as the efficient support for dynamic network, the sup-

port for very sparse activations, and the support for stochastic rounding [99]. Moreover, the

design of novel numerical format specific for deep learning computation can be considered,

such as the work in [100].

In a long-term, the design of efficient neuromorphic computation system [101] will be

explored. A neuromorphic computation system is composed of many processing nodes. Each

node contains a simple processor and memory blocks. All nodes communicate with each

other through a router network. Neuromorphic computation system uses such a distributed

structure that is able to avoid the bandwidth bottleneck between the computation cores

and the memory that occurs in Von Neumann architecture. In a neuromorphic computer,

each node is a light-weight neural network processor. Therefore, the proposed techniques

in this thesis for efficient deep neural network computation can be applied and extended to

neuromorphic computer to obtain better energy efficiency and performance.
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