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and Efren Diez-Jimenez

Model-Based Systems Engineering Applied to Trade-Off Analysis of Wireless Power Transfer
Technologies for Implanted Biomedical Microdevices
Reprinted from: Sensors 2021, 21, 3201, doi:10.3390/s21093201 . . . . . . . . . . . . . . . . . . . . 165

Cui-Hong Li, Deng-Feng Li, Yu Zheng, Fang-Wen Sun, A. M. Du and Ya-Song Ge

Detecting Axial Ratio of Microwave Field with High Resolution Using NV Centers in Diamond
Reprinted from: Sensors 2019, 19, 2347, doi:10.3390/s19102347 . . . . . . . . . . . . . . . . . . . . 183

Jose Antonio Solano-Perez, Marı́a-Teresa Martı́nez-Inglés, Jose-Maria Molina-Garcia-Pardo,

Jordi Romeu, Lluis Jofre-Roca, Christian Ballesteros-Sánchez, José-Vı́ctor Rodrı́guez and
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Preface to ”Microwave Sensing and Imaging”

Microwave sensing and imaging is acquiring an ever-growing importance in several applicative

fields, such as non-destructive evaluations in industry and civil engineering, subsurface prospection,

security, and biomedical imaging. Microwave techniques can be, in principle, used to retrieve

information on some physical parameters of the inspected targets (dielectric properties, shape, etc.)

by using safe electromagnetic radiations and cost-effective systems.

Although great technological advances have been attained in recent years, there is still a great

deal of scientific research activity in this field, with the aim of further improving imaging systems

and techniques. More efficient and reliable measurement systems are continuously being designed

and validated on a case-by-case basis to address specific scenarios. Moreover, great attention has

been paid to the development of effective data-processing algorithms, which are able to solve the

underlying electromagnetic inverse scattering problem (which is generally nonlinear and ill-posed) in

order to retrieve the required information on the inspected targets from the measured scattered-field

samples. Finally, efficient forward solvers, which are fundamental for modeling the electromagnetic

interactions between the interrogating fields and the targets, are proposed for both the development

of the inversion approaches and for the definition/validation of the imaging setups.

This book, which reprints a Special Issue of the journal Sensors, provides some recent

insights into microwave sensing and imaging systems and techniques, with reference to the topics

outlined above.

Andrea Randazzo, Cristina Ponti, and Alessandro Fedeli

Editors
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Article

A Multi-Frequency Tomographic Inverse Scattering Using Beam
Basis Functions

Ram Tuvi

John A. and Katherine G. Jackson School of Geosciences, Institute for Geophysics, The University of Texas at
Austin, Austin, TX 78758, USA; ram@ig.utexas.edu

Abstract: We present an overview of a beam-based approach to ultra-wide band (UWB) tomographic
inverse scattering, where beam-waves are used for local data-processing and local imaging, as an
alternative to the conventional plane-wave and Green’s function approaches. Specifically, the method
utilizes a phase–space set of iso-diffracting beam-waves that emerge from a discrete set of points
and directions in the source domain. It is shown that with a proper choice of parameters, this set
constitutes a frame (an overcomplete generalization of a basis), termed “beam frame”, over the entire
propagation domain. An important feature of these beam frames is that they need to be calculated
once and then used for all frequencies, hence the method can be implemented either in the multi-
frequency domain (FD), or directly in the time domain (TD). The algorithm consists of two phases:
in the processing phase, the scattering data is transformed to the beam domain using windowed
phase–space transformations, while in the imaging phase, the beams are backpropagated to the
target domain to form the image. The beam-domain data is not only localized and compressed,
but it is also physically related to the local Radon transform (RT) of the scatterer via a local Snell’s
reflection of the beam-waves. This expresses the imaging as an inverse local RT that can be applied to
any local domain of interest (DoI). In previous publications, the emphasis has been set on TD data
processing using a special class of localized space–time beam-waves (wave-packets). The goal of
the present paper is to present the imaging scheme in the UWB FD, utilizing simpler Fourier-based
data-processing tools in the space and time domains.

Keywords: inverse scattering; imaging; wave propagation; beam summation methods

1. Introduction

Inverse scattering deals with determining the shape and the composition of an un-
known object from measurements of the scattering field data due to a known illumination.
This area has a wide range of medical, geophysical, oceanographical, industrial, etc., appli-
cations, using electromagnetic, acoustic, elastic, or seismic waves [1–5]. Inverse scattering
problems are, in general, non-linear and highly ill-posed, hence accurate solutions typically
require iterative schemes and are limited to rather small configurations in the order of
wavelengths. For large domains, practical algorithms rely on linearized weak scattering
formulations using the Born, Rytov, Physical optics, or other single scattering approxima-
tions [2,5] which linearize the relation between the target and the field and provide the
basis for diffraction tomography (DT) reconstruction [6].

Inverse scattering requires diversity and relies on the wave data in hand. Depend-
ing on the application, it may involve multiple excitation frequencies (or short-pulse
response) and/or several illumination directions. With the overall complexity of the prob-
lem, full utilization of the wave data is essential to formulate an efficient, robust, and
accurate algorithm.

Beam summation (BS) methods are when the wave field is expressed as a superpo-
sition of collimated beam waves. Here, we use the generic term “beam” for both the FD
formulations where the propagators are Gaussian beams, and for the TD formulations

Sensors 2022, 22, 1684. https://doi.org/10.3390/s22041684 https://www.mdpi.com/journal/sensors
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where the propagators are pulsed beams. This provides the proper physical basis for such
robust DT reconstruction. Like the plane-wave (PW) spectrum approach, the BS provides a
complete spectral basis which is required for DT reconstruction, yet unlike plane-waves,
the beam waves provide spatial resolution and they can easily and efficiently be propa-
gated in inhomogeneous media along ray trajectories. Unlike rays, on the other hand, they
provide a uniform spectral basis and are insensitive to geometrical optics transition regions.
Thus, beams provide a way to convert the wave problem to a ray-based skeleton.

BS methods can be classified into two classes (see review in [7,8]). The first class
addresses radiation from localized (point) sources by expressing the field as an angular
superposition of collimated beams that emerge radially from the source. This formulation
has been derived asymptotically [9,10], but later on it was formulated as an exact spectral
identity using complex source beams [11,12] and was also extended to the time domain
(TD) [12]. Consequently, it has been used in various applications of propagation, scattering,
and inverse scattering.

The other class addresses radiation from extended (aperture) sources, where the field
is expressed as a sum of beam propagators that emerge from a discrete phase–space lattice
of points and directions in the aperture. These formulations utilize local window (e.g.,
Gaussian) functions to transform the data to the beam domain, and then propagate the
data using beams. These formulations are utilized in the present work where we analyze
the data on the measurement aperture and then backpropagate it to the scatterer domain.
Early implementation of this approach was based on a Gabor series expansion of the planar
field [13–16] and therefore suffered from two major drawbacks: (a) The Gabor expansion
coefficients (the beam amplitudes) are notoriously non-local and unstable, and (b) the beam
lattice is frequency-dependent, hence a new lattice should be calculated at each frequency.
Both difficulties have been mitigated in the ultra-wide band phase–space beam summation
(UWB-PS-BS) method [17,18] which utilizes the overcomplete windowed Fourier transform
(WFT) frames. In linear algebra, a frame of an inner product space is a generalization
of a basis of a vector space to overcomplete sets. In signal processing, frames provide a
redundant, stable way of representing a signal, instead of the Gabor series. The formulation
is structured upon a frequency independent lattice of beams that emerge from a discrete
phase–space lattice of points and directions in the aperture, and utilizes iso-diffracting
Gaussian beams (ID-GB) whose propagation parameters are frequency independent. These
properties make this representation efficient for wideband applications and also allow an
extension of the theory to the time-domain (TD) [19].

A major step forward has been the proof in [20] that these phase–space sets of beams
constitute a frame not only in the aperture domains but actually everywhere in the propa-
gation domain. This implies that these beam basis functions may be used to expand not
only the sources and the field, but also any function of space and in particular the medium
inhomogeneities, a property that is being used in our beam-based inverse scattering theory.
The theory has been proved originally in the frequency domain (FD) [20] and then extended
to the TD in [21].

As noted above, it has been recognized long ago that BS provides the proper physical
basis for a robust DT reconstruction. Examples for point-sources configurations can be
found in [22–30]. For configuration where the data is measured over a wide aperture (see
Figure 1a), it is more suitable to use the extended sources approach noted above: see [31–37]
and [38–44] for medium reconstruction over a homogenous or inhomogeneous background,
respectively. Without going into detailed comparison, the main difference between the
methods is in the data representation phase (see [42] for a detailed comparison).
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(a) (b)

Figure 1. Diffraction tomography and the K-space diffraction tomography identity in the spatial
and spectral domains. (a) The physical configuration. The unknown object O(r) is located between
two measurement planes. At z = z1 we have an array of sources/receivers, while at z = z2 we have
an array of receivers. The object is illuminated by the plane-wave (black arrows) of Equation (3)
propagating in the direction

◦
κi. In red we plot pulsed plane-wave illumination of Equation (3).

The scattered field is measured on the zj planes. (b) The DT identity of (8). The plane-wave
spectrum of the scattered field ˆ̃us

j (ξ) is mapped to values of Ō(K) over a shifted Ewald sphere

K = k(
◦
κj −

◦
κi). The data measured on the j = 1, 2 planes are illustrated by red dashed and blue

solid-line hemispheres, respectively.

In this work we review the beam-based local inverse scattering theory derived
in [36,37], which is based on the frame-based UWB-PS-BS theory discussed above. As noted
there, the theory is structured on a frequency-independent phase–space sets of beams that
constitute frames everywhere in the propagation domain. This beam frame formulation
enables the expansion of both the medium inhomogeneities and the scattering data with the
same set of beam-basis functions, thus enabling a direct inversion over the beam domain.
In previous publications, the emphasis has been set on TD data processing using special
localized space–time beam-waves (wave-packets). This requires somewhat sophisticated
mathematics and processing tools. In the present paper, on the other hand, we utilize a
simpler FD Fourier-based data-processing approach followed by an integration over the
relevant frequency band. The paper makes extensive references to equations or figures
in [36,37]. Therefore, to simplify the presentation, we refer to them by the prefixes I and II,
respectively.

The advantages of our beam-based DT over the conventional DT approach are:

a. Data localization: The phase–space processing of the scattered data extract the local
direction of arrival. The phase space representation of the data is therefore localized
along well defined trajectories corresponding to the local direction and time of arrival
from the relevant regions in the target domain.

b. Under the Born approximation, the beam-wave scattering mechanism by the medium
inhomogeneities is described by local Snell’s reflections from the local stratification,
which is related to the local Radon transform (LRT) of the medium inhomogeneities
(Section 5 in [36]).

c. As follows from the discussion in items a and b, the phase space data is directly related
to the LRT of the medium inhomogeneities about a given region.

d. The beam-based imaging enables local imaging within a given domain of interest
(DoI) by considering only the data that correspond to beams that pass through or near
the DoI. This not only reduces the problem complexity, but also reduces the noise
level, since data and noise arriving from other regions are a priori filtered out.

3
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e. The beam-based imaging enables backpropagation and imaging over a non-homogeneous
background.

The presentation below starts in Section 2 with a review of the main concepts in DT.
We proceed in Section 3 by reviewing elements of the beam representation, and in particular
of the UWB-PS-BS and the BF concept. The beam-based DT is presented in Section 4, where,
as discussed above, we emphasize the multi-frequency data processing as opposed to the
more complicated TD processing used in [36,37]. The presentation ends in Section 5 with a
practical description of the algorithm, including the choice of the various parameters and
numerical examples.

2. UWB Diffraction Tomography in the Spectral Plane-Wave Domain: A Review

This section reviews the conventional plane-wave DT algorithms. Referring to the
configuration in Figure 1a, we consider the two alternative schemes: The angular diversity
scheme where the data is measured for several illumination directions

◦
κi at a given fre-

quency (Section 2.3), and the frequency diversity scheme where the data is measured over
a wide frequency band for a single illumination direction

◦
κi (Section 2.4). The frequency

diversity scheme may also be performed using a short-pulse illumination and calculated
directly in the TD [45] (see also I– Section 3-B in [36]).

2.1. Problem Description—Physical Configuration

The physical configuration is illustrated in Figure 1a, where the object is located
between two measurement planes, at z = z1 < 0 and at z = z2 > 0. We assume a 3D
coordinate frame r = (x, z) where the z-coordinate is normal to the measurement planes,
and x = (x1; x2) are the transversal coordinates. The data is collected over a wide frequency
band Ω ∈ [ωmin, ωmax]. The theory is presented here in the FD, but we also discuss the
TD formulation for completeness and clearer interpretation. Field constituents in these
domains are related via the temporal Fourier transform

û(ω) =
∫

dt u(t) eiωt, (1)

where FD constituents are tagged by an over-hat .̂
The unknown object is embedded in a uniform background wavespeed v0 and as-

sumed to be lossless and non-dispersive. It is described by the unknown wavespeed v(r),
and we define the “object function”

O(r) = (v0/v(r))2 − 1 (2)

(see Equation (7)).
The scattering data may be collected as a function of frequency using time-harmonic

plane-wave excitation, or directly in the TD utilizing short-pulse plane-wave. These
excitations are given by

ûi(r, ω) = F̂(ω)eik
◦
κi ·r, ui(r, t) = F(t − v−1

0
◦
κi · r), (3)

where F̂(ω) is the source spectrum and k = ω/v0 is the wavenumber. The incident wave
propagates in the direction

◦
κi = (ξi, ζ i) = sin θi cos φi ◦x1 + sin θi sin φi ◦x2 + cos θi ◦z, (4)

with (θi, φi) being the polar angles with respect to the z axis, and over-circles denote
unit vectors.

4
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The scattered fields measured over the zj planes, j = 1, 2 are denoted as ûs
j (x, ω) (see

Figure 1a). The PW spectral representation of ûs
j (r) is defined via

ˆ̃us
j (ξ) = e±ikζzj

∫
d2x ûs

j (x)e
−ikξ·x, ζ =

√
1 − ξ · ξ, Im ζ ≥ 0. (5)

where lower and upper signs correspond to j = 1 and 2, respectfully. We added the e±ikζzj

phase term in (5) in order to normalize the spectral PWs to the z = 0 plane instead of z = zj
planes.

Note that we use here the frequency normalized spectral coordinates ξ = kx/k which
are related to the PW direction via ξ = (ξ1, ξ2) = sin θ(cos φ, sin φ), where (θ, φ) are the
conventional spherical angles with respect to the z-axis so that the scattered PWs propagate
in the unit vector direction

◦
κj = (ξ,∓ζ) = (sin θ cos φ, sin θ sin φ, cos θ), j = 1, 2. (6)

The spectral ranges |ξ| < 1 and |ξ| > 1 define the propagation spectrum and evanescent
spectrum, respectively. Typically, DT formulations are restricted only to the propagation
spectrum data (see discussion after Equation (9)).

2.2. The DT Identity

According to the weak scattering (first Born) approximation of the Lippmann–Schwinger
integral equation, the scattered field can be expressed as [5]

ûs(r) = k2
∫

V
d3r′ûi(r′)O(r′)Ĝ(r, r′), (7)

where Ĝ = eik|r−r′ |
4π|r−r′ | is the 3D Green’s function in the uniform background. This approxima-

tion is valid if O(r) � 1 and in addition kLOmax < 1, where L is the spatial support of O
and Omax is its maximal value.

Inserting (7) into (5) and using the spectral representation of Ĝ, we obtain (I-7),

ˆ̃us
j (ξ) �

k
−2iζ

Ō(K)
∣∣∣
K=k(

◦
κj−

◦
κi)

|ξ| < 1, (8)

where
◦
κj and

◦
κi are given by (6) and (4), and

Ō(K) =
∫

d3r O(r)e−iK·r, K = (K1, K2, Kz), (9)

is the K-space distribution of O(r). Equation (8) is referred to as the DT identity. It relates
the scattering data in the

◦
κj directions to values of Ō(K) at the points K = k(

◦
κj −

◦
κi).

As illustrated in Figure 1b, these points define a K-space sphere with radius k that is
centered at K = −k

◦
κi, which is referred to as the shifted Ewald sphere. Note from (6) that the

left and right hemispheres (plotted as red and blue, respectively) correspond to data from
the zj measurement plane with j = 1, 2, respectively.

The DT identity above applies only to the propagation spectrum |ξ| < 1. Adding
the evanescent spectrum may improve the resolution. However, the contribution of the
evanescent spectrum is exponentially weak and hence has a low signal to noise ratio. In ad-
dition, backpropagating this data to form the image amplifies the noise level exponentially.
For these reasons, the evanescent spectrum contribution is usually neglected except for
near field imaging schemes.

In view of the DT identity, one may obtain a full K−space coverage of the object
function by measuring the scattering response for several illumination directions or several
frequencies [2,5]. These alternative schemes are reviewed in the following sections.
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2.3. Object Reconstruction via Angular Diversity

The angular diversity approach is illustrated in Figure 2a. Changing the illumination
directions

◦
κi while keeping the operational frequency k constant changes the centers of

the shifted Ewald sphere and provides a different coverage of the K space. Aggregating
the response for several illumination directions recovers Ō(K). Note that for lossless (real)
objects, Ō(K) = Ō∗(−K), so that only half of the K-space needs to be recovered.

(a) (b)

Figure 2. K-space reconstruction. (a) Angular diversity reconstruction: Changing the direction of
illumination

◦
κi and measuring the transmitted data only provides a coverage of the K−space within

a sphere of radius
√

2k [5]. (b) Frequency diversity reconstruction: Changing the excitation frequency
for a single illumination direction

◦
κi provides coverage of the K− space as indicated. The figure is

plotted for
◦
κi =

◦
z.

As one observes from Figure 2a, the transmitted data on z2 recovers the K-space
distribution of the object in a sphere of radius

√
2k about the origin. Thus, the object may be

recovered using only transmitted data, as long as k is chosen to be large enough to provide
full coverage of Ō(K). Note that in the limit of k → ∞, the transmitted data hemispheres
in Figure 2a reduce to planar surfaces normal to

◦
κi that pass through the origin, thus

providing the K-space representation of conventional X-ray tomography [46].
One option to reconstruct O(r) is to recover Ō(K) and then apply the inverse Fourier

transform of (9). This approach requires interpolation of the data from the shifted Ewald
spheres to a Cartesian K-domain grid [47], and therefore requires a large number of illumi-
nations.

The “filtered backpropagation” reconstruction algorithm [6,47] overcomes this diffi-
culty by circumventing the need to recover Ō(K) and operating, instead, directly on the
scattering data. In this approach, the scattering data is multiplied by a spectral filter and
then back-propagated to the object domain. This reconstruction approach is analogous to
the X-ray tomography filtered backprojection algorithm of [48], where the filtered data is
back-projected along straight lines.

2.4. Object Reconstruction via Frequency Diversity (UWB Tomography)

In the frequency diversity approach, the data is collected over a wide frequency
spectrum Ω ∈ [ωmin, ωmax] for a fixed illumination direction. This can be done either
in a frequency by frequency approach or by using a short-pulse illumination. As noted
earlier, in this paper we emphasize the multi-frequency approach. The readers are referred
to I–Section 3-B in [36] for the TD formulation, which has an important cogent physical
interpretation, but is not utilized here.

As illustrated in Figure 2b for illumination along the positive z axis, changing the
illumination frequency changes the radius of the shifted Ewald sphere. One observes that
the reflected data recovers the K-space distribution of O inside a π/4 cone with an axis
along the negative Kz axis and base radii between kmin and kmax, while the transmitted

6



Sensors 2022, 22, 1684

data recovers the complementary K-space part. As noted before, only half of the K-space
is needed to recover the real function O. Otherwise, several illumination directions are
required. More illuminations also add robustness.

As follows from Figure 2b, the reflection data on the z1 plane mainly recovers the
object variations along the z axis, while the transmitted data on the z2 plane recovers the
transversal variation (see also Snell’s law interpretation in I-Section 3-B in [36]. Thus, for
quasi-stratified media with weak transversal variations, it may be sufficient to measure
only the reflected data on the z1 plane, but may not be sufficient for objects with a
large transversal variations. Another limitation is the missing data for |Kz| < 2kmin (see
Figure 2b), while the missing data for |Kz| > 2kmax can be measured by using higher
frequencies. As follows from Figure 2b, several illumination directions may increase the
transversal resolution and also add data at small |K|. Note also that the maximal axial
resolution for the case of normal incidence is δz = π/kmax.

The object can be reconstructed using an inverse transform of Ō(K). However, for the
same reasons discussed in Section 2.3, a filtered backpropagation approach is preferable.
Backpropagation can be calculated in several alternative ways. For simplicity, we present
here the spectral integration approach. Given the scattering data ûs(x, ω) over the zj planes,
the backpropagated fields into the z > z1 and z < z2 regions are given by (see (5))

ûb
j (r) =

(
k

2π

)2 ∫
|ξ|<1

d2ξ ˆ̃us
j (ξ)e

ik(ξ·x∓ζz), (10)

where we restrict the integration to the visible spectrum |ξ| < 1.
The “imaging field,” or the “filtered backpropagated field” corresponding to the data

on the j = 1, 2 plane is given by (II-2)

Îj(r, ω) = v−1
0 k−2 ◦

κi · ∇[e−ik
◦
κi ·rûb

j (r, ω)]. (11)

The corresponding “partial images” are obtained by summing over the relevant frequency
band (II-3)

Ŏ(r) = 2Re
1
π

∫ ∞

0
dω Îj(r, ω). (12)

If the data is given on both planes, then the “complete image” is given by

Ŏ(r) = Ŏ1(r) + Ŏ2(r). (13)

The features of O(r) that are described by Ŏj have been discussed above in connection
with Figure 2b. As noted there, in many situations it is sufficient to recover only Ŏ1.

The derivation of the filtered backpropagation imaging algorithm in (10)–(12) is done
by inserting the Born approximated data of (8) into (10).

3. Mathematical Background on the UWB-PS-BS

3.1. The Windowed Fourier Transform (WFT) Frame Representation of the Field

As noted in the introduction above, the phase–space beam summation representation
is based on the theory of WFT frame expansion of the field. Following [17], the theory is
presented here in the context of radiation into the half-space z > 0 in a 3D coordinate space
r = (x, z), x = (x1, x2), due to a time harmonic field û0(x, ω) defined over the plane z = 0.

The WFT frame set {ψ̂μ(x, ω)} is defined by (Equation (22)] [17])

ψ̂μ(x, ω) = ψ̂(x − mx̄)eiknξ̄·(x−mx̄), (14)

7
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with ψ̂ being a localized window function (typically a Gaussian, see more details below)
and μ =

(
m, n
)

being a 4-index. The frame elements are localized about the spatial (x) and
spectral (ξ) phase space lattice

(xm, ξn) = (mx̄, nξ̄) = (m1 x̄, m2 x̄; n1ξ̄, n2ξ̄), (15)

where (x̄, ξ̄) defines the lattice unit cell. As will be shown, the points (xm, ξn) define the
beams’ initiation points and propagation directions (see Equation (21) below). To constitute
a frame, the set above needs to fully cover the phase space, i.e., the unit cell area should be
less than 2π, implying that

kx̄ξ̄ = 2πν, (16)

with ν < 1 being the overcompleteness parameter and the limit ν = 1 define the critically
complete limit. As will be shown in Section 3.2 below, the frame over completeness provides
a local and stable representation of the field (Equation (13) [17]), with it also being used to
derive an UWB representation of the field (see Equations (Equations (33)–(35) [17]))).

The WFT frame can be used to expand û0(x) in the form

û0(x) = ∑
μ

âμ ψ̂μ(x). (17)

In view of the overcompleteness, the coefficients set
{

âμ
}

is not unique. A particularly
convenient set with a minimum �2 norm is obtained by using the dual frame

{
ϕ̂μ(x)

}
which has the same structure as

{
ψ̂μ
}

in (15) except that the mother window ψ̂(x) is
replaced by the dual mother window ϕ̂(x). The resulting canonical coefficient set is given
by (Equation (23) [17]).

âμ =
〈
û0(x), ϕ̂μ(x)

〉
(18)

where
〈

f , g
〉
=
∫

f g∗ is the conventional L2 inner product in the transverse coordinate
x. The canonical coefficients âμ in (18) are readily identified as the local spectrum of û0(x)
windowed with respect to ϕ̂μ about the phase–space points

(
xm, ξn

)
.

Generally, ϕ̂ should be calculated numerically, for a given ψ̂ and lattice
(
x̄, ξ̄
)
. How-

ever, if the lattice is sufficiently overcomplete, (ν � 1/3) ϕ̂ ∝ ψ̂ can be approximated by
(Equation (11) [17])

ϕ̂(x) ≈ ν2ψ̂(x)/‖ψ‖2. (19)

There are mainly two reasons to prefer the use of this highly overcomplete parameter
regime, even though it implies a larger number of terms in the phase–space expansion
(17): (i)—as follows from (19), in this parameter regime ϕ̂ is localized both spatially and
spectrally, so that the expansion (17) comprises local and stable coefficients. (ii)—ϕ̂ is given
analytically via (19) and does not have to be to calculated numerically. Reason (ii) is critical
for UWB problems where ϕ̂ needs to be found for each ω.

The radiated field in z > 0 is obtained now by replacing ψ̂μ(x) in Equation (17) by
beam propagators (Equation (24) [17])

û(r) = ∑
μ

âμ Ψ̂
+

μ (r), (20)

Ψ̂+
μ (r) =

(
k

2π

)2 ∫
d2ξ ˆ̃ψμ(ξ)eik(ξ·x+ζz). (21)

Ψ̂+
μ (r) are identified as the fields that are radiated forward into z > 0 by ψ̂μ(x). In (21),

ˆ̃ψμ(ξ) = ˆ̃ψ(ξ − ξn)e−ikξ·xm is the PW spectrum (5) of ψ̂μ(x), with ˆ̃ψ(ξ) being the spectrum
of the “mother window” ψ̂(x). If ψ̂(x) is wide on a wavelength scale, then Ψ̂+

μ (r) behave
like collimated beams, emerging from the points xm over the z = 0 plane and directions
◦
κn = (ξn, ζn) = (sin θn cos φn, sin θn sin φn, cos θn) with ζn =

√
1 − |ξn|2.

8
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3.2. UWB Considerations

In general, the applications in hand require UWB excitations. Following [17], we use
the following frequency-scaling of the WFT frame set that renders the theory amenable for
UWB field representations:

(1) Frequency independent beam skeleton: As implied from Equation (16) above, the beam
lattice should be recalculated for each frequency. For efficient UWB representations, it is
required to have the same beam lattice

(
xm, ξn

)
over the entire frequency band. In view of

(16), this requirement implies (Equation (10) [21])

ν(ω) = νmax
ω

ωmax
, ω ∈ [ωmin, ωmax], (22)

with νmax being the value of ν at ωmax, so that ν < νmax for all ω < ωmax. Typically, we use
νmax = 1/3 (see discussion in (25) below).

(2) Iso-diffracting propagators: We use iso-diffracting (ID) Gaussian windows which are
scaled with frequency in the form (Equation (27) [17])

ψ̂ID(x) = e−k|x|2/2b, k > 0, (23)

where b > 0 is a frequency independent parameter. Inserting (23) into (21) and evaluating
the integral one finds that the resulting propagators are ID-GBs, with b being the collimation
distance. The ID designation of these Gaussian beams is due to the fact that their collimation
distance b is frequency independent. This property implies that the beam propagation
parameters are frequency independent even in inhomogeneous medium. Furthermore,
when transformed into the TD, they give rise to ID-Pulsed beams (ID-PB) which are space
time wave-packets that maintain their wave-packet structure even through propagation
in inhomogeneous medium [49]. Explicit expressions for the corresponding phase–space
beam propagators of (26) in free space are given in (Equations (28)–(29)) [17].

Typically b is chosen by the molder and depends on the application (see discussion
in the numerical example below), but also should satisfy the condition kminb � 1, which
implies that the beams are highly collimated over the entire frequency band.

(3) Snug frame: The frame is optimal (or snug) when the frame elements are matched to
the phase–space lattice (x̄, ξ̄) (in the sense that they should provide a balanced phase–space
coverage). This requirement implies the relation b = x̄/ξ̄ [17]. Combining this condition
with (16) one obtains (Equation (A2) [21]),

(
x̄, ξ̄
)
=

√
2πνmax

kmax

(
b1/2, b−1/2). (24)

(4) Simple expression for the dual frame function: In view of (19) we have for νmax = 1/3
(Equation (A3) [21]),

ϕ̂ID(x) �
ν2

max

πbk2
max

k3 ψ̂ID(x), ω < ωmax. (25)

Over this regime ϕ̂ is spatially and spectrally localized, and leads to a stable and localized
expansion coefficients [17].

The properties above yield an efficient multi-frequency representation where the
phase–space lattice and propagation parameters should be calculated only once for all
frequencies in the band. These advantages also allow a simple transformation of the beam
representation to the TD [19,21].

9
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3.3. The Beam Frame Theorem

Following (21), we define the set of forward and backward propagators {Ψ̂±
μ (r)}

(compare Equation (21))

Ψ̂±
μ (r) =

(
k

2π

)2 ∫
|ξ|<1

d2ξ ˆ̃ψμ(ξ)eik(ξ·x±ζz), |ξn| ≤ ξ0 < 1. (26)

where the parameter ξ0 is typically chosen close to 1. Note that this subset includes only
“propagating beams” whose spectrum, which is localized around ξn, is located in the
propagating spectrum range |ξ| < 1. We denote this subset by the index μP. Inserting the
ID Gaussian windows of (23) into (26) and evaluating the integrals asymptotically one
readily identifies Ψ̂±

μ as forward and backward ID-GB that propagate from z = ∓∞ to ±∞

in the directions
◦
κ±

n = (ξn,±ζn) = (sin θn cos φn, sin θn sin φn, cos θn) (see Figure 3), while
for z = 0 they converge to the PS lattice of Section 3.1 as illustrated in Figure 3.

(a) Ψ+
μ (b) Ψ−

μ

Figure 3. The forward/backward propagating beam frames Ψ±
μ . (a) The forward and (b) the

backward beam frames Ψ±
μ . The BFs are illustrated by the hatched arrows. The ellipses correspond to

the pulsed-beam-frames that are used in the TD formulations and are not considered here (see [21]).

As has been established by the beam frame theorem in [20], the beam-sets
{

Ψ̂±
μ (r)
}

μP
constitute frames (hence referred to as “beam frames” (BF)) at any z = const. plane over
the Hilbert space HP of functions whose spectrum is bounded in the propagation domain
|ξ| < ξ0, with the set {Φ̂±

μ (r)} being the dual frames. The propagators Φ̂±
μ have the same

form as Ψ̂±
μ in (26), except that ˆ̃ψμ are now replaced by ˆ̃ϕμ. Note that in view of (25), Φ̂±

μ

are proportional to Ψ̂±
μ .

It follows from the beam frame theorem that any function over HP may be expanded
by the BF. This observation is very important in the context of inverse scattering since it
implies that both the scattered field and the medium are expanded on the same basis.

An important special case of the above is when the BF are used to expand forward or
backward propagating wave-fields û±(r). In view of the theorem, u+ may be expanded
using Ψ̂+

μ , and u− may be expanded using Ψ̂−
μ , but the physically meaningful choice is to

expand u± using Ψ̂±
μ , respectively, viz (Equation (32) [20])

û±(r) = ∑
μ∈μP

Â±
μ Ψ̂±

μ (r), (27)

where the summation includes only “μP propagating” frame-beams with no evanescent
spectrum. As has been established by the expansion coefficient invariance theorem

in [20], Â±
μ may be calculated by projecting û±(r) on the dual frame Φ̂±

μ (r) over any
z = z′ plane, giving the same result, i.e., (Equation (33) [20])

Â±
μ =

〈
û±(r), Φ̂±

μ (r)
〉∣∣∣

z′
=
〈
û±(x), ϕ̂±

μ (x)
〉∣∣∣

z=0
(28)

10
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where the last expression describes the canonical WFT coefficients of (18) evaluated over
the z = 0 plane.

Finally we note that in [21], the BF theorem has been extended to the TD using ID-
PB propagators.

4. UWB Beam-Based Diffraction Tomography: Multi-Frequency Formulation

The beam frame concept provides a framework to formulate the beam-based inverse
scattering algorithm. Using the BFs, we may use the same set of beam basis functions to
expand both the scattering data and the medium (actually, the sources that are induced due
to the medium heterogeneities). As illustrated in Figure 4, the inverse problem is thereby
described by the local interaction between the beam amplitudes and the unknown object.
As noted in the introduction, optimal localization is obtained in the time-domain formula-
tion, using localized space–time wave-packets. This, however, requires somewhat sophis-
ticated processing tools [21]. In the present section we present only the multi-frequency
formulation that utilizes conventional FD data-processing tools followed by integration
over all the frequencies. The readers are referred to [36,37] for the TD interpretation.

(a) Induced sources (b) The BF representation of the scattering wave

Figure 4. The scattering mechanism within the propagating frame formulation. The incident field
that propagates through the medium (see subplot (a)) gives rise to induced sources. At each z = const.
plane, these sources are expanded by the forward/backward propagating BFs, giving rise to the
forward/backward scattered fields depicted in subplot (b) in blue and red, respectively.

4.1. The Inversion Algorithm

Given the scattering data over the zj planes, the BF representation of the scattering
fields into the z ≶ zj half spaces are given by (see (27))

ûs
j (r, ω) = ∑

μ∈μP

Âj
μ(ω)Ψ̂∓

μ (r, ω), z ≶ zj, (29)

where, as before, upper and lower signs correspond to j = 1 and j = 2, respectively.
The expansion coefficients calculated via (28),

Âj
μ(ω) =

〈
ûs

j (x, ω), Φ̂∓
μ (r, ω)

∣∣
zj

〉
. (30)

Following the discussion after (7), these coefficients extract the local PW spectrum of
the scattering data. Note that, as was done in the PW spectrum of Equation (5), the scatter-
ing WFT operation normalizes the scattering on the zj planes to their phase centers on the
z = 0 plane. The coefficients in (30) are referred to as the beam-domain data.

11
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The backpropagated fields ûb
j (r, ω) are obtained by extending (29) as is to z ≷ zj (see

(II-9)). The “imaging fields” are then calculated by inserting (29) into Equation (11). In view
of the local structure of the Ψ̂∓

μ propagators, we obtain the explicit expression (II-11)

Îj(r) �
2

iω
e−ik

◦
κi·r ∑

μ

Âj
μ(ω) cos2(γ∓

n

2
)

Ψ̂∓
μ

(
r, ω), (31)

where γ∓
n represents the angle between the illumination direction −◦

κi and the beam direc-
tion

◦
κ

j
μ (which actually depends only on n. Finally, the reconstructed object is calculated

via (12) and (13). For full details, the reader should refer to Appendices II-A,B.

4.2. Interpretation within the Born Approximation

In order to gain insight into the structure of the beam-domain data, we insert the Born
approximation of the scattered field in (7) into (30). The resulting relation between O(r)
and the beam data is given by (I-21)

Âj
μ(ω) �

〈
O(r), Λ̂j

μ(r, ω)
〉

V
, Λ̂j

μ(r, ω) = k/2i cos θne−ik
◦
κi·rΦ̂∓

μ (r, ω), (32)

where the integration covers the entire scatterer domain. Thus, within the Born approxi-
mation, the data is described as projections of O(r) on the beam axis, using the projection
kernels Λ̂j

μ(r, ω). As shown in I-Section 5-B in [36], this projection extracts the local
stratification of O along the beam axis at an angle γ∓

n defined in (31). This implies that
the scattering amplitudes Âj

μ are obtained from Snell’s reflections due the stratification
components in O(r) along the μ beam axis, so that strong amplitudes are obtained only
for those μ (locations and directions) that correspond to the stratification of O(r) along the
μ beam axis. Note that (32) is the local generalization of (7), where the BF basis is used
instead of the conventional Green’s function that radiates in all directions.

Further localization along the beam axis is provided by using the TD formulation in
(I-27)-(I-32). However, as noted earlier, the TD formulation is not presented here since our
goal in this paper is to present the pragmatic and practical formulation in the FD where all
the operations are based on Fourier-type integrals. The readers are referred to [36,37] for
more details on the TD formulations.

To further explore the FD beam data representation, we consider the spectral represen-
tation of Âj

μ. Substituting (5) into (30) and changing the order of integrations, Âj
μ can be

expressed as (I-22)

Âj
μ �
(

k
2π

)2 ∫
d2ξ

ik
2ζ

ˆ̃ϕ∗
μ(ξ)Ō(K)

∣∣∣
K=k(

◦
κj−

◦
κi)

. (33)

The expression is the local alternative to the plane-wave-based DT identity in (8). It is

recognized as
◦
κ
±
n samples of the value of Ō(K) over the shifted Ewald sphere defined in

(9). The spectral width of these samples is that of ˆ̃ϕμ(ξ).

5. Numerical Examples

In this section, we demonstrate the beam-based DT algorithm through a numerical
example. We begin with a step-by-step summary of the algorithm, including guidelines for
choosing the parameters.

5.1. A Step by Step Summary of the Algorithm

Phase I—the experimental setup

1. We consider a realistic case where the object is illuminated by an array of M indepen-
dent point transducers over the z1 plane, as illustrated in Figure 5a. We illustrate here
only the reflected data on the z1 plane, since in many applications (e.g., geophysics)

12
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the transmission field cannot be measures, and in some cases this data is not needed
(see discussion in Section 2.4). If, however, the transmitted data at z2 is available, then
the receiver array considerations are similar.

2. The data is measured by exciting the sources one at a time by short pulse F(t) that
spans the desired frequency band Ω ∈ [ωmin, ωmax] as needed to obtain the desired
K−space coverage. The result is an M× M data matrix Us

pq(t) describing the response
at the p receiver due to an excitation by the q source.

3. The data is sampled at the proper Nyquist rate and then converted to the FD via
FFT, giving rise to the data matrix Ûs

pq(ω). Before the calculation, the time-series
are padded by zeros to avoid aliasing of the final image when it is generated by
integration over all the frequencies. Note that in some applications, Ûs

pq(ω) may be
measure directly in the FD.

4. The response to time-harmonic PW excitations at different angles is synthesized from
Ûs

pq(ω) by q-stacking the array data with proper phase terms. The result provides the
PW data to the phase–space beam-based processing.
One may also calculate the time-harmonic PW spectrum of the scattered field via
p-stacking with proper phase terms. The result is an M × M data matrix ˆ̃Us

p′q′(ω)

describing the p′ spectral PW due to an excitation by the q′ incident PW. As noted ear-
lier, before we do the stacking, the array dimensions should be zero- padded to avoid
aliasing of the final image when the images are generated by spectral integrations.

5. As illustrated in Figure 5a, the spectral information that can be covered by the array is
determined by the size of the array and by the target range R. The size of the array
should be chosen to provide sufficient spectral coverage of the target. In general, R
should be within the Fresnel zone of the array, i.e., R � (Dζ i)2/λ. Note also that due
to the finite size of the array, one should avoid the array transition zone illustrated in
Figure 5a.

6. The array elements inner spacing should, in general, satisfy the Nyquist sampling
rate kd = π. However, since the target range satisfies kR � 1, it is only required that
the phase difference between adjacent elements will be small, yielding a sparser array
with d <

√
π

8kmax
R.

(a) (b)

Figure 5. Guidelines for choosing the experimental setup. (a) The size of the array should be wide
enough to provide a plane-wave illumination at the target range R. The scan angle is limited in order
to be sufficiently far for the end-point diffraction zone. (b) For local imaging, only the part of the
object inside the DOI should satisfy the conditions above.

Phase II—Constructing the phase space lattice

The next step is to set up the phase–space lattice and choose the expansion parameters

13
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1. Choosing the beam parameter b: As discussed in Section 3.2, the ID Gaussian
windows in (23) are fully determined by the parameter b. The considerations of
choosing b were widely studied in [21,36] for the application of local inverse scattering.
This parameter balances between the beam collimation length and the beamwidth.
We choose b to be on the order of the DoI domain so that the beams are collimated
throughout the DoI while being small enough for transversal resolution.

2. The phase–space lattice: The guidelines for constructing the UWB beam lattice are
discussed in Section 3.2. As discussed there, we choose νmax = 1/3 which balances
between stable expansion frame and moderate over-completeness (relatively small
number of elements). The optimal values for (x̄, ξ̄) are given by (24).

3. The phase–space propagators: The frame elements
{

Ψ̂±
μ (r), Φ̂±

μ (r)
}

are calculated
via (26). For the Gaussian windows (23), the results are ID-GB propagators (see
explicit expressions in (Appendices A,C [21]).

4. Limited physical data: We need to consider only beams whose initiation point xm

are supported by the array size. The maximal value of ξn is determined by the scan
angle. If, for example, the scan angle is 60◦, then |ξn| <

√
3

2 .

Phase III—Calculating the beam data

1. Calculating the expansion coefficients: The coefficients Âj
μ are calculated via (30).

2. Filtering out low amplitude data: As discussed in Section 4.2, the beam data is
related to the local Snell’s reflections of the beams by the local stratification in O(r),
which in turns are determined by the LRT of O(r). We therefore threshold low
amplitude beams at a level of 40 dB.

Phase IV—Local reconstruction via beam backpropagation

1. Beam backpropagation within the DoI: Next, following Section 4.1, we backprop-

agate the beams whose amplitudes Âj
μ are larger than the threshold set above. We

consider only the beams passing through the DoI (see Figure 6) or no further than 3
beam-widths away from the DoI (this distance is consistent with an effective threshold
of 40 dB).

2. The image: The imaging fields are calculated via (31), and finally the image is
calculated via Equations (12)–(13).

Figure 6. An overview of the local inversion algorithm. The beam expansion of the scattered field
is plotted as gray arrows. Only those covering the array are plotted. The scattering data is then
transformed to beam amplitudes by stacking the receivers data via (30), as schematized by the black
ellipses. Only beams with high amplitude are considered and backpropagated via (31). The image in
the DoI (black rectangle) is obtained by aggregating the contribution of beams that pass inside the
DoI (red beams).
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5.2. Example A: A Smooth and Quasi Stratified Medium. UWB Reflection Mode Data

The medium is plotted in Figure 7a in a 2D coordinate frame r = (x, z), with the DoI
being the 20 × 20 black rectangle. For simplicity we normalize all space-units such that the
background wave-speed is v0 = 1. Note that the contrast is relatively large with values of
Omax = ±0.44. Note that this example is one of those treated in [37] (see Figure 6, but here
the processing is done in the multi-frequency domain as outlined above.

The medium is dominated by stratification along the z direction, hence its K-space
distribution is localized near the Kz axis (see discussion below). Referring to the discussion
in Section 2.4, it can be recovered using UWB reflection data on the z1 plane. We therefore
use illumination by a z-propagating time-harmonic PW with frequencies in the band
Ω =

[
0.1, 1

]
. The exact data is generated using method of moments (MoM) simulations.

We record only the reflected data over an array of receivers located at z = −150 with
|x| < 250 with inter-element spacing d = 1.15 π (larger than the Nyquist distance).

We set b = 50, such that the beams are collimated inside the DoI, while maintaining
kminb � 1 as required for collimation after (23). Using also kmax = 1 and νmax = 1/3 we
obtain from (24) (x̄, ξ̄) = (9.71, 0.194). The resulting BF propagators

{
Ψ̂±

μ (r), Φ̂±
μ (r)
}

are
calculated via (Equations (C1)–(C5) [21]).

Next we calculate the beam-domain data Âj
μ via (30). The reconstructed object inside

the DoI is found using the reflected data imaging field Î1(ω) of (31) where we consider only
backpropagated beams whose μ axis passes inside the DoI, and then integrating over all
frequencies as in (12). The reconstructed medium is illustrated in Figure 7b. As can be seen,
the reconstructed object matches well with the object inside the DoI. To better quantify the
image results, in Figure 8 we plot cross-sectional cuts of the object at x = 0 and at x ± 6.

(a) Object (b) Reconstructed object

Figure 7. Example A: (a) The original (a) and the reconstructed (b) object functions. The DoI is
illustrated by the black rectangle.

(a) x = 0 (b) x = 6 (c) x = −6

Figure 8. Example A: Comparison of the results along cross sectional cuts parallel to the z-axis.

The sources of error are readily seen in the K−space distribution of the original and
reconstructed media in Figure 9. Note that the imaging algorithm has recovered most of
the object’s K−space, except for the region around |K| ≈ 0. As discussed in Section 2.4, this
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missing data is due to the low frequency cutoff kmin = 0.1 in the data. The main drawback
of the “UWB reflection mode inversion” schemes is the missing transversal spectrum
components and the |K| → 0 components, (which are small in this example). In general,
one may try to recover this data by using transition mode data (z2) but in many applications
this data is not available. Alternatively, one may use several illumination directions which
are synthesized from the array data via the method outlined in Phase I of Section 5. These
additional illuminations are also used to reduce the reconstruction noise, as explored in
II-Section 6 in [37]. The readers are referred to other examples in [36,37,42–44,50].

(a) Object function (b) Reconstructed object

Figure 9. Example A: Comparison of the K− space distributions of the original (a) and reconstructed
(b) objects.

5.3. Example B: An Object with Sharp Boundaries. Reflection and Transmission Data

The object shown in Figure 10a has sharp boundaries, strong transversal K components,
and a non-zero average (i.e., Ō(|K| = 0) �= 0). As before, we consider a 2D problem with
r = (x, z) and normalize the space-units such that the background wave-speed is v0 = 1.

The source array is located on the z1 = −150 plane over |x| < 250, with inter-
element spacing d = 1.15π. Using this array, we may synthesize PW illumination over a
spectral range of ±60◦ (see discussion in Section 5, Phase I(1–4)). The frequency band is
Ω =

[
0.1, 1

]
. We consider both the reflection and transmission data over similar receiver

arrays at z1 = −150 and z2 = 150. The exact scattered data is calculated via the MoM.
For the beam processing we use b = 20, such that the beams are collimated inside the

DoI, while maintaining kminb � 1 as required for collimation after (23). Using also kmax = 1
and νmax = 1/3 we obtain from (24) (x̄, ξ̄) = (6.47, 0.32). The resulting BF propagators{

Ψ̂±
μ (r), Φ̂±

μ (r)
}

are calculated via (Equations (C1)–(C5) [21]).
Figure 10b depicts the reconstructed objects in the front (left) using a single PW

illumination at θi = 0 and reflection data at the z1 plane. As expected, the reflection data
provides good longitudinal resolution but poor transversal resolution (see Figure 2b). Note
also that the value of the reconstructed object function is approximately one half of the
true value due to the missing data at |K| = 0. As expected, the reconstruction of the object
outside the DoI is poor.

In Figure 10c we improved the resolution by using several illumination directions
(as one may expect by considering Figure 2a,b), yet the reconstruction still suffers from
poor transversal resolution and low value of the reconstructed object. These problems are
mitigated in Figure 10d where we used both the reflection and transmission data as in (13).
Further improvement can be made via iterative schemes [36,37,42–44,50].

Finally, in Figure 11 we demonstrate local imaging within different DoIs. Figure 11a
depicts the reconstruction of a cylinder at the front (left-top) using both reflection and
transmission data due to illumination at θi = 0. The reconstruction is a bit poorer than in
Figure 10d where we used several illumination directions. As expected, the reconstruction
outside this DoI is poor.
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(a) Object (b) Ŏ1—Single illumination reflection data

(c) Ŏ1—Several illuminations reflection data (d) Ŏ1 + Ŏ2—Several illuminations reflection and
transmission data

Figure 10. Numerical example B. (a) The object function. (b) Reconstruction using single illumination
and reflection data. (c) Reconstruction using several illuminations and reflection data. (d) Recon-
struction using several illuminations and reflection and transmission data. The DoI is illustrated in a
black rectangle.

Figure 11b depicts the reconstruction of a cylinder at the back (right-top). Since this
cylinder is poorly illuminated by normal incidence, we use here reflection and transmission
data from several illumination directions θi = ∓30◦,∓40◦. The reconstruction inside the
DoI is much better than in Figure 10. As before, the reconstruction outside this DoI is poor.

(a) Object (b) Ŏ1 - Single illumination reflected data

Figure 11. Numerical example B: Local reconstruction in different DoI’s (black rectangles). (a) Recon-
struction of a cylinder at the front using both reflection and transmission data due to illumination at
θi = 0. (b) Reconstruction of a cylinder in the back using both reflection and transmission data from
several illumination directions.
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6. Discussion and Conclusions

In this paper, we reviewed the local diffraction–tomography inversion scheme intro-
duced originally in [36,37]. The method is based on a local transformation of the scattering
data and local reconstruction using beam backpropagation. It is structured on the concept
of beam-frames (BFs). The BFs are a phase–space set of beam-waves that constitute local
basis functions (frames) over the propagation domain. As such, they provide an alternative
local basis for the global PW or Green’s function radiation integrals. We use the BFs to
formulate a local inversion algorithm as an alternative to the conventional approaches.
In this and other publications, we demonstrated and explored the advantages of the local
algorithm over the conventional PW and Green’s function DT algorithms:

1. Local imaging within a given domain of interest (DoI).
2. Reduced complexity since it accounts only for the beam basis-functions that cover the

DoI.
3. Reduced noise level since data and noise arriving from other regions are a priori

filtered out.
4. Backpropagation and imaging over a non-homogeneous background.

In previous publications [36,37] we have emphasized TD data processing, where the
beam waves are localized space–time wave-packets. This requires somewhat sophisti-
cated mathematics to construct the wave-packets and use them as signal processing tools.
The main advantage of the TD approach is the data localization and interpretation. In the
present paper, on the other hand, we utilized FD processing followed by an integration
over the relevant frequency band. The motivation has been to provide the reader with
more straightforward Fourier-based data-processing tools. We also provide the processing
tools and closed-form expressions for the local imaging formula, as well as step-by-step
guidelines for choosing the various scheme parameters. The method provides an efficient
UWB formulation where one has to calculate the beam lattice and propagators only once
and then use them for all the frequencies.
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Abstract: This paper considers the microwave imaging reconstruction problem, based on additive
penalization and gradient-based optimization. Each evaluation of the cost function and of its gradient
requires the resolution of as many high-dimensional linear systems as the number of incident fields, which
represents a large amount of computations. Since all such systems involve the same matrix, we propose
a block inversion strategy, based on the block-biconjugate gradient stabilized (BiCGStab) algorithm,
with efficient implementations specific to the microwave imaging context. Numerical experiments
performed on synthetic data and on real measurements show that savings in computing time can reach a
factor of two compared to the standard, sequential, BiCGStab implementation. Improvements brought
by the block approach are even more important for the most difficult reconstruction problems, that
is, with high-frequency illuminations and/or highly contrasted objects. The proposed reconstruction
strategy is shown to achieve satisfactory estimates for objects of the Fresnel database, even on the most
contrasted ones.

Keywords: microwave imaging; inverse scattering; numerical optimization; block system inversion

1. Introduction

Microwave imaging aims at estimating the dielectric properties (permittivity and conductivity)
of objects illuminated by incident electromagnetic fields [1]. This technique has been used in a
wide range of applications such as biomedical imaging [2,3], geophysics [4,5] and nondestructive
testing [6,7]. Quantitative inverse scattering methods estimate the complex permittivity map inside
the object from a set of measured scattered electromagnetic fields around it. When the object size is
comparable to the wavelength, diffraction occurs and the forward scattering model, which defines the
scattered field as a function of the dielectric properties at any point of the object, becomes non-linear.
The resulting reconstruction problem is ill-posed [8,9], and its resolution becomes particularly difficult with
high-frequency illuminations and/or for highly contrasted objects—that is, if the permittivity inside the
object strongly differs from that of the background—where the Born approximation is not valid anymore.

Imaging methods usually rely on solving an optimization problem, whose complexity is strongly
impacted by the non-linearity of scattering. In order to circumvent this difficulty, several works introduced
additional variables, corresponding to the total fields inside the object, which are jointly estimated together
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with the contrast function (i.e., the relative complex permittivity). Within this formulation, the domain
equation, which links the total fields to the contrast function, is not exactly solved, but the resulting
bilinear model allows the low-cost computation of iterates in the optimization procedure. The Modified
Gradient Method [10] and Contrast Source Inversion methods [11,12] fall within this category, which
achieve satisfactory compromise between computation time and reconstruction quality in cases where
diffraction remains limited [13]. Although some works addressed 3-D reconstruction based on this
formulation [7,14–16], most of them were limited to 2-D problems, where the number of unknowns
remained relatively small [13,17–24].

A second class of methods, which dominates in the recent 3-D microwave imaging literature [25–35].
directly incorporates the domain equation into the problem formulation. The price to pay for using
such an exact form of the domain equation is a much more complex evaluation of the cost function
and of its gradient : both require a numerical solver for computing the forward problem, based on the
resolution of very large linear systems, especially in the 3-D case. The related computational effort then
represents the major cost of the reconstruction procedure. Therefore, developing efficient strategies for
such system resolutions remains one of the current challenges for improving the efficiency of microwave
imaging techniques [33,36,37]. In order to reduce the size of the problem, some works focused on
the reconstruction of strongly constrained, parameterized, objects. Efficient numerical methods were
developed with global convergence properties, e.g., based on evolutionary algorithms [38] or Markov
Chain Monte-Carlo methods, coupled with surrogate models [39]. In the particular case of point-like
scatterers, the two-step procedure in [40] efficiently accounts for the sparsity of the object.

In this paper, we focus on methods that aim to estimate any permittivity distribution (that is,
without any strong prior assumption on the inspected object), based on the exact problem formulation.
Previous works based on multiplicative [33] or additive [13], edge-preserving or sparsity-enhancing [41],
regularization fall within this category. All these methods rely on repeated computations of forward
scattering problems. One generally resorts to iterative system solving algorithms, which are stopped as
soon as an acceptable residual error is obtained. Several such algorithms have been used in microwave
imaging, e.g., the conjugate gradient (CG) algorithm [42,43], the biconjugate gradient (BiCG) algorithm [44],
the quasi-minimal residual (QMR) algorithm [45,46] or the biconjugate gradient stabilized (BiCGStab)
algorithm [33,36,37,47]. BiCGStab is now one of the most popular algorithms in this field and it was shown
to converge faster than CG, BiCG and QMR [47].

In microwave imaging, as many forward scattering models as the number of illuminating sources
must be computed. Such computations are usually performed sequentially or via massively parallel
procedures [33,48]. Note that all such linear systems involve the same system matrix, which only
depends on the object dielectric properties and on the discretization scheme. A classical solution relies
on the preliminary LU-decomposition of the system matrix [4]. However, this possibility becomes
prohibitive in 3-D imaging [49]. Block iterative algorithms specifically address the resolution of such
linear systems with multiple right-hand sides (RHSs), by jointly solving all systems. Block versions of
several standard iterative methods have been proposed in the applied mathematics literature, including
the block-conjugate (and bi-conjugate) gradient algorithms [50], the block-QMR algorithm [51] and the
block-BiCGStab algorithm [52]. Such block algorithms were shown to achieve better performance than
their sequential counterparts in generic contexts. Block-QMR has been used in microwave imaging [49].
The block-BiCGStab algorithm proposed in [52] was shown to outperform block-QMR. Its standard
implementation, however, is rather unsatisfactory for microwave imaging forward problems, where
the system matrices are much larger, and where there are many more RHS terms which are highly
correlated [53].

Here, we propose a reconstruction procedure based on additive penalization, where the evaluation of
both the cost function and its gradient are performed with a dedicated block-BiCGStab implementation.
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Specific tunings of the block-BiCGStab algorithm are discussed, and the overall efficiency of the inversion
method is evaluated as a function of the problem difficulty (illuminating frequency and contrast). We
show in particular that improvements are even greater as the problem complexity increases. We provide
reconstruction results obtained on the Fresnel database [54], where the proposed implementation allows
the accurate reconstruction of the most difficult objects.

In Section 2, the 3-D forward scattering model is built using an integral formulation. A discretization
procedure based on the method of moments is used, and our inversion formulation based on additive
regularization is detailed. In Section 3, we propose efficient adaptations of block-BiCGStab for forward
scattering computations, and for their implementation within the reconstruction procedure. In Section 4,
algorithmic performance is evaluated with simulated data, as a function of the object complexity,
with different illuminating frequencies and contrast levels. In Section 5, our method is applied to real
measurements extracted from the Fresnel database [54], where reconstruction quality and computation
times are discussed. Concluding comments are given in Section 6.

2. Formulation of 3-D Forward and Inverse Scattering Problems

2.1. Forward Scattering Problem

The forward scattering model defines the total electric field in a given volume V containing the
scattering object, as a function of the spatial distribution of the object permittivity. We adopt a standard
approach based on the integral formulation of the domain equation [1], followed by a discretization
procedure based on the method of moments [55]—see for example [14,36,37,43,44] for similar choices.
We consider a background medium with constant complex permittivity εb, containing the object under
study with complex permittivity ε(r) where r denotes the vector of spatial coordinates. The object is
illuminated by an incident wave with angular frequency ω. In the sequel, the time dependency exp(−jωt)
of all quantities is omitted. The electric field integral equation gives an implicit relation between the
unknown total electric field at any point inside the domain under study and the object permittivity
distribution [1]:

�Etot(r) = �Einc(r) +
(

k2
b +∇∇·

) ∫
r′∈V

g(r − r′)χ(r′)�Etot(r′)dr′, ∀r ∈ V, (1)

where �Etot(r) and �Einc(r) respectively denote the total and the known incident 3-D electric field vectors
at point r ∈ V, μ0 is the vacuum permeability, kb =

√
ω2μ0εb is the wavenumber in the background

medium, g(r) = exp(jkb‖r‖)/4π‖r‖ is the Green function and χ(r) = (ε(r) − εb)/εb is the contrast
function. The term ∇∇· represents the gradient of the divergence with respect to r.

Using the discretization procedure based on the method of moments (see [14] for the 3-D case),
the volume V is divided into N cubic voxels and the integral Equation (1) turns into:

etot = einc + GDXetot. (2)

The size-3N vectors einc and etot respectively contain the three spatial components of the 3-D incident and
total electric field vectors, discretized on the N voxels that are sorted according to the lexicographic order.
The size-N vector x corresponds to the contrast function discretized on the N voxels, put in vector form,
and X is the 3N × 3N diagonal matrix whose diagonal contains three replicas of x. The 3N × 3N matrix
GD corresponds to the discretization of the 3 × 3 Green tensor

(
k2

bI3 +∇∇
)

g(r − r′) on the N voxels,
where I3 denotes the 3 × 3 identity tensor (see for example [53] for details). From (2), the discretized total
field is the solution to the following linear system:
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Lxetot = einc, with Lx = I3N − GDX, (3)

where I3N denotes the 3N × 3N identity matrix.
In microwave imaging, the object is successively illuminated with a set of NS sources at different

spatial locations, creating incident fields einc
i , i = 1, . . . , NS. Then, computing the corresponding total fields

etot
i amounts to solving NS linear systems Lxetot

i = einc
i , that is:

LxEtot = Einc, with Etot =
[
etot

1 , . . . , etot
NS

]
and Einc = [einc

1 , . . . , einc
NS
], (4)

where all linear systems involve the same system matrix Lx. Such a property is the key point for our block
resolution strategy.

2.2. Observation Model

The scattered field �Escat at any point r outside V is defined by the volume integral observation
equation:

�Escat(r) =
(

k2
b +∇∇·

) ∫
r′∈V

g(r − r′)χ(r′)�Etot(r′)dr′. (5)

Using the same discretization procedure as in Section 2.1, considering a set of NM measurement
points, it becomes:

escat = GOXetot, (6)

where the size-NM vector escat collects the measurements of the scattered fields at the receiver locations, and
the NM × 3N matrix GO corresponds to the discretization of the Green tensor

(
k2

bI3 +∇∇
)

g(r − r′), for r′

at the N voxels in V and r at the measurement points [56]. Combining both domain (3) and observation (6)
equations finally yields the observation model:

escat
i = GOXL−1

x einc
i = GOX(I3N − GDX)−1einc

i , for any incident field einc
i . (7)

2.3. Inverse Problem Formulation

The microwave imaging inverse problem consists of estimating the contrast function from the
measured scattered fields at the receivers. This problem is ill-posed [8,9], notably because the relation
between the contrast function and the data, obtained from the two coupled Equations (1) and (5) in the
continuous formulation (Equations (2) and (6) in the discrete case), is highly nonlinear.

Here, we adopt a classical approach to inverse problems [13,57], which consists of minimizing the
misfit between the data ẽscat

i and the simulated scattered fields escat
i , penalized by an additive regularization

term. More precisely, we define the reconstructed contrast function x̂ by:

x̂ = arg min
x

F (x), with F (x) =
1
2

NS

∑
i=1

∣∣∣∣∣∣ẽscat
i − GOXL−1

x einc
i

∣∣∣∣∣∣2 +R(x), (8)

where the regularization term operates on differences of the contrast function at neighboring voxels:

R(x) = γ ∑
i,j, i∼j

ϕ(xi − xj) with γ > 0, (9)

where notation i ∼ j selects indices of neighbor voxels and ϕ is the “�2�1” function ϕ(u) =
√

δ2 + u2,
where δ is a small positive constant ensuring the differentiability of the cost function, which was set to
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10−2 in all our experiments. Such a penalization favors edge-preserving solutions and leads to a smooth
cost function F . Therefore, optimization can be addressed with gradient-based iterative algorithms.
The penalization weight γ trades off between fidelity to data and regularization, which is necessary since
the problem is ill-posed [8,9]. Its value may depend on the noise level and on the problem size.

Note that alternate regularization strategies, such as multiplicative regularization [33,58], have also
been proposed. Here, we chose additive regularization because it was previously shown to be particularly
efficient in the case of highly contrasted objects [13]. However, the techniques presented in this paper
may also be applied to reconstruction methods based on multiplicative regularization, since both the
corresponding objective function and its gradient present similar algebraic characteristics.

2.4. Optimization and Computational Issues

We propose to solve the optimization problem (9) with the L-BFGS algorithm, which is an
acknowledged method for solving high-dimensional convex optimization problems ([59], see for
example [13] in application to microwave imaging). Each iteration of L-BFGS consists of two steps:
computing a descent direction, based on the computation of the gradient at the current point, and finding
a convenient step size, for which several evaluations of the cost function may be necessary. The gradient
of F reads:

∇F (x) = −Q
NS

∑
i=1

J†
i

(
ẽscat

i − GOXL−1
x einc

i

)
+∇R(x) (10)

where Q = [IN , IN , IN ], the symbol † denotes the conjugate transpose and Ji is the Jacobian matrix
associated to the i-th data misfit term in (8). It can easily be shown that:

Ji = GO

(
LT

x

)−1
diag

{
L−1

x einc
i

}
, (11)

where diag{u} stands for the diagonal matrix with diagonal u, such that the gradient reads:

∇F (x) = −Q
NS

∑
i=1

diag
{

L−1
x einc

i

}†
Lx

−1
G†

O

(
ẽscat

i − GOXL−1
x einc

i

)
+∇R(x), (12)

where Lx denotes the conjugate of Lx.
Inspection of (8) and (12) reveals that the bulk of the computational effort required for evaluating

F and ∇F lies in the evaluation of matrix-vector products involving matrices X and GO, and in the
resolution of linear systems with matrices Lx and Lx. Note that GO is an NM × 3N matrix and this
manageable size makes it possible to explicitly store it for direct computations; similarly, X is a 3N × 3N
diagonal matrix, which results in small memory and computational requirements. Indeed, the major
difficulty lies in the resolution of the NS systems of size 3N × 3N involving matrix Lx (computation of
L−1

x einc
i ), and in the resolution of another NS similar systems involving matrix Lx (computation of Lx

−1vi,
with vi = G†

O
(
ẽscat

i − GOXL−1
x einc

i
)
). Note that, in the frequent case where the number of sources exceeds

the number of receivers, by virtue of the Lorentz reciprocity theorem (see for example [60]), one can
equivalently switch the roles of sources and receivers, then reducing the number of systems to be solved.

In Section 3, we propose a dedicated block resolution strategy in order to jointly solve such multiple
systems. This iterative method requires the computation of high-dimensional matrix-vector products
involving matrix Lx (resp. Lx), that is, involving the 3N × 3N matrix GD (resp. GD). Note that these
products are convolution products, which can be efficiently computed with 3-D Fast Fourier Transform
(FFT) algorithms [36,47].
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3. Simultaneous Resolution of Multiple Forward Scattering Problems

We now address the joint resolution of the multiple forward scattering problems (4) by the
block-BiCGStab algorithm proposed in [52]. We present the algorithm and we focus on implementation
issues for solving one set of multiple scattering problems.

3.1. Description of the Block-BiCGStab Algorithm

The pseudo-code implementing the block-BiCGStab algorithm for the joint resolution of (4) is given
in Algorithm 1. The notation 〈T, S〉F represents the Frobenius product of two matrices. For comparison
purposes, the sequential implementation with the BiCGStab algorithm, commonly used in microwave
imaging, is recalled in Algorithm 2.

Algorithm 1 Joint resolution of NS linear systems LxEtot = Einc with block-BiCGStab.

1: For an initial matrix guess Etot(0),

set R(0) = Einc − LxEtot(0), P(0) = R(0)

2: Choose an arbitrary 3N × NS matrix R̃0
3: k = 0
4: repeat

5: V = LxP(k)

6: solve (R̃†
0V)A = R̃†

0R(k)

7: S = R(k) − VA
8: T = LxS
9: ω = 〈T, S〉F/〈T, T〉F

10: Etot(k+1)
= Etot(k) + P(k)A + ωS

11: R(k+1) = S − ωT
12: solve (R̃†

0V)B = −R̃†
0T

13: P(k+1) = R(k+1) + (P(k) − ωV)B
14: k ← k + 1
15: until ∀i, ‖r(k)i ‖/‖einc

i ‖ < tolerance

Algorithm 2 Sequential resolution of NS linear systems Lxetot
i = einc

i , i = 1, . . . , NS, with BiCGStab.

0: for i = 1, . . . , NS do

1: For an initial guess etot
i

(0),

set r(0) = einc
i − Lxetot

i
(0), p(0) = r(0)

2: Choose an arbitrary vector r̃0
3: k = 0
4: repeat

5: v = Lx p(k)

6: α = (r̃†
0r(k))/(r̃†

0v)
7: s = r(k) − αv
8: t = Lxs
9: ω = t†s/t†t

10: etot
i

(k+1)
= etot

i
(k)

+ αp(k) + ωs
11: r(k+1) = s − ωt
12: β = (αr̃†

0r(k+1))/(ωr̃†
0r(k))

13: p(k+1) = r(k+1) + β(p(k) − ωv)
14: k ← k + 1
15: until ‖r(k)‖/‖einc

i ‖ < tolerance,
16: end for
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In both algorithms, the most time-consuming operations concern the computation of matrix-vector
products of the form Lx p = p −GDXp in steps 5 and 8. Note that the same number (2NS) of such products
are performed by one iteration of block-BiCGStab and NS iterations of BiCGStab. In the remaining steps,
a set of NS dot products and scalar-vector products (one per system inversion) in BiCGStab are replaced
by one NS-dimensional matrix-vector product in block-BiCGStab. Similarly, a set of NS scalar divisions are
replaced by one NS × NS system inversion (steps 6 and 12). Therefore, such block operations generate
a slight extra cost in block-BiCGStab compared to BiCGStab. Because of the small size of the involved
systems, this remains negligible compared to the computation time required by multiplications with Lx.
Most of all, block operations introduce some coupling in the auxiliary variables and, subsequently, in the
directions that are computed in order to update the solution at step 10. The rationale behind block versions
is that coupling the descent directions yields more efficient update steps, and therefore results in a decrease
in the total number of iterations and computing time.

3.2. Efficient Implementation for Solving Multiple Forward Problems

In its original description [52], the block-BiCGStab algorithm was evaluated on problems involving
only a small number (5 to 10) of RHS vectors which were drawn independently, in moderate dimensions
(up to 2500 × 2500). In microwave imaging, the number of RHS vectors—the number of measurements—is
much higher, and vectors are highly correlated, since they correspond to the different incident illuminating
fields, which are spatially close to each other. Moreover, matrices involved in 3-D problems are usually
much bigger than those used in [52].

Numerical experiments, whose salient results are reported in Section 4.2, revealed that the
conditioning of matrix R̃†

0V, which enters steps 6 and 12 of Algorithm 1, has a critical impact on the
behavior and convergence of the block-BiCGStab algorithm. Inspection of steps 1 and 5 clearly indicates
that the conditioning of V strongly depends on that of R(0). With the standard initialization Etot(0) = Einc,
when two sources i and j are close, the corresponding incident fields einc

i and einc
j which make up the

corresponding columns of Etot(0), become highly correlated; hence, R(0) becomes poorly conditioned and
R̃†

0V is near-singular, which may lead to numerical errors propagating in the computations of matrices A

and B (steps 6 and 12). This pathological behavior does not occur in the simulated experiments reported
in [52], since only statistically independent RHS vectors are considered.

Here, we propose to add a small random quantity to Etot(0) in the initialization step 1. This reduces
the correlation between columns of Etot(0), and thus improves the conditioning of matrix R̃†

0V. Empirically,
we have found that an initial perturbation with a signal-to-noise ratio ranging from 40 to 100 dB yielded
roughly the same favorable effect, while a higher level of perturbation would slow down the convergence,
and a smaller one would amount to no perturbation. In all experiments in this paper including such noisy
initialization, the signal-to-noise ratio was set to 50 dB. The results reported in Section 4.2 show that the
algorithm behaves in a satisfactory manner with such an initialization. Regarding the choice of matrix R̃0,
various options were studied; the best results were obtained by using the choice proposed in [52], that is,
R̃0 = R(0) = Einc − LxEtot(0).

3.3. Implementation within the Reconstruction Procedure

We now consider the use of the block-BiCGStab algorithm for solving the two multiple linear
systems involved in the evaluation of the cost function (8) and of its gradient (12) at each iteration
of the optimization procedure. The first system reads S (t) : Etot(t) = L−1

x(t)
Einc, and the second one is of the

form S (t)
: V(t) = L

−1
x(t)U

(t), where notation (t) indexes the iteration number. According to the expression

of the gradient (12), the RHS term U(t) in S (t)
depends on the solution of S (t), so the two systems can only
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be solved sequentially and not jointly. In the following, details are given considering S (t), but similar

arguments hold for S (t)
.

As discussed in Section 3.2, initialization of block-BiCGStab plays an important role in the algorithm
efficiency. Our implementation is based on the fact that two consecutive iterates of the optimization
algorithm are close to each other, especially when the reconstruction algorithm is near to convergence.
Therefore, the solution Etot(t+1) should be close to that obtained at the former iteration Etot(t), and Etot(t)

could be used as an initialization of block-BiCGStab for solving S (t+1). In particular, Etot(t) should be
much closer to Etot(t+1) than the matrix formed by the incident fields Einc, that was used for initializing
block-BiCGStab for the resolution of a single set of forward problems in Section 3.2. We noticed, however,
that implementing this strategy led to poor convergence rates, because the total fields Etot(t) are highly
correlated with each other, which generated conditioning issues similar to that explained in Section 3.2.
Therefore, we propose to initialize iteration t + 1 using a random perturbation added to Etot(t).

4. Performance of Block-BiCGStab on Synthetic Data

The results presented in this section were obtained on synthetic data representing a typical
experimental setup. First, we illustrate the impact of the implementation choices discussed in Section 3.2.
Then, we investigate the performance of the proposed block-BiCGStab implementation for computing
multiple forward scattering problems as a function of the problem difficulty, by varying the object contrast
and the illuminating frequency. Finally, the computational efficiency of block-BiCGStab is evaluated on
the full reconstruction process.

4.1. Description of the Numerical Example and Implementation Details

The object used in our experiments was composed of two nested cubes embedded in air. This example
was taken from [33] and the contrast was increased by a factor of two in order to make the reconstruction
problem more challenging. The object domain V was a cube with a 30-cm edge size, which was discretized
onto a 30× 30× 30 regular Cartesian grid (1 cm3 voxels). It is usually acknowledged that the discretization
grid must have at least four voxel sides per wavelength for accurate estimation of the scattered field.
Here, the highest illuminating frequency is 3 GHz (see Section 4.3.1), that is, λ = 10 cm, so that the voxel
side is λ/10. The external part of the object was a cube with a 20-cm edge size, the contrast of which
was set to χ1 = 0.6 + j0.8. The internal part was a smaller cube with a 10-cm edge size and contrast
χ2 = 1.2 + j0.4. The object was illuminated by NS = 160 sources (vertical electric dipoles) that were
regularly spaced around the object on five circles with a 60 cm diameter, at heights z = −20 cm, −10 cm, 0,
10 cm and 20 cm. Measurements were simulated by considering 160 receivers at the same locations as the
sources. The object and the acquisition setup are represented in Figure 1.

Data were generated according to model (7) using a grid twice as fine as the one used in our numerical
experiments (60 × 60 × 60 voxels) for more accurate computations, and circular Gaussian white noise was
added in order to obtain a 20-dB SNR. Only the z component of the scattered field was used in our tests.
Then, the reconstruction problem had 303 = 27,000 complex unknowns and 1602 = 25,600 complex-valued
data points.

All computations were performed with an Intel Core i7-5960X (eight cores) clocked at 3 GHz using
Matlab, with multithreaded operations. For BiCGStab, a marching-on-in-source procedure [37] was used
when it improved convergence. This procedure allows for better initialization of the solutions by using an
interpolation based on the total fields previously computed for the nearest sources. The tolerance on the
relative residuals imposed for convergence of both BiCGStab and Block-BiCGStab (line 15 in Algorithms 1
and 2) was set to 10−6. Therefore, the solutions obtained by the two algorithms are the same up to such
numerical precision.
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Figure 1. Real (a) and imaginary (b) parts of the contrast function of the simulated object (two nested cubes
in air), with the corresponding discretization grids, and acquisition setup for the simulated object (c): the
black cube represents the unknown volume V in which the object is placed. The gray circles represent the
sources positions around the volume. The receivers are located at the same positions as the sources.

4.2. Impact of Initialization

The solution to the 3D forward problem corresponding to the experimental setup presented in
Section 4.1 was computed with both BiCGStab and block-BiCGStab algorithms. First, the solutions
were initialized to the incident fields (etot

i
(0)

= einc
i ). Evolution of the iterated relative residuals ‖einc

i −
Lxetot

i
(k)‖/‖einc

i ‖ is shown in Figure 2a,b. BiCGStab converges in between 18 and 21 iterations for all
problems, whereas block-BiCGStab residuals first slowly decrease, and then increase, leading to divergence.

Then, as described in Section 3.2, noise with 50 dB SNR was added to the initial solution of
block-BiCGStab. The corresponding iterates are shown in Figure 2c—BiCGStab iterates, which are not
represented, behave similarly to those represented in Figure 2a. On the contrary, block-BiCGStab iterates
now converge much faster: in this example, block-BiCGStab converges in 40% less iterations than BiCGStab,
corresponding to a similar saving in terms of computation time.

In all remaining experiments in the paper, the block-BiCGStab algorithm was initialized by adding
such a noise to the incident fields.

(a) BiCGStab (b) block-BiCGStab (c) block-BiCGStab
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Figure 2. Resolution of 160 forward problems with biconjugate gradient stabilized (BiCGStab) (a) and
with block-BiCGStab (b,c): evolution of the residuals for the 160 iterates. (a,b): initialization is set to the
incident fields. (c) initialization of block-BiCGStab is perturbed with 50 dB circular Gaussian noise. Note
the different abscissa scale on panel (b).
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4.3. Performance for Different Forward Scattering Configurations

We now compare BiCGStab and block-BiCGStab for several configurations of the 3-D forward problem
based on the previous setup. The tests consisted of solving the NS systems (I3N − GDX)etot

i = einc
i , and we

focused on the influence of the illuminating frequency and of the contrast values in X, since both factors
impact the problem difficulty—the Born approximation, for example, is only valid for low-contrast objects
with small electric size.

4.3.1. Impact of the Frequency

We first study the algorithmic performance as a function of the illuminating frequency. The object
defined in Section 4.1 was used, with frequencies equal to 1, 2 and 3 GHz. The corresponding wavelengths
are respectively λ = 30 cm, λ = 15 cm and λ = 10 cm, and the size of the reconstructed volume
respectively corresponds to λ, 2λ and 3λ: the higher the frequency, the bigger the electric size of the object.

Table 1 gives the corresponding central processing unit (CPU) time and the number of iterations
required for BiCGStab and block-BiCGStab to converge. First, in accordance with the discussion in
Section 3.1, the CPU time is almost proportional to the number of iterations performed by both algorithms.
Second, block-BiCGStab always yields a shorter computation time than BiCGStab, and the improvement
becomes more significant as the frequency increases: at 3 GHz, block-BiCGStab is 33% faster than BiCGStab
for solving the 160 systems.

Table 1. CPU time and number of iterations required for computing the 160 forward simulations with
BiCGStab and block-BiCGStab for three different frequencies. Results are averaged over the 160 resolutions
for BiCGStab and over 20 realizations of the random initialization for block-BiCGStab.

CPU Time
Number of Iterations

CPU Time Ratio

Block/BiCGStab
Frequency

[min, Average, max]

BiCGStab Block BiCGStab Block

1 GHz 116 s 110 s [7 8.0 10] [7 7.9 9] 0.95
2 GHz 187 s 138 s [13 13.4 15] [10 10 10] 0.74
3 GHz 245 s 164 s [17 17.9 21] [12 12 12] 0.67

4.3.2. Impact of the Contrast

We now evaluate the computation time as a function of the contrast. A scaling factor ranging from
0.25 to 2.5 was applied to the synthetic object defined in Section 4.1. The illuminating frequency was set to
3 GHz. Table 2 gives the corresponding CPU time and the number of iterations required for BiCGStab and
block-BiCGStab. Here again, the CPU time is almost proportional to the number of iterations. In all cases,
block-BiCGStab is faster than BiCGStab and, more importantly, the relative saving in CPU time increases
with the contrast of the object: for a contrast factor of 2.5, block-BiCGStab runs approximately twice as fast
as BiCGStab.

The results reported in Sections 4.3.1 and 4.3.2 therefore suggest that block-BiCGStab is best suited
for the resolution of difficult problems, i.e., involving large and/or highly contrasted objects.
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Table 2. CPU time and number of iterations required for computing the 160 forward simulations with
BiCGStab and block-BiCGStab for different contrast levels. Results are averaged over the 160 resolutions
for BiCGStab and over 20 realizations of the random initialization for block-BiCGStab.

CPU Time
Number of Iterations

CPU Time Ratio

Block/BiCGStabContrast
[min, Average, max]

BiCGStab Block BiCGStab Block

0.25 105 s 86 s [7 7.01 8] [6 6 6] 0.82
0.5 152 s 120 s [10 10.3 12] [8 8.5 9] 0.79
1 245 s 164 s [17 17.9 21] [12 12 12] 0.67

1.5 361 s 217 s [25 26.9 29] [15 16.1 18] 0.60
2 482 s 271 s [34 36.1 39] [19 20.2 21] 0.56

2.5 610 s 331 s [44 45.9 50] [23 24.8 26] 0.54

4.4. Inversion Procedure and Object Reconstruction

We now consider the reconstruction problem with the simulation setup described in Section 4.1. Since
the object was highly contrasted, illuminations at frequencies 1, 2 and 3 GHz were used and the following
frequency hopping technique was implemented (see [28,61,62] for example):

• the initial solution was set to zero, and Nit iterations of the inversion algorithm were performed with
the 1 GHz data;

• another Nit iterations were then performed with the 2 GHz data, with an initial solution set to the
output of the previous step;

• the reconstruction algorithm was finally applied to 3 GHz data, with an initial solution set to the
output of the previous step, and iterations are run until the �∞-norm of the gradient becomes lower
than 10−6.

The number Nit of iterations for each intermediate frequency is a trade-off between reconstruction
quality and computation time. In this experiment, we found that Nit = 20 iterations were sufficient to
achieve satisfactory results (that is, more iterations at intermediate frequencies would not improve the
final reconstruction and would unnecessarily increase the computation time). The regularization weight
in (9) was set to γ = 10−6 for the three frequencies.

Reconstruction was performed using BiCGStab and block-BiCGStab, following the procedure
proposed in Section 3.3. Since both algorithms used the same convergence thresholds, evaluations
of the objective function and of its gradient at any point by the two algorithms were nearly identical;
therefore, the minimization process followed roughly the same sequence, and the reconstructed objects
obtained with both approaches are comparable. Reconstruction results are shown in Figure 3, together
with the true object. The shapes of the two cubes are well retrieved and the contrast of the outer cube
(χ1 = 0.6 + j0.8) is very close to that of the true object. The boundaries of the reconstructed cubes slightly
exceed the true ones, especially for the inner cube. The contrast value in the inner cube is also slightly
misestimated (underestimation of the real part and overestimation of the imaginary part). Note that the
inner cube is highly contrasted (χ2 = 1.2 + j0.4), which makes it very difficult to reconstruct.
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Figure 3. Reconstruction results (contrast values) for the simulated object defined in Section 4.1. Each panel
represents the 30 slices (30 × 30 pixel images) of the three-dimensional object. True (left) and reconstructed
(right) objects, with real (top) and imaginary (bottom) parts of the contrast function.

For this problem, the reconstruction lasted about 21.3 h when computations were performed with
BiCGStab. The reconstruction time dropped to 16.8 hours when block-BiCGStab was used, which
represents a saving of more than 20%.

5. Reconstruction of the Fresnel Database Objects

We finally consider the reconstruction of the five objects of the Fresnel database [54]. Such objects
have already been reconstructed in many papers [27–29,61,63,64]—see also a summary of reconstruction
results in [65]. Due to space limitations, we restrict the presentation to two objects, which can be considered
as the two most difficult ones: the TwoSpheres and the Cylinder objects.

The 3-D experimental setup for the Fresnel data set is detailed in [54]. Using the reciprocity theorem
and the two polarizations of the experimental data [29], we consider that the setup was equivalently
composed of 36 sources placed on a circle at z = 0 with a 1.796-m radius. Data were equivalently acquired
with 81 receivers placed on a sphere with a 1.796-m radius [54]. The incident fields were plane waves
polarized along the z-axis and acquisitions were performed at frequencies ranging from 3 to 8 GHz. The two
polarizations were used (co- and cross-polarization). Since the measurements were performed in the
far-field zone of the scattering object, the electric field at the receivers is transverse (that is, its longitudinal
component is zero). When projected into the Cartesian coordinate system, the three spatial components
of the measured field are generally non-zero. Thus, each data set is made up of 36 × 81 × 3 = 8748
complex-valued measurement points. For all objects, the volume of interest V was defined as a cube
with a 10 cm edge size divided into 30 × 30 × 30 voxels, so that the object is fully enclosed in V in each
case. The maximum frequency is 8 GHz, that is, λ = 37.4 mm, so that the coarser discretization scheme
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corresponds to 11.3 voxel sides per wavelength. We then have 27,000 complex-valued unknowns. In all
experiments, the regularization parameter γ in (9) was set to γ = 10−6.

Here also, as discussed in Section 4.4, a frequency hopping procedure was used to carry out the
reconstructions as follows:

• Perform Nit iterations of the reconstruction algorithm with the 3 GHz data and initial contrast function
set to zero.

• Perform Nit iterations of the reconstruction algorithm with the 4 GHz data and initial contrast function
set to the final iterate of the previous step.

• Repeat the previous step with the 5 GHz, 6 GHz and 7 GHz data.
• Perform reconstruction of the object with the 8 GHz data, initial contrast function set to the final

iterate of the previous step and a stopping rule on the �∞-norm of the gradient set to 10−6.

For all objects except Cylinder, computing Nit = 10 iterations at each frequency empirically led to a
satisfactory compromise between reconstruction quality and time. For Cylinder, which was bigger and
more contrasted, Nit = 20 intermediate iterations were necessary in order to achieve the best reconstruction.

The TwoSpheres object was composed of two identical spheres in contact embedded in air, 50 mm
in diameter and with uniform, real-valued, relative permittivity equal to 2.6, that is, contrast χ = 1.6.
Figure 4 (top) shows 30 slices of the true object and of our corresponding reconstruction, and Figure 4
(bottom) represents the isosurface of the reconstruction at the contrast value χ = 1. Note that we only
present the real part of the estimated contrast function because the estimated imaginary part was very
small. The latter is presented in the supplementary data files. It can be observed that the shape of the
object was well reconstructed, even at the contact point. The contrast value was slightly overestimated
at the contact point (the estimated contrast was about 1.8), and slightly underestimated around it (the
estimated contrast was about 1.3).

The Cylinder object was composed of a cylinder of 80 mm in length and 80 mm in diameter, with
uniform relative permittivity equal to 3.05 (contrast χ = 2.05). It was the most difficult object of the
database because of its large size and high contrast, and several methods failed to reconstruct this
object [28,33,63,66], while many others produced poor quality results [27,29,61,62,64]. Figure 5 shows our
reconstruction results. The shape and the contrast were adequately reconstructed: the contrast function
was homogeneous inside the object and the estimated value at the center voxels was close to the true one,
since the estimated permittivity is about 1.9. To the best of our knowledge, this reconstruction of Cylinder
outperformed all other results previously reported in the literature.
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Figure 4. Reconstructed contrast function for the TwoSpheres object. Top: 30 horizontal slices of the true
object (left) and the 30 slices of the reconstructed object (right). Bottom: isosurfaces of the true object
discretized on the reconstruction grid (left), and of the reconstructed object (right), for contrast value 1.
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Figure 5. Reconstructed contrast function for the Cylinder object. Top: 30 horizontal slices of the true
object (left) and the 30 slices of the reconstructed object (right). Bottom: isosurfaces of the true object
discretized on the reconstruction grid (left), and of the reconstructed object (right), for contrast value 1.5.
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On a broader perspective, Table 3 provides a heuristic assessment of the reconstruction quality for all
objects in the Fresnel database. Each cell in the table contains a subjective comparison of our result with
previously obtained ones for each object, based on the figures in the corresponding papers. We consider
that the proposed method provided results at least similar to previous ones, and often better for the
most difficult objects. The reader is referred to supplementary files associated with the paper, that depict
graphical representations of all reconstructed objects and provide all reconstruction results as Matlab files.

Table 3. Subjective comparison of the obtained reconstruction results with previously published works on
Fresnel database objects: “=”, “+” and “++” respectively mean that our reconstruction is of comparable,
better, and much better quality. N/A means that reconstruction of the object is not presented in the
corresponding paper.

Paper Ref. TwoCubes IsocaSphere CubeSpheres TwoSpheres Cylinder

[63] ++ = = ++ N/A
[29] ++ = + ++ ++
[28] + + = + N/A
[64] ++ + + ++ ++
[61] + = + = +
[27] + = = = ++
[33] + = N/A N/A N/A
[66] + N/A N/A = N/A
[62] N/A N/A + = ++

Table 4 finally gives the reconstruction time for the five objects of the Fresnel database using either
BiCGStab or block-BiCGStab. The time saved by block-BiCGStab becomes more important as the difficulty
of the reconstruction problem increases (i.e., as objects become larger and/or more contrasted). For
the most difficult Cylinder object, the reconstruction time drops from 60 h to 28.3 h, which means that
block-BiCGStab is more than twice faster than BiCGStab.

Table 4. Reconstruction time for the five objects of Fresnel database using BiCGStab and block-BiCGStab
for linear system inversions.

Object from Time Time Time Ratio
Database BiCGStab Block-BiCGStab Block/BiCGStab

TwoCubes 2.33 h 2.07 h 0.89
IsocaSphere 4.38 h 3.58 h 0.82

CubeSpheres 3.21 h 2.60 h 0.81
TwoSpheres 8.60 h 6.41 h 0.75

Cylinder 60.0 h 28.3 h 0.47

6. Discussion

We proposed a reconstruction strategy based on an additive regularization framework,
where optimization is performed via first-order optimization. Computations of the cost function and
of its gradient were performed through a dedicated implementation of the block-BiCGStab algorithm
for multiple RHS systems inversion. In all our experiments, such an implementation led to a significant
reduction of the computation time (up to one half) compared to BiCGStab, the gain being all the more
significant that the reconstruction problem is difficult and the computation time is high. The procedure
proposed in this paper is therefore particularly attractive for problems dealing with high-frequency
illuminations and/or highly contrasted objects, which are of great interest: high-frequency acquisitions
contain more detailed spatial information about the object under study, yielding higher resolution,
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and highly contrasted objects may be encountered in many application areas, such as biomedical imaging.
Consequently, the proposed procedure may contribute to reducing the computational burden of microwave
imaging, which still represents a crucial issue in the development of practical applications.

Improved convergence properties of block-BiCGStab over its sequential counterpart also enable
block-BiCGStab to reach a low residual level for each iterative system inversion. In our experiments,
the tolerance threshold on the norm of the residuals was set to 10−6, whereas higher values are commonly
used. More accurate solutions to the forward problem yield more efficient optimization steps; this may
explain why the proposed procedure achieved satisfactory reconstruction results for the most difficult
objects of the Fresnel database, for which no result of equivalent quality has been reported in the literature.

Exploiting the proposed block resolution strategy may also improve the efficiency of any other
microwave imaging inversion method requiring the computation of similar quantities (i.e., the total fields
from the incident fields), either based on additive [13] or multiplicative [33] regularization. This strategy
can also be advantageously used whatever the choice of the optimization method, such as non-linear
conjugate gradient [29,64], regularized Gauss–Newton [33], Levenberg–Marquardt [67], or distorted Born
iterative method [27]. It would also be worth studying the numerical performance of the block-BiCGStab
algorithm in different geometrical configurations concerning, e.g., data acquisition setups or discretization
schemes. Finally, it may also be efficiently used in other applications involving the computation of the total
electromagnetic field accounting for scattering, e.g., radar cross-section [48,68,69], eddy-current [26,70] or
magnetotelluric [71] computations. Depending on the complexity of the problem, specific tuning of the
block-BiCGStab algorithm could be required, for which the strategies proposed in this paper may help.

Further improvements may be brought by parallel implementation of the proposed procedure. In our
experiments, multicore architecture was taken advantage of only by performing multithreaded operations
at a low level within the block-BiCGStab loop. However, massive parallelization of the resolution of
independent systems (with BiCGStab) reduces the computation time by exploiting parallelization at
a higher level [33]. Indeed, the two parallelization levels could be combined into a block resolution
procedure, where the multiple systems would be split into several subsystems to be solved in parallel.
In [53], such an idea was successfully tested on an early version of block-BiCGStab. This remains a
promising possibility to accelerate microwave imaging in the context of High Performance Computing,
as well as parallelization capacities brought by GPU- or multi-GPU-based implementations.
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Abstract: The imaging of dielectric targets hidden behind a wall is addressed in this paper.
An analytical solver for a fast and accurate computation of the forward scattered field by the
targets is proposed, which takes into account all the interactions of the electromagnetic field with
the interfaces of the wall. Furthermore, an inversion procedure able to address the full underlying
non-linear inverse scattering problem is introduced. This technique exploits a regularizing scheme in
Lebesgue spaces in order to reconstruct an image of the hidden targets. Preliminary numerical results
are provided in order to initially assess the capabilities of the developed solvers.

Keywords: electromagnetic scattering; buried objects; through-wall radar; microwave imaging;
inverse scattering

1. Introduction

Microwave imaging of targets placed behind a wall is a topic of great interest in the remote
detection of humans or objects in indoor environments, with applications in surveillance, rescue,
and defense [1]. The instrument usually adopted in this class of surveys is the so-called through-wall
(TW) radar, which includes a wide set of possible hardware architectures. For example, as regards
the source of the interrogating field, a possible solution is to use wideband antennas radiating pulsed
electromagnetic (EM) fields, or to adopt frequency-stepped sources, radiating an EM field at a limited
number of frequencies.

Beyond the radar architecture, the processing of experimental data plays an important role.
In most processing approaches, the goal is to localize hidden targets or produce a qualitative image of
the indoor scenario [1–6], returning information about the target’s shape or the presence of interfaces.
Accurate forward scattering approaches may improve the reconstruction capabilities of radar surveys.
First, the synthetic data obtained by the numerical modeling are helpful in providing a deeper physical
insight on the fields scattered by typical TW targets, in several practical cases. Second, the theoretical
solution to the forward scattering problem is a useful tool in imaging approaches, especially when
aiming for a quantitative reconstruction of the target. In this respect, forward solvers find twofold
applications. On the one hand, the numerical data they provide can be used as input data to validate
inversion schemes. On the other hand, forward solvers can be employed as building blocks of non-linear
inversion algorithms themselves. In this perspective, the forward scattering solver should develop
a full-wave solution, where all the effects of the wall interfaces on the propagation of the scattered field
are suitably modeled. As for the forward solvers in TW problems, the methods proposed in the literature
are essentially numerical [2,3,7–10]. Due to its high flexibility, the finite-difference time-domain (FDTD)
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method is mainly adopted, and, being directly developed in the time-domain, its application to TW
radars with pulsed sources is straightforward [7–9,11]. When modeling stepped-frequency sources,
frequency domain data should be computed through an inverse fast Fourier transform [2]. However,
due to the large size of investigation domains in TW settings, the FDTD modeling for frequency
domain analysis may be demanding in terms of execution times and memory requirements. As for the
frequency-domain techniques, other methods such as the ones based on method-of-moments (MoM)
approaches may be employed, which are still numerical [3]. Asymptotic techniques are also used for
modeling very large regions [10]. However, when applied to imaging approaches, forward solvers
are usually implemented through linearized formulations [2,3,12–14] or by using synthetic aperture
schemes [4,5,15], thus leading to qualitative images of the target. Techniques to improve the spatial
resolution [16,17] and human discrimination [18,19] have also been proposed, through frequency
spectral analysis. The implementation of full-wave inverse scattering approaches for quantitative TW
imaging is still an open issue, as most algorithms for solving the non-linear inverse scattering problem
are usually developed for free-space applications [20–30] and must be properly adapted to include the
presence of the wall.

In this paper, the issues relevant to the modeling of the forward scattering problem and to
the quantitative imaging are both addressed. In particular, a single-frequency non-linear inversion
procedure based on a regularization scheme in Lebesgue-spaces is proposed. This kind of inversion
strategy was initially developed in free-space environments [31–35] and subsequently extended to the
case of targets buried in a homogeneous soil [36], showing good reconstruction capabilities. It has
been found that the geometrical properties of Lebesgue-space norms lead to regularized solutions
endowed with less oversmoothing than classical Hilbert-space regularization schemes, improving both
target localization and their shaping. In this work, the method is extended to the case of targets
hidden behind a dielectric wall, by modifying the underlying scattering model in order to include
the proper Green’s function for layered media [7]. The validity of this inversion scheme is assessed
in its forward scattering formulation, as well as in its application to the imaging procedure. For the
validation of the proposed technique, an analytical solver has been employed, called the cylindrical
wave approach (CWA) [37–41]. It provides an analytical/numerical solution to a layout with buried
targets, given by circular cross-section cylinders, employing cylindrical waves as basis functions of
the scattered field. Due to the presence of the interface, suitable cylindrical waves are introduced,
defined through spectral integrals, to deal with reflection and transmission of the scattered field by
the interfaces. A preliminary implementation of the CWA for TW scattering was proposed in [38],
with an approach through multiple reflection fields to accurately describe the multipath inside the
wall. In [39], the CWA has been developed through a non-iterative approach, where all the multiple
interactions were included in suitable reflection and transmission coefficients. The same technique has
been applied in [41], where a pulsed source field has been modeled. In this work, the results provided
by the analytical solver are validated considering an integral formulation based on a Green’s function
approach, and they are used as reference data to test the reconstruction capabilities of the inversion
procedure. It is worth remarking that the novelty of the paper is both on inverse and forward modeling.
From the point of view of the inversion procedure, an efficient technique working in the framework
of Lebesgue spaces (which was developed for free-space and half-space scenarios) is here extended
to through-the-wall configurations. Specifically, the presence of the wall is considered by inserting
the proper Green’s function into the scattering model. In this way, the through-the-wall propagation
phenomena are fully taken into account, even under near-field conditions (differently from synthetic
aperture and beamforming schemes, where far-field conditions are usually assumed). Moreover,
the adopted scattering model does not rely on approximations (e.g., the Born or Kirchhoffmodels often
adopted in TW imaging). However, the presence of multiple interfaces and the availability of few
limited-view measurements (i.e., only along one side of the wall) significantly increase the difficulty
of the inverse problem. Consequently, the present paper is aimed at evaluating the regularization
properties of the approach even in this more involved case. Moreover, an automatic criterion for
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selecting the optimal Lebesgue-space norm parameter based on the entropy principle is proposed for
the first time. The analytical solver used in the validation of the inversion procedure is implemented
for a monochromatic line-current source and dielectric targets, applying the spectral-domain analysis
developed in [39] to a more realistic source. In the proposed approach, the total field is decomposed into
two different sets: scattered fields by the cylinders, and non-scattered fields, i.e., the field radiated by
the line source and the fields excited by its reflection and transmission at the interfaces, in the absence
of the cylinders. The non-iterative approach is applied to both sets and, through suitable reflection and
transmission coefficients, all the multiple interactions of the fields inside the layer are collected in two
contributions: an up-ward and a down-ward propagating wave. Therefore, a theoretical solution is
developed through a very compact formulation, with the total field in each medium decomposed in a
limited number of terms. This approach leads to a numerical implementation which is fast and efficient.

The paper is organized as follows: in Section 2, an overview of the proposed forward and inverse
scattering approaches is reported. Forward and inverse scattering results are then presented in Section 3.
Conclusions follow in Section 4.

2. Theoretical Approach to the Through-Wall Imaging Problem

The geometry of the TW imaging problem is shown in Figure 1. A two-dimensional layout
is considered, with one lossless dielectric wall between two semi-infinite regions filled with air
(i.e., characterized by the vacuum dielectric permittivity, ε0). The wall has relative permittivity εr1

and thickness l. The hidden investigation domain Dinv, highlighted by the dashed box in Figure 1,
is located in the medium behind the wall, and contains one infinitely long cylinder with circular cross
section having center in (xc, yc), radius a, and relative permittivity εrc.

Figure 1. Configuration of the scattering problem, with one target placed behind a dielectric wall.

A set of M transmitting/receiving antennas placed along a line of length Ls parallel to the interface
at a fixed distance y = hs in front of the wall is used. The transmitting antennas are modeled by
monochromatic line-current sources with angular frequency ω, and it is assumed that a TMz-polarized

incident electric field Einc = Einc(x, y)
^
z is excited. The expression of the field radiated by the transmitting

antennas with center in (ds, hs) is given by [42]:

Einc(x, y) = V0H(2)
0

(√
(x− ds)

2 + (y− hs)
2
)

(1)

where H(2)
0 (·) is the zero-th order second-kind Hankel function, and V0 is the complex amplitude of

the field. The ejωt term is omitted throughout the paper.
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Antennas are scanned in a multi-illumination multi-view configuration, i.e., each antenna is used in

turn in transmission mode to radiate the incident electric field in (1), and the total field Etot = Etot(x, y)
^
z

produced by the interaction of the EM wave with the investigation domain (including the wall and the
target) is received by the remaining M− 1 antennas. It is worth remarking that the assumed scattering
model is formally exact only when dealing with cylindrical targets (i.e., ideally infinite and invariant
along the z direction) under a TMz illumination. In practical TW imaging applications, the inspected
objects, as well as the wall, although not being infinite are usually elongated along the vertical direction
(corresponding to the z axis in our settings). Consequently, the predicted fields are sufficiently accurate
for solving the imaging problem at hand.

2.1. Forward-Scattering Problem Formulation

The theoretical method adopted to evaluate the scattered field in the layout of Figure 1 is the

cylindrical wave approach [39,41]. The total field Etot = Etot(x, y)
^
z is given by the superposition

of two sets of fields. The field radiated by the transmitting antenna in (1) and the fields relevant
to its reflection and transmission from the interface (in the absence of the target) belong to the
first set, representing known field contributions. The second set of fields is given by the scattered
field by the target in the medium behind the wall, and by the scattered-reflected and transmitted
fields through the wall interfaces. In the lowest medium, the scattered electric field is found from
Escatt(x, y) = Etot(x, y) − Et2(x, y), where Et2(x, y) is the field related to the transmission of the incident
field Einc(x, y) in the medium behind the wall. The scattered field in the medium behind the wall is
given in turn by the superposition of three contributions, Es(x, y), Esr(x, y), Esc(x, y), i.e,

Escatt(x, y) = Es(x, y) + Esr(x, y) + Esc(x, y) (2)

where Es represents the field scattered by the target, Esr is the scattered-reflected field, describing the
reflection of the field Es by the wall, and Esc is the contribution of scattered field that is transmitted
inside the cylinder.

The scattered field Es in (2) is expressed through an expansion into a series of basis functions
CWm [37]:

Es(x, y) = V0

+∞∑
m=−∞

cmCWm(x, y) (3)

where cm are unknown expansion coefficients and the basis functions CWm are cylindrical waves,
proportional to m-th order Hankel functions:

CWm(x, y) = H(2)
m (k0r)ejmθ (4)

where (r, θ) are polar coordinates centered on the cylinder.
The use of cylindrical waves as functions of expansion of the fields scattered by circular cross-section

cylinders gives the analytical basis to the method. However, as the target is not in free space, but placed
behind a dielectric wall, the interaction with the wall interfaces in terms of reflection and transmission
must be suitably modeled. This is accomplished by expressing the cylindrical waves in (4) through an
alternative definition, i.e., the plane-wave spectrum of a cylindrical wave:

CWm(x, y) =
1

2π

∫ +∞

−∞
Fm
(
y, k||
)
e− jk||xdk|| (5)

where Fm
(
y, k||
)

is the plane-wave spectrum:
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Fm
(
y, k||
)
= −2e− j|y|

√
1−(k||)2

√
1−
(
k||
)2
⎧⎪⎪⎨⎪⎪⎩

ejm cos−1 n|| , y ≥ 0
e− jm cos−1 n|| , y ≤ 0

(6)

The expressions (5) and (6) are used to derive the scattered-reflected field Esr(x, y) in (2) and
the scattered fields propagating inside the wall and in the first half-space [39]. In particular, in the
half-space in front of the wall, where the field is probed by the receiving antennas, the scattered field
is found as Escatt(x, y) = Etot(x, y) − Einc(x, y) − Er1(x, y), where Er1(x, y) is the contribution relevant
to the reflection of incident field by the interface in y = 0. The scattered field Escatt(x, y) is defined
through the following expansion [39]:

Escatt(x, y) = V0

+∞∑
m=−∞

cmTW0
m(x, y; yc) (7)

where the basis functions TW0
m(x, y; yc) are transmitted cylindrical waves, and they are expressed

through spectral integrals:

TW0
m(x, y; yc) =

1
2π

∫ +∞

−∞
T10
(
k||
)
T21
(
k||
)
Fm
[
n2(yc − l), k||

]
e− jy

√
k2

0−(n2k||)
2

e− jk||(x−xc)dk|| (8)

In (8), T10
(
n||
)

and T21
(
n||
)

are the transmission coefficients from the wall to the upper medium
and from the lowest medium to the wall, respectively. In the expression (8), all the multiple reflections
excited by propagation of the scattered field Es in the wall are included through transmission and
reflection coefficients related to the interaction of a plane wave with a dielectric slab [43]. A solution
to the scattering problem is developed imposing the boundary conditions of continuity of the field
components tangential to the cylinder’s interface and deriving the unknown expansion coefficients cm

in (3) and (8) [39].

2.2. Inverse-Scattering Problem Formulation

In the inversion procedure, the space-dependent dielectric properties of the investigation domain
Dinv are described by the contrast function c(x, y) = ε(x, y)/ε0 − 1, ε(x, y) being the dielectric
permittivity in a generic point (x, y) ∈ Dinv, which represents the unknown to be retrieved.
Such a quantity is related to the scattered field Escatt in the measurement points by means of the
following integral relationship (data equation) [21]

Escatt(x, y) = Gext
w (cEtot)(x, y) = −k2

0

∫
Dinv

c(x′, y′)Etot(x′, y′)gw(x, y, x′, y′)dx′dy′ (9)

where k0 = ω(ε0μ0)
0.5 is the vacuum wavenumber and Gext

w is a linear integral operator whose kernel
is the two-dimensional Green’s function of the considered three-layer background, gw, which is given
by [7]

gw(x, y, x′, y′) =
j

4π

∫ +∞

−∞

ejζ(x−x′)

γ1

{
e− jγ0 |y−y′| + Re− jγ0(y+y′), y ≥ 0

Tejγ0(y+l−y′), y ≤ −lw
dζ (10)

where γ0 =
√

k2
0 − ζ2 and

R = ρw
1− e−2 jγ1l

1− ρ2
we−2 jγ1l

, T =

(
1− ρ2

w

)
e− jγ1l

1− ρ2
we−2 jγ1l

(11)

with γ1 =
√

k2
1 − ζ, k1 = k0ε0.5

r1 being the wavenumber in the wall, and ρw = (γ0 − γ1)/(γ0 + γ1).
For the sake of simplicity, a single view case is considered in this Section. The total electric field
Etot(x′, y′) inside the integral in (9) depends itself on the contrast function c and can be expressed
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by means of a second integral equation similar to (9) (the so-called state equation), i.e., Etot(x, y) =
Einc(x, y) +Gint

w (cEtot)(x, y), where Gint
w is again a linear integral operator whose kernel is the Green’s

function for the through-wall configuration [21]. By combining the data and state equations, the inverse
scattering problem can be finally formulated as [21]

Escatt(x, y) = T (c)(x, y) = Gext
w c
(
I−Gint

w c
)
Einc(x, y) (12)

The non-linear problem at hand is solved in a regularized sense by using an inversion procedure
developed in the framework of Lebesgue spaces Lp, i.e., function spaces endowed with the norm
‖u‖pLp =

∫ ∣∣∣u(x, y)
∣∣∣pdxdy (u being a generic function belonging to Lp). It is worth noting that the norm

exponent p represents an additional parameter that can be tuned in order to enhance the reconstruction
performance. In particular, the developed procedure is based on an iterative outer–inner Newton
scheme, which can be summarized by the following steps [31,33]:

1. Set the outer iteration index to n = 0 and initialize the contrast function at the first outer step
with c0 = 0.

2. Linearize the scattering problem by computing the Fréchet derivativeT ′n of the operatorT around
the current solution cn. A linear problem T ′nξn(x, y) = Escatt(x, y) −T (cn)(x, y) is then obtained.
It is worth remarking that, similarly to the corresponding procedures in free space [31,33],
the computation of the right-hand side of the linear problem and of the Fréchet derivative T ′n
requires the solution of a set of forward problems. To this end, a forward solver based on the
MoM is adopted.

3. Solve the obtained linear problem in a regularized sense by means of the Lebesgue-space
procedure detailed in [31,33]. Specifically, the solution of the linear problem obtained in step 2,
i.e., ξn, is computed by means of the following Landweber-type iterations:

ξn,l+1 = Jq
(
Jp
(
ξn,l
)
− βT ′∗n Jp

(
T ′nξn,l − Escatt(x, y) +T (cn)

))
(13)

where ξn,0 = 0, β = ‖T ′n‖−2
2 is a relaxation coefficient, q = p/(p− 1) is the Hölder conjugate of

p, and the duality map Jp is defined as Jp(e) = ‖e‖2−p
p |e|p−1sign(e), with sign(e)= e/|e| (if e � 0,

otherwise it is equal to zero).
4. Update the contrast function by adding the solution of the linear problem ξn found at step 3 to

the current value, i.e., cn+1 = cn + ξn

5. Iterate from step 2 until a proper stopping criterion is satisfied.

3. Numerical Results

3.1. Validation of the Forward Methods

A comparison between the analytical TW solver (Section 2.1) and the forward scattering model
embedded inside the inversion procedure (Section 2.2) is reported here, for a cross-validation of the
two forward approaches. A multistatic and multiview configuration has been simulated, with M = 15
transmitting and receiving antennas aligned in front of the wall along a line of length Ls = 1.5 m,
with spacing d = Ls/(M− 1), and parallel to the wall at distance hs = 30 cm. The s-th transmitting
antenna (s = 1, . . . , M) is placed along the horizontal axis in the following position:

xTX
s = −Ls

2
+ (s− 1)d (14)

whereas the scattered field is probed at the remaining M− 1 positions along Ls. The working frequency
has been fixed equal to 1 GHz. As a first case, a single dielectric cylinder with center in (−20 cm, 60 cm),
radius a = 10 cm, and relative permittivity εrc = 2, placed behind a wall of relative permittivity
εr1 = 4 and thickness l = 20 cm, has been considered. The actual distribution of the relative dielectric
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permittivity in the investigation domain is shown in Figure 2a. In the MoM solver, the target has been
discretized into N = 900 square subdomains of side about equal to 6.7 mm. In the CWA, the order m of
the cylindrical waves in Equation (7) has been truncated to Mt = 9, being the total number of terms in
the cylindrical expansions equal to 2Mt + 1. The truncation order has been determined applying the
rule Mt = 3

√
εr1a(2π)/λ, that allows a compromise between accuracy and computational heaviness.

Figure 3 shows the amplitude and phase of the fields computed by the two approaches for some of the
considered views, at the M− 1 measurement receiving points. Plots are evaluated for different values
of the index s, which denotes the antenna used in the transmission mode, according to Equation (14).
As can be seen, a very good agreement between the analytical solver used in the forward approach
and the solver employed in the inversion procedure is obtained.

 
(a) (b) 

Figure 2. Actual configuration. (a) Single dielectric cylinder and (b) two separate dielectric cylinders.

 
(a) (b) 

Figure 3. (a) Amplitude and (b) phase of the scattered fields in some of the considered view computed
by the analytical forward solver based on the cylindrical wave approach (CWA) and by the integral
equation formulation used in the inverse scattering procedure. Single dielectric cylinder.

As a second test case, two dielectric cylinders have been considered inside the investigation
domain. The first one is the same considered above, whereas the second one is a dielectric cylinder
with center in (20 cm, 60 cm), radius a = 10 cm, and relative permittivity εrc = 2. The corresponding
distribution of the relative dielectric permittivity in the investigation domain is shown in Figure 2b.
Figure 4 reports the amplitude and phase of the field computed by using the CWA and the MoM
approaches. In this more complex case, too, there is a good agreement between the two solving
schemes, confirming the correctness and suitability of the analytical and numerical solvers adopted in
the data generation and inversion steps.
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(a) (b) 

Figure 4. (a) Amplitude and (b) phase of the scattered fields in some of the considered view computed
by the analytical forward solver based on the CWA and by the integral equation formulation used in
the inverse scattering procedure. Two separate dielectric cylinders.

3.2. Inversion Scheme

Some preliminary examples of reconstructions provided by the previously described inversion
procedure are reported in this Section. In particular, the two configurations adopted for the comparison
in the previous Section are considered. In order to simulate a more realistic scenario, a Gaussian noise
with zero mean value and variance corresponding to a signal-to-noise ratio of 20 dB has been added
to the computed scattered electric field data. The following values of the algorithm’s parameters
have been used: p ∈ [1.1, 2.5]; maximum number of outer iterations, 10; maximum number of inner
iterations, 50; iterations stopped when the relative variation of the residual falls below the threshold
0.005. Such values have been empirically selected, based on the previous experience on Lebesgue-space
inversion in the free-space scenario. The optimal value of the norm parameter p has been found by
performing a sweep in the assumed range of values and by selecting the one providing the maximum
entropy. Such a choice has been made since, for this particular application, it is expected that localized
targets are usually present inside the inspected scenario, and consequently the sharpness of the image,
which is related to its entropy, may represent a discriminating feature [44,45].

Figure 5 shows the reconstructed distribution of the relative dielectric permittivity retrieved by
the developed inverse scattering procedure. In particular, the reconstruction obtained with the optimal
value of the norm parameter, i.e., p = popt = 1.3, is reported in Figure 5a. This result evidences a
correct localization of the target. Indeed, the estimated center of the cylinder is (−19.9 cm,−61.4 cm),
which corresponds to an average percentage error of 1.3%. Moreover, the reconstructed value of the
dielectric permittivity is close to the actual one. Specifically, the maximum value of the estimated
permittivity is 1.81, which compares very well with the actual value of 2. Nevertheless, the target shape,
which is a circular one, is elongated along the range direction and the cross-range size is underestimated.
Such a behavior can be ascribed to the use of data collected at a single frequency, as well as to their
aspect-limitedness. However, it is worth noting that even with such a small number of available data
and considering just a single working frequency, the approach is able to effectively provide a quite
accurate indication about the target. For comparison purposes, the reconstruction obtained by using
a standard inversion procedure in Hilbert spaces (corresponding to p = 2) is provided in Figure 5b.
In this case, the target is still visible (the average percentage error on the center position is 2.9%),
but the dielectric permittivity is significantly underestimated (the maximum value is 1.35). Moreover,
stronger artifacts are present in the background.
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(a) (b) 

Figure 5. Reconstructed distribution of the relative dielectric permittivity inside the through-wall (TW)
investigation domain. Single dielectric cylinder. (a) Optimal value of the norm parameter (popt = 1.3)
and (b) standard Hilbert-space approach (p = 2 ).

As a second test case, the scattering data from the two dielectric cylinders considered in the
previous Section have been used. In this case, too, the scattered field has been corrupted with
a Gaussian noise with zero mean value and variance corresponding to SNR = 20 dB. The parameters
of the inversion procedure are the same as in the previous case. The reconstructed distribution of
the relative dielectric permittivity is shown in Figure 6. In particular, Figure 6a shows the results
obtained by considering the optimal value of the norm parameter, which is equal to popt = 1.3 in this
case. Even in this situation, the two targets are correctly localized, although the dielectric permittivity
is slightly underestimated. Indeed, the estimated centers of the cylinders are (−19.4 cm,−57.4 cm) and
(−19.0 cm,−57.0 cm), which correspond to the mean percentage errors of 3.7% and 5%, respectively,
whereas the maximum values of the dielectric permittivity are both equal to 1.7. The corresponding
reconstruction obtained by using the standard Hilbert-space reconstruction technique is shown in
Figure 6b. Similarly to the preceding configuration, the two targets are visible (the mean percentage
errors on the position are 11.2% and 7.3%), although their properties are strongly underestimated
and with amplitude comparable to the background artifacts (the maximum value of the dielectric
permittivity is equal to 1.26). The criterion for the selection of the optimal reconstruction has been
assessed in this case by comparing the behavior of the scaled entropy with the one of the reconstruction
errors (defined as NMSE = ‖c− cact‖2/‖cact‖2, cact being the actual distribution of the contrast function).
As can be seen from Figure 7, the scaled entropy (defined as in [45]) has a maximum corresponding to
the value of the norm parameter for which the lowest reconstruction error is obtained.

(a) (b) 

Figure 6. Reconstructed distribution of the relative dielectric permittivity inside the TW investigation
domain. Two dielectric cylinders. (a) Optimal value of the norm parameter (popt = 1.3) and (b) standard
Hilbert-space approach (p = 2 ).
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Figure 7. Behavior of the scaled entropy and of the reconstruction error versus the norm parameter.

4. Conclusions

In this work, the forward scattering problem modeling and the quantitative imaging in
through-wall scenarios have been addressed. For the solution of the forward EM problem, an analytical
solver based on the cylindrical wave approach has been presented. The inverse problem is solved
by using a non-linear regularization technique developed in the framework of Lebesgue-spaces.
The suitability of the forward and inverse solvers for the problem at hand has been evaluated
with preliminary numerical simulations. Future works will be mainly devoted to the extension to
multi-frequency processing, in order to increase the reconstruction accuracy, and to three-dimensional
configurations. Moreover, the developed forward and inverse schemes will be validated by considering
experimental measurements obtained with a real hardware setup.
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Abstract: In microwave imaging, it is often of interest to inspect electrically large spatial regions.
In these cases, data must be collected over a great deal of measurement points which entails long
measurement time and/or costly, and often unfeasible, measurement configurations. In order to
counteract such drawbacks, we have recently introduced a microwave imaging algorithm that
looks for the scattering targets in terms of equivalent surface currents supported over a given
reference plane. While this method is suited to detect shallowly buried targets, it allows one to
independently process all frequency data, and hence the source and the receivers do not need to be
synchronized. Moreover, spatial data can be reduced to a large extent, without any aliasing artifacts,
by properly combining single-frequency reconstructions. In this paper, we validate such an approach
by experimental measurements. In particular, the experimental test site consists of a sand box in
open air where metallic plate targets are shallowly buried a (few cm) under the air/soil interface. The
investigated region is illuminated by a fixed transmitting horn antenna, whereas the scattered field
is collected over a planar measurement aperture at a fixed height from the air-sand interface. The
transmitter and the receiver share only the working frequency information. Experimental results
confirm the feasibility of the method.

Keywords: radar imaging; target detection; experimental measurements; microwave imaging

1. Introduction

Microwave imaging, and in general radar imaging, is a mature research field that finds
application in a number of different contexts where pursuing non-destructive investigation
is convenient or mandatory [1–11].

Ground Penetrating Radar (GPR) is a radar system that is properly conceived to
address non-destructive imaging. Generally, GPRs work in contact with the interface
between the air and the medium under investigation. However, there is great interest in
achieving target detection through non-contact measurement layouts, for example, with
GPRs mounted on a flying platform [12,13]. Indeed, stand-off distance configurations allow
for the investigation of regions that are not easily (or safely) accessible, as it happens, for
instance, when one has to deal with mine or unexploded device detection [14]. Moreover, a
flying GPR can allow for inspecting large areas quickly [15,16].

In this framework, however, the system cost and the achievable performance must
be traded-off [17]. This requires finding a compromise between the time needed to collect
data, the number of sensors to be simultaneously deployed, and the way transmitter and
receivers “communicate”. In this regard, a single-view/multistatic configuration seems
convenient, since only one sensor transmits and the others act as mere passive receivers,
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hence with reduced weight and cost. However, synchronization between TX and RXs
is a critical issue when they are mounted on different platforms, since, differently from
multi-monostatic arrangement, TX and RXs are no more co-located and hence do not share
the same electronic system. In addition, the number of measurement points is directly
linked to the number of flying platforms and hence must be reduced as much as possible.

Actually, a number of different processing schemes have been proposed in the litera-
ture to address subsurface imaging [18]. Recently, we have introduced a reconstruction
scheme that allows one to mitigate the previously mentioned drawbacks [19,20]. This
method relies on a certain scattering formulation where, according to the equivalence prin-
ciple [21], the scattered field is modeled as being radiated by equivalent surface currents
that are supported over the air/soil interface, or at some other reference plane whose depth
is chosen. A related method that uses equivalence principles for target shape reconstruction
is reported in [22], where, however, the multiple experiments arise from using different
illuminations (i.e., a multistatic/multiview configuration is employed).

In our approach, basically, the main idea is that if the reference plane is close to the
scattering target, then the spatial support of the surface current gives information concern-
ing the transverse location of the target. If it is a priori known that the targets are in close
proximity to the air/soil interface, e.g., for detection of a mine [23] or unexploded impro-
vised device [24] (where the targets are often very shallowly buried just to hide from sight),
then the reference plane can be set just at the air/soil interface. In this case, the surface
currents radiate in free-space, and the related simple Green function can be considered as
a propagator. The reconstruction is cast as a 2D inverse problems, since only the targets
detection and their transverse locations are looked for, and hence single-frequency data can
be employed. Accordingly, RXs do not need information about the TX, except the working
frequency. Hence, the source can be considered as being non-cooperative (it does not
share information with the receivers). However, it is not opportunistic as in most passive
radar, since it is deliberately deployed in the scene. Multi-frequency data can be processed
separately (i.e., incoherently) and then combined to counteract aliasing artifacts that can
arise if the spatial measurement points are reduced (not properly sampled) [20]. Finally,
depth can be explored by performing the reconstructions at different reference planes.

In previous contributions (see [19,20]), we have shown the feasibility of the method
by employing synthetic numerical data and some measured data collected under lab
conditions for a free-space scattering scenario. However, the method still need to be
validated in a realistic scattering scenario.

In this contribution, we aim at pursuing such a task. To this end, the method and
the related achievable performances are checked for a more realistic scattering scenario
where the background medium is actually not homogeneous. Indeed, the test site mimics a
realistic on-field situation, as it consists of an open-air sand box. As to the RXs and the Txs,
they are not mounted on flying platforms. However, they are at a stand-off distance from
the air/soil interface, and the TX signal is unknown to the RXs but the working frequency
is known.

In sum, the advancements that we are conveying in this contribution concern:

• The generalization of the scattering model for a near-field configuration (previous
results refer to a far-field case);

• The experimental validation of the approach for a realistic scattering scenario.

The rest of the paper is organized as follows. In Section 2 the scattering model is
generalized to deal with the new scattering configuration, whereas in Section 3, the related
reconstruction algorithm is briefly described. In Section 4, the experimental set-up as well
as a few experimental results are presented and discussed. Conclusions end the paper.

2. Scattering Model

In this section, we introduce the adopted scattering model and the necessary nota-
tion that is required in the following. A detailed derivation of the model can be found
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in [19]. Here, we adapt that derivation to the configuration used in the experimental set up
(described later).

The background medium is two-layered with the upper half-space being air, while the
lower one models the soil. The two half-spaces are separated by a planar interface (i.e., the
air/soil interface) located at z = 0. The scattering targets are located in the lower half-space
(i.e., for z < 0) and buried in close proximity to the separation interface. Moreover, the
“transverse” investigation domain (i.e., the spatial region where the targets can belong to) is
denoted as D = [−xM, xM]× [−yM, yM]. The 2D investigation domain is considered at a
fixed depth zT . Generally, we will consider zT = 0 (which is just at the separation interface).
Reconstructions at different zT < 0 can be considered as well in order to explore the depth.

The scattering scene is probed by a single source located in the upper half-space at
some stand-off distance from the air/soil interface, ht, whereas the field scattered by the
buried targets is collected over a set of sensors still located on the air side and all at the
same height hO. Accordingly, the spatial measurement positions lay over a plane; say
rn = (xn, yn, hO), n = 1, 2, . . . , NO, with their positions, NO being the number of spatial
measurements. Figure 1 shows a pictorial view of the scattering configuration along with
the adopted reference frame.

Figure 1. Reference system: the air/soil interface is at z = 0, the investigation plane at zT .

After the scene is illuminated by the incident field, the scattered field arises. Since all
the targets are located in the half-space z < zT , by invoking the equivalence theorem [21],
the scattered field can be considered as being radiated by equivalent surface currents
supported over the plane at z = zT . In particular, by filling the half-space z < zT with a
perfect electric conductor, only the magnetic surface current survives. Such a current can
be expressed as

Jm(r; k) = Jeq(x, y; k)δ(z − zT). (1)

Note that the magnetic equivalent current depends on the scattering scene and on the
incident field. As such, it depends on the working frequency, which is indeed highlighted
in (1) in terms of the wavenumber k. In particular, if zT = 0 (i.e., just at the air/soil
interface), the current in (1) radiates in free space, and hence the scattered field (in the
upper half-space z > 0) can be written as

ES(r; k) =
∫

∇rg(r, r′; k)× Jm(r
′; k)dr′ =

∫
D

G(r, r′; k) · Jeq(r
′; k)dr′t, (2)
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where r′ = r′t + zTẑ is the source point, with r′t = (x′, y′), r is the field point and

g(r, r′; k) = − e−jk|r−r′ |

4π|r − r′| , (3)

is the free-space 3D scalar Green function. G(r, r′; k) is the magnetic to electric dyadic
Green function, whose expression is given as

G(r, r′; k) =

⎡⎢⎢⎣
0 − ∂g

∂z (r, r′; k) ∂g
∂y (r, r′; k)

∂g
∂z (r, r′; k) 0 − ∂g

∂x (r, r′; k)
− ∂g

∂y (r, r′; k) ∂g
∂x (r, r′; k) 0

⎤⎥⎥⎦. (4)

It must be remarked that, to be rigorous, surface integration in (2) should run over the
entire plane z = 0. However, since the targets are very close to the air/soil interface (or in
general to the reference plane zT), it can reasonably be assumed that the current support
is very similar to the target’s cross section. Hence, D is chosen according to the size of
the spatial region to be investigated. Again, in (2), we considered the free-space Green
function. This is correct for zT = 0. When this is not the case, because the reconstruction
at a different depths is required, we will still use the same Green function. Indeed, using
the free-space Green function avoids dealing with the computation of the Green function
pertaining to a layered background medium. What is more, the layered medium Green
function requires the knowledge of the electromagnetic features (dielectric permittivity
and conductivity) of the soil, which are in general not available. Herein, such background
medium electromagnetic parameters are assumed not to be known. By contrast, using
the free-space Green function leads to the targets appearing more deeply located, because
soil is electromagnetically denser than air. However, this is not a serious drawback if the
targets of interest are shallowly buried.

The magnetic surface current Jeq has no component along ẑ. Accordingly, (2) particu-
larizes as

ES(r; k) =
∫

D

⎡⎢⎣ 0 − ∂g
∂z (r, r′; k)

∂g
∂z (r, r′; k) 0

− ∂g
∂y (r, r′; k) ∂g

∂x (r, r′; k)

⎤⎥⎦ · Jeq(r
′
t; k)dr′t. (5)

It is seen that ESx is solely linked to Jeqy and ESy to Jeqx. Therefore, if one collects
separately such field components, then the inverse problem in (5) splits in two identical
scalar inverse problems from which one can reconstruct the two source components inde-
pendently. Then, these reconstructions can be combined as in [20]. However, in general,
this is not the case, even in view of the receiving antenna response. More precisely, what
one can actually measure is the antenna output voltage. Therefore, in place of (5), the
following equation should be considered

V(r; k) = T (ES)(r; k), (6)

where V is the voltage data, and T is a linear operator schematizing the antenna response.
Eventually, this is the scattering model from which to start in order to perform the current
reconstructions. A few details concerning the reconstruction algorithm along with some
further simplifications to achieve such a task are provided in the next section.

3. Reconstruction Algorithm

According to (6), the magnetic current components cannot in general be separately
reconstructed. Moreover, the antenna response should be known and put into the model.
It would be useful to avoid both these issues. Indeed, looking for simultaneously both
the source components means to deal with a doubled number of unknowns. Furthermore,
antenna response must be measured/known in advance.
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As to the first question, if the receiving antenna is linearly polarized, for example, in the
x − z plane, then its plane-wave spectrum vector belongs to the same plane. Accordingly,
the main contribution to the voltage is due to Jeqy, which is the one that contributes to ESx.
Similar considerations apply if the other source component is considered. Therefore, we
make the problem scalar by approximating (6) as

V(rn; k) =
∫

D
H(rn, r′; k)Jeqy(r

′
t; k)dr′t, (7)

where rn are the measurement positions (antenna phase center) and H(rn, r′; k) is the kernel
of the integral operator in (7), which is actually the approximation of the composition
between the antenna response operator and the propagator, once the contribution due to
Jeqx has been neglected. However, the antenna response is still there.

It is noted that both the data and the unknown depend on the frequency k. Hence,
employing all the available multiple-frequency data to perform the reconstruction is not
formally allowed. On the one hand, single-frequency reconstructions do not allow one to
estimate targets’ depths. This is a minor drawback for shallowly buried targets. Moreover,
depth at which reconstruction is achieved can be changed. On the other hand, at a single
frequency, the antenna response basically introduces a complex weight, which is the same
for each measurement position. This means that it does not affect source localization,
which is instead related to the phase term that depends on rn − r′. Hence, since we are
mainly interested in the detection and the localization of the targets (i.e., we do not aim at
quantitative reconstructions, even in view of the other approximations), antenna response
is neglected in (7) while achieving single-frequency reconstructions. Note that this would
not be the case for multi-frequency reconstructions, since the complex weight in general
changes with frequency.

In order to perform the reconstruction, the presented model (at a given frequency kl)
is discretized by representing the unknown current component Jeqy as a truncated Fourier
series, that is,

Jeqy(x, y; kl) =
N

∑
n=−N

M

∑
m=−M

Imn exp [−jπ(
mx
xM

+
ny
yM

)]. (8)

where Inm are the Fourier coefficients and the exponentials represent the two-dimensional
Fourier spatial harmonics over extent of the domain of investigation . Accordingly, the
unknowns of the problem now become the expansion coefficients Inm. The choice of N
and M is linked to the so-called number of degrees of freedom of the problem, reflects
the ill-posedness of the inverse problem at hand, and depends on the operating frequency
as well as the investigation and the observation domain extensions [19,20]. In general,
however, this discretization scheme allows one reduce to a large extent the number of
unknowns, as compared to a pixel based representation. The corresponding discrete model
is then obtained as

V(kl) = H · I, (9)

where V(kl) ∈ CNO is the data vector at the l-th frequency, H ∈ CNO×(2N+1)(2M+1) is
the matrix version of the scattering operator, and I ∈ C(2N+1)(2M+1) is the (vectorized)
expansion coefficient matrix.

Equation (9) is inverted for I by a standard Truncated Singular Value Decomposition
(TSVD) [25] of the relevant matrix operator. This allows to counteract the ill-posedness of
the problem and to obtain a stable reconstruction.

Once the coefficients Inm have been recovered, the corresponding equivalent current
Jeqy(x, y; kl) is computed by means of (8). Then, the support of such an equivalent surface
current is provided by the image in the x, y investigation domain,

I(x, y; kl) = |Jeqy(x, y; kl)|. (10)
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In order to limit the system complexity, the number of spatial data must be reduced.
This in general can lead to a reconstruction that is corrupted by aliasing artifacts that
are difficult to distinguish from the actual current. To cope with this drawback, a simple
strategy based on the combination of single-frequency reconstructions has been introduced
in [20]. In more detail, suppose that Nk is the number of adopted frequencies; then the final
reconstruction is obtained as

I(x, y) = ΠNk
l=1 I(x, y; kl). (11)

The very basic idea behind (11) is that aliasing artifacts change positions with the
working frequency, whereas the actual source reconstruction does not. Therefore, (11)
tends to mitigate all those peaks in the reconstruction that do not overlap (or overlap only
partially) while the frequency changes. A criterion for the choice of the frequencies is
provided in [20].

In sum, the algorithm presents the following steps:

1. Fix one frequency value;
2. Compute the scattering matrix model H;
3. Compute the SVD of H;
4. Fix a regularizing threshold for the normalized singular values of H (in the following

experimental results, 20 dB is used) and compute the unknown vector I via a TSVD
inversion by retaining the data projection over the singular vectors corresponding to
the singular values above the threshold;

5. Calculate I(x, y; kl) by (8) and (10);
6. Repeat from point 1 by changing the frequency value;
7. Compute I(x, y) from (11).

4. Experimental Results

In this section, we check the proposed algorithm against some experimental measure-
ments collected in a semi-controlled scattering scenario. In particular, we first describe the
test site and then show some reconstructions aiming to highlight the role of the number of
spatial measurements and of the employed frequencies.

4.1. Test Site

The test site consisted of a tank full of sand of about 3.5 m (length) 2.5 m (width) and
1.5 m (depth) in size. The tank was placed in the open air so that the sand appeared wet,
apart from the very surface layer, which was dried by sun. The electromagnetic features of
the sand were unknown and wer not estimated for detection purposes.

The transmitting antenna was a horn positioned at a ht = 1.5 m height from the sand
floor and located at one of the end sides of the tank. It was tilted to point to the spatial
region under investigation. The receiving antenna was still a horn and was located on the
other side of the tank. In particular, it was mounted on a wooden slide that allowed it to
synthesize a planar measurement aperture at a fixed height from the air/sand interface (in
the following examples hO = 80 cm or hO = 130 cm). Furthermore, the receiving antenna
was tilted toward the investigated spatial region and was linearly polarized. Figure 2
shows a schematic view of the measurement configuration along with some pictures of the
test site. As a target, a metallic rectangular plate 17.5 cm × 48 cm in size is considered.

A vector network analyzer was connected to the antennas by means of coaxial cables.
Standard calibration at the end of each channel was performed at the beginning of each
measurement stage in order to avoid mismatch between VNA and cables. Data have been
acquired in the frequency band [2–9] GHz (201 equispaced frequencies) for each different
position of the receiving antenna.

We performed measurements under two different conditions: flat and rough air/sand
interface. Flatness was obtained by manually using a shovel for smoothing the sand
floor. Of course, the obtained sand surface, though smooth, was far from “ideally” flat.
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Roughness interface was instead obtained by turning over the sand. For such scenar-
ios, we took measurements with and without targets (background measurements) for
comparison purposes.

It is worth remarking that the measurement scenario actually contained many features
that are not accounted for in the scattering model used to develop the detection algorithm.
For example, though antennas were tilted towards the scattering scene, they still presented
a direct link, which implies direct coupling between the receiving and the transmitting
antennas. Furthermore, because of the finite dimensions of the tank, the two-half-space
medium assumption clearly does not correspond to the actual background medium. This
entails that the received signal actually consisted of different contributions besides the one
expected from the targets. In addition, note that, even though the medium was a perfect
two-layered medium with a flat separation interface, the air/sand interface reflection
always superimposes the target signals. Nonetheless, in the following reconstructions, we
did not mitigate such unwanted contributions by data pre-processing.

Figure 2. Schematic view of the measurement configuration (top) and photos of the test site (bottom).

4.2. Detection Results for Flat Air/Soil Interface

We start by considering the case of flat air/sand interface in the sense clarified above.
For this case, we collected data over a grid of 5× 7 positions. To this end, the receiving

antenna scanned the measurement aperture with a spatial step (along both the x and y
directions) of 20 cm at the height and hO = 80 cm.

The investigation domain is a rectangle of 160 cm along the x and 100 cm along the
y direction, and it is located at zT = 0. We also introduce the two parameters offsetx and
offsety, which indicate the displacement, along the x and y directions, respectively, of the
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center of the investigation domain with respect to the central point of the first measurement
line (see Figure 3a for the reference system). Basically, after acquiring the data, changing the
investigation domain center location (by varying the offset parameters) entails looking for
the targets in different spatial regions. Accordingly, the same target will appear at different
relative positions. This can be considered as a way to check reconstructions’ consistency
and stability. A detection can be considered successful if the target localization point moves
coherently with the change of the investigation domain center position.

It must be remarked that the number of employed spatial data is already below the
one required if the field has to be properly spatially sampled (see [20]). This, of course,
limits the highest frequency that can be used in the reconstructions. Indeed, we tested
the inversion algorithm against different bands inside the available one of [2–9] GHz.
As expected, when dealing with higher frequencies, even by our approach, detection is
impaired because the reconstruction results were crowded by a number of artifacts. Hence,
we ended up processing data collected only within the band [2–4] GHz. In particular, in
such a band, Nk = 11 frequencies were considered in order to be as close as possible to
frequency selection criterion provided in [20].

Finally, the target was located as shown in Figure 3b and roughly buried 2 cm below
the air/sand interface.

(a) (b)
Figure 3. (a) Investigation domain and measurement points; the reference system is centred on the investigation domain.
(b) Different positions of the target with respect to the first (numbered from the left) measurement line.

In particular, Figure 4 reports the reconstructions for a target located as in position
1 sketched in Figure 3b, for different investigation domain center offsets. As can be seen,
a good detection was achieved with no significant artifacts corrupting the reconstruc-
tions. What is more, the reconstructed spot moved coherently with the investigation
domain displacement.

Some comments are in order here.
Firstly, we remark that the inversion algorithm does not aim at providing the shape

of the targets, but rather, it is intended for target detection. This is mainly due to the
strategy we adopted to combine the different single frequency reconstructions. Indeed,
the proposed multiplicative combination highlighted in (11) allows us to mitigate aliasing
artifacts but at the same time tends to enhance the strongest part of the reconstructions so
that targets actually appear as hot spots.

Secondly, as we mentioned above, we did not process data to counteract the direct link
(from the transmitting antenna to the receiving one) or the air/sand reflection. However,
reconstructions do not suffer from such spurious signals. This can be justified by observing
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that we have performed the reconstruction over a given spatial region: the investigation
domain. Hence, the direct link should appear located outside such a region. As to the
air/sand interface reflection, it actually enters in the investigation domain. However, it is
not localized as the target contribution and tends to be spread over the whole investigation
domain. The multiplicative combination strategy hence also enhances the target recon-
struction against such a contribution. In Figures 5 and 6, reconstructions corresponding to
the target (still approximately buried at 2 cm) located as in position 2 (see Figure 3b) are
reported. In particular, while Figure 5 has been obtained using the same source polarization
as in the previous case, in Figure 6, the transmitting antenna has been rotated 90◦ so that
the scene is illuminated by an orthogonal polarization. As can be seen, in this case as well,
the target is clearly detected, regardless of the transmitting antenna features (in this case
polarization). Actually, according to the formulation and related approximations presented
in Section 2 and under Equation (7), what matters is that the equivalent source contributes
to the polarization and that the receiving antenna is sensitive. Hence, even by changing
the transmitting antenna polarization, it is expected that the method works as long as the
previous statement holds true. This is basically what happened in Figure 6. In other words,
unless the equivalent current has rigorously no component to which the receiving antenna
is sensitive, the method is expected to work.

(a) offsetx = 0.8 m, offsety = 0.0 m (b) offsetx = 1.0 m, offsety = 0.0 m

(c) offsetx = 0.8 m, offsety = −0.3 m (d) offsetx = 0.6 m, offsety = −0.3 m

Figure 4. Normalized reconstructions for target located at position 1 shown in Figure 3b for different investigation domain
offsets (reported in the figures). The red rectangles show the actual target positions.
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(a) offsetx = 1.3 m, offsety = 0.0 m (b) offsetx = 1.0 m, offsety = 0.2 m

Figure 5. Normalized reconstructions for target located at position 2 shown in Figure 3b for different investigation domain
offsets (reported in the figures). The red rectangles show the actual target positions.

(a) offsetx = 1.3 m, offsety = 0.0 m (b) offsetx = 1.0 m, offsety = 0.2 m

Figure 6. The same as in Figure 5 but incident field polarized orthogonal with respect to the previous case.

4.3. Detection Results for Rough Air/Sand Surface

We now turn to consider the case in which the air/sand interface was not smoothed.
In this case, we consider data collected over a grid of 8 × 7 positions with the same spatial
step as above but at a height hO = 130 cm. Note that the spatial data are slightly greater
than the previous case but still under-sampled [20].

First, we show the reconstruction of a shallowly buried target (the target depth and
type are the same as above) by employing all the available frequencies. These results are
reported in the left column of Figure 7. As can be appreciated, the target is clearly detected
and the related hot spot indicator changes position accordingly to the investigation domain
center offset. On the same figure (right column), instead, we report the reconstructions
obtained by processing background data, i.e., in absence of the target. Differently from
the target case, now the reconstructions do not exhibit a clear hot spot. Moreover, the
reconstruction changes as the investigation domain center offset varies. This confirms the
previous discussion that processing air/soil interface reflection does not return a focused
hot spot. Furthermore, the reconstruction corresponding to this contribution is in general
different when the investigated spatial region changes. This is in particularly true here
because roughness entails that the air/soil interface has different spatial details. Eventually,
these results suggest a possible strategy to recognize actual targets against surface clutter.
Indeed, comparing images obtained using different investigation domain offsets, the actual
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targets are those ones for which the reconstructions “move” coherently with the change in
the investigation domain center.

(a) offsetx = 1.7 m, offsety = 0.0 m

(b) offsetx = 2.0 m, offsety = 0.3 m

Figure 7. Normalized reconstructions of a shallowly buried targets for two different investigation domain offsets along with
the actual target location denoted as red rectangles (figures un the left column). Normalized reconstructions background
medium data, i.e., in absence of target, (figures on the right column).

In Figure 8, as well as in Figure 7, by keeping fixed the investigation domain with
offsetx = 2.0 m, offsety = 0.3 m is considered. However, different numbers of frequencies
are employed. As can be seen, when the number of frequencies is increased, the aliasing
artifacts actually tend to disappear and the hot spots narrows. This is, of course, expected
and perfectly consistent with the theoretical arguments discussed above.

The simple proposed strategy for reducing spatial data hence works very well. To
further check this procedure, we consider an even more challenging case by reducing the
spatial data employed to achieve the reconstructions. In more detail, we collected data
over a 4 × 4 measurement grid, with twice the spatial step, that is, 40 cm. The height of the
measurement aperture was still hO = 130 cm, and the frequencies were taken within the
same band as above. Note that in this case the number of spatial data is even lower than
the ones used in the first example reported at the beginning of this section.
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(a) Nk = 1 (b) Nk = 3

(c) Nk = 5 (d) Nk = 7

Figure 8. The same case as in Figure 7 with offsetx = 2.0 m; offsety = 0.3 m. Comparison of reconstructions obtained by
employing different number of frequencies Nk.

It can be seen in Figure 9 that even under this more challenging situation where the
spatial data have been reduced further, the proposed method works very well in detecting
and localizing the target and in counteracting aliasing artifacts, though the number of
frequencies is actually low as well.

(a) Nk = 2 (b) Nk = 3 (c) Nk = 7
Figure 9. Normalized reconstructions of a shallowly buried target corresponding to the case reported in Figure 7, off-
setx = 2.0 m, offsety = 0.3 m but with only 4 × 4 measurement grid collected with a spatial step of 40 cm. The actual target
location is denoted as red rectangles. Comparison of reconstructions obtained for different values of Nk.

As a final example, we consider the case the target is buried more deeply. In particular,
in this case, the plate target is buried approximately 10 cm below the air/sand interface.
Figure 10 shows the reconstructions obtained by considering the image plane at different
depths. In all the examples, Nk = 7 frequencies (which were shown to be enough for
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mitigating aliasing artifacts) have been employed, and the same spatial grid measurement
as in Figure 9 is considered. These results show that the proposed method is still effective
in detecting the target. Moreover, as discussed above, changing the depth at which
reconstruction is achieved allows one to get information about the target depth as the
one for which the reconstruction is more focused. Of course, since the soil permittivity is
not known (and hence not accounted for in the reconstruction algorithm), the estimated
target depth does not coincide with the actual one. In particular, since the relative dielectric
permittivity of a wet sand likely stands between 4 and 9, the “apparent” target depth can
range from 20 cm to 30 cm, which is perfectly consistent with the result shown in Figure 10.

A brief comment is in order about the actual location of the reconstructed spots that,
in most of the figures above, appear focused at the edges of the true shape. As a matter of
fact, one can expect that the detected hot spot should roughly appear in correspondence
with the target center. Indeed, this circumstance has been observed in [19,20], where
synthetic data were employed. However, in those cases, we have considered a reflection-
mode configuration (i.e., the TX (plane wave incidence) and the RXs were on the same
side), the investigation domain was centered with respect to the measurement aperture,
and the target was precisely parallel to the reconstruction plane. For the present case,
because of the experimental set up, of course, the target position and its orientation are not
precisely known; uncertainty is a few cm. In addition, the configuration is quite different
since a transmission-mode set up is under consideration and the measurement aperture is
actually side-looking the investigation plane. All these aspects could have contributed to
the obtained results. However, we believe that such reconstructions are most likely due
to the illumination, which is not uniform across the target and depends on the relative
position between the TX and the target itself. In order to obtain a clear understanding of
this effect, one should go through the study of the equivalent current behavior. This can be
numerically achieved and is beyond the aim of the paper.

(a) zT = −10 cm (b) zT = −20 cm (c) zT = −30 cm
Figure 10. Normalized reconstructions of a target approximately buried 10 cm below the air/sand interface. Data have
been collected over 4 × 4 measurement grid with a spatial step of 40 cm and offsetx = 1.7 m, offsety = 0.0 m. The actual target
location is denoted as red rectangles. Comparison of reconstructions obtained using Nk = 7 at different depths.

5. Conclusions

In this paper, we experimentally validated a method for detecting and localizing
shallowly buried targets from under-sampled multi-frequency data. The method relies
on two main ingredients: a suitable scattering model and a simple procedure to process
multi-frequency under-sampled data. The scattering model is based on the equivalence
theorem, which allows one to cast the detection as the reconstruction of equivalent sources
supported over a reference plane. This way, detection becomes a 2D problem. Furthermore,
the incident field is embodied into the unknown equivalent sources. Therefore, coherence
between the TXs and Rxs is not necessary when single-frequency data are employed.
Reconstructions obtained at different frequencies are then suitably combined. This allows
one to mitigate aliasing artifacts and hence to achieve the reconstructions with a very
reduced number of spatial measurements.

Experimental results confirm the feasibility of the method even under a rather complex
scattering scenario, such as the one addressed herein. Indeed, it is shown that the targets
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can be detected by using very few spatial measurement points and a number of properly
selected frequencies. In addition, the results confirm the robustness of the method against
the reflection occurring at the air/soil interface, even when this exhibits some degree
of roughness.

The obtained results can be meant as a proof of concept. However, they encourage
the application of the proposed measurement configuration and of the related inversion
algorithm to more challenging scenarios, where many targets may be present inside a
non-homogeneous terrain and the sensors may be deployed at a larger stand-off distance.
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Abstract: We have developed a multichannel software defined radio-based transceiver measurement
system for use in general microwave tomographic applications. The unit is compact enough to fit
conveniently underneath the current illumination tank of the Dartmouth microwave breast imaging
system. The system includes 16 channels that can both transmit and receive and it operates from
500 MHz to 2.5 GHz while measuring signals down to −140 dBm. As is the case with multichannel
systems, cross-channel leakage is an important specification and must be lower than the noise floors
for each receiver. This design exploits the isolation inherent when the individual receivers for each
channel are physically separate; however, these challenging specifications require more involved
signal isolation techniques at both the system design level and the individual, shielded component
level. We describe the isolation design techniques for the critical system elements and demonstrate
specification compliance at both the component and system level.

Keywords: microwave imaging; breast; multipath; dynamic range; software defined radio; leakage

1. Introduction

Interest in microwave imaging for medical applications has grown significantly since the early
1980s, but more prominently over the past decade. Much of the recent expansion has resulted from
advances in technology that facilitate implementation of novel ultrawideband approaches [1–3] and
the advent of powerful computing that can accommodate time-consuming inverse problems [4–6].
Microwave imaging offers important advantages over other emerging technologies. For instance,
microwave methods achieve far greater penetration depths relative to optical imaging techniques,
which allow broader applications to be pursued [7–9]. Compared to lower frequency electrical
impedance approaches, microwave imaging systems provide superior spatial resolution [10–13].
The list of medical microwave imaging applications is substantial and growing, and currently includes
breast cancer imaging [14,15], stroke diagnosis [16,17], bone health assessment [18], and thermal
therapy monitoring [19–21], among others. In all of these cases, microwave methods either exploit
significant tissue dielectric property contrast [16,17,22–25], or inherent property dependencies [26,27].
While some debate over breast tumor/normal tissue property contrast remains, most studies have
demonstrated that substantial contrast exists between tumor properties and those of both the associated
adipose and fibroglandular tissue [22–29]. Further, several clinical publications indicate effective tumor
detection, diagnosis, and treatment monitoring based on endogenous dielectric property contrast

Sensors 2020, 20, 5436; doi:10.3390/s20185436 www.mdpi.com/journal/sensors69



Sensors 2020, 20, 5436

between tumor and normal tissue [14,15,30]. Although the potential of medical microwave imaging is
significant, tangible progress in terms of physical implementations has been slow.

Hardware challenges arise from the need to devise a near-field configuration that illuminates the
body from multiple directions and receives scattered waves in either monostatic or multistatic modes.
In multistatic cases, the difficulties are compounded by antenna mutual coupling, multipath signal
distortion within the illumination array, and possible cross-channel leakage within the measurement
electronics, themselves [31]. Various strategies have been developed to contend with these signal
corruption problems, for example, by multiplexing high-end vector network analyzers (e.g., [32,33]),
utilizing lossy coupling media (e.g., [6]), and/or translating small numbers or single source–detector
pairs (e.g., [1]).

An alternative and increasingly popular hardware option [34,35] is centered around a measurement
system design based on inexpensive, commercially available software defined radios (SDRs). We have
described a 4-channel prototype using the B210 USRP boards developed by Ettus Research (Santa Clara,
California) [36]. These units incorporate the major functional elements of a sophisticated transmitter and
receiver into a single chip (Analog Devices AD9361, Norwood, MA), and operate over an impressively
large bandwidth of 70 MHz to 6 GHz. They are finding use in a range of radar applications [34].
Measurement requirements for our log transformed tomographic image reconstruction algorithm along
with the associated calibration process have been stable and robust over several generations of hardware
systems. Our microwave tomography implementation that does not require a priori information for
convergence to the desired solution, and does so with less measurement data relative to competing
implementations [37]. These innovations are integral to our success in translating this technology into
the clinic [14,15]. Our software advances are described elsewhere, and a comprehensive summary of the
most recent innovations appears in Meaney et al. [37]. The system design includes a synchronization
strategy, a technique to enhance dynamic range, and a calibration process that compensates for uneven
amplitude and phase steps associated with internal variable gain amplifiers [36]. In this paper, we
focus on the significant challenges associated with channel-to-channel leakage, packaging SDRs into
a compact and light form factor that fits underneath the antenna mounting fixture for our existing
microwave breast imaging system, and instrumentation control through existing software platforms.
In the case of channel-to-channel leakage, we investigate the problem in terms of (a) leakage through
existing transmission lines, and (b) ambient leakage from signals escaping their immediate structures
and propagating along the overall structure as surface waves.

In this context, the novel aspects of the system include: (a) enhanced dynamic range,
(b) multichannel operation with high degree of channel-to-channel isolation, and (c) data acquisition
acceleration via reordering of the data recording sequence. Integration of these attributes enables the
realization of an SDR-based acquisition system with data frames rates short enough for use in clinical
breast examinations. We demonstrate a compact and efficient packaging of a complete multichannel
system, and present results that confirm excellent dynamic range and cross-channel isolation.

2. Methods

2.1. Overall System Configuration

Figure 1 shows a schematic diagram for a 16 channel system. It includes: (a) a single B210
USRP board operating as a dedicated transmitter, (b) a single-pole, 16 throw switch (SP16T) for
multiplexing the transmission channel, (c) a 6-bit, digital attenuator (0−63 dB) for controlling the
reference signal amplitude, (d) a series of 16 single-pole, double-throw switches (SPDT) for toggling
individual channels between transmit and receive modes, (e) a series of 16 single-pole, single-throw
switches (SPST) for extra isolation between the SP16T and SPDT’s (not shown), (f) a series of low
noise amplifiers (LNAs) for increasing received signal strength, (g) a series of 16 monopole antennas,
(h) eight B210 USRP boards for dedicated reception, (i) a SPST in combination with an 8-way power
divider for synchronizing reference signals to each receiver board, and (j) an OctoClock-G (Ettus
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Research, Santa Clara, CA) for providing coherent clock signals and an accurate reference for B210
signal synthesis. Control, bias lines, USB communication lines, power supply, and controlling computer
are not shown. Since our imaging system approach only utilizes transmission data, incorporation
of reflection measurements is unnecessary, and would increase system complexity substantially.
Substantially greater channel-to-channel isolation was achieved by separating the transmit and receive
functions physically and utilizing a dedicated B210 (Ettus Research, Santa Clara, CA) for transmission.
The signal from Channel 1 of the transmit board drove individual antennas as each radiated into the
illumination tank (illumination tank shown later in Figure 5). Part of the signal was separated via
a power divider and passed through a digital attenuator after which it acted as a variable reference
signal for synchronization—a process described in more detail in Meaney et al. [36].

Figure 1. Schematic diagram of the complete system illustrating: (a) transmitting B210 board,
(b) transmitting SP16T switch, (c) 16 switch/amplifier modules, (d) eight dedicated receive B210s,
(e) switch module for the reference signal, and (f) 1-by-8 power dividers for the reference
signal, respectively.

Sets of SP16T, SPDT, and SPST switches direct the transmission signal to a single antenna (one at a
time) while allowing the reception of response signals by the remaining 15 channels. Transmitting
signals must not leak into receiver ports where they will be amplified and detected erroneously by
the receive B210 modules. Here, maintaining adequate isolation is challenging because transmitted
signals are on the order of 0 dBm while received signals on the order of −140 dBm need to be detected.
This level of isolation is uncommon in most measurement systems and demands significant attention.
In particular, signal attenuation from transmitters to receivers directly opposing the signal source
often exceed −120 dBm and can reach −140 dBm or more at higher frequencies. Lossiness in the
coupling liquid confers substantial benefits, specifically, in suppression of surface waves that can
corrupt desired signals [31]. Achieving a large dynamic range with concomitant channel-to-channel
isolation is challenging but essential for high fidelity data acquisition. As a result, measurement
of signals at these low power levels is critical to system success, especially in the breast imaging
context. The SP16T switch was purchased in a connectorized configuration from Universal Microwave
Components Corporation (UMCC SR-J010-16S, Alexandria, VA) while the SPDT and SPST switches
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(Peregrine Semiconductor PE4240 and PE4246, San Diego, CA) were integrated into a custom housing
(one per channel) with the LNA.

LNAs (Mini-Circuits TSS-53LNB+, Brooklyn, NY) were added to the design to improve the
receiver noise figure and dynamic range. The dynamic range of the B210′s by themselves is limited
by the internal A/D discretization error at the low end instead of the actual noise level. By adding
extra gain in front of these boards, the low end of the dynamic range is determined by the noise
floor, which can be controlled by altering the sampling bandwidth—i.e., increasing the sampling time
decreases the noise floor. This design approach was discussed in depth in Meaney et al. [36].

The B210 SDRs are driven primarily by the AD9361 (Analog Devices, Norwood, MA) as an agile
transceiver, which incorporates two channels of transmission and four ports of reception, respectively
(only two of the latter can be used simultaneously). As discussed in detail in Meaney et al. [36],
multiport synchronization is possible and leads to a coherent, multichannel system. Variable gain was
included in order to measure signals at very low received power depending on sampling bandwidth.
In this configuration, Rx ports were utilized for signal reception and one of the Tx/Rx ports was used
for reference signal handling. Since the on-board LO oscillators were synchronized, sampling the
reference signal on only one of the two remaining ports was required. Furthermore, reference signal
sampling could not be performed simultaneously with the signal measurements from the antenna on
the same channel, since the Tx/Rx port shared the same pin on the AD9361 chip with the corresponding
Rx port. In fact, as discussed in Section 2.5.3., the reference signal was sampled simultaneously with
the antenna detection signal from the complementary channel on the same board (only their phase
differences were coherent), and then a second scan samples both antenna signals (multiple subtractions
produced coherent versions of both antenna—see Section 2.5.3.). In addition, more B210 shielding is
critical relative to cross channel leakage, and is discussed in detail below.

The coherent reference signal was fed into a module with three SPSTs placed in series after a digital
attenuator that was inserted for extra isolation, which was necessary because the reference signal is
not turned OFF during antenna transmission and becomes a potential multipath propagation conduit.
The signal was then fed into an 8-way power divider (Pulsar Microwave PS8-12-454/5S, Clifton, NJ)
from which the Channel 1 Tx/Rx ports of the receive B210s were driven. Feeding eight receive B210s
allowed reception to be performed simultaneously on all 15 channels. The system synchronization
utilizing this external reference signal configuration is described in detail in Meaney et al. [36].

The OctoClock-G CDA-2990 (Ettus Research, Santa Clara, CA, USA) provided eight pairs of
outputs to the B210 SDR. The first signal is a stable, 10 MHz reference that was used to synchronize
the B210s, and the second is a 1 Hz PPS clock signal that was utilized for B210 coordination. In our
system configuration, eight signal pairs service nine B210s: one pair is fed into two low frequency
power splitters that subsequently drive two B210s.

The list below summarizes the overall system costs. Costs for instruments with comparable
performance (such as the Keysight M9800A and Rohde and Schwarz ZNBT) are in excess of $120,000.
Utilizing the Ettus B210 SDRs as the foundational building block offers a substantial price advantage.

Ettus OctoClock $2030

Ettus B210 (9) $11,538

UMCC 1 × 16 Switch $4620

Pulsar 1 × 8 Power Divider $750

Miscellaneous cables, connectors, and wires $1200

Shielded housings $3500

Switch/amplifier circuit boards & components (16) $1200

NI USB digital I/O boards (3) $370

USB hubs (2) $150

Total $25,358
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2.2. Isolation and Shielding

Two components of the hardware require significant shielding to attenuate signals propagating
into the environment and back into the system—the B210 USRP circuit boards and the
switch/amplifier modules.

2.2.1. B210 USRP Housing Design

B210 USRP circuit boards can be purchased with no shield or one provided by the manufacturer
as shown in Figure 2a,b. Our system was comprised of nine B210 boards—one serving as a dedicated
transmitter and the remaining eight acting as dedicated receivers (two channels per board to produce a
16 channel system).

 

(a) 

 

(b) 

Figure 2. Photographs of the B210 USRP circuit board (a) without and (b) with a commercial cover.

In order to develop a suitable shield, we explored several options before converging on the final
design shown in Figure 3. An initial design, based on housing walls configured to accommodate
existing B210 connectors, was unsuccessful (signals easily escaped through gaps between connector
flanges and the housing wall). Instead, coaxial SMA connectors were removed and panel mount flange
connectors were utilized to achieve a significantly better seal. The power connector (lower left in
Figure 2) was also replaced with a panel mount coaxial cable connector to increase isolation further.
The USB3.0 connector was retained on the board and was accommodated through a cutout in the
housing wall around its casement.

 

Figure 3. Photograph of the B210 USRP circuit board mounted inside its custom shielded housing
and associated cover, which exhibits a central ridge that isolates RF fields from the digital portion of
the circuitry.
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The shielded housing cover was designed with a raised surface that extended 0.5 mm into the
main housing chamber, and fit snugly within the bottom of the housing—adding isolation from
ambient fields escaping through seals between housing parts and aligning components to minimize
damage during assembly. The board shown in Figure 3 was logically divided into two functional areas:
(a) the RF componentry (right) and (b) the digital interface, power supplies, and FPGA controlling unit
(left). A gold band was printed on the top surface with plated-through vias to the ground plane below.
We incorporated a ridge into the housing cover that closely contacted the gold band to prevent leakage
of RF signals from the right portion of the board.

2.2.2. Switch/Amplifier Housing Design

The switch/amplifier module (see Figure 4) incorporated a single-pole/single-throw (SPST) switch
(lower left), a single-pole/double-throw (SPDT) switch (lower right), and a low noise amplifier (LNA;
top right). The SPDT selects whether a particular antenna operates in transmit or receive mode. In the
transmit mode, the signal from the transmit B210 passes through both switches directly to the antenna
port for propagation into the illumination tank. In the receive mode, the signal passes from the antenna
port, through the SPDT and LNA to the receive port. This SPDT selects the receiver mode, and the LNA
added overall gain to the composite receive channel (including the receiver portion of the B210 boards)
and reduced the effective channel noise figure [36]. The SPST also added extra isolation so that signals
did not leak from the transmitter to the receiver through the circuitry, but instead propagated along
the desired path into the tank and through intervening object. The design goal for minimizing leakage
from the transmit to receive ports was 80 dB attenuation. The design compartmentalized components
such that openings between each acted as quasi-cutoffwaveguides, which attenuated unwanted signal
propagation between partitions—leaving the coplanar waveguide transmission line as the only viable
signal path. Bias and control lines were connected via resin sealed, bolt-in filters (API Technologies
Corporation—Spectrum Control—part # 51-729-312, Schwabach, Germany) threaded into the housing
floor. Previous analysis of connectorized, single component devices demonstrated that bias and
control lines created significant leakage pathways. The extra filtering impacted ON/OFF switching
speed; however, elimination of signal corruption was deemed more important even though the design
degraded data acquisition speed slightly.

 

Figure 4. Photograph of the switch/amplifier module illustrating compartmentalization of the
single-pole/single-throw (SPST; left), single-pole/double-throw (SPDT; lower right), and low noise
amplifier (LNA; upper right), and associated cover with raised surfaces.
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2.2.3. Antenna Mutual Coupling

While not part of the microwave transmit/receive electronics, antenna mutual coupling warrants
some discussion. The system feeds an array of 16 monopole antennas submerged in a glycerin: water
bath. Figure 5 shows (a) a photograph of a test illumination chamber and (b) a schematic diagram
of the imaging field-of-view with a test object present. In our measurement system, a complement
of 13 antennas directly opposite the transmitter receives signals from each transmitting antenna.
We have studied the effects of the presence of adjacent antennas on the signals received. In Paulsen
and Meaney [38] and Meaney et al. [39], we identified the signal perturbations caused by adjacent
antennas and developed a strategy for compensating for the effects by modeling each adjacent antenna
as an electromagnetic sink. The compensation is effective and produces substantially improved
images. Interestingly, at frequencies above 1000 MHz, these perturbations were not observed, primarily
because the lossiness of the glycerin-based coupling liquid increased substantially with frequency,
and effectively suppressed the interantenna interactions.

 

(a) 

 

(b) 

Figure 5. (a) Photograph of a test illumination chamber and (b) schematic diagram of the imaging
field-of-view with 16 monopole antennas and the presence of a yellow test object.

2.3. Packaging

Key features that directly addressed expansion of our 4-channel prototype [36] were: (1) physical
separation of receive modules, (2) separation of the transmit module from receive modules, (3) SPST
addition to the switch/amplifier modules to minimize signal leakage from the transmitter when
operating as a receiver, and (4) component compartmentalization in the switch/amplifier modules to
reduce internal multipath propagation of unwanted surface waves.

Figure 6a,b shows two views of the microwave subsystem as (a) fully assembled and in a
(b) separated configuration. The unit was mounted below the antenna array in the operational mode
as shown in Figure 6c. Components were organized to minimize wiring and cabling lengths and
complexity. For example, groups of eight switch/amp modules had their associated digital I/O cards
and power supply screw terminals located directly above to keep bias and control lines as short as
possible. Connections to external computers and power supplies were limited to two USB cables,
a single 110 V 60 Hz power cable, and two DC power supply wires.
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(a) (b) (c) 

Figure 6. Photographs of the microwave electronic subsystem showing: (a) a complete system fully
assembled external to the imaging system, (b) electronics with the grouping of eight shielded B210s
(bottom) and switch/amplifier modules (top; USB hubs removed to expose componentry), respectively,
and (c) a complete system integrated below the imaging tank and supported by the antenna array
mounting plate.

2.4. Data Acquisition Sequencing and Time Considerations

Several techniques were combined to accomplish efficient data acquisition: (1) transmission runs
continuously, (2) time stabilization occurs at start-up, and (3) transmission antenna switching occurs
through the SP16T whose rise time is well under 1 μsec.

The data acquisition sequence was arranged so that a single receive module was selected first
and then transmission was incremented over the remaining antennas. Delays because receiver gain
levels need to be adjusted did occur (depending on which transmitting antenna was broadcasting),
but only involved one or two acquisitions before settling. Here, a single data set was comprised of
10,000 measurements obtained with a sampling rate of 10 MHz for an acquisition time of 8.0 msec.
Since stabilization time for each module was identical, the process was initiated for a subsequent module
several seconds before the data acquisition was completed from the current module. Data acquisition
time for a single receive module from the 14 complementary transmitting antennas and for 5 frequencies
required 15 s—total time to acquire data from all 8 receive modules was 2.2 min for a given antenna
array position. For each transmitting antenna, a closely coupled channel was always available within
the system design, which allowed associated switch/amplifier modules to be connected to the same
receive B210 circuit board. Since complete isolation of the transmitting signal from neighboring
receive channels was difficult, we omitted the adjacent data points, leaving 14 receive signals for each
transmitter (7 boards with two receivers per board). Our previous experience has shown that image
quality is not reduced significantly, if at all, when 13 receiver antennas are used instead of the full
complement of 15 channels (i.e., the two receivers closest to the transmitter are omitted).

2.5. Software and Performance Considerations

Software challenges associated with maintaining data acquisition performance included:
(1) retaining coherence between transmit channels on a single board—especially when changing
operating frequency, (2) utilizing the receive function on Tx/Rx ports, (3) acquiring signals from
different ports on the same board coherently, and (4) delay times associated with each receive B210
board when switching between boards.

2.5.1. Transmit Channel Coherence

To maintain transmit channel coherence, only signals from one of the transmitting ports were used
by incorporating a power divider to create two coherent waveforms, and one of which was attenuated
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digitally and served as the reference signal, which guaranteed coherence (Figure 1). In general,
maintaining coherence overcomes limitations that occur when the two transmit signals are not phase
locked and different boards, themselves, are not phase locked. Without coherence, the measurement
phase becomes arbitrary. We exploited the B210 design feature that the receive channels within a single
board are coherent (i.e., differences in their phase are constant), and performed combinations of signal
acquisitions involving a transmitter reference signal to maintain coherence between the transmitter
board and all receiver boards. The details of this design strategy are discussed in Meaney et al. [36].

2.5.2. Tx/Rx Port Receive Function

Each Ettus B210 board was comprised of two channels—an Rx port for receiving signals and a
Tx/Rx port for both transmitting and receiving signals. Signal leakage occurred within the B210 board,
itself, from an unconnected Tx/Rx port to its associated Rx port such that a reference signal could be
connected to the Tx/Rx port, and sampled on the Rx port. Respective signal power levels were optimized
to mitigate cross-channel contamination and associated interference through a calibration process.

2.5.3. Coherent Signal Acquisition Across Same-Board Ports

Receive signals from the two channels (Rx and Tx/Rx) on each board were coherent only when
sampled simultaneously. Accordingly, reference signal amplitude was tailored to minimize signal
corruption from channel crosstalk.

2.5.4. Set-up Time Minimization

Relative to earlier prototypes [40], data acquisition was reconfigured to loop over receive modules,
and then loop over associated transmitting antennas for each module. Transmitter channel selection
was performed by an external SP16T switch (not by the B210 boards), which offered rise times on
the order of 10 nsec, which were negligible compared to receive board start up times. Only a few
receive boards can be operational at any given time without overloading the control computer. Board
set up times were minimized by starting each subsequent board before its previous counterpart had
completed its data acquisition cycle. Under these conditions, the majority of next-board set up times
was performed while data acquisition continued, which allowed sets of data consisting of 5 frequencies
and 7 vertical antenna positions to be completed in approximately 15 min per breast.

2.5.5. System Calibration

Our imaging algorithm utilizes measurement data formed as differences between field values
acquired when an object is present in the illumination chamber relative to when the tank is empty [40].
The subtraction was performed in terms of the logarithm of field values, and therefore, processed
both log magnitudes and phases. It also cancelled phase and amplitude variations associated with
the individual antennas, cables, and measurement channels, and preserved measurement coherence.
Coherence for this configuration was described and discussed in detail in Meaney et al. [36]. Processing
log magnitudes and phases required phase unwrapping, and unwrapping strategies are described in
detail in Meaney et al. [37].

3. Results

3.1. Isolation of Individual B210s

To test isolation characteristics of representative configurations, all B210 coaxial connectors were
terminated with shielded matched loads and Channel 1 of each board was programmed to transmit
0 dBm signals at frequencies from 0.9 to 1.7 GHz. Configurations under the test included (a) B210 with
no shielding and (b) B210 mounted in the custom shielded housing (see Figure 3). Measurements
were recorded at representative locations (Figure 7) to assess shielding benefits, and are reported in
Tables 1 and 2 for transmission from TX/Rx Channel 1 and 2 ports, respectively. An Electro-Metrics
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(Johnstown, NY, USA) hand-held probe (EM-6992) connected to Keysight Technologies (formerly HP)
8563E spectrum analyzer (26.5 GHz) sensed emissions outside of the housing at selected locations.

 
Figure 7. Photograph of the enclosed B210 with labels indicating probe measurement sites.

Table 1. Measured leakage signal values at 900, 1300, and 1700 MHz for circuit board locations with:
(a) no shield and (b) shielded housing, respectively, for Channel 1.

Location of
Measurement Points

No Shielding (dBm) Custom Shield (dBm) Difference (dBm)

900 MHz 1300 MHz1700 MHz900 MHz 1300 MHz1700 MHz900 MHz 1300 MHz1700 MHz

Location 1 −74 −80 −83 −108 −106 −109 −34 −24 −26
Location 2 −66 −70 −77 −99 −98 −107 −33 −28 −30
Location 3 −86 −75 −74 −112 −111 −107 −26 −36 −33
Location 4 −84 −80 −73 −106 −112 −109 −22 −32 −36
Location 5 −94 −99 −92 −105 −112 −115 −11 −13 −23
Location 6 −94 −109 −94 −94 −102 −112 0 +7 −18
Location 7 −98 −97 −85 −95 −102 −114 +3 −5 −29
Location 8 −100 −92 −78 −101 −106 −114 −1 −14 −36

Table 2. Measured leakage signal values at 900, 1300, and 1700 MHz for circuit board locations with:
(a) no shield and (b) shielded housing, respectively, for Channel 2.

Location of
Measurement Points

No Shielding (dBm) Custom Shield (dBm) Difference (dBm)

900 MHz 1300 MHz1700 MHz900 MHz 1300 MHz1700 MHz900 MHz 1300 MHz1700 MHz

Location 1 −81 −89 −90 −108 −112 −109 −27 −23 −19
Location 2 −85 −81 −84 −114 −113 −102 −29 −32 −18
Location 3 −82 −78 −80 −96 −99 −102 −14 −21 −22
Location 4 −78 −87 −81 −92 −94 −102 −14 −7 −21
Location 5 −100 −89 −94 −106 −111 −112 −6 −22 −18
Location 6 −97 −89 −102 −99 −108 −114 −2 −19 −12
Location 7 −92 −90 −102 −92 −102 −114 0 −12 −12
Location 8 −90 −88 −92 −99 −107 −116 −9 −19 −24

Predictably, leakage values were reduced for shielded B210s relative to unshielded boards,
and advantages were more pronounced at the higher frequencies. For channel transmissions with no
shield, leakage signals were high relatively at measurement points 1–4 compared to 5–8 (see Figure 7),
likely due to the RF circuitry being immediately adjacent to these connectors compared to the more
distant measurement sites (5–8). For points 1–4, shielded values were uniformly superior. For positions
5–8, leakage was also superior uniformly with shielding for the highest frequency, but more uneven
for lower frequencies. Interestingly, instances occurred where unshielded values were nearly identical
or slightly better than their shielded counterparts. In cases where shielded and unshielded values
were similar, individual measurements were promising (above −94 dBm once).

Predictably, leakage values were reduced for shielded B210s relative to unshielded boards,
and advantages were more pronounced at the higher frequencies. For channel transmissions with no
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shield, leakage signals were high relatively at measurement points 1–4 compared to 5–8 (see Figure 7),
likely due to the RF circuitry being immediately adjacent to these connectors compared to the more
distant measurement sites (5–8). For points 1–4, shielded values were uniformly superior. For positions
5–8, leakage was also superior uniformly with shielding for the highest frequency, but more uneven
for lower frequencies. Interestingly, instances occurred where unshielded values were nearly identical
or slightly better than their shielded counterparts. In cases where shielded and unshielded values
were similar, individual measurements were promising (going above −94 dBm only once).

3.2. Performance of the Switch/Amplifier Module

Figure 8 shows plots of insertion loss (or gain) for cases where (a) signals were transmitted to an
antenna, (b) signals were received from an antenna and amplified prior to being measured by the B210
receiver, and (c) leakage signals from a transmitter port to receiver port when the switch/amplifier
module operated in the receive mode. The latter leakage signal is also shown when the housing cover
was removed (i.e., no shielding). For (a), insertion loss was mild and less than 2.4 dB up to 2 GHz,
which is nominally the highest frequency used in the imaging system. The result implies that the SPST
and SPDT switches were operating efficiently and power loss was minimal in the system transmission
mode. Similarly, gain for signals received by antennas (and directed to receiver boards) was relatively
flat and ranged from 20.0 to 21.3 dB with modest monotonically decreasing gain up to 2 GHz. Isolation
was greater than 80 dB over the frequency range of interest when the housing enclosure was available,
and remained above 70 dB up to 3 GHz. In the unshielded case, values were substantially worse and
uneven across the frequency range likely due to excitation of surface wave modes that propagated
over the circuit board and housing surfaces and recombined in unpredictable patterns with the desired
signals at the output. For the enclosed case, small channels between compartments acted as cutoff
waveguides and provided isolation for all modes other than the desired Quasi-TEM transmission line
mode that led to well-behaved transfer characteristics.

 

Figure 8. Plots of the switch/amplifier insertion loss (or gain) for the transmission mode (between the
Tx and Ant ports), and receive mode (between the Ant and Rx ports). Leakage between transmit and
receive ports while operational in the receive mode is shown for the completely shielded housing and
the compartmentalized housing without cover, respectively.

We also tested housing isolation for ambient signals. Figure 9 shows a SolidWorks rendering of the
switch/amplifier module with four associated measurement sites: (a) connected to the antenna (Ant),
(b) connected to the transmission network (Tx), (c) connected to the receive B210 boards (Rx), and (d)
not directly associated with a connector. In one test, a 0 dBm signal was supplied to the Tx port while
the other ports were terminated with shielded 50 ohm loads. Switch control lines were set so that the
signal was transmitted to the antenna port. Measurement data are presented in Table 3. Interestingly,
no significant difference occurred in shielded and unshielded values for the three frequencies reported
in the table. Overall, measurements were lower than −90 dBm. Signals measured near Rx ports were
noticeably lower. While signals normally emanating from this port were amplified by the low noise
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amplifier by about 20 dB, the SPDT switch restricted signal propagation to the port, which more than
compensated for the additional gain.

Figure 9. SolidWorks 3D rendering of the switch amplifier housing with four measurement sites.

Table 3. Average transmission network (Tx) mode leakage signal measurements at designated locations
for 900, 1300, and 1700 MHz, respectively.

Location of
Measurement Points

in TX Mode

No Shielding (dBm) Custom Shield (dBm) Difference (dBm)

900 MHz 1300 MHz1700 MHz900 MHz 1300 MHz1700 MHz900 MHz 1300 MHz1700 MHz

Ant −104 −107 −107 −97 −106 −106 +7 +1 +1
Tx −101 −99 −99 −91 −99 −87 +10 0 +12
Rx −109 −105 −115 −109 −100 −107 0 +5 +8

Location 4 −95 −90 −92 −97 −95 −103 −2 −5 −11

In a second test, a −10 dBm signal was fed into the antenna port while the remaining ports were
terminated with shielded matched loads. The SPDT control line was set to direct a signal coming from
the antenna port to pass through the low noise amplifier and Rx port. The measurement data are
presented in Table 4. Substantial improvement in leakage occurred with the shielded housing relative
to the unshielded case for all measurements. Interestingly, signals measured at the Rx site were about
10 dB higher than those from the other sites, which most likely reflected the fact that these signals have
been amplified previously by the LNA (which does not occur for the other ports).

Table 4. Average receive B210 board (Rx) mode leakage signal measurements at designated locations
for 900, 1300, and 1700 MHz, respectively.

Location of
Measurement Points

in TX Mode

No Shielding (dBm) Custom Shield (dBm) Difference (dBm)

900 MHz 1300 MHz1700 MHz900 MHz 1300 MHz1700 MHz900 MHz 1300 MHz1700 MHz

Ant −91 −87 −96 −115 −116 −112 −24 −29 −16
Tx −105 −88 −87 −114 −117 −118 −9 −29 −31
Rx −83 −82 −84 −102 −102 −107 −19 −20 −23

Location 4 −104 −86 −80 −115 −115 −118 −11 −29 −38

3.3. System Isolation Specifications

Antenna ports in the switch/amplifier modules were terminated with 50 ohm loads and a 0 dBm
signal was the output from the transmit B210 and response signals were measured at each of 16 channels
with receiver gain levels set to their maximum (76 dB). Measurements were repeated for frequencies
from 700 to 1900 MHz in 200 MHz increments. Figure 10 reports the isolation level measured at each
port when the transmit channel was selected to be Channel 1, and remaining ports were activated
in the receive mode. Under these conditions, isolation levels were largely below −140 dB and closer
to −150 dB. A few measurements for the 700 MHz case rose above the −130 dB level. A few of the
1100 MHz values were also above the −140 dB level.
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Figure 10. Isolation levels measured at receivers for signal transmission from Channel 1 at 7 frequencies
when remaining channels were activated in the receive mode and antenna ports were terminated with
a 50 Ω matched load. Except for the 700 MHz case, all values are less than or equal to −135 dB.

3.4. Images Reconstructed from Measurement Data

For the imaging experiment, we utilized a 2.7 cm × 2.7 cm square cylindrical phantom filled with
60% glycerin and offset 3.2 cm from the center. Its properties were εr = 51.53 and σ = 1.18 S/m at
1100 MHz. The background medium was an 80% glycerin bath having εr = 29.87 and σ = 1.25 S/m
at 1100 MHz. The height of the liquid was adjusted to be the same as when the object is present and
when it was absent. Figure 11a shows measured magnitudes for a single transmitting antenna when
the object signals were calibrated, i.e., they had the measurement values for the homogeneous bath
subtracted (phases were also shown for completeness). Here, leakage was assumed to arise from any
one of the situations described above. Measured data were converted from the log magnitude/phase
format to the associated complex numbers. We generated random numbers between −1 and 1
for the real and imaginary leakage signal components and multiplied them by amplitude factors,
which were equivalent to those associated with the prescribed leakage simulation levels utilized in the
results (in these cases, phases and amplitudes of multipath contributions are unknown. Accordingly,
we utilized this random number approach to control the amplitude within a worst-case scenario for the
phase. Ultimately, the experiment assesses trends in the presence of progressively distorting signals).
These numbers were then added to the complex-valued versions of the original data. Once these
terms were summed, they were transformed back to their log magnitude and phase forms, and used
directly in the reconstruction algorithm. Here, deviations between the non-leakage case and the
background were more pronounced (because these values were normalized to those of the background,
the background values were effectively zero). Plots confirm the observations in (a), i.e., that the field
values varied most for the most remote antennas. They also show signal deviations increased as
leakage levels increased for both magnitude and phase.

Figure 12a reports reconstructed relative permittivity and conductivity images at 1100 MHz with
no leakage signal. Images were reconstructed with a Gauss–Newton iterative algorithm under log
transformation [37]. Regularization consisted of a standard Levenberg–Marquardt scheme, and the
initial image estimate corresponded to the properties of the homogeneous bath. The algorithm
completed 50 iterations with an iteration step size of 0.2, which required 5.5 min of computation time
to produce each image pair. The permittivity inclusion was recovered at the correct location and with
the right size. Artifact levels were minimal in the permittivity images but higher in the conductivity
case. In addition, the squared shape of the inclusion cross section is also evident. Conductivity images
have the inclusion recovered with the correct size and location, approximately, and the recovered
inclusion property values were lower than the background as expected.
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(a) (b) 

 
(c) 

Figure 11. Plots of measurement data for antenna 1 transmission including cases with varying levels
of added leakage signal: (a) raw magnitude, (b) calibrated magnitude, and (c) calibrated phases.
The dashed black line represents the measured signal for the homogeneous bath whereas the solid
black line indicates results when the object is present, respectively. Colored lines symbolize signals
when the object is present but with progressively increasing leakage added.

    

           (a)     (b)     (c)     (d)       (e) 

Figure 12. Reconstructed relative permittivity (top) and conductivity (bottom) at 1100 MHz for (a) no
signal leakage, and (b–e) signal leakage of −130 dB, −120 dB, −110 dB, and −100 dB, respectively, of the
square object depicted in Figure 5 for the 14.2 cm diameter field of view.

Figure 12b–e shows images from the same experiment but with data with increased levels of
leakage signals. For the −130 through to −110 dB leakage, the permittivity object was recovered
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properly but with increasing degrees of artifacts. For the −100 dB case, the image reconstruction
diverged. The conductivity object was visible in the −130 dB case, and not discernable at all once signal
leakage reached −110 dB. Artifacts increased with increasing leakage signal.

Figure 13a,b shows the plots of permittivity and conductivity values along transects through the
center of the imaging zone (the actual property distributions are shown for reference). These results
confirm previous observations that the algorithm recovers correct trends in the actual permittivity
distribution, although peak values in the object are attenuated because of smoothing inherent in the
regularization process. The conductivity profile is flatter as expected because contrast between the
object and background is low, and the algorithm recovers values slightly lower than the background
in the proper location, even though the object properties are only 5.6% lower than the background.
Artifact levels are higher in the conductivity images, which is a consistent feature of our approach
as well as other systems [6]. Corresponding plots are also shown for the different leakage levels.
These results confirm that when leakage is suppressed sufficiently, quality images can be recovered
from the data. As leakage levels increase, image quality progressively decreases.

 

(a) 

 

(b) 

Figure 13. Horizontal transects through the 1100 MHz (a) permittivity and (b) conductivity images
shown in Figure 12.

4. Discussion

We examined leakage sources from critical elements in the system—the B210 transceivers and the
switch/amplifier modules—because they were the most likely to cause signal contamination. In the
case of B210 transceivers, we examined their behavior in the transmission mode while we tested the
switch/amplifier modules in both transmit and receive modes. Leakage tests compared instances in
which boards were operated with and without the shielding. We also measured leakage effects when
boards were isolated with a commercial enclosure supplied by Ettus Research, and these results were
not noticeably different from the non-shielded case. Leakage results obtained with custom shields were
superior and the leakage signals that did appear were most likely derived from seams between the top
and bottom housing parts. While overall system design specifications called for cross-channel isolation
greater than 140 dB, the Electro-Metrics probe we used measured levels near −100 dB, which were
considered acceptable because these data only reflect a one-way loss through the shielded housing.

Results for the switch/amplifier module exhibited similar trends. Here, we examined both
unwanted signals propagating through existing transmission lines, and those caused by surface waves
that leaked between shielded housing structures. For the former, leakage signals from the Tx to Rx
port were generally below −80 dB. Given this loss would be combined with about 65 dB of attenuation
from the SP16T switch associated with the dedicated transmit B210 channel, the maximum unwanted
signal reaching the receive B210 was expected to be on the order of −145 dBm, which is acceptable
because the lowest level signals getting to the B210 were expected to be on the order of −120 dBm.
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Corresponding surface wave-related leakage results were similar. Interestingly, leakage did not appear
to be significantly better in the shielded case in the transmit mode. Nonetheless, overall leakage levels
were low and suggest these signals were not problematic. When the probe was placed above uncovered
circuits at random positions, we observed transient values often 30–40 dB higher than those measured
near connectors. In the receive mode, the shielded housing offered a clear advantage and isolation
data reported here were informative relative to overall system performance.

Field measurement power levels varied when no breast was present relative to when breasts
of different sizes and densities were placed in the illumination tank. For example, the magnitude
plot in Figure 11 for the case when no object or breast was present represented a lower bound on
signal amplitude for the particular liquid and operating frequency given the lossy coupling medium.
When the breast was present, signal strengths were higher, and could be as much as 30 dB higher for
a fatty breast and 5–10 dB higher for denser breasts. The example emphasizes the fact that central
antenna signals were impacted most by leakage levels, similarly to the phantom results, and that
the data acquisition needs to handle a broad range of signal levels. Our imaging algorithm was
able to recover images of quality similar to those reported in the past for standard phantoms with
relatively high property contrast relative to the background. These results were consistent with image
reconstruction performance obtained with data acquired with previous hardware implementations of
our imaging system, and confirmed the multichannel software defined radio approach described here
was operating properly.

While classical imaging defines resolution in terms of the Rayleigh criteria, we were typically
able to recover objects considerably smaller than the λ/2 standard. Our experience indicates shows
we could detect objects as small as λ/12, although we could not characterize their size or electrical
properties, accurately. Experiments with varying levels of noise indicate that resolution was inversely
related to the noise level.

5. Conclusions

We developed a high performance, multichannel measurement system that could be used for
microwave imaging of biological targets. Novel aspects of the system include: (a) an unusually high
dynamic range that is critical in medical applications involving lossy coupling media; (b) multichannel
SDR-based design with multipath signals reduced to levels having minimal impact on reconstructed
image quality; (c) reorganization of data acquisition sequencing to reduce data recording time
significantly; and (d) complete integration of these features that makes clinical microwave exams
possible. The system operated from 500 MHz to 2.5 GHz, allowed transmission and reception from 16
channels, had a dynamic range of roughly 140 dB, and achieved excellent cross-channel signal isolation.
The system design is compact and can be located below the associated antenna array. It also included
design features required to ensure coherence between transmit and receive signals. By exploiting
emerging technology designed into commercially available software defined radios as a fundamental
system building blocks, overall system costs and complexity were reduced dramatically while still
leading to a high-performance measurement system.
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Abstract: This work focuses on brain stroke imaging via microwave technology. In particular,
the open issue of monitoring patients after stroke onset is addressed here in order to provide clinicians
with a tool to control the effectiveness of administered therapies during the follow-up period. In this
paper, a novel prototype is presented and characterized. The device is based on a low-complexity
architecture which makes use of a minimum number of properly positioned and designed antennas
placed on a helmet. It exploits a differential imaging approach and provides 3D images of the
stroke. Preliminary experiments involving a 3D phantom filled with brain tissue-mimicking
liquid confirm the potential of the technology in imaging a spherical target mimicking a stroke
of a radius equal to 1.25 cm.

Keywords: microwave imaging; brain stroke; monitoring; antenna array

1. Introduction

Brain stroke is one of the main causes of permanent injury and death worldwide, with an incidence
of over 5 million annual deaths [1]. Since prompt intervention (such as the administration of specific
drugs that can affect the acute stage of the stroke) can significantly improve the prognosis, a rapid
diagnosis of the disease and continuous monitoring after its onset represent important clinical goals.

Currently, the most effective tool for brain stroke diagnosis is the imaging-based diagnostics
performed in an emergency department after the recognition of stroke-like symptoms. In this respect,
magnetic resonance imaging (MRI) or X-ray based computerized tomography (CT) are the clinically
adopted techniques. However, although they are continuously evolving, these technologies still have
several limitations. In particular, despite its high resolution and accuracy, MRI is not widely available
in emergency settings and is therefore actually used only as a secondary diagnostic tool [2,3]. On the
other hand, non-contrast CT may be limited by the fact that the early signs of ischemia may not be
easily recognizable by non-experienced personnel. Moreover, due to the use of ionizing radiation, CT is
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not suitable for repeated examinations, which are especially useful for post-acute monitoring purposes.
Furthermore, both MRI and CT equipment is bulky and so not currently suited for ambulance use or
as bedside devices.

The above circumstances have led to increased interest in the development of different diagnostic
imaging techniques [3]. Among others, microwave imaging (MWI) [4] has emerged as a complementary
technique which is able to address the different needs arising in stroke diagnosis and management,
namely the early—possibly prehospital—diagnosis of the kind of stroke (ischemia or hemorrhage),
bedside brain imaging and continuous brain monitoring for stroke in the post-acute stage. MWI takes
advantage of the different electric properties (electric permittivity and conductivity) that human
tissues exhibit at microwave frequencies depending on their kind (e.g., blood versus gray or white
matter) and pathological status. These differences permit a functional map of the inspected anatomical
region to be obtained. The benefits of MWI mainly stem from the non-ionizing nature of microwave
radiation and the reduced intensity required to obtain reliable imaging (at an intensity comparable
to that currently used for mobile phones), which make it completely safe and suitable for repeated
applications. Moreover, MWI technology is cost-effective and benefits from a reduced size, as it makes
use of miniaturized, low-cost, off-the-shelf components that are available in the microwave frequency
range for signal generation and acquisition [5] and low-cost accelerators to speed up processing [6].

Recently, several MWI devices and prototypes have been proposed [7–17]. Among them,
the two most prominent examples (which are already being tested on humans) are the Strokefinder,
developed by Medfield Diagnostics [7,8], and the EMTensor BrainScanner [10]. The Strokefinder is a
device which aims to discriminate between ischemic and hemorrhagic strokes in the early stage of
patient rescue, based on an automated classification which is carried out by comparing the measured
data to a database (obtained by data collected from already examined patients). This device is
characterized by its very simple and compact hardware, consisting of a small number of printed
antennas mounted on a support that can be adapted to the patient’s head. Some initial clinical trials
have been reported for the Strokefinder [7], but it should be remarked that it does not provide images;
thus, its intended role is to complement standard imaging tools. The EMTensor BrainScanner aims
to perform brain stroke tomography. The system is characterized by a high complexity, as it consists
of a large number of radiating elements (177 truncated waveguides, loaded with ceramic material of
appropriate permittivity [10]), which considerably increase its cost and size, thus reducing to some
extent the advantages of its use. In addition, the image reconstruction task involves the processing of
a considerable amount of measured data and has to face the pitfalls of dealing with a non-linear and
ill-posed inverse problem. This entails long elaboration times and possibly results in false solutions;
i.e., producing images which fulfill the underlying optimization but are different from the ground truth.

In this paper, we describe the realization, characterization and initial experimental validation of
a prototype device representing a different approach to dealing with a still open issue in stroke
management; that is, continuous monitoring during the hospitalization of the patient in order
to evaluate the effectiveness of the administered therapies [18]. This specific application aims to
image only a “small” variation occurring in the brain and not its overall structures and features.
As a consequence, it is possible to keep the device complexity low, and therefore also its size and cost,
as well as to rely on the Born approximation to model the scattering phenomenon, thus enabling reliable
real-time imaging. Accordingly, the proposed device is based on the low-complexity architecture
designed with the rigorous procedure as described in [18]. Moreover, it adopts a differential imaging
approach, where data gathered at two different acquisition times are processed [19] with simple and
fast imaging algorithms based on the distorted Born approximation [18,19].

The proposed system provides 3D images of the head by relying on data measured through
an array of 24 printed monopole antennas organized as an anatomically conformal shape mimicking
a wearable and adaptable helmet. Each antenna is enclosed in a box of graphite-silicon material,
acting as the coupling medium, and connected to a two-port vector network analyzer (VNA) through
a 24 × 24 switching matrix, which allows the whole differential scattering matrix required for imaging
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to be acquired. The use of a semi-solid matching medium is a distinct feature of the system which
allows for an increased simplicity of operation and repeatability, as compared to other arrangements
that make use of a coupling liquid [10]. Finally, as detailed below, the device presented here is equipped
with a “digital twin” based on a proprietary electromagnetic (EM) solver that allows us to properly
characterize and foresee its behavior, as well as to provide the building blocks needed for the imaging.

In the following sections, the different components of the device are described and discussed,
and a first experimental assessment on an anthropomorphic head phantom is presented. This phantom
consists of a plastic shell with the shape and size of a human head, which is filled up with
a homogeneous material whose dielectric properties are equal to an average value of the properties
of the different tissues present in the brain. The reported experimental results provide an initial
demonstration of the capabilities of the developed device.

It is worth noting that the presented system is not the only example of a low-complexity device
for brain imaging, as other devices, using a low number of antennas (8–16) arranged in a circular
array, have been proposed [12–16]. However, these devices only provide 2D maps of the transverse
cross-section of the head in the array plane , whereas the device herein presented provides a full 3D
image of the head.

2. Material and Methods

2.1. Three-Dimensional Microwave Imaging System Design

In this section, we present the choices made in the design of the proposed imaging system
(i.e., the operating frequency, coupling medium, antenna number and arrangement).

The operating frequency as well as the properties of the selected coupling medium were
set according to previous findings obtained from theoretical formulations and experimentally
validated [20] and [4] (Chapter 2). In particular, a working frequency of around 1 GHz and a coupling
medium with a relative permittivity of around 20 were determined to be optimal and therefore chosen
for the realization of the hardware. As all the simulations and measurements were made at 1 GHz,
this operating frequency will be considered as implicit in the following.

To design the layout of the array of antennas (the number and position of the radiating/measuring
elements), a recently proposed rigorous procedure was adopted [18,21]. This procedure is based on the
analysis of the spectral properties of the discretized scattering operator [22], assuming the antennas
to be located on a surface conformal to the head (a helmet) and taking into account the dynamic
range and signal-to-noise ratio (SNR) of the adopted measurement device as well as the actual size
of the antennas. The result of this study allowed us to identify a 24-element array as the suitable
candidate to perform the desired imaging task while keeping the system complexity as low as possible.
The expected performances were confirmed by a preliminary numerical analysis [18].

As far as the choice of the imaging algorithm was concerned, the key aspect was that the targeted
application was to monitor the time evolution of the stroke. Hence, a differential approach was
a suitable choice [18,23]. In particular, the input data of the imaging problem, denoted as ΔS in
the following, were represented by the difference between the scattering matrices measured at two
different times, while the output was a 3D image showing the possible variation of the electric contrast
of the brain tissues—i.e., Δχ—occurring between these two different times. The differential electric
contrast function Δχ is defined as Δε/εb, where εb is the complex permittivity of the non-homogeneous
background at the reference instant (e.g., a map of the brain at the first diagnosis) and Δε is the complex
permittivity variation between the two time instants.
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Since the contrast variation Δχ was localized in a small portion of the imaging domain, it was
possible to take advantage of the distorted Born approximation [22], so that a linear relationship held
between ΔS and Δχ:

ΔS
(
rp, rq

)
= S (Δχ) , (1)

where S is a linear and compact integral operator, whose kernel is −jωεb/4 Eb
(
rm, rp

)
· Eb
(
rm, rq

)
,

with rm ∈ D, rp and rq denote the positions of the transmitting and receiving antennas, and rm shows
the positions of the points in which the imaging domain D is discretized. Eb is the background field in
the unperturbed scenario; that is, the field radiated inside the imaging domain by each element of the
array. The symbol “·” denotes the dot product between vectors, ω = 2π f is the angular frequency,
and j the imaginary unit.

As a reliable and well-established method to invert (1), we exploit the truncated singular value
decomposition (TSVD) scheme [22], which allows us to obtain the unknown differential contrast
function through the explicit inversion formula:

Δχ =
Lt

∑
n=1

1
σn

〈ΔS, [un]〉 [vn] , (2)

where σn, [un] and [vn] are the singular values and the right and left singular vectors of the discretized
scattering operator S , respectively. Lt is the truncation index of the SVD, which acts as a regularization
parameter and was chosen to obtain a good compromise between the stability and accuracy of the
reconstruction [22].

2.2. Three-Dimensional Microwave Imaging System Realization

The realized 3D microwave imaging system prototype is shown in Figure 1. It consists of several
parts, described in the following sub-sections, all of which are controlled by a laptop.

Figure 1. Overview of the realized 3D microwave imaging system prototype. From left to right: vector
network analyzer (VNA), switching matrix and head phantom wearing a helmet interconnected to the
switching matrix by means of coaxial cables.

2.2.1. Vector Network Analyzer and Switching Matrix

First, all the signals are generated and received by a standard VNA (Keysight N5227A,
10 MHz–67 GHz) where the input power is set to 0 dBm and the intermediate frequency (IF) filter to
10 Hz. The two ports of the VNA are connected, via flexible coaxial cables, to the two input ports of
the 2 × 24 switching matrix. The switching matrix has been realized with two single-pole-four-throw
(SP4T), eight single-pole-six-throw (SP6T), and 24 single-pole-double-throw (SPDT) electro-mechanical
coaxial switches. The internal connections between the switches are made with semi-rigid coaxial
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cables to maximize the isolation and minimize the insertion losses. Then, the 24 output ports of the
switching matrix are connected, via flexible coaxial cables, to the 24 antennas placed on the helmet as
supports hosting the 3D anthropomorphic head phantom. As detailed in [23], the switching matrix
has been realized so that there are 24 paths from VNA port 1 to the corresponding 24 antennas, as well
as 24 paths back to VNA port 2; all the paths were designed to have the same electrical length. In this
way, each antenna can work as a transmitter (TX) or as a receiver (RX), and while one antenna is
transmitting, the signals collected by the other 23 antennas are received in sequence by the VNA.

2.2.2. Brick Antenna Array

The antenna array is the core of the imaging system. The antenna numbers, positions and
orientations were determined according to the design procedure described in Section 2.1. In the
prototype shown in Figure 2, the 24 antennas are placed on a 3D printed plastic (acrylonitrile butadiene
styrene, ABS) support with the shape of a helmet conformal to the head phantom. This prototype
configuration allows us to easily change or remove the antennas, if needed.

Figure 2. Brick antenna array conformal to the head phantom.

Each antenna, denoted as “brick” antenna in the following, was a monopole antenna printed
on a standard FR4 substrate, with a thickness equal to 1.55 mm, and embedded in a dielectric brick.
The dielectric brick was made of a mixture of urethane rubber and graphite powder and was designed
in order to reach a relative dielectric permittivity of εr ∼= 20 and to minimize the losses. The actual EM
properties obtained with this mixture were εr = 18.3 and σ = 0.19 S/m. The graphite powder was
needed to increase the relative dielectric constant of the urethane rubber; however, it also increased the
conductivity, although still within acceptable levels compared to other matching media used in medical
microwave imaging (e.g., [23,24]). Moreover, the adopted matching medium is usually liquid [10],
which is inherently inconvenient for a helmet-like device. Here, instead, the implemented matching
medium was solid rubber, which can be easily placed conformally to the head, as shown in Figure 2.
The overall dimensions of each brick were 5 × 5 × 7 cm3 to accommodate the need to place 24 brick
antennas around the head.

Figure 3 reports the 24 × 24 scattering matrix measured by the microwave imaging system in the
presence of the head phantom; the self-terms were set to zero in order to highlight the range variation
of the measured coupling coefficients, which are the input data of the used TSVD imaging algorithm.
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Figure 3. The 24 × 24 scattering matrix measured in the presence of the head phantom; the self-terms
are forced to zero.

It can be noticed that the measured signals are above −100 dB; considering that the VNA noise
floor is −110 dBm (at 1 GHz and with an intermediate frequency (IF) filter equal to 10 Hz), with an input
power of 0 dBm the measured data are then above the VNA noise floor [25]. Moreover, as expected,
the 24 × 24 matrix is approximately symmetric, which confirms the reciprocity of the realized system.

2.2.3. Anthropomorphic Head Phantom

The 3D anthropomorphic head phantom used for the validation and testing of the microwave
imaging system was made of polyester casting resin. It was realized by additive manufacturing from
a stereo-lithography (STL) file derived from MRI scans. The STL file was obtained with computer-aided
design (CAD) software by modifying an original file from the Athinoula A. Martinos Center for
Biomedical Imaging at Massachusetts General Hospital [26].

The phantom consisted of a cavity, shown in Figure 4a, whose wall thickness and height were
equal to 3 mm and 26 cm, respectively. Its maximum cross section was approximately an ellipse whose
minor and major axes were equal to 20 cm and 26 cm, respectively. The cavity was filled with a liquid
mixture, made of Triton X-100, water and salt, which mimicked the average value of the dielectric
characteristics of different brain tissues (white matter, gray matter) [27]. The measured dielectric
characteristics of the mixture are reported in Figure 4b.

Figure 4. Anthropomorphic head phantom; (a) structure, and (b) dielectric characteristics of the liquid
mixture, mimicking brain tissues as averages, which fills the phantom.
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2.2.4. Digital Twin of the Device

The developed device was equipped with a digital twin, namely an accurate full-wave numerical
model simulating its behavior, thanks to the use of proper CAD and EM simulation softwares.
This tool had a two-fold purpose. First, it allowed us to foresee the expected outcomes of the planned
experiments and to analyze them before running the actual experiments. Second, it provided the EM
fields Eb needed to build the imaging kernel, as described in Section 2.1.

Figure 5 shows the CAD model of the device which includes both the antenna array and the 3D
anthropomorphic head phantom.

Figure 5. Computer-assisted design (CAD) model of the 3D microwave imaging system together with
the anthropomorphic head phantom; two printed monopole antennas within the coupling medium
bricks are highlighted in yellow.

Each brick, placed on the head, represented one TX/RX antenna together with the dielectric
coupling medium; the antenna ports were placed at the end of the coaxial cables leading out from the
bricks. The dielectric characteristics of the bricks were the same as the nominal ones used in the realized
system (see Section 2.2.2), i.e., εr = 18.5 and σ = 0.2 S/m. The head phantom was made of a dielectric
medium representing the average brain tissues with εr = 42.5 and σ = 0.75 S/m, according to the
properties of the medium adopted in the experimental validation (Section 2.2.3).

To perform the EM simulation, which provided both the S-parameters at the antenna ports and
the EM fields in the whole scenario, the CAD model was introduced into an in-house full-wave
software, based on the finite element method (FEM) [28]. The implemented software used the standard
“curl–curl” formulation for the electric field and Galerkin testing. The whole volume, including the
CAD model, was discretized with edge-basis functions, defined over a mesh of tetrahedral cells.
The antenna metal parts were modeled as perfect electric conductors (PEC), and all the dielectrics were
modeled via sub-volumes with given εr and σ values. The tetrahedral mesh was terminated at the
volume boundaries with appropriate absorbing boundary conditions (ABC). Each antenna port was
modeled as a coaxial cable section where, if excited, a tangential electric field distribution was enforced.

In the numerical modeling of the MWI system, the 24 antennas were excited one at a time,
setting all the others as receivers in order to generate the 24 × 24 scattering matrix. Moreover, the field
radiated by each antenna was evaluated at different locations within the head to generate the
discretized scattering operator S in (1).

2.2.5. Experiment Set-Up

The microwave imaging system was validated using the 3D anthropomorphic head phantom in
which a 1.25 cm-radius plastic sphere was inserted, as shown in Figure 6.
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Figure 6. (a) Experimental set-up; (b) 1.25 cm-radius plastic sphere.

The sphere was fixed via a monofilament polymer line (fishing line) to an external support located
above the head and was immersed in the liquid mixture at a location and height that could be varied.
The sphere density was higher than the liquid mixture filling the head phantom, and the sphere was
therefore not floating on the liquid and could be easily positioned in different locations within the head
phantom. Three positions were considered, as shown in Figure 7. However, as their exact location
could be affected by inaccuracies, it is obvious that the actual positions may have slightly differed
from the expected ones.

Figure 7. Three sphere locations (color dots) considered within the 3D head phantom: (a) 3D view;
(b) 2D sagittal view.

The aim of these experiments was to identify the 3D shape and location of the sphere that was
supposed to represent the region of the brain affected by the stroke. In this respect, it is important to
remark that, while the plastic sphere adopted here for the sake of simplicity was not intended to mimic
a hemorrhage or a clot, it showed a dielectric contrast with brain tissues which was comparable to
a hemorrhage but with the opposite sign. Thus, the experiment was expected to provide a meaningful,
though initial, validation of the imaging capabilities of the prototype device.

3. Results

In the following, we describe the validation of the realized 3D microwave imaging system
(Section 2.2), whose experimental set-up is detailed above in Section 2.2.5. First, by means of the
digital twin, the outcomes of the experiments are foreseen and assessed. Then, the results of the
actual experiments are reported. All the imaging results were obtained by using the TSVD algorithm
described in Section 2.1. Figure 8 shows the singular values calculated for the relevant scattering
operator, which were computed with the digital twin. The truncation index Lt in (2) was set to −20 dB
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for all the reported cases. To quantitatively assess the quality of the reconstruction images, the root
mean square error (RMSE) was evaluated as

RMSE =

√
∑Ns

n=1 (Δχ̂ − Δχ)2

Ns
, (3)

where Ns is the number of samples of the discretized domain, Δχ̂ the retrieved differential contrast
and Δχ is the actual contrast.

Figure 8. Singular value behavior of the scattering operator.

3.1. Numerical Assessment

To confirm the validity of the above statement, the digital twin of the system described in
Section 2.2.4 was exploited. To this end, the experiment for the target corresponding to the blue sphere
in Figure 7 was simulated by including a 1.25 cm-radius plastic sphere with εr = 2.1 in the CAD head
phantom. The simulation was repeated for the case of noiseless measurements (to provide an ideal
benchmark) and for two SNR levels, namely 65 dB and 55 dB. Noise was modeled as an additive
Gaussian white noise, which was added to the simulated data given by the S matrices computed with
and without the target, respectively. Figure 9 shows the outcomes of the simulations. In particular,
the first row shows the amplitude of the scattering matrices, where, in agreement with the actual
experimental situation, the self-contributions have been omitted. It appears that the considered
noise level severely affects the data matrix. The middle and bottom rows of Figure 9 show the
normalized amplitude of the reconstructed differential contrast Δχ arising from the TSVD algorithm.
It is worthwhile to note that the target is properly imaged, even when the SNR is comparable to or
higher than the maximum values of the differential S matrix and the corresponding matrices appear
very noisy (see Figure 9b,c), as the unavoidable occurrence of some artifacts does not restrict the
interpretation of the result. The RMSE values obtained for the reconstructions at the three considered
noise levels are 0.04, 0.06 and 0.11, respectively.
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Figure 9. Digital twin: case of a target plastic sphere; the exact sphere location and shape are indicated
by red circles; (a–c) differential scattering matrices, and (d–f) cross-sections of the reconstructed images
at the sphere center and (g–i) at various levels, for different values of the signal-to-noise ratio (SNR)
(left column: no noise, middle column: SNR = 65 dB , right column: SNR = 55 dB).

Once the kinds of results that the device was expected to provide in the experiments had been
characterized, the second goal was to show whether—and to what extent—the experiment was
relevant for the considered clinical scenario. To this end, the same simulation as before was repeated
considering a spherical target with the properties of blood (εr = 63.4 and σ = 1.6 S/m) instead of
plastic, thus mimicking a hemorrhagic stroke. The results of the simulations are shown in Figure 10.
Figure 10d–i show the imaging results, which are comparable with the previous ones but for an
expected increased presence of (not meaningful) artifacts. In agreement with this, the RMSE values
are essentially the same as for the case of the plastic target, at 0.04, 0.06 and 0.13 for the different
considered levels of noise, respectively. According to the above results, we can conclude that the
developed prototype will be able to pass the planned experimental validation and that the considered
experiments provide a relevant, though initial, test-bed for the designed microwave imaging system.
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Figure 10. Digital twin: case of a target blood sphere; the exact sphere location and shape are indicated
by red circles. (a–c) Differential scattering matrices; (d–f) cross-sections of the reconstructed images at
the sphere center and (g–i) at various levels, for different values of the signal-to-noise ratio (left column:
no noise, middle column: SNR = 75 dB , right column: SNR = 65 dB).

3.2. Experimental Validation

To perform the experimental validation of the system, for each sphere location, two measurement
sets were taken at different times. The first data-set was measured in the absence of the sphere, and the
second one was taken when the sphere was positioned inside the phantom. Each pair of measured
24 × 24 scattering matrices were then differentiated and given as an input to the TSVD algorithm.
It can be observed that VNA port calibration was not needed as possible systematic measurement
errors were cancelled out via the use of differential data or did not affect the obtained qualitative
imaging of the differential contrast function. The time needed to perform the total measurement with
the current prototype was less than 4 min for each sphere location, and the elapsed time between the
two measurement sets was around 10 min. The kernel simulated with the digital twin (Section 2.2.4)
was exploited to generate the images, and the data processing time needed by the TSVD algorithm
was negligible (less than 1 s).

The 24 × 24 differential scattering matrices obtained for the three cases are shown in Figure 11a–c.
The second and third rows of Figure 11 display the images obtained for the different sphere locations
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indicated in Figure 7. The second row corresponds to the horizontal cross-section passing through
the sphere center; the expected sphere location and size are highlighted with a red circle. The third
row displays horizontal cross-sections at the different levels indicated in Figure 7b. In all cases,
the targets are very well retrieved, and the images agree with the simulation results, which confirms
our expectations. The RMSE values for these reconstructions are 0.16, 0.19 and 0.18 for the three
considered positions of the target, respectively. Moreover, the last row of Figure 11 shows the 3D
rendering of the imaged stroke obtained by plotting the values of the normalized differential contrast
amplitude, which are above −3 dB. Finally, Figure 12 reports horizontal cross-sections at various
levels of the 3D reconstructed image obtained by differentiating two different sets of measurements of
the same scenario; all the images are normalized with respect to the maximum value of Figure 11b,
which represents a case when the target is present.

Figure 11. Measurement results: (a–c) differential scattering matrices; (d–f) horizontal cross-sections at
sphere center and (g–i) at the various levels as highlighted in Figure 7 (the expected sphere location
and shape are indicated by red circles); from left to right, images corresponding to the blue, red and
yellow spheres of Figure 7, respectively; (j–l) the 3D rendering of the imaged stroke.
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Figure 12. Horizontal cross-sections at various levels of the obtained 3D image, differentiating two
sets of different measurements of the same scenario; images normalized with respect to the maximum
value of Figure 11b.

4. Discussion

The main goal of the developed device was to image (qualitatively) possible anomalies
(clots or hemorrhages) in the head to support clinicians in the evaluation of the effectiveness of the
administrated therapies. The results shown in the previous section, although preliminary, confirm the
potential of the technology in providing reliable results, as it is capable of imaging a target as small as
1.25 cm in radius.

A second important achievement of the analysis carried out here is represented by the validation of
the proposed system through its digital twin, which provides simulated data which are quantitatively
consistent with the measured data. As such, the adopted modeling tool provides a reliable
representation of the device, making it possible both to build the imaging kernel and to synthetically
reproduce laboratory experiments. As a matter of fact, the results from the simulations and
measurements appear to be essentially the same, except for a slight deterioration of the images in the
case of measured data. In particular, the worse RMSE results in the experimental tests, with respect to
the corresponding numerical cases, are due to the possible inaccuracies in the expected positions of the
target as well as to model inaccuracies in the digital twin.

A very important feature of the presented device is its robustness against false positives,
assessed through a specific experiment, the result of which is shown in Figure 12. We can observe that
the reconstructed values, which represent only the overall noise between different sets of measurements,
are significantly lower than 0 dB (the maximum value in the 3D reconstructed image is equal to
−4.75 dB) and are therefore clearly different from the cases when the target is present (see Figure 11).

To the best of our knowledge, this paper presents the first system based on a low-complexity
antenna arrangement conformal to the head which is able to provide full 3D images; other imaging
systems available in the literature only provide 2D images and often exploit a large number of antennas.

With this work representing a preliminary validation of the developed hardware, it is worthy
of note that, for practical reasons, the target used in the experimental test does not exhibit the same
dielectric properties as a stroke. On the other hand, the digital twin can help us to predict what will
happen in an experiment dealing with a target mimicking a hemorrhage, for example. As a matter of
fact, by comparing results from simulations and measurements, it can be observed that the differential
scattering matrices exhibit a similar pattern but are lower in amplitude (by about 10 dB) in the case of
simulations due to the lower maximum amplitude of the differential contrast between blood and the
average brain with respect to plastic and the average brain (0.49 and −0.95, respectively). This implies
that, in an experiment dealing with a target mimicking a hemorrhage, slightly weaker useful signals
should be collected. However, this is not a significant limitation, as the amplitudes of the differential
scattering matrices are well above the VNA noise floor, which represents the ultimate limitation for
accurate measurements [25].

Finally, while the repeatability of the experiment has not been tested in this paper with respect to
the possible misalignment of the phantom in the two gathered data sets, from our previous studies,
we expect that such uncertainties will produce “structured” artifacts in the final image, which are
easily attributable to positioning errors [19].
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5. Conclusions and Future Work

In this paper, a prototype of a novel low-complexity device, dedicated to brain stroke monitoring
in the post-acute stage, has been presented. The reported experiments aimed to provide an initial
validation of the device and confirm that there is an agreement between the design of the system [18]
and its performance. This is assessed by the comparison of the achieved results with those obtained
from its digital twin. The availability of such a model also allows us to show the kinds of outcomes
that are expected to be obtained by the system when operated with more realistic targets.

The next steps of the system validation and development will involve an assessment with the
more realistic anthropomorphic head phantom described in [27], which includes an additional cavity
modeling a stroke [29]. As this phantom is derived from an STL file, a numerical validation using
the digital model of the system will also be carried out in this case. In addition, improvements of the
prototype will be performed by considering image reconstruction procedures using multi-frequency
data calibration techniques as well as sparsity-promoting regularization schemes; furthermore,
there will be a refinement of the antenna array support to make it wearable.
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Abbreviations

The following abbreviations are used in this manuscript:

MRI Magnetic resonance imaging
CT Computerized tomography
MWI Microwave imaging
VNA Vector network analyzer
EM Electromagnetic
SNR Signal-to-noise ratio
TSVD Truncated singular value decomposition
SP4T Single-pole-four-throw
SPDT Single-pole-double-throw
IF Intermediate frequency
TX Transmitter
RX Receiver
ABS Acrylonitrile butadiene styrene
STL Stereo-lithography
FEM Finite element method
PEC Perfect electric conductor
ABC Absorbing boundary conditions
CAD Proper computer-aided design
RMSE Root mean square error
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Abstract: We present an initial experimental validation of a microwave tomography (MWT) prototype
for brain stroke detection and classification using the distorted Born iterative method, two-step
iterative shrinkage thresholding (DBIM-TwIST) algorithm. The validation study consists of first
preparing and characterizing gel phantoms which mimic the structure and the dielectric properties
of a simplified brain model with a haemorrhagic or ischemic stroke target. Then, we measure
the S-parameters of the phantoms in our experimental prototype and process the scattered signals
from 0.5 to 2.5 GHz using the DBIM-TwIST algorithm to estimate the dielectric properties of the
reconstruction domain. Our results demonstrate that we are able to detect the stroke target in scenarios
where the initial guess of the inverse problem is only an approximation of the true experimental
phantom. Moreover, the prototype can differentiate between haemorrhagic and ischemic strokes
based on the estimation of their dielectric properties.

Keywords: microwave tomography; stroke detection; DBIM

1. Introduction

Brain stroke is a medical condition that is caused by a blocked (ischaemic) or burst (haemorrhagic)
brain vessel, resulting in damage and necrosis of the affected brain tissue. The vast majority of the
reported cases, almost 87% of them, are ischaemic. According to the American Heart Association, brain
stroke is one of the leading causes of death in the USA [1]. There are different windows of treatment,
depending on the type of the stroke and the area of brain that is injured. Determining the stroke
type as early as possible is critical, as the wrong or delayed treatment could be lethal [2]. Detection
and localization relies on magnetic resonance imaging (MRI) and, more commonly, on computed
tomography (CT) scans. While both MRI and CT are accurate and reliable methods, neither of them
are truly portable and thus ready to be used widely inside an emergency vehicle for detecting strokes
as early as possible. Moreover, MRI is expensive, and CT is associated with health risks due to ionized
radiation [3]. These challenges motivate the development of alternative approaches, which aim to be
fast, safe, portable and cost-effective.

Microwave imaging (MWI) can potentially offer these advantages, and has thus emerged as a
promising alternative for diagnosing cardiovascular diseases which could be used prior to MRI or
CT scans [4]. Efforts to develop MWI systems for medical diagnostics go back almost forty years,
with several review papers, book chapters, and special issues reporting recent developments [5–7].
Amongst a large body of research in medical microwave imaging, which cannot possibly be fully
reviewed here, we note that various experimental systems have been developed for breast cancer
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detection [8–14], and more recently for stroke monitoring and detection [15–17]. Prototypes based
on machine learning have also been developed and clinically tested [18]. With regards to microwave
tomography specifically, for brain imaging, a study by Hopfer et al. using a microwave scanner of
177 antennas presented successful experimental reconstruction results for stroke detection and brain
monitoring [19]. In addition, the design of a microwave tomography (MWT) scanner for brain imaging
has been analysed in References [20] and [21] to determine suitable frequencies and properties of the
coupling medium, as well as to optimize the antenna array design.

In a MWT system, an array of antennas transmits electromagnetic (EM) waves which penetrate
into the tissue, and receives the scattered field [22]. The MWT algorithm reconstructs a map of
the dielectric properties of the imaged region to locate a target with unknown dielectric properties,
by solving an inverse and ill-posed EM scattering problem [23,24]. MWI techniques for medical
applications rely on the dielectric contrast between healthy and diseased tissues, which depends on
their water content [25]. The dielectric properties of human tissues have been extensively studied and
reported in References [25,26]. The head’s dielectric properties have been measured in References [27]
and [28]. For the case of ischaemia, the measurements in [29] reported that the properties of an
ischaemic vessel in the brain can vary from −10% to −25% relative to the dielectric properties of a
healthy brain.

MWT methods are challenged by the high heterogeneity of the human body [30] as well as the
increased computational cost that arises from the non-linearity of the problem and the non-uniqueness
of the solution [31]. Based on these considerations, we have developed previously a robust algorithm
based on the distorted Born iterative method (DBIM) and the two-step iterative shrinkage/thresholding
(TwIST) solver for microwave breast imaging [32,33], which was then incorporated successfully in a
prototype tested in experiments with simple cylindrical targets [34–36] and showed advantages in
comparison with other DBIM linear solvers like conjugate gradient method for least squares (CGLS) or
iterative shrinkage/thresholding (IST) [32,33,36].

Taking into account the challenges of MWT systems and the medical requirements for brain stroke
detection and differentiation, the aim of this paper is to validate experimentally DBIM-TwIST and
our prototype for stroke imaging using brain tissue and stroke mimicking phantoms. To this end,
we present for the first time reconstruction results across a wide frequency range, which demonstrate
the potential of differentiating between stroke types based on a quantitative estimation of their
dielectric properties. Moreover, we show our method’s robustness to differences in the dielectric
properties of the background medium assumed in our inverse phantoms relative to the phantom used
in the experiment. We therefore believe that these experimental results provide further evidence of
MWT’s potential to detect strokes based on microwave images produced by a carefully designed
system and algorithm.

The remainder of the paper is organized as follows: Section 2 presents the methodology for
phantoms preparation and characterization, the experimental data acquisition process, and a summary
of our DBIM-TwIST algorithm. Section 3 presents reconstruction results for haemorrhagic and
ischaemic mimicking targets, and for phantoms with different dielectric properties than the initial
guess used in the inversion. Finally, Section 4 summarises our findings and discusses our future work
towards developing a complete MWT system for brain stroke imaging.

2. Materials and Methods

2.1. Phantoms Preparation and Characterization

Experimental testing of MWT systems is critical in order to assess their potential for clinical
applications. To this end, phantoms that mimic the dielectric and structure properties of the human
head and brain provide efficient, easy to fabricate, and low-cost testbeds for experimental validation
prior to clinical trials. Gelatine emulsions made of oil, water and gelatine are popular recipes for
preparing such phantoms, as they are cheap and easy to alter, but can suffer from dehydration.
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McDermott et al. have proposed an alternative method of constructing solid phantoms made of ceramic
and carbon powder, in which solid phantoms were fabricated with polyurethane, graphite, carbon
black and isopropanol, to mimic the dielectric properties of the brain and the average properties of the
layers surrounding the brain [37]. Solid phantoms are electrically and mechanically stable as well as
reusable, but are more difficult to fabricate, time consuming, more expensive than the liquid phantoms,
and not easy to modify for additional adjustments in properties or geometry. In Reference [38],
an alternative method of 3D printed moulds filled with fluid TX100 salted water mixtures that can
mimic the dielectric properties of head tissues was proposed. Those phantoms are cheap, easy to alter,
reusable and stable. They require, however, plastic mould materials which can cause disturbances in
the scattered signals [39].

As the aim of this work is to validate DBIM-TwIST in more realistic, yet simplified cases for brain
stroke detection and classification, we have constructed simple phantoms based on the materials and
processes proposed in Reference [40] for breast phantoms. Using different gelatine-oil concentrations
compared to those for breast tissues, we fabricated tissue-mimicking materials with specific dielectric
properties that mimic average brain tissue, cerebrospinal fluid (CSF), blood and ischaemia. The process
is illustrated in Figure 1. First, a water-gelatine mixture is prepared and mixed at 70 ◦C, until
the gelatine particles are fully dissolved into water and the mixture is transparent. Propanol is
added to deal with the creation of air bubbles on the surface. Once heated to 70 ◦C, we add a 50%
kerosene-safflower oil solution into the water-gelatine mixture and stir at the same temperature, until
the emulsion has an opaque white colour and the oil particles are fully dissolved. We keep stirring
the mixture until the temperature drops to 50 ◦C, when we add the surfactant. Finally, we pour the
prepared mixture into the mould when it reaches 35 ◦C, and let it set overnight before we conduct
any measurements.

Figure 1. Schematic representation of the phantoms’ preparation process.

Table 1 presents the concentrations of the materials used for the phantoms mimicking different
brain tissues used in our experiments. We fabricated the four tissue-mimicking phantoms, using as
reference the properties reported in Reference [25]. The in-vivo measurements in [29] reported that
properties of an ischaemic vessel in the brain can vary from −10% up to −25% relative to the dielectric
properties of healthy brain tissue at 1.0 GHz. Therefore we chose to prepare ischaemic phantoms with
the maximum reported difference of −25% relative to the properties of the brain phantom. For the
experimental testbeds it is assumed that, due to similar dielectric properties of CSF and blood, the
same gelatine mixture can be used to mimic the two different tissues. Figure 2 presents the measured
dielectric properties of the prepared phantoms for brain, CSF, blood and ischaemia, respectively.
The measurements are conducted using Keysight’s dielectric spectroscopy kit, over a 0.5–2.5 GHz
frequency range at different points of the phantoms. The plots in Figure 2 show very good agreement
with reference data for the dielectric constant, but quite lower conductivity values for our phantoms.
As MWT relies mostly on contrast in dielectric constant, these discrepancies are not critical for this
initial investigation.
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(a) Measured permittivity of the of the prepared tissue mimicking phantoms relative to their
reference values.

(b) Measured conductivity of the of the prepared tissue mimicking phantoms relative to their
reference values.

Figure 2. Dielectric properties of the fabricated tissue mimicking phantoms relative to reference values
taken from [25] (to the authors’ knowledge, there is no literature regarding the dielectric properties of
ischaemia in a wide frequency range). Same type of tissues are presented with the same colour.

Table 1. Concentrations of materials used for 100 ml of tissue mimicking phantoms.

Phantom Type Water Gelatine Powder Kerosene Safflower Oil Propanol Surfactant

Average brain 60 mL 11 gr 13 gr 13 gr 2.5 mL 1.5 mL
CSF/Blood 80 mL 16 gr - - 4 mL -

Ischemia 50 mL 8.5 gr 20 gr 20 gr 1.5 mL 1.5 mL

After preparation, phantoms are placed in elliptical plastic acrylonitrile butadiene styrene (ABS)
moulds which aim to mimic the brain’s shape and multi-layer structure, as shown in Figure 3a,b. We
first pour the CSF phantom in the outer layer of 5 mm thickness. After this is solidified, we extract the
inner mould and fill the remaining cavity with the brain phantom. For a one-layer model without the

108



Sensors 2020, 20, 840

CSF, we simply extract the inner mould and pour the phantom in the outer mould directly. We use an
additional cylindrical mould to create a hole (diameter = 30 mm) in the phantom (Figure 3c), which
can be filled with the phantom mimicking either blood or ischaemia (Figure 3d), emulating the two
cases of brain stroke termed as h-stroke for haemorrhagic and i-stroke for ischaemic, respectively.

(a) (b)

(c) (d) (e)

Figure 3. Summary of the head model construction: (a) Cylindrical 3-D printed mould to form the
cerebrospinal fluid (CSF) and average brain layers; (b) The two-layer model after CSF and average
brain phantoms are poured into the moulds (the CSF is a thin, transparent layer just inside the blue
mould); (c) Creating a hole in the phantom to insert the stroke-like target; (d) Final two-layer phantom
with a target of blood-mimicking phantom; (e) Setup with Keysight’s slim form probe to measure the
dielectric properties of the phantoms.

To further investigate the change in the dielectric properties over time, we prepared two additional
brain phantoms and measured their real and imaginary part of permittivity on day 1 and day 6 after
their preparation. Table 2 shows that, over a period of 6 days, the dielectric properties increased
10–15% compared to their initial values. This is expected as the water particles have dispersed over
time resulting in higher dielectric properties.
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Table 2. Dielectric properties of brain phantoms over time at 1 GHz.

Measured Property Day 1 Day 6

ε′ sample 1 44.5 51.2

ε′ sample 2 46.2 51.6

ε′′ sample 1 0.43 0.51

ε′′ sample 2 0.42 0.48

2.2. Setup and Data Acquisition Process

Figure 4b presents the experimental setup, which is used for conducting the measurements.
It consists of a 300 mm diameter cylindrical tank surrounded by an absorber (ECCOSORB MCS) and
enclosed with a metallic shield to decrease surface waves propagating into the perimeter of the tank.
The tank is filled with a 90% glycerol-water mixture to improve impedance matching with the phantom
and widen the antenna operating frequency range [34]. An eight-antenna elliptical array is immersed
inside the tank, and the length of the ellipsoid’s axes are 153 mm and 112 mm. From a theoretical point
of view, the choice of the number of antennas is defined as:

M = 2βα, (1)

where α is the radius of the reconstruction domain and β is the wave-number [41]. Taking into account
our first working frequency of 0.5 GHz, M is approximately equal to 15. However, due to our hardware
limitation of the 8-port VNA and our previous experimental work which has showed good results
using eight antennas in our MWT prototype, we chose eight antennas to simplify the experiment
and the data acquisition process [34]. The experiments presented in this study use spear-shaped
patch monopole antennas which operate efficiently in the range of 0.5–2.0 GHz and their design was
presented in Reference [42]. This range satisfies the recommendation by the theoretical approach
in Reference [20], which suggests that a working frequency up to 1.5 GHz can achieve the optimal
trade-off between the required resolution and incident power needed for head imaging applications.
Antennas are installed into vertical and horizontal rulers that enable us to adjust their height and the
array dimensions.

(a) (b)

Figure 4. (a) Schematic of the simplified “initial guess” model for the inversion (the ellipsoid’s axes are
153 mm and 112 mm long); (b) The hardware system prototype.

Phantoms are placed in the bottom of the tank as shown in Figure 4b, and measurements of the
S-parameters of the scattered signals are conducted in a frequency range of 0.5–2.5 GHz using an
eight-port vector network analyzer (VNA) from Keysight. The eight antennas act both as transmitters
and receivers, creating an 8×8 scattering matrix which is fed into DBIM-TwIST. The linear integral
equation is discretized iteratively for the entire 8×8 transmit-receive pairs. Overall, two sets of

110



Sensors 2020, 20, 840

measurements are performed for every imaging scenario. The first set of measurements is performed
for the phantom without a target (the “no target” scenario), and then the process is repeated for the
phantom which includes the 30 mm diameter h-stroke or i-stroke target (“target” scenario). The target is
placed in the upper-right section of the phantom between antennas 1 and 8. Following this process, the
S-parameters for “no target” and “target” scenarios are processed by the DBIM-TwIST algorithm [32],
which is reviewed in the next subsection.

2.3. Implementation of the DBIM-TwIST Algorithm

To reconstruct the dielectric properties of the phantoms, we apply our formerly developed
DBIM-TwIST algorithm, which has been widely validated by our previous studies in different
numerical [32,33] and experimental scenarios involving extended cylindrical targets [34–36]. In DBIM,
the nonlinear scattering problem which arises from the integral equation of the scattered electric field
is discretized under the Born approximation as follows:

Es(rn, rm) ≈ ιω
∫

V
Eb(r, rm)Eb(r, rn)O(r)dr , (2)

where Es and Eb are the scattered and background fields respectively, and rn, rm denote transmitter
and receiver positions, respectively. The contrast function O(r) is the difference between the complex
permittivity of the known background and the unknown region. The equation is solved iteratively and
requires the solution of a linear but ill-posed problem at each DBIM iteration [23]. The background
properties are updated at each DBIM iteration with the current solution until the residual error is
minimised, and this yields the reconstruction of the dielectric properties of the imaging domain. This
is done by discretizing the above integral equation as,

Ax = y, (3)

where A is an M-by-K propagation matrix, with M the number of transmit-receive pairs in the antenna
array and K the number of elements in the discretization inside the reconstruction domain, while y is
the M-by-1 vector of the scattered fields recorded at the receivers. The K-by-1 vector x is the unknown
dielectric properties contrast function, which is then added to the previous background profile to
generate the new background which is used for the next iteration [23]. Our algorithm solves this linear
problem with the TwIST method [43], which splits the matrix into a two-step iterative equation.

The background properties are calculated and updated at each DBIM iteration with the TwIST
solution until the residual error is minimised, and this yields the reconstruction of the dielectric
properties of the imaging domain.

The initial model (“starting guess”) for the algorithm is shown in Figure 4a, and consists of a
simplified two-dimensional (2D) representation of the experimental setup, which includes the tank
filled with the matching medium and an ellipsoid that mimics the average brain tissue with dimensions
of 153 × 112 mm. These represent the actual size of the phantom’s axial slice at the height where
the antennas are located. The algorithm simplifies the system’s antennas with line sources, which
are placed at the same locations as the experiment. To calibrate the simulated initial model, we
use a “no target” reference measurement, as in our previous work (e.g., see Reference [35]). This
calibration method relies on the signal difference between the experimental and the simulated “no
target” scenarios, to calibrate the signals received from the “target” experiment. It is used to eliminate
the errors induced by the differences between the simulated forward model and the experiment.

We must note that an exact “no target” reference measurement will not be available in a realistic
clinical scenario such as stroke detection. Aside from an “empty tank” measurement which could
always be used as reference, one could also use a reference signal measured from an “average
homogeneous head phantom” taken from a set of phantoms with different properties, following the
approach used for imaging numerical breast phantoms in Reference [32], for example. This approach,
however, would still provide the algorithm with very different signals from the true “no target” signals
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in stroke detection, as the brain structure is much more complex than any “homogeneous average
brain” phantom (see also the Discussion section), and a more complex, in-homogeneous reference
phantom may be better suited for data calibration. We also note that our DBIM-TwIST approach has
been shown to be capable of reconstructing accurately complex in-homogeneities using simulation
data from complex numerical breast phantoms [32], but the problem of detecting the stroke inside
the complex yet unknown brain structure may be more challenging. We partially examine this issue
in Section 3.2, by using a “no target” scenario from a “day 1 phantom” and a target scenario from
a “day 6 phantom” with almost 20% higher dielectric properties. The issue will be fully examined
in our future work and presents, arguably, the most significant obstacle that MWT methods need to
overcome prior to their clinical use.

To take into account the materials’ dispersive dielectric properties, we employ a first-order Debye
model for the average brain phantom and the 90% glycerol-water mixture:

εs(ω) = ε∞ +
Δε

1 + jωτ
+ j

σs

ωε0
, (4)

where ε∞, Δε and σs are the parameters of the single pole Debye model provided in Table 3. We use the
parameters of Table 3 together with a forward solver based on the finite-difference time-domain (FDTD)
method to calculate the scattered and background fields, and then apply DBIM-TwIST to reconstruct
the dielectric properties inside the imaging domain with a grid voxel size of 2 mm. The complex
permittivity values in (2) are replaced by the frequency-dependent Debye model of (4) and are updated
at each DBIM iteration, thus are used to update the contrast function. The reconstructed results present
estimated real and imaginary parts of permittivity which are calculated from the updated Debye
models at each frequency [23]. Moreover, we perform the same number of 15 DBIM-TwIST iterations
at each frequency for both single and multiple frequency reconstructions attempted in this study. The
running time for each DBIM iteration was approximate 8 seconds using MATLAB R2019b run on an
Intel i7 processor with 16 GB RAM memory, leading to an execution time of 2.5 min for 15 iterations of
DBIM at each frequency. By means of an example, the total execution time for the case of the h-stroke
with one layer and frequency hopping between 0.5 and 1.5 GHz is 24 min.

Table 3. Debye parameters of materials after curve fitting to measured dielectric properties.

Material Type Δε ε∞ σs

90% glycerol-water 6.56 16.86 0.3232
Average brain 30 10 0.147

3. Results

In our first set of experiments in Section 3.1, our aim is to show our method’s potential to
determine the type of stroke from estimating its dielectric properties. To this end, we examine two
phantoms of average brain tissue in which we inserted a target emulating h- and i-stroke, respectively.
In the second set of experiments in Section 3.2, our aim is to test detection performance in cases where
the inverse experimental model is slightly different than our forward model. To this end, we examine
two additional phantoms with h-stroke targets. The first one is a two-layer phantom including a thin
CSF-mimicking layer, and the second one is a brain phantom which we let it set for 6 days before
conducting the “target” measurements, so that its properties are different in comparison with the first
day when the “no-target” measurements were taken.

3.1. Detection and Classification of Stroke Targets

Figures 5 and 6 present the reconstructed real and imaginary parts of the complex permittivity for
the phantom inside the prototype of Figure 4b containing h-stroke and i-stroke targets as well as a
target which has 50% lower dielectric constant than the average brain phantom as an extreme case
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(50% i-stroke). Images illustrate the whole tank, however, the reconstruction domain contains only
the brain ellipsoid inside the antenna array. Representative single-frequency reconstructions in the
range 0.7–1.5 GHz are shown in Figure 5, while results from a frequency hopping approach in the
same range are shown in Figure 6. These images suggest that the dielectric constant (real part) of 25%
i-stroke is detectable at low frequencies albeit with more artefacts in the images, whilst the h-stroke
and the 50% i-stroke, is clearly visible in frequencies above 1.1 GHz for both real and imaginary parts.
As the dielectric contrast between the constructed 25% i-stroke and brain phantoms is lower than that
of h-stroke and 50% i-stroke, detecting the 25% i-stroke target is more challenging than the other cases,
with unsuccessful results for the imaginary part of the complex permittivity. The most encouraging
observation from these figures, however, is that there is a clear distinction in the estimation of the
dielectric properties for all the three targets: the frequency hopping results of Figure 6 estimate the
value of real permittivity ε′ at 1.5 GHz as ε′=33.8, ε′=20.9 and ε′=56.25 for 25% i-stroke, 50% i-stroke
and h-stroke, respectively.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5. Cont.
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(m) (n) (o)

(p) (q) (r)

Figure 5. Results from single frequency reconstructions of the real (first, third and fifth line) and
imaginary (second, fourth and sixth line) part of the complex permittivity for: (a–f) h-stroke, (g–l) 25%
i-stroke and (m–r) 50% i-stroke.

(a) (b) (c)

(d) (e) (f)

Figure 6. Reconstructed: (a–c) real and, (d–f) imaginary part of the complex permittivity for h-stroke
(left), 25% i-stroke (middle) and 50% i-stroke (right). The complex permittivity was calculated at
1.5 GHz using the frequency hopping approach in a frequency range of 0.7–1.5 GHz.

3.2. Stroke Target Detection for Brain Phantoms with Unknown Properties

To move towards more realistic imaging scenarios where the brain’s distribution of tissues
will be more complex and their dielectric properties unknown, we have evaluated experimentally
the robustness of DBIM-TwIST when the structure and dielectric properties of the brain phantom
are slightly different from the “initial guess” of Figure 4a. To examine the effect of differences in
the dielectric properties of the average brain phantom where the target is inserted, we prepared a
phantom and conducted “no target” measurements after the phantom had set, and then kept it for
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a week, in which we recorded the change of its dielectric properties over time. Figure 7 shows our
measurements for days 4 and 6, where an increase in the permittivity with time is observed possibly
due to increase in water dispersion. We then acquired “target” measurements for h-stroke on day 6,
to ensure a change in the phantom’s dielectric properties from the “no-target” measurements on day 1.
In addition to this test, we also performed experiments with a two-layer phantom (CSF and average
brain). To this end, we added a CSF layer of 5 mm thickness using the process described in Figure 3,
and with dielectric properties plotted in Figure 2.

Figure 7. Dielectric properties of brain mimicking phantom at day 4 and day 6 after its preparation.

Figure 8 presents the reconstructed images of the real and imaginary parts of complex permittivity
using the data obtained by the measurements at days 1 and 6 after the preparation of the brain
phantom, as well as the reconstructed images of the two-layer phantom including the CSF layer. These
reconstructions were produced by frequency hopping in the range of 1.1–2.0 GHz. The values of the
reconstructed real and imaginary parts for the h-stroke target at 2 GHz are ε′ = 49.28, ε′′ = 12.19 for the
one-layer phantom, and ε′ = 62.38, ε′′ = 8.48 for the two-layer phantom, respectively. With the exception
of the imaginary part for the two-layer phantom, these images provide a clear indication of where the
h-stroke is located and estimate its dielectric constant with satisfactory accuracy. These reconstructions
confirm that the algorithm is sufficiently robust to detect and localize the target successfully in cases
with “mild” uncertainties in the true background medium in the experiment and its “initial guess” in
the imaging algorithm. We note that we have also performed single frequency reconstructions for both
cases (not shown here), which indicate that best results are obtained in the 1.1–1.6 GHz range, which
agrees with the operating frequencies of the antennas employed in our measurements [42].
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(a) (b)

(c) (d)

Figure 8. (a) Reconstructed real and (b) imaginary part of the complex permittivity for the phantom
inside the tank of Figure 4b, when “no-target” and “h-stroke target” measurements were conducted at
day 1 and day 6 after the preparation of phantom, respectively. (c) Reconstructed real and (d) maginary
part of the complex permittivity for a two-layer phantom with an “h-stroke target” and a CSF layer
which is unknown to the imaging algorithm. The complex permittivity was calculated at 2 GHz using
a frequency hopping approach in 1.1–2 GHz.

4. Discussion

We presented an initial experimental assessment of a microwave tomography prototype based on
the DBIM-TwIST algorithm for brain stroke detection and classification. This MWT system was able to
differentiate between targets that mimic haemorrhagic and ischaemic stroke, based on the difference in
their estimated dielectric properties. Moreover, the system was able to reconstruct the target inside a
brain phantom even when its structure or dielectric properties are different from the “initial guess”
used in the inversion. These results benefited from reconstructions in multiple frequencies based on
the use of our in-house developed spear-shaped antennas which operate in a wide range from 0.5 GHz
to 2.5 GHz. Moreover, the flexible tuning of the DBIM-TwIST parameters allow an easy adaptation
of the algorithm to inverse problem at hand. We note that, as with most non-linear inverse methods,
the DBIM-TwIST parameters must be tuned based on considerations that relate to both the imaging
problem and the experimental prototype. Moreover, experimental measurement errors may result in
certain frequencies providing more accurate reconstructions than others. In the past, we have proposed
a method to discard data dominated by measurement error, based on a correlation technique [35].
Regardless of whether such a pre-processing step is applied to the measured data, frequency hopping
is an excellent way to increase the accuracy and robustness of the algorithm [32].

Moreover, our previous work in Reference [32] has confirmed that the DBIM-TwIST (as any other
DBIM implementation) is very sensitive to the initial guess of the inverse model. While this has been
partially addressed in this work with our investigation in Section 3.2, it will become a much more
challenging problem in a realistic brain stroke detection application, where the structure of the brain is
much more complex than a homogeneous average brain phantom.
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We also note that our experimental validation required that the antenna array is placed at the
same height as the target. We are currently working on a more realistic experimental validation process
which involves acquiring data for more than one height and employing a three-dimensional (3D)
version of the DBIM-TwIST.

The experimental setup contains a tank filled with matching liquid in which we immersed
the antennas and the phantoms. However, our current and future work is focused on designing
and proposing a portable helmet which will incorporate the matching medium and the antennas.
Algorithm-wise, the image reconstruction can be accelerated by frequency selection [35] and a more
accurate initial guess which will also increase the stability of the algorithm. However, knowing a priori
information for brain imaging is very challenging. For this reason, we have assumed that the initial
model is filled with homogeneous average brain tissue. In Reference [32] a method was proposed to
estimate the optimal initial guess based on the residual error of different known cases, which we will
explore in our future work.

While there are a few experimental studies on detecting a blood-like target using microwave
imaging methods [15–17,44,45], only a few studies exist that demonstrate experimentally the detection
of an ischemic-like area. Our results in this respect are encouraging, as they indicate that a classification
of the stroke type is possible with a microwave imaging system without the need of training data [18].
This has also been suggested in References [19,46] but with a very different, single-frequency MWT
system. This confirms that MWT systems have the potential to be used for early differentiation between
i- and h-stroke, which is vital for improving stroke treatment outcomes [47].

We note that the experimental phantoms in this study are oversimplified in relation to the
true head and brain anatomy. However, this simplification is necessary to show that our system
and algorithm have the potential to differentiate between the two different stroke types based on
a quantitative estimation of their dielectric properties. We must acknowledge, however, that the
imaging performance of the algorithm and prototype depends strongly on the complexity of the brain,
and hence, the experimental phantom that represents it. The skin and skull, for example, introduce
strong scattering layers, and the distribution of the CSF can be complex and can obscure the signal
from the target. While our previous work has shown that tools such as frequency hopping and
optimization of the initial guess can have a significant positive impact, for example in reconstructing
breast compositions in the presence of an unknown skin layer [32], application of our approach to a
complex brain phantom may require prior information of the phantom’s anatomical structure. This in
practice could be acquired from average numerical brain models and a careful calibration procedure.
These issues are critical to provide a more informed answer to whether MWT can be clinically attractive
as a stroke detection method and will be investigated in our future work.

We also note that we are currently on the next version of our head phantom, which will feature
a more complex structure with various tissue-mimicking materials resembling different brain tissue
layers, as well as outer layers such as the skull and the skin. Moreover, in our future work we will use
moulds in realistic head shape that will allow us to include a wig to take into account the impact of hair.
As shown in Reference [48], a wig’s dielectric properties are very similar to the dielectric properties of
natural hair, therefore, a wig can be easily used as an alternative for those experiments. Our successful
reconstructions for the phantom with an added thin elliptical CSF layer, although not fully realistic,
are a step forward towards our goal of successful detection in complex head phantoms.

Our future work will also focus on validating the proposed MWT approach further towards the
development of a portable microwave head scanner designed for stroke detection, which will apply a
multiple-frequency 3D DBIM-TwIST algorithm for imaging. This will include assessing the capabilities
of our MWT system with phantoms with increased complexity resembling the actual anatomy and
dielectric properties of the brain. We will also examine other applications of our MWT approach such
as lymph node detection for breast cancer.
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Abbreviations

The following abbreviations are used in this manuscript:

ABS Acrylonitrile Butadiene Styrene
CGLS Conjugate Gradient method for Least Squares
CSF Cerebrospinal fluid
CT Computed Tomography
EM Electromagnetic
DBIM Distorted Born Iterative Method
FDTD Finite-Difference Time-Domain
IST Iterative Shrinkage/Thresholding
MWI Microwave Imaging
MWT Microwave Tomography
MRI Magnetic Resonance Imaging
TwIST Two-step Iterative Shrinkage Thresholding
VNA Vector Network Analyzer
2D Two-dimensional
3D Three-dimensional
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Abstract: Orbital angular momentum (OAM) is gaining great attention in the physics and
electromagnetic community owing to an intriguing debate concerning its suitability for widening
channel capacity in next-generation wireless communications. While such a debate is still a matter
of controversy, we exploit OAM generation for microwave imaging within the classical first order
linearized models, i.e., Born and Rytov approximation. Physical insights into different fields carrying
�-order OAM are conveniently exploited to propose possible alternative imaging approaches and
paradigms in microwave imaging.

Keywords: linearized inverse scattering; microwave imaging; orbital angular momentum;
born approximation; rytov approximation

1. Introduction

Microwave imaging (MWI) deserves great attention in the electrical engineering community due
to its potential applications as disparate as subsurface and planetary exploration (ground penetrating
radar), non-destructive testing (NDT), biomedical imaging, and so on and so forth [1–3]. However,
while huge efforts have been addressed in recent years towards the development of experimental
equipment, which jointly exploits the availability for relatively low cost microwave devices and the
ever increasing computing power of modern CPUs [4,5], the underlying inverse scattering problem
(ISP) solution still requires great efforts from the methodological and modeling point of view. This is
related to two main features of ISPs: non-linearity and ill-posedness. Indeed, if both of them are not
properly faced, MWI cannot be used in any practical instance. To face them, a priori information can
be exploited in many different ways to obtain reliable inversion or optimization strategies equipped
with effective regularization schemes [6–8].

Generally speaking, microwave imaging approaches can be grouped into two main classes:
quantitative and qualitative approaches. The first one aims to retrieve both electromagnetic and
geometric features, whereas the second one allows only shape characterization of an unknown
scattering system in a surveyed region. In general, quantitative methods require the solution of
a non-linear problem that inherently results in non-trivial issues, such as local minima [9,10] and
regularization of non-convex problems. On the other hand, qualitative methods make a trade-off
between the difficulty of solving a non-linear problem and the limited amount of information
to be conveyed back from scattered field data. Obviously, a plethora of hybrid methods coexist
in the literature, wherein several stepwise optimization strategies, regularization approaches,
and approximate models have been proposed to face the inverse scattering problem. Very recently,
also machine learning (ML) and deep learning (DL) have been applied to inverse scattering
problems [11,12].

Besides the above, with reference to the present paper, it is worth mentioning a recently proposed
paradigm for solving inverse scattering problems. Such a paradigm stems from the design of new
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scattering experiments to recast the original ones into new “virtual” experiments by means of a suitable
“design equation”. This latter entails a simple linear recombination of scattered field data, which,
owing to the linearity of scattering experiments, enforces the total electric field to be tailored with
a specific distribution within the imaging domain. Since these scattering experiments are designed
without additional measurements (i.e., only via software processing), they have been named virtual
experiments (VE) [13–17]. All these approaches have shown an enhanced capability in imaging
scatterers not belonging to the weak scattering regime, while facing the problem in a simpler, or more
effective/efficient way, than many other imaging approaches currently available in the state-of-the-art.

In this view, other papers have investigated the use of different kinds of probing fields in
microwave imaging. For example, in [18], orbital angular momentum (OAM) incident fields of
order higher than � = 0, generated through a planar array, were exploited to perform 3D imaging with
an observed improvement in the resolution beyond the Rayleigh limit. In [19], sub-wavelength focused
near-field (NF) beams and Bessel beams [20–22] were proposed to perform imaging in scenarios when
possible undesired scatterers are present, and in [23], OAM incident fields were used for accurate
recovery of sparse objects through mask-constrained sparse reconstruction.

In order to investigate the capability of OAM antennas in microwave tomographic imaging,
possibly exploiting additional degrees of freedom carried by the topological charges of such fields,
in this paper, we consider the use of OAM incident fields generated by properly feeding a cylindrical
array of filamentary currents. Specifically, the “view diversity” conventionally exploited in the
scattering experiments is traded with the “mode diversity” carried by OAM incident fields of different
order. In doing this, we adopt linearized imaging procedures valid under weak scattering regimes
both for small and large scatterers, namely Born and Rytov approximations. Although the problem is
strongly simplified under this assumption, the study of linearized inverse scattering problems allows
understanding, often by analytical findings, the role of fundamental parameters in the reconstruction
capabilities of an imaging method, under adopted measurement configurations, such as the frequency,
the number and configuration of probes, etc. Moreover, linearized approaches can be practically useful
also when the working hypotheses underlying the weak scattering regime are not fully satisfied, that
is when one wants to pursue only a qualitative characterization through microwave imaging.

The paper is structured as follows. In Section 2, the mathematical formulation of the scattering
problem is given with respect to the scalar transverse magnetic (TM) 2D case. In Section 3, the linearized
imaging procedure through OAM probing fields and Born and Rytov approximations are introduced.
In Section 4, the proposed imaging strategy is validated against numerical examples. The conclusions
end the paper.

2. Mathematical Formulation of the Inverse Scattering Problem

We consider the two-dimensional inverse scattering problem dealing with the TM polarization
(scalar formulation) wherein nonmagnetic scatterers (μs = μ0) are embedded into a homogeneous
background medium. The location and the electromagnetic properties inside the domain are unknowns,
and the vector r(x, y) denotes the position inside the investigation domain Ω. Time-harmonic
dependence ejωt, with angular frequency ω = 2π f , is assumed dropped, and bold text notation
for the electric fields is used hereafter.

To reconstruct the geometrical and dielectric properties of the scatterers, the investigated domain
is probed with a set of incident fields Ei(rv, r) = Ev

i (r), where rv denotes the position of the primary
sources (filamentary currents) placed outside the investigated area and v the indexing of the source.
The interaction between the incident waves and the scatterers gives rise to a secondary field that
is measured by receivers located at rm ∈ Γ, still outside the investigation domain. A sketch of the
adopted measurement configuration is reported in Figure 1.

122



Sensors 2020, 20, 1905

Figure 1. A sketch of the adopted multiview-multistatic measurement configuration to probe the
region of interest by means of Tx-Rx primary sources (filamentary currents) placed on a circumference
Γ of radius rm.

As is well known, the total field Ev
t (r) and the incident field Ev

i (r) must satisfy the following
Helmholtz Equations:

[∇2 + k2(r)]Ev
t (r) = 0 (1)

[∇2 + k2
b]E

v
i (r) = 0 (2)

where k(r) is the wavenumber in Ω and kb = ω
√

ε0εbμ0 is the wavenumber of the homogeneous
embedding background medium having complex permittivity εb = ε

′
b − j σb

ωε0
. On the other hand,

the scattered field, defined as Ev
s (r) = Ev

t (r)− Ev
i (r), satisfies the following Helmholtz Equation:

[∇2 + k2
b(r)]E

v
s (r) = −k2

bχ(r)Ev
t (r) (3)

where the contrast function χ, which relates, at a given frequency ω, the properties of the unknown
anomalies to those of the background medium, is defined as:

χ(r) =
εs(r)

εb
− 1 (4)

with εs = ε′s − j σs
ωε0

the complex dielectric permittivity of the scatterer. By means of the vector potential
theory, the equations governing the scattering phenomenon can be conveniently expressed through
a couple of integral Equations:

Ev
s (rm) = k2

b

∫∫
Ω

g(rm, r′)χ(r′)Ev
t (r

′)dr′ rm ∈ Γ, v = 1, ..., V (5)

Ev
t (r)− Ev

i (r) = k2
b

∫∫
Ω

g(r, r′)χ(r′)Ev
t (r

′)dr′ r ∈ Ω, v = 1, ..., V (6)

where g(r, r′) = − j
4 H(2)

0 (kb|r − r′|) is the scalar Green function of the homogeneous background,
in which r′ and r denote the generic source point in Ω and the observation point in Γ or Ω, respectively.
Finally, H(2)

0 (·) is the Hankel function of zero order and second kind. The Green function is the
kernel of the radiation operators Ae[·] : L2(Ω) → L2(Γ) and Ai[·] : L2(Ω) → L2(Ω), which relate
the induced contrast source Jv(r) = χ(r)Ev

t (r) to the field scattered in Γ and in Ω, respectively.
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Equations (5) and (6) are first and second kind Fredholm equations and are also known as data and
state equations. According to the above, the inverse scattering problem is cast as the retrieval of the
unknown contrast χ (r ∈ Ω) from measured scattered field Ev

s (rm ∈ Γ) and known incident fields
Ev

i (r ∈ Ω).

3. Linear Imaging with OAM Incident Fields

As stated above, the solution of the problems Equations (5) and (6) entails facing a non-linear
problem, since the total electric field has to be also retrieved for each transmitting antenna. To overcome
this drawback, the first order linearized problem has been proposed in the past both for penetrable
and impenetrable media. In particular, the Born and Rytov approximations allow tackling imaging of
small and large weak scattering systems, provided that the deviation of the dielectric properties of
anomalies, with respect to those of the background medium, keeps very small [24].

The linearized approach under Born approximation entails the solution of the following
integral Equation:

Ev
s (rm) = k2

b

∫∫
Ω

g(rm, r′)χ(r′)Ev
inc(r

′)dr′ rm ∈ Γ, v = 1, ..., V (7)

where the total field is substituted by the incident one, neglecting the effect of the scattering system on
the total field. Similar considerations can be applied for the Rytov approximation, where the Equation
to be solved turns out to be:

Φv
s (rm) =

k2
b

Ev
inc(rm)

∫∫
Ω

g(rm, r′)Ev
inc(r

′)χ(r′)dr′ rm ∈ Γ, v = 1, ..., V (8)

with Φv
s (rm) the complex scattered phase [24], and Ev

inc(rm) the value of the incident fields at the
measurement points. In both Equations (7) and (8), the incident field is commonly given by a sequential
illumination of single filamentary currents placed in the near- or far-field of the imaging domain.
The scattered field is collected by all the other antennas working as receivers when only one is acting
as a transmitter. This is the standard scattering experiment procedure in a tomographic microwave
imaging system. Hereafter, we refer to such a scheme of data gathering as “sequential illumination”.

On the other hand, we want to exploit OAM incident fields properly generated by a progressive
phase change in circular array elements, that is:

E�
inc(r) = − j

4

V−1

∑
v=0

H(2)
0 (kb|rv − r|)ej�ϕv , ϕv =

2vπ

V
, � = 0, ..., �max (9)

According to Equation (9), the investigation domain is illuminated through a set of different �-order
OAM fields rather than each single filamentary current placed at different angular positions. In a first
approximation, without prior information on the scattering system, the maximum OAM order is
related to the electrical dimension of the investigation domain, being |�| � βa, with β = Re[kb] and a
the radius of the minimum convex hull enclosing the investigation domain. Incident fields arising
from Equation (9) for three different orders are shown in Figure 2.

The data Equation we are going to consider hereafter is formally the same of Equations (7) and (8),
with the corresponding scattered field collected under simultaneous illumination given by the incident
fields Equation (9). In such a way, the role of the vth illuminations is exchanged with the role of the �th

OAM order used to probe the investigation domain Ω. Therefore, as commonly done, the linearized
tomography problem can still be solved in a regularized fashion. In this respect, we exploit the
standard truncated singular value decomposition (TSVD) method [13], wherein the number NT of the
relevant singular values to be used in the reconstruction formula is simply chosen by the cutoff of the
singular values below the threshold of 20 dB lower than the maximum one.
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Figure 2. Amplitude (not normalized) and phase distribution of the OAM incident fields used to probe
the imaging domain with a circular array of V = 36 filamentary currents. (a),(d) � = 0; (b),(e) � = 1;
(c),(f) � = 11.

4. Numerical Benchmarks

In order to investigate the opportunity to perform microwave imaging by means of OAM incident
fields, we perform some proof-of-concept examples, under the weak scattering regime underlying
both the Born and Rytov approximations.

The first example is concerned with a circular scatterer with radius 0.3λb and relative permittivity
εs = 1.2− j0.06, located at r = (0, 0) in an investigation domain of 4λb × 4λb. The background medium
is the vacuum, and V = 2βa + 1 = 37 antennas are used to illuminate the scenario [25] at a distance
rv = 40λb. Accordingly, the same number M of measurement points, at the same distance (rm = rv),
are used to probe the scattered field, as commonly done in any experimental microwave imaging
apparatus. Using Equation (9), we generate OAM incident fields up to the order | ± �max| = 18.
Accordingly, the forward problem is solved by means of a method-of-moments (MoM) based solver
by properly discretizing the investigation domain into Nc = 65 × 65 cells, according to the Richmond
rule [26]. Finally, the scattered field data are corrupted with an additive white Gaussian noise (AWGN)
of SNR=20dB. The reconstruction results are evaluated by the standard metric based on the least

squares mean error, which is defined as err = ||χact−χrec ||2
||χact ||2 , wherein χact and χrec stem for the actual

and the reconstructed contrast profile, respectively.
The reconstruction results using orders � = 0,±[1 − 18] are shown in Figure 3b–f. As can be seen,

the method is able to retrieve the contrast correctly both in its real and imaginary part. After that, we
consider only the first four lowest order (� = 0,±[1− 3]) in solving the Born equation, and as shown in
Figure 3c,g, the result is still good in terms of the reconstruction capability, since the reconstruction error
is slightly larger than the previous one and mainly related to background reconstruction artifacts. On
the other hand, it is worth noting that the dimension of the scattering matrix operator is Nc × (7 × M)

for � = [−3,+3] and Nc × (37 × M) for � = [−18,+18], with Nc = (65)2 in both cases. If we take into
account that also for the multiview-multistatic configuration, the matrix has dimension Nc × (V × M)
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(V = M = 37) too, the computational advantage in the SVD numerical evaluation is not negligible
in the case of few OAM modes. For the sake of completeness, the reconstruction performed with the
standard multiview-multistatic field data acquisition is shown Figure 3d–h, and as expected, it is fully
comparable with those achieved by means of the OAM incident fields.
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Figure 3. Reconstruction of a small weak circular scatterer through the Born approximation. (a) Real
and (e) imaginary part of the actual contrast profile; (b) real and (f) imaginary part of the retrieved
contrast profile for � = 0,±[1 − 18], err = 0.2028 with a cutoff value in the TSVD equal to NT = 252;
(c) real and (g) imaginary part of the retrieved contrast profile for � = 0,±[1 − 3], err = 0.2384 with
a cutoff value in the TSVD equal to NT=142; (d) real and (h) imaginary part of the retrieved contrast
profile using V = M = 37 equispaced filamentary currents err = 0.2020 with a cutoff value in the
TSVD equal to NT = 252. The axes of the imaging domain are expressed in background wavelengths.

In the second example, we consider a scattering system made of two off-centered targets
embedded in the same investigation domain described for the previous example. The targets are
shaped as a circle and a square scatterers, with permittivity εs = 1.2 − j0.06 and leading dimension
0.6λb; see Figure 4a,e. We looks for the solution of the Born equation in three different cases. In the
first case, we exploit all the OAM incident fields (� = 0,±[1 − 18]) needed to probe the entire domain,
whereas in the second case, only the lowest order OAM incident fields (� = 0,±[1 − 4]), and finally,
only the highest order ones (� = ±[6 − 11]). As can be seen in Figure 4, the reconstruction accounts for
the whole scattering system in the first case (see Figure 4b,f), only the innermost scatterer in the second
case (see Figure 4c,g), and only the square target in the third case (see Figure 4d,h). From these results,
it is evident as the topological properties of the different OAM orders used to probe the domain are
able to image targets whose support is mainly illuminated by the OAM rings (cores) of given order.
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Figure 4. Reconstruction of a two small weak scatterers through the Born approximation. (a) Real and
(e) imaginary part of the actual contrast profile; (b) real and (f) imaginary part of the recovered contrast
profile for � = 0,±[1 − 18], err = 0.2241 with a cutoff value in the TSVD equal to NT = 252; (c) real
and (g) imaginary part of the recovered contrast profile for � = 0,±[1 − 4], err = 0.4017 with a cutoff
value in the TSVD equal to NT =166; (d) real and (h) imaginary part of the recovered contrast profile
for � = ±[6 − 11] (without the lowest order modes), err = 0.60 with a cutoff value in the TSVD equal
to NT = 187. The axes of the imaging domain are expressed in background wavelengths.

Finally, the third example is concerned with a large lossless elliptically shaped target with
semi-axes 5λb and 4λb, respectively, embedded in an imaging domain of 12λb × 12λb discretized
into Nc = 129 × 129 cells. The background is the vacuum, and the permittivity of the target is
changed 2% with respect to the permittivity of the vacuum, while Im{εs} = −0.006. For such kinds
of objects, the Rytov approximation holds true. According to the “rule of thumb” suggested by the
electromagnetic field degrees of freedom [25], the domain needs to be probed by means of V = 107
equispaced filamentary currents placed in the far-field of the imaging domain (rm = 120λb), and the
corresponding scattered fields are collected through M = 107 measurement points. We consider the
solution of the forward problem with a set of OAM incident fields up to | ± �max| = 30 and solve
the underlying inverse problem by means of the Rytov Equation (8). In this case also, the scattered
field is corrupted with AWGN of SNR = 20 dB. The reconstruction results are shown in Figure 5b–e
and allow appraising the dielectric features of the target. It is worth noting that, if the SVD of the
multiview-multistatic scattering matrix, of dimensions (Nc)× (M × V), is computed via MATLAB
on a standard CPU Intel Core i7 8GB RAM, it results in an “out-of-memory” warning. Instead,
by using the proposed OAM based inversion, a meaningful result is found without the need for higher
performance computers. Furthermore, for this example, we consider also reconstruction by processing
the scattered field gathered in the near-field (though non-reactive zone) of the imaging domain by
setting the distance of the Tx-Rx probes at rm = 9λ, namely the minimum circle enclosing the surveyed
area. As we can appraise from Figure 5c–f, the reconstruction results are fully comparable as the
reconstruction errors attain the same values in both considered cases.
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Figure 5. Reconstruction of a large circular scatterer through the Rytov approximation exploiting
OAM fields generated in the far-field (rm = 100) m and near-field (rm = 9) m of the imaging
domain. The OAM orders used are � = 0,±[1 − 35]. (a) Real and (d) imaginary part of the actual
contrast profile; (b) real and (e) imaginary part of the retrieved contrast profile in the far-field
measurement configuration, reconstruction err = 0.1108 with a cutoff value in the TSVD reconstruction
NT = 1856; (c) real and (f) imaginary part of the retrieved contrast profile in the near-field measurement
configuration, reconstruction err = 0.1267 with a cutoff value in the TSVD reconstruction NT = 1557.
The axes of the imaging domain are expressed in background wavelengths.

5. Conclusions

The use of OAM incident fields in linearized diffraction tomography has been investigated and
analyzed in this paper. The main conclusions are concerned with the possibility to adopt alternative
measurement setup that give additional flexibility in performing tomographic imaging.

As an example, this is the case when the investigated domain contains undesired scatterers that
should be neglected in the reconstruction process, such as, for example, in those approaches wherein
part of the electromagnetic features of the scene is known, such as non-destructive testing (NDT)
for the detection of faults in an “undesired” background. Indeed, this can be done via hardware,
without resorting to computationally heavy differential (or distorted) imaging procedures, wherein the
knowledge of the Green function is also required. Another possible context of interest is in subsurface
imaging where the goal may be to address the inversion strategy at a given depth and/or location, on
the base of a priori available information.

On the other hand, in all those applications concerned with the detection of small scatterers,
OAM probing fields can allow to significantly reduce gathering time and computational burden,
as only few modes have to be exploited to achieve satisfactory reconstructions. Indeed, the size of the
multiorder-multistatic scattering operator is often smaller than the multiview-mutistatic counterpart,
depending on the dimension of the scattering system, and hence on the |�max| order used to probe the
scenario. This may be of particular interest for the development of fast 3D tomographic approaches
with reduced computational burden.
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As main drawback, OAMs imply a complication of the feeding network (phase shifters and
possibly amplifiers) that can be traded, on the other hand, with a lower acquisition time through digital
beamforming networks that avoid sequentially transmitting antennas and switching circuitry. Last,
but not least, it is worth noticing that, when no a priori information is available about the scattering
system, it is even possible to scan the OAM cores along some directions over the investigation domain,
according to the well known phased array theory.
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Abstract: In two dimensional cross-range multiple-input multiple-output radar imaging for aerial
targets, due to the non-cooperative movement of the targets, the estimated imaging plane parameters,
namely the center and the posture angles of the imaging plane, may have deviations from true values,
which defocus the final image. This problem is called imaging plane mismatch in this paper. Focusing
on this problem, firstly the deviations of spatial spectrum fulfilling region caused by imaging plane
mismatch is analyzed, as well as the errors of the corresponding spatial spectral values. Thereupon,
the calibration operation is deduced when the imaging plane parameters are accurately obtained.
Afterwards, an imaging plane calibration algorithm is proposed to utilize particle swarm optimization
to search out the imaging plane parameters. Finally, it is demonstrated through simulations that the
proposed algorithm can accurately estimate the imaging plane parameters and achieve good image
focusing performance.

Keywords: two-dimensional radar imaging; multiple-input multiple-output (MIMO) radar; Particle
Swarm Optimization (PSO); imaging plane calibration algorithm (IPCA)

1. Introduction

Aerial targets imaging is an important research direction in the field of radar imaging technology.
Especially, it plays a crucial role in the military field, such as, aerial defense [1] and anti-missile
defense [2] and so on. Multiple-input multiple-output (MIMO) radar is a new radar technique, which
adopts multiple transmitters and receivers. By transmitting orthogonal space–time block codes [3] or
frequency diversity signals [4], a MIMO radar with M transmitters and N receivers can eventually
form a virtual array of the aperture length up to M times that of the receive array, which greatly saves
the hardware cost. In addition, MIMO radar can obtain the images of the aerial targets with only one
snapshot, and thus has enormous superiority in radar image acquisition time [5,6].

Since MIMO radar technique was proposed, it has been desired to build high performance
imaging algorithms. The researches of MIMO radar imaging algorithms mainly focus on two aspects:
The first is the wave-number domain imaging methods, and their imaging performances mainly
depend on the spatial spectrum fulfilling region, which is generally required to be uniformly fulfilled,
so that the fast Fourier transform (FFT) can be applied [7,8]. In this regard, Prof. Yarovoy et al. have
conducted a large number of studies and verified the feasibility of the proposed algorithms in security
check [9], wall penetrating [10] and ground penetrating imaging applications [7]. In addition to the
traditional wave-number domain methods, the iterative optimization methods have also been applied
in the MIMO radar imaging field. For example, Prof. Li’s team of University of Florida proposed
several iterative imaging algorithms, such as iterative adaptive approaches (IAA) algorithm [11] and
the sparse learning via iterative minimization (SLIM) [12] algorithm, which have been well applied
and verified in MIMO radar scenarios.

Sensors 2019, 19, 5261; doi:10.3390/s19235261 www.mdpi.com/journal/sensors131
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In MIMO radar imaging, the model mismatch caused by system errors or array spatial position
errors will degrade the imaging quality. Therefore, the study of model error calibration algorithms
is an important research direction of high-quality MIMO radar imaging. In this regard, a large
number of studies have been used to calibrate the phase error [13,14], carrier frequency deviation [15],
array position error [16], off-grid problem [17,18], and so on. The degradation of MIMO radar
resolution under the condition of phase error from the perspective of point spread function (PSF) is
analyzed in [13], and the sparse imaging via expectation maximization (SIEM) algorithm is proposed,
which alternately estimates the phase errors and the target image, and obtains better imaging quality.
Subsequently, the degradation of MIMO radar resolution under the condition of carrier frequency
deviation from the perspective of PSF is analyzed in [15] as well, and an iterative algorithm employing
iteration strategy similar to reference [13] is proposed, and good imaging results are achieved. MIMO
imaging with array position errors is studied in reference [16], while in reference [17,18], the off-grid
problem of MIMO radar imaging is studied. The algorithms proposed in [16–18] all employ sparse
optimization by alternately estimating the target image and the errors during iterations, hence clear
images are finally obtained.

Most of the above methods are proposed for two dimensional (2D) imaging in range and
cross-range directions. However, for the target plane parallel to cross-range direction, these methods
cannot be directly applied. In fact, it is necessary to set the origin of the coordinates at the center of
the imaging plane [5,19] for the 2D cross-range imaging methods based on the spatial spectrum. In
practical applications, as the target is non-cooperative, it is required to estimate the scene center and
posture angles of the target plane, so as to make the final image focus on the image scene center and
the target plane. However, there are always some deviations between the estimated imaging plane
parameters and the real situations, which resulting in unfocused image and poor imaging quality. This
problem is called the imaging plane mismatch problem in this paper.

To solve this problem, firstly, the deviations of spatial spectral fulfilling region caused by imaging
plane mismatch are analyzed, and the location errors between estimated spatial spectral point and
real spatial spectral point under the condition of imaging plane mismatch are deduced, as well as the
errors of the corresponding spatial spectral values. Subsequently, in order to estimate imaging plane
parameters and to be able to calibrate the locations and values of spatial spectral points, an imaging
plane calibration algorithm (IPCA) is proposed. Aiming at minimizing the image entropy as well
as promoting target sparsity, IPCA utilizes a particle swarm optimization (PSO) [20,21] algorithm to
search out the parameters of imaging plane center deviation and pose angles deviations, and then
calibrates the locations of spatial spectral points according to these parameters, so as to obtain images
with better quality.

This paper is organized as follows. Section 2 introduces the spatial spectral imaging model of
MIMO radar, and analyzes the problem of imaging plane mismatch, and the deviations between the
estimated spatial spectral point and the real spatial spectral point position under the imaging plane
mismatch are deduced. Section 3 provides the design and the detailed flow of IPCA. In Section 4,
the validity of the proposed algorithm, robustness to noise, and tolerance to mismatching parameters
are verified by simulations. Section 5 is the conclusion of this paper.

2. Problem Formulation of Imaging Plane Mismatch

In this section, the spatial spectral imaging model of MIMO radar is reviewed firstly, and then the
model mismatch problem caused by the imaging plane mismatch is analyzed. Under the condition of
imaging plane mismatch, the deviations between the positions of the obtained spatial spectral points
and the positions of the real spectral points are analyzed, as well as the values of the corresponding
spatial spectral points. Afterwards, the calibration operation is deduced to obtain the focused image
after obtaining the imaging plane parameters. Notice that the radar system discussed here is the
frequency diversity MIMO (f-MIMO) radar [4,22].
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2.1. Space Spectral Imaging Model of Multiple-Input Multiple-Output (MIMO) Radar

In this subsection, the spatial spectral imaging model of MIMO radar is reviewed firstly.
Figure 1 illustrates the general 2D cross-range imaging scenario of MIMO radar. Let (x, y, z)

be Cartesian coordinates with the origin O located at the center of the imaging plane and the
2D target is supposed to be on the imaging plane. The location of the p-th transmitting antenna
and the q-th receiving antenna are denoted as rp =

(
rp, θp, ϕp

)
and rq =

(
rq, θq, ϕq

)
in spherical

coordinate respectively.

Figure 1. Space spectral imaging model of multiple-input multiple-output (MIMO) radar.

Without loss of generality, regardless of the loss associated with the free-space propagation,
the echo signal at the q-th receiver by the p-th transmitter is given by [5]:

sp,q(t) =
∫∫

σ(xT , yT) exp
(

j2π

[
fp

(
t − Rp,T

c
− Rq,T

c

)])
dxTdyT (1)

where σ(xT , yT) denotes the reflectivity of the scatterer at (xT , yT) on the imaging plane, fp is
the transmitting frequency of the p-th transmitter and c is the speed of light. Rp,T =

∣∣rp − rT
∣∣,

Rq,T =
∣∣rq − rT

∣∣, rT = (xT , yT , 0).
Then, down conversion is applied to the received signal, which can be achieved by multiplying it

by the following reference signal:

sre f (t) = exp

(
−j2π

[
fp

(
t −
∣∣rp
∣∣

c
−
∣∣rq
∣∣

c

)])
(2)

In the case of the far field, approximate conditions can be used:

Rp,T =
∣∣rp − rT

∣∣ = ∣∣rp
∣∣− rT · êp

Rq,T =
∣∣rq − rT

∣∣ = ∣∣rq
∣∣− rT · êq

(3)

where êp = rp/|rp| and êq = rq/|rq|.
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Thus it can get:

sp,q(t) · sre f (t) =
∫∫

σ(xT , yT) exp
(

j2π

[
fp

(
t − Rp,T

c
− Rq,T

c

)])
× exp

(
−j2π

[
fp

(
t −
∣∣rp
∣∣

c
−
∣∣rq
∣∣

c

)])
dxTdyT

=
∫∫

σ (xT , yT) exp
(

j2πKp,q · rT
)

dxTdyT

(4)

where Kp,q =
(

kx
p,q, ky

p,q

)
. kx

p,q and ky
p,q are:

kx
p,q =

fp

c
(
cos θp sin ϕp + cos θq sin ϕq

)
ky

p,q =
fp

c
(
cos θp cos ϕp + cos θq cos ϕq

) (5)

Therefore, the value of the 2D spatial spectral point (kx
p,q, ky

p,q) of the imaging plane is obtained:

G
(

kx
p,q, ky

p,q

)
=
∫∫

σ (xT , yT) exp
(

j2π
(

xTkx
p,q + yTky

p,q

))
dxTdyT (6)

Finally, the common algorithms can be applied on spatial spectral point value to obtain the
target image, such as the inverse fast Fourier transform (IFFT) algorithm, the back-projection (BP)
algorithm [23], and the non-uniform fast Fourier transform [8] and so on.

2.2. Analysis of Model Mismatch Problem Caused by Imaging Plane Mismatch

In the actual MIMO radar imaging applications, especially in aerial target imaging, the center and
the posture angles of the imaging plane are uncertain due to the target’s non-cooperative movement
state. When the parameters of the imaging plane have deviations, the fulfilling region of the obtained
spatial spectrum will deviate from the real region, which will cause images to be unfocused.

Figure 2 shows the imaging geometry of the scenario with imaging plane mismatch. Let α denote
the estimated target plane, while let β denote the real target plane. Besides, set up the coordinate
O − xαyαzα with the origin O located at the center of the estimated target plane and plane xαOyα

coincides with the estimated target plane. The location vectors of p-th transmitting antenna and q-th
receiving antenna are rp =

(
rp, θp, ϕp

)
and rq =

(
rq, θq, ϕq

)
respectively in Coordinate O − xαyαzα.

Likewise, set up the coordinate O′ − xβyβzβ with the origin O′ located at the center of the real target
plane and plane xβOyβ coincides with the real target plane. Meanwhile, the location vectors of

p-th transmitting antenna and q-th receiving antenna are r′p =
(

r′p, θ′p, ϕ′
p

)
and r′q =

(
r′q, θ′q, ϕ′

q

)
respectively in coordinate O′ − xβyβzβ. In addition, the changes between plane β and plane α consist of
the translation change and the posture angles’ change. The direction vector d =

(
dβ, θβ, ϕβ

)
represents

the translation of the origin of coordinate O′ − xβyβzβ relative to the origin of coordinate O − xαyαzα.
Define (δ, μ, ξ) as the posture angle of plane β in Coordinate O − xαyαzα, where δ denotes the angle
between the axis xβ of coordinate O′ − xβyβzβ and the plane xαOyα, μ denotes the angle between the
projection of the axis xβ on the plane xαOzα and the axis xα, and ξ denotes the angle between the plane
yβO′zβ and the plane yαOzα.

What is more, θ′p, θ′q, ϕ′
p, ϕ′

q and θp, θq, ϕp, ϕq have relations:

θ′p = θp + δ sin ϕp + μ cos ϕp, ϕ′
p = ϕp + ξ + δ cos ϕp + μ sin ϕp

θ′q = θq + δ sin ϕq + μ cos ϕq, ϕ′
q = ϕq + ξ + δ cos ϕq + μ sin ϕq

(7)
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Figure 2. Imaging geometry of MIMO radar with imaging plane mismatch.

Hence, r′p and r′q can be computed by rp, rq and d, namely

∣∣∣r′p∣∣∣ = ∣∣rp − d
∣∣ = √∣∣rp

∣∣2 + d2
β − 2

∣∣rp
∣∣ · dβ

(
cos θp cos θβ cos

(
ϕp − ϕβ

)
+ sin θp sin θβ

)
∣∣∣r′q∣∣∣ = ∣∣rq − d

∣∣ = √∣∣rq
∣∣2 + d2

β − 2
∣∣rq
∣∣ · dβ

(
cos θq cos θβ cos

(
ϕq − ϕβ

)
+ sin θq sin θβ

) (8)

Substitute Equation (8) into Equation (3), so that it can get:

τp,T =
Rp,T

c
=

∣∣∣r′p∣∣∣+ xT cos θ′p sin ϕ′
p + yT cos θ′p cos ϕ′

p

c

=

√∣∣rp
∣∣2 + d2

β − 2
∣∣rp
∣∣ dβ

(
cos θp cos θβ cos

(
ϕp − ϕβ

)
+ sin θp sin θβ

)
c

+
xT cos θ′p sin ϕ′

p + yT cos θ′p cos ϕ′
p

c

τq,T =
Rq,T

c
=

∣∣∣r′q∣∣∣+ xT cos θ′q sin ϕ′
q + yT cos θ′q cos ϕ′

q

c

=

√∣∣rq
∣∣2 + d2

β − 2
∣∣rq
∣∣ dβ

(
cos θq cos θβ cos

(
ϕq − ϕβ

)
+ sin θq sin θβ

)
c

+
xT cos θ′q sin ϕ′

q + yT cos θ′q cos ϕ′
q

c

(9)
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Since the real imaging plane parameters are not accurately known, the reference signal
sre f (t) is still the same as Equation (2). Substitute Equation (9) into Equation (4) and using far
field approximation:

sp,q(t) · sre f (t) =
∫∫

σ (xT , yT) exp
{

j2π
fp

c

(
− dβ(cos θp cos θβ cos

(
ϕp − ϕβ

)
+ sin θp sin θβ)

−dβ(cos θq cos θβ cos
(

ϕq − ϕβ

)
+ sin θq sin θβ)

+xT
[

cos(θp + δ sin ϕp + μ cos ϕp) sin(ϕp + ξ + δ cos ϕp + μ sin ϕp)

+ cos(θq + δ sin ϕq + μ cos ϕq) sin(ϕq + ξ + δ cos ϕq + μ sin ϕq)
]

+yT
[

cos(θp + δ sin ϕp + μ cos ϕp) cos(ϕp + ξ + δ cos ϕp + μ sin ϕp)

+ cos
(
θq + δ sin ϕq + μ cos ϕq

)
cos(ϕq + ξ + δ cos ϕq + μ sin ϕq)

])}
dxTdyT

(10)

Therefore Equation (6) actually gets:

G
(

kx
p,q, ky

p,q

)
=
∫∫

σ (xT , yT) exp
{

j2π
(

xTkx
p,q + yTky

p,q

)
+ j2π

fp

c

(
−dβ(cos θp cos θβ cos

(
ϕp − ϕβ

)
+ sin θp sin θβ)

−dβ(cos θq cos θβ cos
(

ϕq − ϕβ

)
+ sin θq sin θβ)

+xT
[

sin
(
δ sin ϕp + μ cos ϕp

) (
sin θp sin ϕp + sin θq sin ϕq

)
+ sin

(
ξ + δ cos ϕq + μ sin ϕq

) (
cos θp cos ϕp + cos θq cos ϕq

) ]
+yT
[

sin
(
δ sin ϕp + μ cos ϕp

) (
sin θp cos ϕp + sin θq cos ϕq

)
+ sin

(
ξ + δ cos ϕq + μ sin ϕq

) (
cos θp sin ϕp + cos θq sin ϕq

) ])}
dxTdyT

(11)

The location of space spectral points obtained by the above processing is not completely matched
with the real spatial spectral fulfilling region. As a result, the entire image is not focused on the real
target plane.

2.3. The Calibration Operation

In order to obtain more accurate imaging results, it is necessary to search out the parameters of
the imaging plane, so as to eliminate the mismatch between the estimated spatial spectral fulfilling
region and the real spatial spectral fulfilling region, and the according spatial spectral values. After the
parameters of the imaging plane are obtained, the following calibration operation can be applied to
achieve focused image.

When the parameters d =
(
dβ, θβ, ϕβ

)
and (δ, μ, ξ) have been obtained, the reference signal can

be calibrated as:

s′re f

(
t, r′p, r′q

)
= exp

⎧⎨⎩−j2π fp

⎛⎝t −

∣∣∣r′p∣∣∣+ ∣∣∣r′q∣∣∣
c

⎞⎠⎫⎬⎭ (12)

After the coherent processing in Equation (10), the final spatial spectral value is:

G′
(

k′xp,q, k′yp,q

)
=
∫∫

T
σ (xT , yT) ej2π

(
xTk′xp,q+yTk′yp,q

)
dxTdyT (13)
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where T denotes the imaging area and k′xp,q, k′yp,q are defined in Equation (14).

k′xp,q =
fp

(
cos θ′p sin ϕ′

p + cos θ′q sin ϕ′
q

)
c

=
fp

c
((

cos
(
θp + δ sin ϕp + μ cos ϕp

)
sin
(

ϕp + ξ + δ cos ϕp + μ sin ϕp
)

+ cos
(
θq + δ sin ϕq + μ cos ϕq

)
sin
(

ϕq + ξ + δ cos ϕq + μ sin ϕq
)
)

k′yp,q =
fp

(
cos θ′p cos ϕ′

p + cos θ′q cos ϕ′
q

)
c

=
fp

c
(
cos
(
θp + δ sin ϕp + μ cos ϕp

)
cos
(

ϕp + ξ + δ cos ϕp + μ sin ϕp
)

+ cos
(
θq + δ sin ϕq + μ cos ϕq

)
cos
(

ϕq + ξ + δ cos ϕq + μ sin ϕq
)
)

(14)

Ultimately, the focused images can be obtained using k′xp,q, k′yp,q and the corresponding spatial

spectral value G′
(

k
′x
p,q, k

′y
p,q

)
.

3. The Proposed Imaging Plane Calibration Algorithm (IPCA)

When there are deviations between the estimated values of the imaging plane parameters
(dβ, θβ, ϕβ, δ, μ, ξ) and the real values, it will lead to the problem of spatial spectrum mismatch.
The mismatch of spatial spectrum results in the image not focusing at the real imaging plane and the
whole image quality is deteriorated seriously.

In order to achieve better imaging performance, it is necessary to search out the real imaging
plane parameters, namely the six parameters (dβ, θβ, ϕβ, δ, μ, ξ).

However, searching directions cannot be clear at beginning and always changed in the processing.
Commonly, a good objective function will make the searching process in desirable directions.

Generally, image entropy can be used to measure the focusing performance of an image. In radar
imaging, it is defined as follows:

E = −
M−1

∑
k=0

N−1

∑
n=0

|σ (xk, yn)|2
S

ln
|σ (xk, yn)|2

S
(15)

where, S = ∑M−1
k=0 ∑N−1

n=0 |σ (xk, yn)|2, and the image is discretized into M × N grids. σ(xk, yn) denotes
the scattering coefficient of the grid in k-th row at n-th column. At the same time, in the aerial imaging
applications, the targets usually have sparse characteristics.

Therefore, both the focusing performance and the sparsity of the targets are considered, hence the
objective function is to minimize the following function:

f (d, δ, μ, ξ) = −
M−1

∑
k=0

N−1

∑
n=0

|σ (xk, yn)|2
S

ln
|σ (xk, yn)|2

S
+ γ

M−1

∑
k=0

N−1

∑
n=0

|σ (xk, yn)|1 (16)

where σ (xk, yn) = IFFT
(
Gp,q
(
kx, ky, d, δ, μ, ξ

))
and γ is a tunable parameter to adjust the weights of

the image entropy and the sparsity.
In such a way, the estimation problem for (d, δ, μ, ξ) can be transformed into the following

optimization problem:
(d, δ, μ, ξ) = arg min

d,δ,μ,ξ
f (d, δ, μ, ξ)

s.t. σ (xk, yn) = IFFT
(
Gp,q
(
kx, ky, d, δ, μ, ξ

)) (17)

However, the above optimization problem is not a convex problem. Commonly, among non-convex
optimization algorithms, metaheuristic optimization [24] is becoming increasingly popular. Particle
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swarm optimization (PSO) algorithm is one of the most popular metaheuristic optimization algorithms,
and has been successfully applied in radar imaging problems [25,26]. Hence, the imaging plane
calibration algorithm (IPCA) is proposed to utilize PSO algorithm for solving the optimization
problem in Equation (17). In IPCA, each particle pi = (dβi, θβi, ϕβi, δi, μi, ξi) denotes one estimation
of (dβ, θβ, ϕβ, δ, μ, ξ), while the velocity vi of each particle denotes one search direction. In PSO, each
particle remembers its personal best position. Meanwhile, global best position is also recorded. In each
iteration, the velocity of each particle is updated combining the individual movement states and the
group movement states. Particles acquire their new positions by constantly updating their speed,
and eventually all particles will converge to the global optimal value [20,21].

The detailed algorithm of IPCA is described in Algorithm 1 and the flow chart is illustrated
in Figure 3.

Figure 3. Flow chart of imaging plane calibration algorithm (IPCA).
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Algorithm 1: IPCA
Input: the maximum number of iterations Kmax , Convergence condition ε, the number of

particle I
1 Initialization: d = (dβ, θβ, ϕβ) = (0, 0, 0), δ = 0, μ = 0, ξ = 0; the location of the i-th particle

p0
i and the velocity vi. Let Pbest(i) denotes the best fitness position of the i-th particle and

Gbest denotes the best position of all the particles.
2 for k = 1 : Kmax do

3 for i = 1 : I do

4 compute the fitness of each particle: f itness(i) = f (pk
i );

5 if f itness(i) < f itness(Pbest(i)) then

6 Pbest(i) = pk
i

7 end

8 end

9 Update Gbest with Gbest = argmin
pi

f itness(i), i = 1, 2, . . . , I;

10 Update the location and velocity of each particle using the following equations where
wk, c1, c2 are parameters controlling the iteration step and randk

1 and randk
2 are random

numbers in (0, 1).

vk+1
i =wkvk

i + c1 · randk
1 ·
(

Pbest(i)− pk
i

)
+ c2 · randk

2 ·
(

Gbest − pk
i

)
pk+1

i =pk
i + vk+1

i

11 if Convergence condition reached then

12 break
13 end

14 end

Output: (dβ, θβ, ϕβ, δ, μ, ξ) and the image σ

4. Simulations

In this section, several simulations are carried out to verify the effectiveness of IPCA.
The imaging distance is set to 1 km in the simulations and the target is a B727 airplane with its

point scattering model shown in Figure 4a. The size of the imaging plane, approximately parallel to the
radar antenna array, is 60 × 60 m. The radar consists of 31 × 31 transmitters and 4 receivers and all of
the antennas are located on the same transceiver plane, as is illustrated in Figure 4b. Besides, the size
of the radar array is 60 × 60 m and the radar works at C-band. The detailed simulation parameters are
given in Table 1.

Table 1. Simulation parameters.

Parameter Value

Imaging distance 1 km
The size of the imaging plane 60 m × 60 m

The size of the radar antenna array 60 m × 60 m
Number of transmitters 31 × 31

Number of receivers 4
Carrier frequency 5 GHz

Bandwidth 200 MHz
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(a) (b)

Figure 4. Target and antenna array (a) Scattering points distribution of the B727 airplane, (b) Locations
of transmit antennas and receive antennas.

4.1. Imaging Simulation

To verify the effectiveness of the proposed method, the following simulation was carried out.
System parameters in the simulations are shown in Table 1. The parameters of the center and pose
angles of the imaging plane both have errors. The real parameters are given in Table 2.

Table 2. Imaging plane parameters.

Parameter Value

Deviation of the center of the imaging plane d = (dβ, θβ, ϕβ) = (1.5 m,−0.785 rad, 0.340 rad)
Deviation of the posture angle of the imaging plane (δ, μ, ξ) = ( 1

180 π,− 1
180 π,− 1

180 π) rad

According to the derivation in Section 2 and the deviation parameters of the imaging plane,
the estimated and real fulfilling region of the spatial spectrum are illustrated in Figure 5a,b respectively.
It can be seen that when there are deviations of the imaging plane parameters, the estimated fulfilling
region of the spatial spectrum is quite different from the fulfilling region of the real spatial spectrum.
The recovered image is illustrated in Figure 5c when deviations of the imaging plane parameters are
not known, and the adopted algorithm is the IFFT algorithm. It can been seen that even when there
are slight deviations of the imaging plane parameters, e.g., the deviations of the posture angles of the
imaging plane are within 1◦, the image is badly defocused, and the target’s contour is not clear.

(a) (b) (c)

Figure 5. Spatial spectrum and reconstructed image. (a) The estimated fulfilled region of the spatial
spectrum, (b) The real fulfilled region of the spatial spectrum, (c) Image reconstructed using estimated
spatial spectrum values.

In the following, the proposed IPCA is taken to search out the six parameters, namely(
dβ, θβ, ϕβ, δ, μ, ξ

)
, and then the calibration operation is taken to obtain the final image. The number of
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the particles, I, in IPCA is set to 100 and the maximum number of iterations, Kmax, is set to 100 too.
Meanwhile some other parameters in PSO are set: ωk = 0.8 − 0.5 × k

Kmax
, c1 = c2 = 1.

According to Figure 6, the image has clearer target outlines and better focusing performance with
fewer noisy points around the target. In the final image, each scattering point of the target can be
clearly identified. Meanwhile, the image entropy is smaller using IPCA than that using IFFT, as is
shown in Table 3, which means better focusing performance.

(a) (b) (c)

(d) (e) (f)

Figure 6. Reconstructed images of different iterations, (a–f) images of the 10th, 20th, 30th, 50th, 80th,
and 100th iteration respectively.

Table 3. Image entropy.

Adopted Algorithm IFFT The Proposed IPCA

Image entropy 5.66 3.729

Figure 7 shows the value of the objective function and the image entropy during the IPCA
iterations. It can been seen that when the number of iterations exceeds 80, the value of the objective
function tends to be stable, that is, the search results gradually converge.

From what has been discussed above, the method proposed in this paper can effectively converge.
Meanwhile, the entropy of the inversion image is lower and the image quality is higher.

Figure 8a shows the estimated d = (dx, dy, dz) during the iterations. It can be seen that, with the
increase of the number of iterations, dz gradually approaches the real value, and finally converges to
the real value. The values of dx dy are still deviated from the real values. This is because the deviations
dx, dy of the image will only make the image translation in the imaging plane, which have no effect
on the image focus effect and target sparsity. Therefore, dx, dy do not affect the imaging quality and
IPCA cannot guarantee dx, dy convergence to the real value. Likewise, Figure 8b shows the estimated
imaging plane posture angles (δ, μ, ξ) with the number of iterations. It can be seen that as the number
of iterations increases, the value of δ, μ converges to the real value while ξ not. This is because the
estimation error of the rotation angle ξ, whose rotating axis parallel to the line of sight, will make the
image rotate in the imaging plane, which has no influence on the image entropy and target sparsity.
Therefore ξ does not affect the imaging quality and IPCA cannot guarantee ξ convergence to the
real value.
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(a) (b)

Figure 7. Value of objective function and image entropy during iterations. (a) Value of objective
function during iterations (b) Image entropy during iterations.

(a) (b)

Figure 8. Values of d = (dx, dy, dz) and (δ, μ, ξ) during iterations. (a) d = (dx, dy, dz), (b) (δ, μ, ξ).

Meanwhile, since the PSO algorithm is a metaheuristic optimization algorithm, the computation
time of IPCA is hard to predict. Therefore, 10 Monte Carlo trials are taken to count the computation time.
The computation times of 10 Monte Carlo trials vary from 954 s to 2017 s with average computation
time is 1617 s.

To sum up, the algorithm proposed in this paper can obtain more accurate imaging plane
parameters, resulting in better image focusing performance and better imaging quality.

4.2. Simulations with Different Tunable Parameter γ

In Equation (16), a tunable parameter γ is defined to adjust the weights of the image entropy and
the sparsity. In order to analysis the influence of γ, the below simulations are taken.

The simulation parameters are set the same with that in Tables 1 and 2. γ is set to
[0.1, 0.5, 1, 3, 5, 10, 50]. The imaging results are illustrated in Figure 9, meanwhile the image entropy
are given in Table 4.

It can be seen from Figure 9 that the reconstructed images are all well focused and the image
entropy are all lower than 4 when γ is chosen with different values. So it can conclude that γ has
seldom influence on the final imaging results. Therefore, γ can be selected from a wide range in IPCA.
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(a) (b) (c)

(d) (e) (f)

Figure 9. Reconstructed images with different γ, (a) γ = 0.1, (b) γ = 1, (c) γ = 3, (d) γ = 5, (e) γ = 10,
(f) γ = 50.

Table 4. Image entropy with different γ.

γ 0.1 0.5 1 3 5 10 50

Image entropy 3.76 3.70 3.63 3.73 3.73 3.74 3.75

4.3. Simulations under Different Signal-to-Noise Ratios (SNRs)

In order to verify the robustness to the noise of IPCA, the following simulation is carried out
in different echo signal-to-noise ratio. The echo SNRs are set from 5 dB to 30 dB. The simulation
parameters are the same with that in Tables 1 and 2. The simulation results are in Figure 10.

(a) (b)

Figure 10. (a) Value of the objective function f (d, δ, μ, ξ) during iterations under different SNRs,
(b) Image entropy during iterations under different SNRs.

The value of the objective function f (d, δ, μ, ξ) during the iterations is illustrated in Figure 10a.
As it is shown, the value of the objective function f (d, δ, μ, ξ) decreases iteratively and finally converges.
When the SNR is above 15 dB, the final values of f (d, δ, μ, ξ) are closed to each other.
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The image entropy during the iterations is illustrated in Figure 10b. It can be seen that image
entropy decreases iteratively. When the SNR is equal to or above 15 dB, the final image entropy is
lower than 4 which means good image focusing performance.

4.4. Simulations under Different Parameter Ranges

In order to verify that the proposed method has a certain degree of tolerance for the deviations of
the imaging parameters, the following simulations are conducted. According to the first subsection in
this section, the center deviation parameter dx, dy of the imaging plane only cause the image to shift in
the imaging plane, and has no influence on the imaging quality and focusing performance. In addition,
the posture angle ξ makes the image rotate in the imaging plane, while the focusing performance is
not affected. So in the following simulations, only dz, δ and μ are considered.

In the simulations, dz, δ and μ are uniform random selected in [−Δdz
2 , Δdz

2 ], [−Δδ
2 , Δδ

2 ] and
[−Δμ

2 , Δμ
2 ]. Δdz are set to [0.1, 0.2, 0.3, 0.5, 0.8, 1.0], while Δδ are set to [1, 2, 3, 5, 8, 10]/180π whereas

Δμ are set to [1, 2, 3, 5, 8, 10]/180π. For each Δdz, Δδ and Δμ, 10 Monte Carlo trials are taken.
Meanwhile, when the value dz, δ and μ are changing, dx, dy and ξ are set to be zeros.

The errors between the estimated dz, δ, μ and the real values and the image entropy obtained by
10 Monte Carlo trials with different Δdz, Δδ, Δμ are illustrated using boxplot in Figure 11. On each
box, the central mark indicates the median, and the bottom and top edges of the box indicate the
25th and 75th percentiles, respectively. The whiskers extend to the most extreme data points not
considered outliers, and the outliers are plotted individually using the red ’+’ symbol. According to
Figure 11a–c, the errors between the final estimated dz and the real values are within ±0.01 m, and the
errors between the final estimated δ and the real value are within ±0.35◦ when Δδ is chosen little than
3◦. Moreover the errors between the final estimated μ and the real values are within ±0.35◦ when Δμ

is chosen little than 5◦. In addition, according to Figure 11d–f, the image entropy are all lower than 4
when Δdz, Δδ, Δμ are chosen within 1 m, 3◦, 5◦ respectively.
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Figure 11. Errors between the estimated dz, δ, μ and real values and Image entropy of 10 Monte Carlo
trials, (a–c). Errors between the estimated dz, δ, μ and real values respectively when different Δdz, Δδ

and Δμ are chosen; (d–f) image entropy with different Δdz, Δδ and Δμ.
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In short, IPCA can obtain the final estimated dz, δ and μ with errors at most ±0.01 m, ±0.35◦ and
±0.35◦ when Δdz, Δδ, Δμ are chosen within 1 m, 3◦, 5◦ respectively, and the image entropy is smaller
than 4.

5. Conclusions

In this paper, the imaging plane mismatch problem of 2D cross-range MIMO radar imaging is
analyzed, and the deviations between the estimated spatial spectral point location and the real spatial
spectral point location are deduced as well as the corresponding spatial spectral values. To solve this
problem, IPCA is proposed in this paper. Aiming at minimizing the image entropy and sparsity of
the image, PSO is utilized in IPCA to obtain the image with better focusing performance. Simulation
results verify the effectiveness of the proposed algorithm and the robustness to noise. At the same
time, when the parameters of the imaging plane are different, the proposed algorithm can obtain
the imaging plane parameters of the real values, and then carry out the imaging plane calibration
operation to obtain the focused image. The method proposed in this paper can solve the imaging plane
mismatch problem and obtain high quality MIMO images.
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Abstract: In this contribution, we are investigating a technique for the representation of electromag-
netic fields by recording their thermal footprints on an indicator material using a thermal camera.
Fundamentals regarding the interaction of electromagnetic heating, thermodynamics, and fluid
dynamics are derived which allow for a precise design of the field illustration method. The synthesis
and description of high-loss dielectric materials is discussed and a technique for a simple estimation
of the broadband material’s imaginary permittivity part is introduced. Finally, exemplifying investi-
gations, comparing simulations and measurements on the fundamental TE10-mode in an X-band
waveguide are presented, which prove the above introduced sensing theory.

Keywords: microwave; thermography; field illustration; permittivity

1. Introduction

The measurement and visualization of electrical and magnetic fields has been an
important task in the big scope of instrumentation, measurement, and education for
many years as it enables a better understanding of physical phenomena. Here, several
differentiations can be made for classifying methods and techniques. In terms of static
and quasi-static field observation up to 100 MHz, optical sensors utilizing the Kerr effect,
showing a two-dimensional field distribution, have been already reported in the 1970s [1].
Further instrumentation approaches utilize optical sensors [2,3]. However, when increasing
the alternating frequency of the applied field up to wave propagation, sensor and probe
design is often reduced to single point measurements that record a scalar value. Therefore,
the illustration of complete field distributions is only possible by the time consuming
scanning of the area of interest. Corresponding sensor and measurement techniques have
been reported in [4–6] and include dielectric tips and dipole probes.

Anyway, the fast recording of microwave field distributions remains an interesting
approach for several scientific and engineering fields including the investigation of field
radiation in terms of antenna design, EMC testing and of course educational purposes.
However, large scale and multi-dimensional visualization is challenging, because the
desired resolution of the illustrated field image demands for a large amount of sensor array
elements, which are used in near field sensor devices. Consequently, when applied to bigger
investigation areas, these devices are costly, power consuming, and disturb the incident
electromagnetic wave. Hence, far field measurements are often performed for antenna
and electromagnetic compatibility (EMC) testing, which however give only information
on radiated field components. Finally, nowadays simulation based illustrations are a key
technology in antenna design and education. Yet, conformity between virtual and real
world results must be verified. Another method for the illustration of electromagnetic fields
and their interaction with matter is the microwave thermography (MWT) approach. Here,
the thermal footprint of an incident electromagnetic wave on lossy dielectrics or metallic
objects is recorded by means of a thermal camera and subsequently processed. While,
materials for the illustration of two-dimensional laser beams of non-optical wavelengths,
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e.g., infrared lasers, are very well known and have been already commercialized and are
distributed by Macken Instruments or Cascadelasers, the illustration of microwave fields is
challenging because field strenghts’ are significantly lower. To date, MWT has been mostly
used for non-destructive testing as described in [7]. Further recording techniques rely
on thermo-elastic optical indicators [8,9], or solid state quantum sensing [10]. In [11–13],
promising approaches for the microwave field illustration are presented that make use of
films with magnetic losses in combination with thermo-fluoresecent indicators. However,
due to the magnetic loss mechanism, the frequency range of the illustrated field is limited.
Moreover, the presented materials demand for high feeding powers up to several watts,
which result in comparably low heating and therefore low measurement effects.

Taking previous research results into consideration reveals that a frequency gap
between several 100 MHz up to optical frequencies is present for field representation
thermography, which we want to partly close in this paper. Next to a holistic modeling
of the multi-physical background, we propose novel approaches on the description of
lossy dielectric material mixing and further realizations for the accurate representation of
electro-magnetic field in the microwave region between 1 GHz and 100 GHz. Obviously,
for Field-Representation-MWT (FRMWT), an adequate indicator material must be found,
which has to meet several requirements: its parameters regarding dielectric and thermal
properties must be chosen wisely in order to increase the overall efficiency and resolution
of the thermal footprint. This is desirable as it allows reduced excitation powers and
the applicability of low-cost thermal cameras. Moreover, the chosen size of the indicator
material plays an important role for its transparency in terms of field interference. Finally,
special test benches for FRMWT must be constructed to reduce disturbing environmental
influences, such as infrared reflections as well as forced and additional natural convection,
which can tamper the field recording.

This manuscript is organized as follows: Section 2 explains necessary fundamentals
regarding “wave-matter interaction”, “dielectric heating”, “thermal loss theory”, and “di-
electric design materials and mixing”. In Section 3, we discuss and set up a novel transient
FRMWT model, while Section 4 presents self-made design materials for an optimized
FRMWT. Finally, Section 5 shows microwave thermography results in simulation and
measurements. In this contribution, the exemplary field distribution under investigation is
the fundamental TE10-mode of a rectangular X-band waveguide. Section 6 concludes the
manuscript and gives an outlook on future modifications and investigations.

2. Fundamentals

Since the description of FRMWT demands for the combination of several physical
phenomena from electromagnetics, thermodynamics, and flow dynamics, the following
section gives a brief overview on the dependencies between the different disciplines.

2.1. Wave Interaction and Dielectric Heating

The description of the interaction between an electromagnetic wave with the indicator
material is very fundamental for FRMWT. In this context we need to observe two properties:
the dielectric power dissipation, and the total reflection coefficient. The dielectric power
dissipation is essential for the heating process of the indicator material and therefore
important for the later field illustration. The total reflection coefficient, however, is of
great interest as it gives information on field interferences, which can lead to distorted
field illustration. In the simplest case, a plane wave interacts with a dielectric material,
which is oriented perpendicular to the Poynting-vector of the incident wave. At the
interface between free space and material, reflection coefficients occur that depend on wave
impedances of the free space (Z0) and inside of the material (Z1).

Γ =
Z1 − Z0

Z1 + Z0
(1)
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At this point, we need to distinguish between the wave’s entrance and exit reflection
of the material as their coefficients differ. Furthermore, it is obvious that a part of the
incident wave’s power Pi remains inside of the material and is continuously attenuated by
the material as illustrated in Figure 1. The power Pdi, which remains inside of the dielectric
material can be calculated as follows:

Pdi = Pi · (1 − Γ2
1) · α( f )2 · 1

1 − (Γ2α( f ))2 . (2)

In (2), the factors Γ1 and Γ2 stand for the reflection coefficient at the interfaces free-
space-to-material and vice versa. The attenuation α depends on the material’s thickness d
and its dielectric properties, which are frequency dependent:

α( f ) = e−
2π f
c0

Im
{√

εr( f )
}
·d. (3)

The total reflection coefficient, which is important for the interference with the incident
field, is the square root of the relation of the reflected power Prefl to the incident power
Pi and can be described as the superposition of the reflections at the interfaces free space-
material and material-free-space. Because of the material’s thickness d, the contribution
of the second reflection performs an additional phase shift, which must be considered
for the superposition. By considering the refractive indices n0 = 1 and n1 =

√
εr,1μr,1 for

free-space and a material, respectively. The total reflection Γtot is calculated by:

Γtot =

√
Prefl
Pi

=
j
(
n2

0 − n2
1
)

sin(kd)
2n0n1 cos(kd)− j

(
n2

0 + n2
1
)

sin(kd)
. (4)

In (4), j is the imaginary unit, while k represents the corresponding wave number.
As we consider the dielectric losses of the material, the heating process of the material is
directly connected with the magnitude of the electrical field strength |E| of the incident
wave. By considering the wave impedance Z and the length of the electric field vector l1, it
can be described by:

|E| =
√

Pdi · Z/l1 (5)

Finally, the dissipated power depends on the imaginary part of the permittivity ε′′r [14],
the frequency f and the material’s volume V:

Ploss = 2π f ε0 · ε′′r · |E|2 · V. (6)

The actual heating, which can be regarded as the power transfer from electromagnetic
to thermal power, is a transient process and depends on the material’s mass m and its
specific thermal capacity cw. It can be described by:

ΔT =
Ploss

cw · m
· t. (7)

Equations (5)–(7) show that the heating of an indicator material is directly proportional
to the microwave excitation power. However, for calculating the electrical microwave field
distribution we need to consider the square root of the recorded thermal footprint.
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Figure 1. Schematical presentation of the wave interaction with a thin dielectric material sheet.

2.2. Thermal Losses

As we imbalance the thermodynamic equilibrium by the dielectric heating, the consid-
eration of thermal losses is mandatory at this point. Otherwise, the material’s temperature
would rise indefinitely, because the heating Equation (7) is a linear function with time.
Consequently, different thermal loss mechanisms affect a cooling, which limits the heat-
ing process to a final temperature. Here, three main thermodynamic transfer processes
must be taken into consideration: thermal conduction, radiation, and convection. In a
first approximation, conduction effects can be neglected as we observe pure dielectric
materials. Consequently, the main contribution to thermal losses are radiation (rad) and
free convection (fc). Therefore, the total thermal power loss can be described by:

Pth,tot = ΔPrad + Pfc. (8)

Regarding radiation losses ΔPrad, we only need to consider the additional losses
caused by the temperature difference to the surrounding. In good approximation, the phe-
nomenon can be described using the Stefan–Boltzmann law for black bodied radiators,
because for the kind of measurements carried out in this research, where temperature
differences are measured, the choice of an emissivity is not fundamental. By using the
Stefan–Boltzmann constant σSB = 5.67 · 10−8 Wm−2K−4, we receive:

ΔPrad = Prad,Tm − Prad,T∞ (9)

= σSB · Arad ·
(

T4
m − T4

∞

)
. (10)

In (9) and (10), Prad,Tm and Prad,T∞ represent the thermal radiation powers caused by
the temperatures Tm and T∞ on the material and in the environment, respectively. The pa-
rameter Arad indicates the heated area of the indicator material. Free convection refers to a
mechanism of fluid mechanics and is caused by a spatially non-uniform distribution of
density. In this case, this non-uniformity is caused by the temperature difference between
indicator material and environment [15]. In a first approximation, the transported heat in
steady state can be regarded as:

Pfc(t → ∞) = Arad · αth · ΔTenv. (11)
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In (11), Arad is the heated area that affects free convection while ΔTenv = Tm − T∞
describes the temperature difference between the actual indicator material’s temperature
and the environmental temperature. In case of FRMWT indicator foils, the heated area
must be taken twice into consideration as free convection occurs in front and behind of
the foil. The parameter αth is the heat transfer coefficient. Its determination leads to a
problem of flow dynamics and therefore to the determination of the functional relationship
between the non-dimensional group of Rayleigh (Ra), Prandtl (Pr), and Nusselt (Nu)
numbers [16,17]. Unfortunately, this approach bases on fitted measurement models and
the further investigation is not very precise. Anyway, for vertical material orientation,
the literature approximates the following equations, which have been constructed from
measurement series [18,19]:

αth =
Nu · λth

l1
, (12)

Nu =
(

0.825 + 0.387 · (Ra · Preff)
1/6
)2

, (13)

Preff =

(
1 +
(

0.492
Pr

)9/16
)−16/9

, (14)

Ra =
g · l3

2 · ΔTenv · Pr
T∞ · ν2 . (15)

In (12)–(15), the parameters λth and ν represent the surrounding gas’ thermal con-
ductivity and viscosity, respectively. Further, l1 and l2 represent geometrical lengths for
thermal imbalance alongside the direction of convection as well as the characteristic length
of the flow. Finally, g is the gravitational acceleration. Thermal losses are highly non-linear
regarding time and geometrical setup. Therefore, the presented equations must be regarded
as approximation but they facilitate setting up a model for the transient behavior, which is
interesting in terms of FRMWT.

2.3. Design Materials and Mixing

As shown before, the successful FRMWT strictly depends on the right selection of the
indicator material. Here, we prefer materials that on the one hand easily heat up and store
the additional temperature, while the total reflection coefficient should be kept low in order
to minimize field interferences on the other hand. Moreover, thermal conduction should
be kept low as well, because it would negatively affect the field illustration’s resolution.
Consequently, several compromises must be met to serve these requirements. In order
to meet as many requirements as possible, an indicator material was designed by mixing
several raw ingredients and their corresponding physical parameters. In order to make
accurate predictions, so-called mixing equations can be utilized in order to estimate final
parameters. In terms of the thermal capacity cw and mass density ρ, the resulting quantity
is directly dependent on the volume fractions ζ of the corresponding materials. In contrast
to this, the description of the resulting, complex valued permittivity for dielectric mixing is
not straightforward. However, the manufacturing of phantom materials for the substitution
of, e.g., medical substances and surrogate explosives utilizing loss-free materials has been
already published in [20,21], respectively. A general overview on dielectric mixing and
corresponding models is given in [22]. In terms of FRMWT-materials, the most relevant
material parameter are the losses in microwave range. Losses in dielectric materials can
be caused by a small remaining conductivity, which leads to small conduction currents,
or by replacement currents, which describe dipole orientation etc. Usually, for the gen-
eral description of a material’s complex valued permittivity those effects are tantamount.
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However, referring to the Wiedemann–Franz law [23], electrical and thermal conductivity
are directly proportional so that an increased electrical conductivity will deteriorate the
resolution of the FRMWT. Consequently, it is important to tune the material’s losses by
increasing replacement currents but keeping conductivity as low as possible. Since the elec-
trical polarization strongly depends on the time-variation of the excitation, the permittivity
depends on the frequency of those field variations. This effect is called dispersion and can
be seen in both real and imaginary part of the permittivity. Part of a material’s dispersion
is caused by the different polarization effects like orientation polarization as well as atomic
and electronic polarization, which cause a resonance behavior in the permittivity’s real
part associated with a peak in the imaginary part [22]. In any real material, several polar-
ization mechanisms take place and superimpose, which contribute to different dispersion
effects within the entire electromagnetic spectrum. Obviously, a holistic model is difficult
to formulate. That is why in the literature several polarization response models can be
found that describe the aforementioned dispersion and loss effects for limited frequency
ranges. Because the proposed FRMWT approach in this manuscript handles the microwave
frequency range, we choose the Debye model henceforth. The Debye model is an easy
to understand model that considers single relaxations processes very well. As we only
handle solid materials in this work, we do not expect various relaxation processes in the
microwave region, but continuously decreasing permittivity’s real part values. Therefore,
the Debye model is a good choice for modeling our indicator materials. Because of the
induced torque of the dipole moments, the polarization requires time to reach equilibrium.
This relaxation time τ is essential for the description of the complex valued permittivity.
Moreover, Debye model defines the edges of the observed spectrum. Therefore, εr,∞ and εr,s
describe the permittivities at optical and low frequencies, respectively. The description of a
mixed material with Debye-type inclusions in a dispersion and loss-free background with
permittivity εr,e can be aligned to the basic Maxwell–Garnett mixing rule. The resulting
material is also of Debye-type and can be formulated as follows:

εr,eff = εr,∞,eff +
εr,s,eff − εr,∞,eff

1 + jωτeff
. (16)

Consequently, the parameters of the mixed material are:

εr,∞,eff = εr,e +
3ζεr,e(εr,∞ − εr,e)

εr,∞ + 2εr,e − ζ(εr,∞ − εr,e)
, (17)

εr,s,eff = εr,e +
3ζεr,e(εr,s − εr,e)

εr,s + 2εr,e − ζ(εr,s − εr,e)
, (18)

τeff = τ
(1 − ζ)εr,∞ + (2 + ζ)εe

(1 − ζ)εr,s + (2 + ζ)εe
. (19)

Next to the Maxwell–Garnett averaging of the static and optical permittivity in (17)
and (18), respectively, (19) reveals that the relaxation time of the including particles is also
altered [22]. This is of great interest for the FRMWT as the material mixing allows for an
optimization of the losses for a predefined operation frequency.

Since the measurement of lossy materials results in extremely low signal-to-noise
ratios, especially the determination of the the loss-describing part, i.e., the imaginary part
of the permittivity, can be crucial. Moreover, measurement probes are prone to delivering
wrong loss values when the probe-material connection is not properly realized and gener-
ates radiation. However, obviously the connection between frequency behavior of the real
and imaginary part can be formulated. Starting from the basic physical principle of causal-
ity, which means that the polarization response cannot lead the cause, the Kramers–Kronig
relation must be fulfilled for the real and imaginary part of the permittivity [24]. As conse-
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quence, this very fundamental connection allows for an estimation of the imaginary part
when the broadband real part permittivity is known. The estimation itself can be done in
various ways, such as solving the Kramers–Kronig integrals, applying Hilbert transfor-
mation [25], or simply using the complex valued completion (CVC) which is described
further on. The CVC allows for the estimation of the permittivity’s imaginary part, when
the corresponding permittivity’s real part is known. It makes use of the dependencies of
complex valued time signals and their spectra, which are subdivided in their even and odd
signal and spectral parts. Figure 2 illustrates the well known dependencies. Within the fig-
ure, the sign � �indicates the Fourier transformation from time (◦) to frequency domain
(•). Moreover, the indices E and O represent even and odd signal and spectral parts, while
the superscripts R and I indicate real and imaginary parts. As initial point, we consider
a measured broadband, real part permittivity. As this quantity depends on frequency,
we can regard it as a spectrum. Moreover, any commercial measuring probe will deliver
measurement values for positive frequencies only. Therefore, the measured permittivity is
the combination of its even and odd part:

εR
r = 1/2(εR

r,E + εR
r,O). (20)

By means of the following CVC-steps, illustrated in Figure 3, we can calculate the
right-sided, complex permittivity. As initial step we form the evenly-shaped spectrum
of the measured real part permittivity. Therefore, the spectrum εR

r is multiplied by the
heaviside step function Θ and divided by 2. Additionally, the resulting data vector is
mirrored to the negative frequency range in order to achieve an axis-symmetric spectrum,
which is described as the evenly-shaped spectral part of the real part permittivity εR

r,E.
According to Figure 2, the application of the inverse Fourier transformation delivers
the evenly-shaped impulse response of the real part permittivity ER

r,E(t). In [22], several
interpretations of this pulse response signal are given, however in our case the time
domain signal is a pure mathematical intermediate step and further interpretation is
not relevant. As the next step, we transform the evenly-shaped impulse response to be
oddly-shaped. Therefore, we once more apply the heaviside function and add the point
symmetric signal for t < 0. By applying the Fourier transformation to the oddly-shaped
time signal, we receive the oddly-shaped spectrum of the permittivity’s imaginary part
εI

r,O(ω). By doubling this spectrum, applying another heaviside step function, and adding
the right-sided spectrum of the real part permittivity, we finally receive the right sided
complex valued permittivity ε+r (ω).
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Figure 2. Dependencies of complex-valued time signal and the corresponding spectrum sub-divided
into even (E) and odd (O) valued functions. The handle bar shows the intercorrespondencies.

It needs to be mentioned that the CVC is only applicable if the measured permittivity
data is sufficiently broadband and covers all relevant polarization behaviors. In terms
of FRMWT and the corresponding design material manufacturing, CVC plays an impor-
tant role for the precise description of the high loss indicator materials as well as their
corresponding mixing equations.
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describe signal operation, circles indicate the current signal form. The applied function Θ indicates
the heaviside function in frequency-domain (ω) and time-domain (t).
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3. Transient FRMWT Model

In the following, we will observe the special case of FRMWT for mode characterization
of a rectangular waveguide in X-band, as illustrated in Figure 4. The corresponding
geometrical dimensions for the investigated WR90 rectangular waveguide and IEC 60154-
2:2016 flange are: l1 = 10.16 mm, l2 = 41.4 mm, and w = 22.86 mm. Moreover, the indicator
material’s thickness is considered to be d = 0.9 mm and it is positioned in close proximity
to the waveguide’s flange.

x

y

l
2

l
2 l

1

w

Flange

Spacer

Indicator foil

d

Figure 4. Sketch of the investigated waveguide flange.

However, it does not touch its metal boundary in order to prevent additional thermal
conduction. After reaching steady state, i.e., when the microwave power which is trans-
ferred to heat equals the thermal losses, the heating-up process stops and the indicator
material’s end-temperature Tend is reached. Consequently, by equating the dissipated
microwave power with the thermal loss power, we can calculate Tend and therefore the
final temperature change ΔTend. Figure 5 combines the thermal heating model with the
microwave scenario by showing the theoretical temperature change ΔTend as a function of
the thermal loss power for the described setup and different surrounding gases. The de-
termination of the temperature change is of great interest as it has direct influence on
the sensitivity of the thermal sensor and the applied microwave power. Therefore, for a
given thermal sensor sensitivity, the required microwave power can be reduced, which is
beneficial in many scenarios. Apparently, a higher temperature change is reached when
choosing surrounding gases like Helium or Xenon. However, the highest temperature
change is achieved when the setup is kept in vacuum, because free convection vanishes
and only thermal radiation contributes to the thermal loss. Anyway, this insight shows
that the construction of an optimized FRMWT test stand that guarantees for a highly
defined environment scenario is desirable. Yet, low cost setups also yield sufficient results
in many applications.

Since the heating process of the indicator material can be interpreted as charging
process, the transient description of microwave induced heating in FRMWT can be ex-
pressed as:

ΔT(t) = ΔTend ·
(

1 − e
− βth

ΔTend
· Ploss

cw ·m ·t
)
= ΔTend ·

(
1 − e−

t
τth

)
. (21)

In (21), the parameter βth is called thermal retardation, a form factor that compensates
measurement setup geometries etc. Once the thermal retardation is evaluated the time
constant τth can be obtained. It combines all the previous theoretical considerations from
electromagnetics in Section 2.1 and thermodynamics in Section 2.2. This time constant is
of great interest, because it gives indication for the compromise that needs to be found
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for FRMWT-measurements: On the one hand, the induced temperature differences of
the indicator should be as high as possible in order to meet the thermal resolution of the
utilized recording device, such as a thermal camera. On the other hand, the footprint
recording should be performed as fast as possible after initial excitation in order to prevent
image blurring and further non-linear behavior such as conduction effects. Therefore, we
propose to take the thermal snapshot for field illustration purposes within the linear part
of the transient model described in (21), i.e., for

τth < trec < 3 · τth, (22)

So that the heating process already reached between 68% and 95% of the final temperature.
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Figure 5. Theoretical temperature change for maximum thermal losses in steady state and different
gaseous environments.

4. Design Materials

For the manufacturing of adequate indicator material foils, several material mixtures
have been investigated. In order to meet the materials requirements, i.e., providing high
dielectric losses by keeping the conductivity low and enabling the possibility of forming
robust foils, we chose epoxy resin as matrix material and carbon black as additive. The uti-
lized epoxy resin Breddepox E300 from Breddemann is a low viscosity, two component
casting resin, providing a high UV resistance. As carbon black, we used the DUREX
0-Powder from manufacturer Orioncarbons. This amorphous carbon black provides low
conductivity, offers very good processability, exhibits low compression set, and has good
dynamic properties by keeping high elasticity. For tuning and fitting the mixing equa-
tion, we produced several test mixtures with different carbon black volume fractions ζcb
between 0.01 and 0.09, which than were characterized by means of a DAK1.2E dielectric
probe kit from SPEAG. As mentioned earlier, the measurement of high loss materials can
lead to inaccuracies, especially for the permittivity’s imaginary part. Figure 6a–c show
the broadband measured real and imaginary part as well as the loss tangent, respectively,
for a volume fraction of ζCB = 0.07. In (a) we added a fitting curve, which is the result of a
least-square-fit of the Debye models permittivity from (16). While in (a) this curve perfectly
balances the measured values, it absolutely mismatches the measured imaginary part in
(b). Therefore, we added CVC-processed curves from both measurement and fitting data.
Obviously, as the fitting curves and CVC-processed curve are nearly identical, the directly
measured imaginary part is highly erroneous and will be ignored further on.
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(c) for (—) measured values, (—) Debye model fitted values, (—) CVC of measured values and (—)
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Consequently, we used the direct-fitted data for setting up the mixing equations.
Figure 7 shows several 3D plots indicating the properties of processable indicator materials
such as the complex permittivity (a) + (b), total reflection coefficient (c), and the expected,
maximum heating (d) for the scenario described above. In the following investigation, we
are using an indicator material foil with a volume fraction of ζCB = 0.05, which allows
for homogeneous mixing and a temperature increase of more than 2 ◦C at 10 GHz when
applying 500 mW microwave power.
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tivity, (b) imaginary permittivity, (c) total reflection coefficient, (d) maximum heating. Subfigures
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5. Results

In order to investigate the applicability of FRMWT and to validate the presented
models, several simulations and measurements have been performed on a simple test
scenario. The chosen scenario is the fundamental TE10-mode within a WR90 rectangular
waveguide utilizing a IEC 60154-2:2016 flange as introduced in Figure 4. The indicator
material was selected from the considerations made in Section 4 and provides a complex
permittivity of εr = 7.2 + j1.6; as operating frequency we chose 10 GHz and an excitation
power of 500 mW in both, simulations and measurements. As the waveguide will operate
in fundamental mode, we expect a cos-shaped E-field distribution along side the x-axis of
the waveguide. However, since the square of the electrical field strength contributes the
thermal heating as shown in (6) we expect a cos2-shaped heat distribution. It needs to be
mentioned that because the waveguide is truncated it will excite evanescent modes as well,
which will slightly interfere with the fundamental mode resulting in minimal distortion of
the thermal foot print.
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5.1. Measurement Setup

From theoretical approximations in Section 2.2 and 3, we can conclude that the ob-
servable temperature increase for FRMWT applications will be only several kelvin, when
applying reasonable microwave power. Therefore, we need to build a measurement
environment, which prevents thermal and environmental disturbances. In this work,
the thermal footprint of the device under test will be recorded by means of a high resolu-
tion thermal camera. Usually, these kind of cameras are portable so that it can be integrated
into a measurement chamber. Further key properties of this chamber are:

• Housing:
The measurement chamber needs to be closed and air tight for enabling different mea-
surement environments such as gases. Moreover, it must prevent forced convection.

• Utilized Materials:
The housing should be impervious for infrared radiation for preventing disturbing
environmental reflections. The metal content should be kept low or needs a microwave
absorber covering in order to avoid disturbing reflections.

• Peripheral Connections:
Gas in- and outlets allow for FRMWT in different surrounding gases. Microwave
connectors are necessary for feeding the structure under test.

The constructed measurement chamber was built of Plexiglas plates as these suffi-
ciently attenuate infrared propagation within the spectrum of interest between 3 and 15 μm.
The chamber measures a total size of (height, width, length) 50 cm × 55 cm × 45 cm. Gas in-
and outlets can be used for flooding the whole setup with gases, while an SMA-through-
hole connector allows for the connection of microwave devices within a frequency range
of 0.1–30 GHz. Furthermore, an optical breadboard as lower wall allows for an universal
connection of mechanical components. Figure 8 shows a photography of the described
measurement chamber. As thermal camera we used a VarioCAM HD research 900 from
Infratec. This thermal camera records a spectral range from 7.5 to 14 μm by means of
an uncooled microbolometer focal plane array, which results in an image resolution of
2048 × 1536 pixels and a thermal resolution of 20 mK. Because the indicator material was
manufactured from epoxy resin as matrix material we used an emissivity of 0.96 and a spec-
tral range of 8 μm to 14 μm for all recordings, which refers to the values recommended by
the thermal camera manufacturer [26]. The influence of further parameters is neglected in
this work, because we mainly focus on temperature differences and its evolution over time.

a

b

c

d

e

Figure 8. Photography of the realized setup containing: (a) Thermal camera, (b) through-hole
microwave connection, (c) microwave device under test, (d) universal mechanical mounting board,
(e) rear absorber wall.
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5.2. Simulation and Measurement Results

In order to investigate the applicability of the indicator material the FRMWT-concept,
multi-physics simulations as well as measurements with a high definition thermal camera
were performed and compared. For all simulations we used the simulation software CST
Microwave Studio 2020 , which allows for the coupling of three-dimensional full wave
analysis with a thermal simulation of the corresponding loss distributions. In terms of the
microwave investigation the time domain solver with a simulation accuracy of −30 dB
was utilized. In order to ensure accurate simulation results, a hexahedral mesh type was
used with a mesh of approximately 1.2 million meshcells. In a subsequent step, thermal
simulations were carried out, basing on the microwave simulation results in order to track
the heating behavior over time and to illustrate the temperature distribution caused by the
microwave losses.

For this purpose, the convective heat transfer coefficient αth was set to 15.3 Wm−2 K−1.
Due to the gap between material and waveguide, convection was assumed on both sides.
Thermal conduction was not considered further due to the experimental setup. In addition,
the material parameters of the indicator foil were included. These contain the previously
measured permittivity εr = 7.2 + j1.6. Further material parameters were calculated from
the raw materials’ datasheets in order to agree with the measurement setup. Here, we set
the heat capacity to be cw = 894 J (kg K)−1, the mass density to be ρ = 1100 kg m−3 and
the material thickness to d = 0.9 mm. The remaining geometrical dimensions apply as
described above. All simulations were carried out with an microwave excitation power
of 500 mW. The following thermography images were captured on a truncated WR90
rectangular waveguide surrounded by an IEC 60154-2:2016 flange. The test recording was
performed at an operating frequency of 10 GHz and a power of 500 mW, for keeping the
measurement results comparable to the simulation. For the verification of the proposed
transient model from Equation (21), we recorded the setup’s hotspot temperature over time
in both simulation and measurement. By subtracting the initial temperature, the tempera-
ture increase over time is obtained, which is presented in Figure 9 and compared to the
transient FRMWT model from (21) for different thermal retardation values βth. The steady
state temperature difference was determined to be 2.5 K and 2.71 K in simulation and mea-
surement, respectively. The discrepancy between simulation and measurement is 0.21 K,
which is an acceptable, relative difference of 7.7% and can be explained by a different
implementation of the thermal losses within the simulation tool. Because of the slightly
different final temperature, the transient behavior also slightly differs between simulation
and measurement as presented in Figure 9. However, the measurement fits very good to
the transient FRMWT model from (21) when choosing the thermal retardation to βth = 0.35.
After the determination of all relevant parameters, the thermal time constant is calculated to
be τth = 12 s. Consequently, the following thermal images are recorded at trec = 35 s, which
perfectly satisfies Equation (22). The recorded heat distributions, resulting from simulation
and measurement, are shown in Figure 10a,b, respectively. In both images, the hotspot is
located in the waveguide’s center position as expected because of the E-field maximum
of the fundamental mode. Towards the edges of the material the heating decreases as
expected. However, in y-direction the expected rectangular shape is flattened due to a
remaining thermal conductivity and fringe fields in the flange-material-interspace.
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Figure 9. Transient temperature observation of the investigated waveguide’s center, indicat-
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Figure 10. Thermography images of the investigated waveguide from (a) simulation and
(b) thermal camera.

Figure 11 shows the temperature distributions alongside the waveguide’s x-axis in
comparison to a normalized cos2 function. Both, simulation and measurement results,
clearly reveal the expected field distribution. However, the simulation result fit the cos2-
reference a little better. An explanation for this could be the combination of evanescent
fields at the truncated waveguide flange as well as the neglected thermal conduction
in simulation.
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Figure 11. Temperature distribution of the heating in the waveguide’s center alongside the x-axis for
simulation (– –) and measurements (–) compared to the theoretical cos2-shape (–).

6. Discussion and Conclusions

In this contribution, we present a method called Field Representation Microwave
Thermography (FRMWT) for the fast and accurate recording of electromagnetic fields in
the microwave range. Theoretical background from microwave engineering, thermody-
namics, and fluid mechanics has been derived in order set up a holistic theory, which
allows the prediction of the desired field illustration. Regarding the necessary indicator
material, the so called complex valued completion (CVC) has been introduced, which
allows for the measurement validation of high loss materials. Investigations on mixed
high-loss materials showed the necessity of the CVC for dielectrics, as straight forward
measurements delivered erroneous values for the material permittivity’s imaginary part.
Further, within simulations and practical experiments, we demonstrated the applicability
of FRMWT using the example of the fundamental TE10-mode of rectangular waveguides.
Within these investigations, we proved both, the theoretical transient FRMWT model as
well as the ability of the field illustration by recording the predicted cos2-shape of the
TE10 mode’s thermal foot print. Compared to previous work, which already showed the
applicability of field representation in low frequency ranges up to 100 MHz and in the
optical region, this work accesses the gap-region of micro- and mmWaves from 1 GHz
up to 100 GHz. Although the proposed theoretical FRMWT model makes use of several
approximations, it provides an excellent and holistic foundation for future measurement
setups. The introduced lossy material modeling and complex valued completion combines
previous work on dielectric material mixing and gives easy access to future material model-
ing. Of course, its accuracy is limited to the preciseness of a priori material-knowledge and
the accuracy of the necessary broad material characterization. The presented measurement
setup for the FRMWT already showed a good functionality. However, as we still make use
of an extremely expensive thermal camera, the current setup is only useful for laboratory
measurements. In order to establish the FRMWT in practical fields, the thermal camera
must be substituted. In future work, further investigations on more complex propagation
modes at higher frequencies will be performed and a post-processing concept will be
evaluated, which delivers key facts on the investigated mode such as the mode purity.
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Abstract: Decision-making is an important part of human life and particularly in any engineering
process related to a complex product. New sensors and actuators based on MEMS technologies are
increasingly complex and quickly evolving into products. New biomedical implanted devices may
benefit from system engineering approaches, previously reserved to very large projects, and it is
expected that this need will increase in the future. Here, we propose the application of Model Based
Systems Engineering (MBSE) to systematize and optimize the trade-off analysis process. The criteria,
their utility functions and the weighting factors are applied in a systematic way for the selection of the
best alternative. Combining trade-off with MBSE allow us to identify the more suitable technology to
be implemented to transfer energy to an implanted biomedical micro device.

Keywords: trade-off analysis; medical MEMS; wireless power transfer

1. Introduction

New sensors and actuators based on MEMS technologies are increasingly complex
and quickly applied to new products. MEMS-based devices demand system engineering
approaches, which were previously limited to very large projects, and it is expected that
this need will increase in the future, particularly in biomedical applications.

During product research and development, one important step is the powering of
the implantable microdevices [1]. For this choice, there are many different technologies
that should be analyzed in order to properly select the best option for each product. This
trade-off is normally carried out based on previous experience and/or using a classical
weighted approach. However, when the trade-off is started from current literature reviews,
the amount of data is so large that it becomes necessary to develop more complex and
systematic tools for reaching the optimum selection for microdevice applications.

In this work, we propose the application of Model Based Systems Engineering (MBSE)
to systematize and optimize the trade-off analysis process. The criteria, their utility func-
tions and the weighting factors are applied in a systematic way for the selection of the best
alternative. Combining trade-off studies with MBSE allows us to identify the more suitable
technology to be implemented to transfer energy to an implanted biomedical MEMS device.
At present, a fully automated algorithm able to perform the complete decision process
in the design of a new device is unfeasible. MBSE and trade-off analysis involve a wise
combination of science, engineering and art. However, this cognitive endeavor can be
made more rigorous by applying certain rules and mathematical techniques. In this work,
we show how such techniques are applied to a very difficult challenge, which tries to
push the limits of the MEMS engineering to design an implantable medical device with
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size in the order of 1 mm3. Logically, the selected criteria will be severely constrained by
this demand.

In Section 2, the systems engineering methodology used in this study is briefly ex-
plained. It is a very general, comprehensive and powerful approach, but in this case, we
show its application to the trade-off analysis of the best present Wireless Power Transfer
(WPT) alternatives for the intended biomedical implantable microdevice.

In Section 3, the state-of-the-art WPT for medical applications is reviewed. In Section 4,
we detail the different steps which permit a complete and accurate assessment of different
engineering alternatives. This trade-off analysis is described in the context of a larger
systems engineering design effort, which is explained in Section 5.

In Section 6, we comment on the results of the trade-off analysis and its implications.
The information obtained in this study permits a logical selection of the best WPT system
for our application and provides valuable clues to other kind of important studies, such as
sensitivity analysis.

2. Trade-Off and Heuristics in the MBSE Methodology ISE&PPOOA

At present, there are several MBSE methodologies, more or less complete or general
in scope [2]. The ISE&PPOOA methodology is a logically consistent approach to MBSE
which combines the best features of the traditional and modern tools for optimal design;
for example, N2 charts with SysML diagrams. ISE&PPOOA proposes two views of the
architecture of the modeled system [3]. These views are the functional architecture and the
physical architecture. Below, we briefly describe each of them.

The functional architecture uses diverse SysML diagrams [4] and tables. We under-
stand a function as a transformation to be performed by the system that consumes mass
energy or data and generates new ones or transforms them.

Combining diagrams and tables, the functional architecture represents the functional
hierarchy using a SysML block definition diagram. This diagram is complemented with
activity diagrams for the main system functional flows to represent the system behavior.
The N2 chart is a table used for an interface description where the main functional interfaces
are identified. A textual description of the system functions is provided, as well.

The physical architecture, or architecture of the solution, is developed in two main
steps, the results of which are the so-called modular architecture and refined architecture.
The modular architecture represents a first version of the solution architecture representing
its main logical blocks. These logical block or modules are blocks allocating functions based
on the principles of maximum cohesion and minimum coupling between them.

The transition from the modular architecture to the refined architecture is where we
apply a combination of trade-off analysis and design heuristics. Although the scope of sys-
tems engineering application of trade-off studies is wider, trade-off analysis is prescribed
here for choosing and ranking alternative solutions to be applicable to the system compo-
nent level. Instead of trade-off analysis we recommend the use of design heuristics [3] to
implement those non-functional requirements that apply to the architecture design so that
they are implemented as design patterns or at the level of system connectors.

Solution architecture is represented by the system decomposition into subsystems
and parts using a SysML block definition diagram. This diagram is complemented with
SysML internal block diagrams representing the system physical blocks with either logical
or physical connectors for each identified subsystem, and activity and state diagrams
for behavioral description as needed. A tabular description of the system parts may be
provided as well. Functional allocation may be represented either in tabular form or at the
system blocks, allocation by definition, or as partitions in the activity diagrams, allocation
by usage, represented using SysML notation.

We get benefit of this systematic approach for system engineering to develop an
optimal trade-off selection method. In this case, we apply this methodology to WPT tech-
nologies for the specific case of an implantable MEMS device. The benefits of integrating
the design process for a suitable medical WPT in the range of a 1 mm3 into a complete MBSE
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design framework are manifold, due to its complexity, which demands the exploration of
multiple alternatives that have not been already tested for such a small size.

3. State-of-the-Art Wireless Power Transfer Technology for Biomedical Applications

Many patients can take advantage of implanted biomedical devices. New micro-
electromechanical systems (MEMS) technologies allow the development of increasingly
complex and miniaturized devices. This reduces many risks associated with the treatment,
from surgery to tissue compatibility, due to reduced invasiveness. Another very important
factor for implanted devices is energy consumption. Permanent wires inside the body
are an unacceptable solution in most cases, while batteries can be dangerous and must be
replaced using surgery.

The potential of MEMS for low energy consumption opens the possibility of remote
powering without external contacts. The technologies that permit remote powering are
collectively known as Wireless Power Transfer (WPT). These technologies are relatively
recent and are under development. Although there are many publications exploring
detailed aspects of some technologies, there are relatively few reviews comparing different
alternative approaches in a systematic and weighted way.

A very recent and complete review was written by Khan et al. in 2020 [5], who
compared several WPT technologies using the following parameters: implant type, implant
WPT system size, distance from power source to device, type of radiation and frequency,
input power, efficiency, test model, SAR (specific absorption rate), safety considerations
and technological maturity. The different WPT approaches studied in this article were:
NRCC (Non-Radiative Capacitive Coupling), NRIC (Non-Radiative Inductive Coupling),
NRMRC (Non-Radiative Magnetic Resonance Coupling), NRRMF (Non-Radiative and
Radiative Mid-Field), RFF (Radiative Far-Field), APT (Acoustic Power Transfer) and OPT
(Optical Power Transfer). The general conclusion of this review, after a qualitative study
of the performance of these technologies, using a Low–Medium–High scale, was that
NRIC and NRMRC were better than other WPT techniques due to their moderate size,
range and higher PTE performance. Additionally, more complete studies on tissue safety
exist for NRIC and NRMRC WPT. APT was comparable to NRIC and NRMRC WPT in
terms of performance; the other technologies (NRCC, NRRMF, RFF and OPT) were still too
immature from a technological point of view.

Another recent review was provided by Zhou et al. [6], who compared several WPT
systems, investigating their key performances such as power transfer capability, power
level, efficiency, safety requirements and some others. They organized their review by
medical applications, instead of energy types or technologies, but their study was restricted
to electromagnetic near-field WPT devices.

Moore et al., in 2019, reviewed the state-of-the-art electromagnetic WPT, especially
magnetic resonance, in medicine [7]. They found 17 relevant journal papers and/or con-
ference papers and separated them into defined categories: Implants, Pumps, Ultrasound
Imaging and Gastrointestinal (GI) Endoscopy. They found no strong correlation between
the system parameters and biomedical applications.

Mahmood et al., in 2019, proposed a new ultrasound sensor-based WPT for low-
power medical devices [8]. A 40 kHz ultrasound transducer was used to supply power to a
wearable heart rate sensor for medical application. The system consisted of a power unit
and a heart rate measurement unit. The power unit included an ultrasonic transmitter and
receiver, rectifier, boost converter and super-capacitors. At 4 F, the system achieved 69.4%
transfer efficiency and 0.318 mW power at 4 cm. They also compared their work with
previous ultrasound WPT systems. They remarked that power and efficiency decreased as
the air gap increased to more than 4 cm.

Kakkar in 2018 designed an ultra-low power system architecture for implantable
medical devices based on an embedded processor platform chip [9]. This work explored
the partitioning of a chip, as well as the trade-offs associated with design choices, espe-
cially intelligent power management. He described several design requirements implying
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ultra-small volume, improved resolution for both sensing and stimulation, integrated
electronics design, autonomous operation without batteries and intelligent power manage-
ment. Concrete values for power operation were provided in figures, being in the order of
250 microwatts.

Shadid and Noghanian, in 2018, wrote a literature survey on WPT for biomedical devices
based on inductive coupling, concentrating on the applications using near-field power transfer
methods [10]. They compared different systems with the following parameters: frequency,
output power, transmitter dimensions, receiver dimensions, gap and efficiency. They plotted
efficiency versus delivered power and efficiency versus frequency for the reviewed systems.

Taalla et al., in 2018, presented a comparison of inductive and ultrasonic WPT tech-
niques used to power implantable devices [11]. The inductive and ultrasonic techniques
were analyzed studying their sizes, operating distance, power transfer efficiency, output
power and overall system efficiency standpoints. They concluded that the inductive cou-
pling approach can deliver more power with higher efficiency compared to the ultrasonic
technique, but the ultrasonic technique can transmit power to longer distances.

Agarwal et al., in 2017, presented a comparison of various power transfer methods
based on their power budgets and WPT range [12]. Power requirements of specific implants
such as cochlear, retinal, cortical and peripheral were also considered. Patient’s safety
concerns with respect to electrical, biological, physical, electromagnetic interference and
cyber security were also explored. Their conclusion was that EM, NRIC and NCC were
better for high-power devices, but for low-power in the order of fewer milliwatts, ultrasonic,
mid-field, or far-field technologies are promising.

Dinis et al., in 2017, presented a review of the state-of-the-art implantable electronic de-
vices with wireless power capabilities, ranging from inductive coupling to ultrasounds [13].
They compared the different power transmission mechanisms and showed that the power
that current technologies can safely transmit to an implant is reaching its limit. In order
to overcome these difficulties, they proposed a new approach, capable of multiplying
the available power inside a brain phantom for the same specific absorption rate (SAR)
value. They compared previous devices using WPT link distance, antenna/transducer size,
received power at the implant, link efficiency and the calculated power density (obtained
by dividing the received power by the antenna/transducer size), and ultrasound seemed to
be the best WPT solution. Moreover, biological energy harvesters for implantable devices
using biologically renewable energy sources, such as muscle movement, vibrations or
glucose, were briefly discussed.

The review of Kim et al., published in 2017, focused on Near-Field Wireless Power and
Communication for biomedical applications [14]. They proposed that near-field magnetic
wireless systems had advantages in water-rich environments, such as biological tissues,
due to lower power absorption. However, various issues in near-field magnetic systems
remained, such as transmission range, misalignment and limited channel capacity for
communications. They suggested that mid-field coupling based wireless powering was
convenient for smaller-sized implants using the sub-GHz range. Finally, they indicated
that the Q-factor of the coils and their cross coupling are the primary factors that need to
be taken into account for system performance optimization.

Lu and Ma (2016) made a review of the best architectures for efficient WPT, allowing
further device miniaturization and higher power loss reduction [15]. The main contribution
of this article was its best design guidelines for WPT systems based on near-field inductive
coupling wireless power transfer. They remarked that operating at a higher WPT frequency
can lead to significant size reduction of passive components and better Q values with
smaller inductance. However, higher frequencies produced higher tissue absorption inside
the human body. They explained that the selection of a correct WPT system architecture for
portable or implantable biomedical applications was a trade-off between device volume,
efficiency, regulation accuracy, speed and functionality.

Altawy and Youssef, in 2016, studied the trade-off between security, safety and avail-
ability in implantable medical devices [16]. They discussed the challenges and constraints
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associated with securing such systems and focused on the tradeoff between security mea-
sures required for blocking unauthorized access to the device and the safety of the patient
in emergency situations where such measures must be dropped to allow access. They
analyzed the up-to-date proposed solutions and discussed their strengths and limitations.

Safety and thermal aspects of implanted medical devices were described in [17] by
Campi et al. in 2016. They studied a WPT system based on magnetic resonant coupling
applied to a pacemaker for recharging its battery using a low operational frequency (20
kHz). Other safety considerations for an implantable rectenna for far-field WPT can
be found in [18]. Other very informative specific monographs dedicated to WPT for
biomedical devices can be found in [19–22].

All these reviews and monographs articles give exhaustive and detailed information
about current trends in WPT. However, even with this information, so many alternatives
make it difficult to properly select the most adequate solution for a specific application.
Here, we propose a rigorous engineering approach for a trade-off study based on systems
engineering and particularly using the models of the system developed by the ISE&PPOOA
MBSE methodology. This new comprehensive approach permits conclusion with the most
convenient choice and it also allows the ranking of the rest of the solutions for an eventual
selection.

4. Steps of Trade-Off Studies in the ISE&PPOOA MBSE Context

Based on diverse processes for trade-off analysis found in the literature, we use here a
trade-off analysis process that can be integrated with the ISE&PPOOA architecting design
using its outputs and producing inputs to the ISE&PPOOA MBSE process presented in
Chapter 4 of the ISE&PPOOA book [3]. Traditional approaches such as those found in the
NASA report [23] in 1994 do not use SysML system models. However, recent approaches
such as IBM use SysML notation and diagrams [24]. The steps of the proposed trade-off
subprocess of ISE&PPOOA are presented in Figure 1.
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Figure 1. Trade-off and heuristics subprocess for obtaining the refined physical architecture.
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4.1. Identify the System Modules for the Trade-Off Study

From the modular architecture obtained in step 4.2 of the ISE&PPOOA process de-
scribed elsewhere [3], modules (blocks) are selected, which are the logical building elements
clustering cohesive functionality. These may be implemented using alternative technical
solutions that are identified in the next step.

4.2. Identify Credible Alternative Technical Candidates for Implementing the System Logical
Building Blocks or Modules under Consideration

The list of technical alternatives selected during brainstorming sessions may be re-
duced if the system requirements are considered to have been met [25]. Some alternatives
may be discarded based either on cost, technology readiness or other criteria used to elimi-
nate alternatives. The remaining alternatives that need to be assessed should be described
in detail.

4.3. Define Trade-Off Criteria

Objectives related to stakeholder needs and system requirements are transformed into
a set of performance, cost and other criteria to be used for the trade-off study.

4.4. Assign Relative Weightings to the Criteria

There are diverse methods for deriving numerical values to the weights to be assigned
to the criteria. If a pair-wise comparison is used, we recommend the Analytical Hierarchical
Process (AHP) [23] to establish the relative weights to the criteria at the same level, so that
all weights sum to 1.0. Another method we recommend and use in the present WPT case is
the “swing weight matrix” [26]. Swing weights are assigned to the criteria based not only
on importance but on the variation of their scales as well. The reason is that it does not
make sense to consider one criterion more important than another without considering the
degree of variation among the consequences for the alternatives under trade-off analysis.

The swing matrix is a matrix where the top row defines the value measure importance
and the left column represents the range of value measure variation. As recommended by
Parnell, weights should descend in magnitude as we move in the diagonal from top left
cell to the bottom right cell of the swing weight matrix. Multiple criteria can be placed in
the same cell [27].

4.5. Generate the Utility Function for Each Criterion

For the trade study, it is necessary to represent, as part of the system model, the
selected assessment criterion and the utility or value functions associated to each criterion.
Utility functions can be discrete or continuous. Utility functions follow three basic shapes:
linear, curve and S shape curve.

For example, when an increasing utility function is created for a particular criterion, the
systems engineer ascertains whether the project stakeholders consider it as the minimum
value of the measure to be accepted, mapping it to the 0 value on the score scale (y-axis).
The measure beyond which an alternative provides no additional value is mapped to the
highest score scale (y-axis). It is important to pick the appropriate inflection points for
drawing the curve, which may be either convex or concave.

4.6. Assess Each Alternative

Every alternative should be estimated for a given criterion in terms of its score, based
on the applied utility function. Then, the relative weights assigned to each criterion are
used to compute the objective function that combines the weights and scores. The sum
combining function is frequently used. The assessment is based on the created utility
functions, using criteria values from each alternative, obtained from test data, vendor
provided data, simulations, prototypes, engineering practice or literature.
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4.7. Show the Trade-Off Results

Generally, a summary table of criteria versus alternatives is presented to summarize
the results from the preceding steps. Based on these results, a decision is made. A sensitivity
analysis is recommended to determine the robustness of the alternatives selected based on
their highest rank in the trade-off analysis [27].

Concurrently, design heuristics are selected and used to refine the architecture. The use
of heuristics is recommended to implement non-functional requirements that cannot be
allocated to some building blocks but are to be implemented as design patterns or layouts
of connectors between the building elements.

5. Application of Trade-Off Analysis within the ISE&PPOOA MBSE Approach to
Select the Best WPT Alternative for an Implanted Biomedical Device

In this work, we are interested in the design of a challenging WPT system able to
power a newly created micromotor for medical intravascular surgery. This demands the
previous study of the best technological alternatives for its implementation. Many severe
constraints are associated with this problem, including lack of data in the intended size
range of 1 mm3. Due to this, a comprehensive design framework such as the ISE&PPOOA
methodology is needed. We shall study the most promising WPT alternatives to power
a 1 mm3 MEMS device inside a human artery, using the information reviewed in the
Section 3.

Below, we describe the main outcomes produced by performing the trade-off steps
described in the previous section.

5.1. Identify the System Modules for the Trade-Off Study

The modular architecture previously obtained using ISE&PPOOA can be seen as an
internal block diagram represented using SysML notation in Figure 2. This architecture
was designed for a complex autonomous implanted system with sensors, actuators and
communication capabilities. In order to simplify the trade-off study, we limit ourselves to
the system parts related to WPT, functionality that can be reduced to the blocks “Power
Source” and “Internal Electrical Power Generator”.
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Figure 2. Logical blocks of a biomedical implanted system with WPT.

5.2. Identify Credible Alternative Technical Candidates for Implementing the System Logical
Building Blocks or Modules under Consideration

After a comprehensive literature review of the state-of-the-art WPT, summarized in
the Introduction, possible candidates to power our MEMS-based device in the one cubic
millimeter range are:

• Non-Radiative Inductive Coupling;
• Non-Radiative Magnetic Resonance Coupling;
• Non-Radiative Mid-Field;
• Radiative Far-Field;
• Acoustic Power Transfer.

5.3. Define Trade-Off Criteria

Based on the system requirements [25] related to energy transfer and energy harvesting
by the device inside the patient body, we select the following trade-off criteria:

• Input power (W), the initial delivered power to the implanted medical device outside
the body;

• Power transfer effectiveness (%), the ratio of power produced by the implanted device
and the input power;

• Implant WPTRx size (mm), the largest dimension of the implanted medical device;
• Effective operation distance (mm), the maximum distance between the external power

source and the implanted device in air (or water for ultrasound) for successful performance;
• Specific absorption rate, SAR (W/kg), the power absorbed per mass of tissue;
• Mechanical complexity (low–medium–high), which depends on the number, size,

shape and materials of the system parts. It is also directly related to manufacturing

173



Sensors 2021, 21, 3201

costs. The higher the number of parts, the smaller their size, the more complex their
shapes and the costlier their materials, the higher will be the mechanical complexity;

• Technical maturity (low–medium–high), an abstract measure of the degree of consoli-
dation and performance of a technological solution.

Other safety criteria besides SAR and resilience impact the architecture at the connec-
tors level, as well, so we recommend the use of heuristics instead of trade-off studies to
implement these safety and resilience requirements.

Both the criteria selection process and the application of heuristics cannot be fully
automated without human intervention, so a certain degree of subjectiveness, but also
creativity, is unavoidable. Additionally, many unknown variables are present in the
microdevice design, due to the exploratory and frontier research nature of this project.
Thus, the trade-off criteria have been selected trying to constrain the space of alternatives
(trade-space) as much as possible in order to produce a reasonable solution for a physical
architecture, avoiding the introduction of spurious information that cannot be confirmed
at present in the intended range of sizes. Another important consideration in the selection
process was that the criteria values obtained from the literature revision could be reasonably
extrapolated to our design objectives to build the utility curves. The final result of this
process is the refined physical architecture of the best WPT alternative (APT) after the
trade-off study, which can be seen in Figure 3.

It is not easy or even possible to know a priori which set of trade-off variables will
be optimal for every problem, because it is the result of many constraints, especially
the stakeholders’ needs [25], which are usually presented in an ambiguous or less than
desirable rigorous way. A very useful piece of advice to confirm that the criteria selection
process is correct is based on the exploration of the resulting utility curves. This is a
powerful approach to refine the criteria selection process itself in an iterative way, which
is inherent to the MBSE design approach. From a mathematical point of view, the curves
should be smooth (continuous and differentiable) and restricted to a few reasonable types,
such as polynomial, logarithmic or exponential functions. The extremal and inflection
points should indicate critical values of the corresponding trade-off criterion. Any lack of
regularity, bijectivity (with suitable domain restrictions if necessary, like in exponential or
even degree polynomials, for example, in order to be invertible) or oscillations indicate
some serious problem with the utility curve and the associated trade-off variable, which
must be corrected either by changing the criterion completely or revising the prescribed
values. In our case, it can be observed that all utility curves in Figures 4–10 fulfill these
mathematical conditions. These mathematical-based “metacriteria” for trade-off analysis
verification are not explicitly described in the systems engineering literature, as far as we
know, and can be considered a valuable contribution.

5.4. Assign Relative Weightings to the Criteria

We apply the swing weight matrix for our trade-study because it considers variation
in the measured range as well as importance. Thus, the swing weight matrix is more
complete than other approaches that only consider importance. The swing matrix obtained
for the trade-off criteria selected in the previous step is shown in Table 1. Weights are
assigned based on the technical literature review, previous experience with MEMS projects
and stakeholders’ needs. One common criticism of trade-off analysis based on weighting
criteria outside the systems engineering community is that it involves some degree of
subjectiveness. However, this human assessment is unavoidable, because there are many
competing stakeholder interests, generally formulated in an incomplete and ambiguous
manner, in addition to very complex physical and technical constraints. At present, no
algorithm or artificial intelligence approach is able to complete this step automatically
without human assistance. Similar observations can be applied to other widely used
decision-making approaches such as Analytical Hierarchy Process.
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Table 1. Swing matrix of the studied criteria. Weights are assigned based on technical literature
values and stakeholders needs.

Level of Importance of the Value Measure

Very Important Important Less Important

Variation in
Measure Range

High
Input power: 100

Power transfer
effectiveness: 100

Medium SAR: 75

Low Implant WPTRx
size: 90

Mechanical
complexity: 50

Effective
operation

distance: 25
Technical

maturity: 25

5.5. Generate the Utility Function for Each Criterion

Utility functions for the selected criteria can be seen in Figures 4–10. These utility
functions are built and represented using the recommendations described in ISE&PPOOA
book [3] admitting the mathematical conditions described in more detail in Section 5.3.

5.6. Assess Each Alternative and Show the Trade-Off Results

The results of this trade-off analysis can be seen in Table 2. Weights have been normalized
with respect to the total weight sum of the swing matrix values (weight sum = 4.65), converting
the swing weights into measure weights (or global weights), so that their sum is now 1. The final
weighted sum for a given technological alternative is calculated as the sum of the products of
the measure weights of each criterion by the values obtained from the utility curves for the same
criterion. In other words, the values of the weights column are multiplied by the corresponding
utility function values of a given alternative column and then summed to produce the final
score. Comparing the obtained scores, we can select the preferred alternative. In this case, the
Acoustic Power Transfer solution is the best, followed by the Radiating Far Field technology.

Table 2. Summary of results of the trade-off analysis. Weights are normalized with respect to the
total weight sum of the swing matrix values (weight sum = 465).

Swing Matrix Values Utility Curve Values (for the Best Case)

Criteria NRIC NRMRC NRMF RFF APT

Input power 0.215 9 5 6 9 6

Power transfer effectiveness 0.215 3 7 4 9 9

Implant WPTRx size 0.193 9 9 8 5 9

Effective operation distance 0.054 1 3 5 7 7

SAR 0.161 1 3 5 3 7

Mechanical complexity 0.107 9 7 7 5 5

Technical maturity 0.054 9 9 7 7 5

Weighted
sum 5.981 6.197 5.896 6.609 7.272

175



Sensors 2021, 21, 3201

6. Results and Discussion

The results indicate that the most appropriate technology is APT (Acoustic Power
Transfer) due to its transfer effectiveness, size, effective operation distance and SAR. After
we identified the technology, we were able to decompose in more detail the system blocks
that have to implement it, and we used a BDD diagram made with standard SysML
notation (Figure 3).

 

Figure 3. Refined physical architecture of the best WPT alternative (APT) after the trade-off study.

From the detailed decomposition of these blocks, it is possible to build, by using
design heuristics and design patterns, the IBD diagrams that would define the refined
architecture of the solution which, for brevity reasons, are not shown here.

Utility curves were obtained compiling relevant data from the revised scientific publi-
cations, as shown in Section 3, and verifying its mathematical correctness following the
conditions explained in Section 5.3.

Specifically, data for the utility curves were collected from:
Table 2 (page 46) of reference [5];
Table 1 (page 33–34) of reference [7];
Table 1 (page 4) of reference [8];
Table 2 (page 4–5), Table 3 (page 6–7) and Table 4 (page 8) of reference [10];
Table 1 (page 2101) and Table 2 (page 2102) of reference [11];
Table 1 (page 9) of reference [13].
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The values correspond to the best results of the state-of-the-art technologies combined.
We used a quantitative safety criterion (SAR), but safety heuristics could be applied to
refine the architecture as well.

A sensitivity analysis is recommended to determine the robustness of the alternatives.
A complete sensitivity analysis is not performed here, but a very useful qualitative analysis
can be performed from the information derived from the utility curves, which are far richer
in content than their mere use as trade-off tools could suggest.

Input power (Figure 4) is a decreasing linear function in a semilogarithmic scale,
which implies that its dynamic range is large. Thus, a small variation in other variables can
produce a large variation in the required input power, making this variable very sensitive
to small changes in the design for all the studied alternatives. This variable is also one of the
most important, so that it can be deduced that the overall performance of the WPT system
will be very sensitive. Thus, the input power values can vary for the same alternative
with different values of the other variables. Moreover, input power is very relevant from a
safety point of view, because it is limited to levels which cannot produce any damage, pain
or discomfort on the skin or inside human tissues. Other safety considerations related to
input power would be possible electromagnetic interferences and damage to other devices
or to human operators.

Figure 4. Utility function for Input Power.

Power Transmission Effectiveness (PTE) (Figure 5) is a key variable with the largest
range of variation of all studied criteria, even larger than the input power; it is the most
sensitive value and the latest technological advances are critical to fix it. Its mathematical
behavior is an increasing linear function in a semilog scale. For example, ultrasound-based
energy harvesters only a few years ago could have a PTE as low as 0.001%, while the
most recent ones can achieve 40%. Obviously, such a large increment has changed this
alternative from a feasible WPT technology for medical implants to the most promising one
in our trade-off analysis for MEMS. Thus, the two most sensitive variables, input power
and PTE, have opposite contributions to the performance of the WPT system, because we
want the largest PTE with the lowest input power.
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Figure 5. Utility function for Power Transmission Effectiveness.

Implant size (Figure 6) is one of the most important constraints in our example due
to an extreme constraint: it must be fit in a volume of the order of 1 mm3. However, PTE
decreases exponentially and power input increases exponentially when the device size is
decreased, even by small amounts, due to the small range of variation of this variable with
a decreasing linear utility function. A sensitivity analysis would reveal that even small
building tolerances in the manufacturing process with current technologies could radically
change the performance of the final implant, which is unacceptable for a medical device.

Figure 6. Utility function for Implant WPTRx Size.

The effective operation distance (Figure 7) has a nonlinear response curve. This vari-
able determines the depth of the implant. It can be observed that present technologies do
not allow very deep implants in practice if millimeter size devices are desired. The range
of variation is small, so that small variations in depth or distance from the external power
source or both can produce very large changes in input power and PTE. However, in this
case, the sensitivity is even worse than in the case of the device size, because the utility
function increase is not linear and the steepest variation can be seen in the smallest distance
values, in the range of a few mm. This implies that in order to have a stable power supply,
very strict positioning mechanisms should be used, which could be impractical or even
unfeasible if the implant can or must be moved.
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Figure 7. Utility function for Effective Operation Distance.

SAR (Figure 8) is one of the most important safety related metrics, although the input
power has to be limited as well. We can see that its range is severely constrained and
most of the state-of-the-art devices are dangerously near the limit for the best values of the
other variables. Thus, a sensitivity analysis would indicate that even a modest decrease in
the SAR values in order to comply with legal restrictions would enormously impact the
values of input power and PTE, surely forcing the implant size to be considerably larger,
frustrating the goal of 1 mm3 total volume if radically new design ideas are not found.

Figure 8. Utility function for Specific Absorption Rate.

The last two variables, mechanical complexity (Figure 9) and technical maturity
(Figure 10), are very different from the previous ones. They are abstract metrics that try
to describe the effort and cost of building the WPT system without using economic or
monetary values, presently unknown, because we are dealing with a present research
project pushing the limits of near-future MEMS technology. In fact, their values are more
categorical than numerical, although an easy conversion can be done in order to draw the
utility curves, which are simply linear in these cases. In this study, these two variables
are not as critical, but within a constrained project budget, much more detailed utility
curves should be obtained in this regard. Surely, with accurate costs, their influence would
severely constrain the feasible technological options and the conclusions of the trade-off
analysis could be very different.
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Figure 9. Utility function for Mechanical complexity.

Figure 10. Utility function for Technical maturity.

7. Conclusions

The combination of MBSE and trade-off analysis is a very useful engineering best
practice for the selection of the most suitable technology to be applied to solve a particular
problem. Here, MBSE allows us to identify the system level where the application of trade-
off should be accomplished. In this way, we identified the system building blocks and
which functions should be implemented to solve the problem of a wireless energy transfer
and energy harvesting system for a new type of micromotor inside the patient’s body.

The results obtained by this trade-off study are consistent with the results obtained by
other researchers and published in the literature, but expand and detail them within the
context of a real research systems engineering effort with many unknowns because it pushes
the limits of present MEMS technologies to sizes of the order of 1 mm3. The methodological
approach we propose here helps to inform better design decisions in the early phases of
the project, saving costly redesign efforts in later phases. Moreover, we have detailed
the mathematical conditions that the utility functions must have in order to be useful for
trade-off studies. Finally, we have shown how the information from the trade-off analysis
can be used to make a valuable qualitative sensitivity study of the system.
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Abstract: Polarization property characterization of the microwave (MW) field with high speed and
resolution is vitally beneficial as the circularly-polarized MW field plays an important role in the
development of quantum technologies and satellite communication technologies. In this work,
we propose a scheme to detect the axial ratio of the MW field with optical diffraction limit resolution
with a nitrogen vacancy (NV) center in diamond. Firstly, the idea of polarization selective detection
of the MW magnetic field is carried out using a single NV center implanted in a type-IIa CVD
diamond with a confocal microscope system achieving a sensitivity of 1.7 μT/

√
Hz. Then, high

speed wide-field characterization of the MW magnetic field at the submillimeter scale is realized by
combining wide-field microscopy and ensemble NV centers inherent in a general CVD diamond.
The precision axial ratio can be detected by measuring the magnitudes of two counter-rotating
circularly-polarized MW magnetic fields. The wide-field detection of the axial ratio and strength
parameters of microwave fields enables high speed testing of small-scale microwave devices.

Keywords: MW magnetic field; axial ratio; polarization; NV center

1. Introduction

Building and measuring circularly-polarized microwave (MW) fields are of great importance in
many fields like magnetic resonance [1,2] and mobile satellite communications [3–5]. Conventionally,
precision measurement of MW field strength is realized by converting the field strength to easily-
measurable electrical signals like using the calorimetric method [6] and the technique of peak
demodulation [7]. The antenna axial ratio measurement is conducted with the help of a linearly-
polarized antenna [4]. However, the calorimetric method is susceptible to environment temperature,
and the technique of peak demodulation does not perform well at weak field strength. The assistant
antenna perturbs the properties of the antenna under test (AUT) and usually has a large volume.
Quantum-based MW field detection technologies, such as super quantum interference device [8] and
cold atoms [9], which offer high sensitivity, require extreme measurement conditions. Vapor cell
devices [10,11] that are capable of high sensitivity MW field sensing at near room temperature have a
spatial resolution confined to sub-100 μm.

Recently, quantum sensing based on a point defect, the nitrogen vacancy (NV) center, in diamond
has attracted wide attention for its long coherence time at room temperature [12]. It has already
been deeply researched and applied to magnetic field, electric field, and temperature sensing [13–15]
in many subjects. As its electron spin state can be coherently manipulated by the MW field, it can also

Sensors 2019, 19, 2347; doi:10.3390/s19102347 www.mdpi.com/journal/sensors183
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be applied to MW field sensing. In previous works, the NV-based MW magnetic field sensing schemes
mainly focused on detecting MW magnetic field strength [16,17].

In this paper, we propose a scheme to detect the axial ratio of an MW device with high resolution
using NV centers in diamond. The axial ratio detection is based on MW magnetic field strength
detection of the two counter-rotating circularly-polarized components of an MW field. An NV center
is a negatively charged point defect in diamond consisting of a substitutional nitrogen atom and
an adjacent carbon vacancy. Its ground electron-spin triplet state can be selectively and coherently
manipulated by a specified circularly-polarized MW field. The MW magnetic field strength of specific
polarization can be derived from Rabi frequency or magnetic resonance spectra contrast [16,18]. Firstly,
the MW axial ratio detection is demonstrated with a single NV center in diamond with a conventional
confocal microscope. Then, wide-field detecting of the MW magnetic field, which greatly promotes
sensing speed, is conducted with a wide-field microscopy system. The MW axial ratio detection
technique facilitates the test and design of MW devices aimed at quantum spin manipulation [19–21]
and satellite communication.

2. Principle

The axial ratio is an important parameter to describe a polarized MW field. Broadly, an arbitrarily-
polarized MW field can be treated as an elliptically-polarized wave. The arbitrarily- polarized MW field
spread along the z direction can be described as a combination of two circularly-polarized microwave
fields, B+ and B−, spread along the z direction with the same frequency as the source MW field that
rotate in different directions in the xoy plane (Figure 1).

B = B+ + B−, (1)

where B+ (B−) indicates the magnetic field strength of the σ+ (σ−) circularly-polarized field. The axial
ratio can be described as the ratio of the magnitudes of the major and minor axes defined by the
magnetic field vector. It can be figured out that the length of the major (minor) axis of the ellipse equals
2|B+ + B−| (2|B+ − B−|).

AR = |B+ + B−
B+ − B−

|. (2)

Obviously, AR = 1 for a circularly-polarized MW field, and AR = ∞ for a linearly-polarized
MW field.

x

y

o

+ + −

+ − −
| |

| |

Figure 1. At a fixed point in space (or for fixed z), the magnetic vector B of a polarized microwave
(MW) field traces out an ellipse in the xoy plane.

Axial ratio detection of MW fields with NV centers in diamond is possible as the strength of two
counter-rotating MW magnetic fields can be selectively acquired by a spin-1 system. NV electron spin in
its ground state can be optically pumped to the excited state and emit red fluorescence while decaying
to the ground spin state.The spin state selective intersystem crossing (ISC) process [22] in the NV center
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enables the state read out and state initialization of NV electron spin. The NV electron in the ms = 0
state emits more photons then the NV center in the ms = ±1 state. Successive illumination initializes
the NV center to the ms = 0 state. As shown in Figure 2a, the electron spin ground triplet state of NV
centers has an energy splitting of D = 2.87 GHz between the ms = ±1 state and ms = 0 state under
zero magnetic field. The spin transition ms = 0 ↔ ms = −1(+1), which can be simply treated as a
two-level system (TLS) and can be selectively driven by σ−(σ+) circularly-polarized microwave field
perpendicular to the NV axis [20]. According to the semi-classical theory of light–matter interaction,
the transition frequency, i.e., Rabi frequency ΩR, and the optically-detected signal contrast CR that
corresponds to the electron spin state population of the TLS under a driving MW magnetic field can be
written as:

ΩR =
√
�2 + Ω2

0, CR = CR0
Ω2

0
Ω2

0 +�2
, (3)

where � = ω0 − ωm is the frequency difference between the frequency corresponding to the energy
separation h̄ω0 of the TLS and the frequency of the driving microwave field ωm. Ω0 = γeBmw is the
Rabi frequency at resonance, i.e., ω0 = ωm; γe = 2.8 MHz/G is the gyromagnetic ratio of NV electron
spin. Bmw is the amplitude of the resonant component of the driving microwave magnetic field. CR0 is
the maximum signal contrast between the ms = 0 state and ms = ±1 state. Thus, the MW magnetic
field strength of particular polarization can be deduced from Rabi frequency.

Furthermore, due to the Zeeman effect, the resonance frequency of transition ms = 0 ↔ ms = ±1
moves to ω± = Dgs ± γeBz under a bias magnetic field Bz along the NV axis (Figure 2a). This enables
wide-band detecting of the microwave magnetic field. Simply by turning over the permanent magnet
to apply bias magnetic fields in reversed direction, the strength of both σ− and σ+ circularly-polarized
components of the MW magnetic field at a certain frequency perpendicular to the NV axis that rotate
in different directions can be extracted by detecting Rabi frequencies. Therefore, the axial ratio of the
MW magnetic field at the location of the NV center perpendicular to the NV axis can be deduced.
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Figure 2. (a) The ground electron spin triplet state of the NV center with zero field splitting of
D = 2.87 GHz between the ms = 0 state and ms = ±1 state. A magnetic field of Bz along the direction
of the NV axis leads to an energy level splitting of 2γeBz, where γe = 2.8 MHz/G is the gyro-magnetic
ratio of NV electron spin. The spin transition ms = 0 ↔ ms = −1(+1) can be selectively addressed
by the σ−(σ+) polarized MW field. (b) Scanning picture of a diamond sample containing a single
NV center. The marked bright spot is the single NV center used for MW field detection in this
experiment. The other bright signals below are from ensemble NV centers. (c) Optically-detected
magnetic resonance spectra of nitrogen vacancy (NV) center under a bias magnetic field of about 500 G.
The data are fitted with the Gauss function. The first (second) dip at f1 = 1.44 GHz ( f2 = 4.30 GHz)
corresponds to the transition ms = 0 ↔ ms = −1 (+1) state.
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3. Experiments and Results

3.1. MW Magnetic Field Detection Using a Single NV Center in Diamond

The detection of the MW magnetic field is firstly demonstrated with a single NV center in
diamond. The experiment setup was based on a home-built confocal microscope [23]. A 532-nm green
laser was used to initialize and detect the NV center. A microscope objective (NA = 0.9, Olympus,
Kyoto, Japan) was used to focus the laser and collect fluorescence photons. The diamond sample
was a single crystal synthetic (100)-oriented electronic-grade type-IIa diamond with dimension of
2 × 2 × 0.5 mm3 from the Element Six company. The diamond sample typically had less than a
0.03 ppb NV concentration before implantation. The investigated individual NV center was generated
by 14N ion implantation. The implantation dosage was 1011 cm−2, and the estimated average depth
of NV was about 20 nm. The MW field (R&S SMB 100A signal generator, Munich, Germany) was
delivered to the sample via a coplanar waveguide (CPW) fabricated on the top surface of the diamond
substrate. The diamond sample was mounted on a NanoCube Piezo System (PI 611.3S, Karlsruhe,
Germany) enabling nano-scale scanning. A permanent magnet mounted on a three-axis translation
stage applied a bias magnetic field of between zero and roughly 600 G, aligning with the NV axis
(z axis). Figure 2b is a fluorescence picture obtained by scanning the diamond sample. The marked
bright spot in the picture is a single NV center chosen for MW magnetic field sensing. Second order
photon correlation measurement of the bright spot with strong antibunching observed at zero delay
g2(0) ∼ 0.11 < 0.5 is proof that a single NV center was investigated [24] (data not shown).

To conduct polarization selective MW magnetic field sensing, a bias magnetic field was applied
to split the resonant spectra lines corresponding to ms = 0 ↔ ms = −1 and ms = 0 ↔ ms = +1
transitions. In our experiment, a bias magnetic field of about 500 G was applied. As shown in
Figure 2c, the optically-detected magnetic resonance (ODMR) spectra revealed an energy level splitting
of 2.86 GHz between the ms = −1 state and ms = +1 state. Although the MW field from the signal
generator was linearly polarized, the transition ms = 0 ↔ ms = −1 was only sensitive to the σ−
MW field when the MW magnetic field strength was not too strong according to the rotating wave
approximation in quantum optics [19]. We implemented the measurement of the strength of the
σ− circularly-polarized component of the MW magnetic field with the NV center by detecting Rabi
frequency. The MW field frequency was adjusted in resonance to the ms = 0 ↔ ms = −1 transition.
The Rabi frequency detection sequence is shown in Figure 3a. A laser pulse was firstly applied to
initialize the NV electron to the ground ms = 0 state. Then, an MW manipulation pulse was inserted.
Finally, the population of the electron spin state was detected by another laser pulse. To obtain the
manipulation frequency of the MW field, the MW pulse varied in time duration. Moreover, a photon
count read pulse-2was applied after the NV center was polarized to the ms = 0 state again to provide
a reference for drifts of the NV center. Figure 3b shows the Rabi oscillation detected with the MW field
source power of about 7.8 mW applied. The oscillation signal was fitted by 1 − C0e−t/t0 sin(wt + φ).
The manipulation frequency of 0.63 MHz indicated the σ− polarized MW magnetic field strength of
B− = 0.22 G at the NV center spot perpendicular to the NV axis. According to the fitting error of
δB− = 0.0024 G and detecting time of tmeas = 1000 s of the Rabi nutation curve, the sensitivity for MW
field detection was η = δB

√
tmeas = 1.7 μT/

√
Hz. The Rabi oscillation frequency can also be derived

by Fourier transformation (Figure 3c).
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Figure 3. (a) Rabi frequency measurement sequence. A first green pulse of 3 μs was applied to initialize
the NV electron spin to the ms = 0 state; then, the MW field was applied to interact with the NV
electron spin; finally, the electron spin state was determined by simultaneously applying the laser pulse
and photon counts read pulse (0.3 μs). To avoid the drift effect of the NV center on determining the
NV state, the spin state photon counts were normalized to another photon counts read pulse that was
applied in succession to the first one after the NV center was polarized again. (b) Rabi oscillation signal
driven by a resonant MW field of 1.44 GHz. Each data point on the diagram was obtained by repeating
the measurement sequences one million times. The oscillation frequency of 0.63 MHz indicates an
MW magnetic field strength of Bσ− = 0.22 G at the NV spot. The fitting error yields a sensitivity of
1.7 μT/

√
Hz. (c) Fourier transformation of (b).

As BMW ∝
√

P, ωMW = γeBMW , the Rabi frequency increased linearly with the square root of the
resonant MW field power. The linear dependence was verified by detecting Rabi oscillation signals
with different MW field powers applied. Figure 4 shows the linear dependence of Rabi frequency on
microwave magnetic field strength. This is consistent with the measurement principle.

Turning over the permanent magnet to apply a bias magnetic field in the reverse direction, the σ+

component of the MW magnetic field perpendicular to the NV axis can be detected similarly. Therefore,
the axial ratio of the MW magnetic field at the NV point perpendicular to the NV axis can be derived.
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Figure 4. Rabi frequency versus MW source power applied. The data are fitted by a linear function.

3.2. Wide-Field MW Magnetic Field Imaging with Ensemble NV Centers

A single NV center is capable of detecting the strength of the particular circularly-polarized
component of the MW magnetic field with high spatial resolution and high sensitivity. Combining
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the wide-field microscopy system and ensemble NV centers, the detection speed can be crucially
improved, and the spatial resolution is only confined to the optical diffraction limit, which is generally
at the micron or sub-micron degree. For many practical applications, wide-field microscopy that offers
MW field strength imaging at a short time scale and requires simpler experimental technologies could
be highly beneficial.

For wide-field detection of the MW magnetic field, the experiment was based on a home-built
wide-field back focal imaging microscope system. As shown in Figure 5a, the green laser was focused
at the back focal area of the object (NA = 0.7) to illuminate the sample with collimated light. The red
fluorescence emitted by ensemble NV centers at the focal plane was collected by the same objective and
was separated from the source light by a dichroic mirror. Then, the light was filtered and focused on
an EMCCD (Andor Ultra iXon 897, Oxford, UK) for imaging. The spatial resolution of the microscope
system was about 700 nm, as the wavelength of fluorescence emitted from the NV center was roughly
between 600 nm and 750 nm. The sample used in this experiment was a 2.6 × 2.6 × 0.3 mm3 general
single crystal (100)-oriented CVD diamond from Element Six company with inherent ensemble NV
centers. The inherent NV concentration in the diamond was estimated to be about 3 × 1014 cm−3

(2 ppb) by comparing the fluorescence photon counts of the NV centers in the diamond to that of a
single NV center in type-IIa diamond under the confocal microscope system. The fluorescence emitted
from the diamond was ascribed to the NV− center according to its zero photon line at 637 nm detected
by the spectrometer FHR 640 (data not shown). A metal micro-strip line with a width of 8 μm was
fabricated on the top surface of the diamond to deliver the microwave field.
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Figure 5. (a) Schematic diagram of wide-field fluorescence microscopy. The green light was focused
at the back focal are of the object to excite NV centers with collimated light. The red fluorescence
emitted by the NV centers was collected by the same object. The dichroic mirror was used to separate
the laser and fluorescence. At last, the fluorescence was further filtered and focused on the EMCCD.
(b) Wide-field fluorescence imaging of the diamond sample without the MW field fed in. The dark
strip indicates the position of the metal MW strip line.

Figure 5b is a fluorescence picture taken by EMCCD with an exposure time of 2 s. The metal strip
line on the top surface blocked the fluorescence from the NV center, as shown in Figure 5b. Rough
detection of the MW magnetic field was carried out by comparing the signals with and without the
resonant MW magnetic field applied [18]. At a zero magnetic bias field, the NV ground electron spin
energy splitting was Dgs ∼ 2.87 GHz. Taking pictures of the same region as in Figure 5b with an MW
field of f = 2.87 GHz applied, the NV fluorescence brightness decreased in the vicinity of the metal
strip line (data not shown). The signal contrast decreased with the distance between NV centers and
the MW strip line.

Taking pictures of the same region while scanning the MW frequency applied to the strip line,
the ODMRsignal of the region can be extracted. To verify the wide-field MW magnetic field sensing
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method, ODMR signals of Spot A were extracted with the MW magnetic fields of different source
powers P transmitted to the MW strip line (Figure 6a). Obviously, the magnetic resonance signal
contrast increased with the power of the MW field applied, as the red square in Figure 6b indicates [18].
Thus, simply by tuning the NV electron spin transition frequency in resonance with the MW field,
the qualitative MW magnetic field strength of specific polarization and spread direction [19] can be
determined from the NV fluorescence signal contrast. Besides, the blue dot in Figure 6b shows that the
full width at half maximum (FWHM) of the NV magnetic resonance signal decreased with reduced
MW source power till a threshold value. The minimum FWHM of NV ODMR spectra reflects the
NV electron spin decoherence property [18]. Moreover, the NV axial directions in the diamond were
the same as the four tetrahedral diamond axes [25]. The MW magnetic field spread along each NV
axis can be detected. Thus, the axial ratio of an MW field spread along an arbitrary direction can be
extracted. Further applying the Rabi measurement sequence in the wide-field microscopy system,
precise detection of MW magnetic field strength and the axial ratio is attainable [26,27].
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Figure 6. (a) ODMRspectra of Spot A in Figure 5b extracted with four different MW sources’ power
fed in. The line width and dip contrast increase with the MW source power. (b) ODMR signal contrast
(red square) and FWHM (blue dot) versus MW source power extracted from ODMR spectra of Spot A
with different MW source powers fed in.

4. Conclusions

In summary, we proposed a new method that can detect the axial ratio of microwave fields
with high resolution for wide-field and a short time scale. The measurement method relied on
detection of two circularly-polarized MW magnetic fields that rotate in different directions in the
plane perpendicular to the NV axis. The axial ratio detecting of the MW magnetic field was firstly
demonstrated using a single NV center in diamond, achieving a sensitivity of 1.7 μT/

√
Hz. Then,

wide-field detection of the MW magnetic field with an imaging field size of 85× 85 μm2 was displayed.
The single NV center in the type-IIa CVD diamond investigated was generated by ion implantation,
and the ensemble NV centers in the general CVD diamond were inherent. In a future study, we will
apply this technique to test the polarization-controllable MW devices that we designed for selective
manipulation of NV sublevels.The method we proposed can effectively benefit the design of MW
fields with special polarization properties at the sub-millimeter to millimeter scale and thus benefit the
development of techniques relying on quantum spin manipulation [28–30] and a small-sized antenna.
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Abstract: The next generation of connected and autonomous vehicles will be equipped with high
numbers of antennas operating in a wide frequency range for communications and environment
sensing. The study of 3D spatial angular responses and the radiation patterns modified by vehicular
structure will allow for better integration of the associated communication and sensing antennas.
The use of near-field monostatic focusing, applied with frequency-dimension scale translation and
differential imaging, offers a novel imaging application. The objective of this paper is to theoretically
and experimentally study the method of obtaining currents produced by an antenna radiating on
top of a vehicular platform using differential imaging. The experimental part of the study focuses
on measuring a scaled target using an imaging system operating in a terahertz band—from 220 to
330 GHz—that matches a 5G frequency band according to frequency-dimension scale translation.
The results show that the induced currents are properly estimated using this methodology, and that
the influence of the bandwidth is assessed.

Keywords: frequency-dimension scale; terahertz; measurements; differential imaging

1. Introduction

The future generation of connected vehicle, along with the autonomous vehicle it evolves into,
will require significantly increasing the number of antennas on its surface operating at different
frequency bands from sub-6 GHz to millimeter-wave (mmWave), as effective communication and
environment sensing are ensured in this way in respect of other vehicles and different base-stations [1].

The operation of these antennas and a focus on a 3D spatial angular response (3D radiation pattern)
may be significantly influenced (perturbed) by the nearby vehicular structure. The task of studying
these effects may require ascertaining the distribution of the currents induced by the antenna on the
vehicular surface by means of numerical or experimental methods. The process of obtaining these
currents for realistic vehicle geometries, especially when using experimental techniques, may require
complex and bulky setups.

The new imaging systems operating in terahertz frequencies provide a very interesting tool that is
applicable for solving the stated problem in relation to the estimation of the induced currents on the
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vehicular structure by the antenna. This imaging system provides the reconstructed image and shape
obtained via the scattered field of metallic or non-metallic targets [2].

The concept of using terahertz frequencies and imaging techniques has been reviewed in order
to confirm its applicability to the present problem. In [3], the ultrawide-band (UWB) imaging radar
system used in this paper is tested at mmWave and terahertz bands, validating the spatial resolution
on the order of millimeters and its imaging capabilities. The work presented in [4] is an imaging
system that inspects a polymer radome in the frequency range of 70–170 GHz, reporting good
performance in resolution and proposing to increase the frequency up to 300 GHz for improved
resolution. Continuing with frequencies around 300 GHz, the three-dimensional (3D) imaging system
presented in [5] is a synthetic aperture radar (SAR) operating at 340 GHz, utilizing the Fourier transform
in two dimensions for the reconstruction process. In [6], the operating frequency is increased to
522 GHz. Finally, to conclude the background review, a novel reconstruction process in time domain
operating in the microwave and mmWave frequency bands is presented in [7].

Extensive discussion has focused on the structural scattering and the scattering of an antenna’s
radiation mode [8]. It is intended to reconstruct the currents associated with scattering of the radiation
mode of an antenna.

The main objective of this paper is to investigate the distribution of currents induced by the antenna
on the vehicular surface by means of differential image reconstruction processes, and using a previously
developed multi-frequency system [3] operating in the terahertz frequency band and extending this
concept to explore an area. This experimental method is a non-invasive way of obtaining the induced
currents without placing the antenna in the supporting structure. A frequency-dimension scale
translation is applied to reduce complexity from an experimental point of view. As the defining aspect,
a differential imaging concept is exploited to process the images captured during the experiment. In this
specific case of measurements, it could be applied to the study and optimization of the co-location
of several antenna systems in vehicles. To the authors’ best knowledge, the uniqueness of this
paper concerns dealing with a differential imaging method to obtain the current distribution without
influencing the measure.

As discussed previously, the terahertz imaging radar system makes it possible to obtain the spatial
distribution of the reflectivity of an object for the analytical and experimental assessment of induced
currents in the vehicle structure. This system uses a double focal system with an independent transmitter
antenna and receiver antenna, being connected to both ports of a vector network analyzer (VNA) to
obtain the scattering parameters over a defined frequency range [3]. Using frequency-dimension scale
translation, and as a proof-of-concept, the behavior of a car with a length of 4.5 m operating at the
new 6 GHz (3.5 GHz) 5G frequency band was studied through a 1:43 scale metallic car prototype of
10.5 cm length, measured at the R-band (220 GHz–330 GHz). The 1:43 scale metallic car corresponds
with a frequency range from 2.5 to 3.8 GHz. The results are differential measurements calculated from
the difference between the scattering image reconstructed by the imaging system with the antenna
(ON state or short-circuited monopole antenna) and without the antenna (OFF state or open-circuited
monopole antenna). Then, an analysis of the differential image provides key information about the
current car surface distribution.

This paper is structured as follows: Section 2 jointly develops the theoretical formulation—related
to the total image and differential image reconstruction process with the measurement description.
Section 3 includes the total image reconstruction for the different measurement cases. Section 4 shows
the results related to differential imaging. Finally, Section 5 presents the conclusions.

2. The Imaging Process

In this section, the two-step process of imaging is formulated, first in terms of total image, and then
in a novel differential form, to apply to the reconstruction of the currents created by a radiating antenna
on top of a vehicle.
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2.1. Formulation of the Total Image Reconstruction Process

The ultrawide-band (UWB) near-field imaging radar system used for the measurement is a flat
SAR system composed of a transmitter antenna (Tx) and a receiver antenna (Rx) with fixed spatial
separation, named as X offset distance, being a monostatic configuration but with a bi-static angle.
The Tx–Rx system is fixed and explores the environment by moving the object in an XY plane using a
positioning table. The system points toward the target located at a distance rt in the Z-axis, as shown
in Figure 1.

Figure 1. Measurement arrangements to explore the object in an XY plane using a positioning table.

Figure 1 shows the measurement arrangements, depicting the Tx–Rx and the object.
The objective is to get the spatial distribution image of the electric contrast associated with the

object under test. The electric contrast is written as c
(→

r
)
=

(
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complex dielectric permittivity relative to its environment (background) constant value εb
(→

r
)
.

The imaging system generates an illuminating field with polarization in the y-axis (transversal)

that is incident on the object under investigation, represented by a metallic car in Figure 1.
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The equivalent current
→
J eq is the scattering field source generated by the object. Then,

→
J eq is

understood as a “trace” of the original object (image).
Figure 1 shows the Tx and Rx antennas fixed in position, and the object is moved using XY plane

geometry located at a distance of
→
r t, on a set of positions

(
Nx, Ny

)
across x-axis and y-axis, to gather a

2D array that includes monostatic measurements.
For targets with highly conductive behavior (σ� ωε0ε′r), like the metallic car used in this paper,

the equivalent currents tend to produce the conduction current
→
J eq = σ

→
E [9].
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The equivalent current
→
J eq
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generates a scattered field (

→
Es) in the point
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r ti of the object,

which is measured by the Rx antenna at each point of measurement.
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Es has the following equation:
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where ω is the angular frequency, μ0 is the magnetic permeability in vacuum,
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is the Green’s function that matches the geometry of the problem. For a

3D measurement geometry, Green’s function is written as G(r) = e− jkbr
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For the case where the object is uniformly illuminated using high-directivity antennas,
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where the parameters of the transmitter and receiver antennas are included in the complex constant
named Ad.

The total image reconstruction process introduced by the previous works [3,9–13] is applied,
characterized as a bi-focusing technique using multi-frequency. The contrast factor c

(→
r
)

is averaged
through the complete terahertz band and to the entire reconstruction space, which can be expressed as
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where the parameters of the transmitter and receiver antennas are included in the complex constant
called Ao. In order to reduce the computation times, fast Fourier transform (FFT) is used to solve
Equation (4).

2.2. Formulation of Differential Image Reconstruction Process

The two-step process, described in the previous paragraph, is composed of a first step—the direct
problem of obtaining the scattering fields produced by the external illumination responsible for the
creation of the currents into the object—and a second step—an inverse problem focusing back on
the previously obtained scattered fields to obtain an image of the currents created by the nearby
illuminating geometry.

Here, the goal is to obtain the currents created not by the external illuminating geometry but
by the vehicle antenna close to the object, but still using the same external illuminating geometry.
These vehicular antenna currents, as described below, should be considered as a differential contribution
for two different states: an ON state, or short-circuited monopole antenna, installing monopole in
contact with vehicle surface, and an OFF state, or open-circuited monopole antenna, removing the
monopole antenna.

To extract the differential impact of in-vehicle antenna radiation, the scattering fields will be
collected and the corresponding image of the currents on the surface of the vehicle will be obtained for
two successive states of the vehicle antenna: short-circuited and open-circuited [14].

In the first case (the vehicle antenna in the ON, short-circuited state), the total scattered fields
→
E

total

ant−on are produced by the combination of the scattered fields due to the currents created on the

surface of the object by the external illuminating geometry
→
E

ext−illun

ant−on , the scattered fields due to the
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structural currents flowing into the vehicle antenna structure without interacting with its port
→
E

ant−str

ant−on ,

and the scattered fields due to the antenna’s radiating mode,
→
E

ant−rad

ant−on [15]:
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In the second case (vehicle antenna in the OFF, open-circuited state), the total scattered fields
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For the compact vehicle antenna, resonant antennas are utilized in most vehicles. Then, it may
be considered: (i) that interactions of a high order, such as reflections among external illuminating
geometry and vehicle antenna or vehicular platform, may be neglected since they are much smaller
than the rest; and (ii) that the scattered fields produced by the unchanged parts, like the vehicular
platform and the structure of the antenna, are approximately the same for both states of the vehicle

antenna:
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Based on the previous assumption, the reconstructed currents above the vehicle surface

reconstructed from the differential scattered fields
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being related to the currents produced by the radiating mode of the vehicle antenna, and Equation (4)
becomes:

cdi f
ant

(→
r
)
= f
(
→
E

di f

ant

)
� ctotal

ant−on

(→
r
)
− ctotal

ant−o f f

(→
r
)

(8)

2.3. Measurement Description and Configuration

The measurement device was a vector network analyzer (VNA) (Rohde Schwarz model ZVA 67).
One VNA port was connected to the frequency converter and the Tx antenna in which the converter
was mounted. In the same way, the other VNA port was connected to the frequency converter and the
Rx antenna was mounted in this converter as well. The frequency converters allow us to extend the
VNA operating frequency band up to 220–330 GHz [16]. The setup configuration developed in [3]
measured the S21 parameter (scattering parameter) in the terahertz band to reconstruct the image using
a UWB near-field multi-frequency bi-focusing algorithm.

The geometry for the measurement depicted in Figure 1 is used to estimate the distribution of
the induced currents on a metal car of 10 cm length—using a terahertz band for imaging—through
frequency-dimension scale translation to apply the novel concept of differential imaging.

The XY planar measurement geometry is used for illuminating the metallic vehicle using the
ultrawide-band (UWB) imaging radar system [3]. This illumination provides optimization of the
induced currents on the vehicular surface, although the vertical monopole antenna is installed
perpendicular but connected to the vehicle surface. One of the reasons for using a monopole antenna
oriented in the direction of the Tx/Rx antennas is because, even when the excitation of the monopole
mode may be reduced, its mutual coupling with the Tx/Rx antennas is also reduced and so the multiple
reflections between them may certainly be neglected and, at the same time, the surface currents on top
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of the vehicle due to the antenna should be visible—especially when the Tx/Rx antennas move out of
the perpendicular direction.

The object is placed on a radiofrequency-absorbing material located 0.5 m from the Tx/Rx antennas.
The separation between the Tx antenna with a frequency converter and the Rx antenna with a frequency
converter is 0.1 m, installed in a fixed position in order to avoid any perturbation in the measurement
associated with coaxial cables and converter movements. The object under measurement is placed on
a positioning table that is capable of moving in two axes (x-axis and y-axis) with steps of 1 mm [16].
Figure 2 displays the frequency converter with the horn antenna mounted and the positioning table
with the metallic car.

 
Figure 2. Measurement setup.

The S21 parameter measurements were carried out by sweeping the frequency band from 220 GHz
to 330 GHz. The two-frequency converter equipment was manufactured by Rohde & Schwarz
(Munich, Germany)®, with the model being the ZVA-Z325 Frequency Converter, J-Band WR-03 [17].

Table 1 includes the VNA configuration parameters.

Table 1. Vector network analyzer (VNA) configuration parameters.

Parameter Value

Start frequency 220 GHz
End frequency 330 GHz

Sampling points 8192
Intermediate frequency (IF) bandwidth 1 kHz

Emitting power 0 dBm

The Tx and Rx antennas were horns produced by Flann Microwave LTD (Cornwall,
United Kingdom) [18]. The selected horn model was the 32240-25, with a bandwidth (BW) from
217 GHz to 330 GHz. The E and H plane gain was 23.70 dBi at 217 GHz and 26.99 dBi at 330 GHz.
The E and H plane beamwidth was 11.9◦ at 217 GHz and 7.8◦ at 330 GHz.

The selected object is a metallic car with a 1:43 scale and 10 cm length. This is a good model for a
real car, in terms of both shape and materials. The scale of the car corresponds with the frequency
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range between 2.5 and 3.8 GHz. A short 15 mm metal wire was placed on top of the car to act as an
antenna, as shown in Figure 3. The measurement was performed with (ON state) and without the
antenna (OFF state) mounted in the metallic car with the aim of estimating the induced current on the
car after using the imaging system to illuminate.

 

Figure 3. A metallic car with an antenna for differential imaging.

3. Results

In the first step, the total images were obtained based on the two-step process by measuring the
scattered fields first and then obtaining the focused field by application of Equation (4) for different
frequency ranges and focusing the car with (ON state, short-circuited monopole antenna) and without
the antenna (OFF state, open-circuited monopole antenna), as depicted in Figures 4–7.

 
Figure 4. Focused field amplitude of the metallic car without an antenna. Frequency range: 295 GHz–
305 GHz (bandwidth (BW) = 10 GHz).

The bandwidth used to reconstruct the image is an important imaging parameter. The first image
is shown in Figure 4, which depicts the total image reconstruction without an antenna on top of the
metallic car with a frequency of 295 GHz–305 GHz. The top of the metallic car has a curvature that
generates a specific focused field distribution.
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Then, Figure 5 presents the total image reconstructed without an antenna using a bandwidth of
110 GHz, sweeping from 220 GHz to 330 GHz. This bandwidth provides better resolution performances,
meaning the top of the metallic car can be identified in the image as a very clear reconstruction.
Additionally, Figure 5b highlights the focused field amplitude value and the distribution due to the
reflection in the top of the car, including some minor contributions around the top of the car.

 
(a) 

 
(b) 

Figure 5. The focused field amplitude of a metallic car without an antenna. Frequency range: 220 GHz–
330 GHz (BW = 110 GHz): (a) XY plane representation; (b) 3D representation of the focused field.

Figure 6 shows the total image reconstructed with the antenna installed on the top and using a
bandwidth of 110 GHz, from 220 GHz to 330 GHz. The maximum of the focused fields is identified
around the center of the top of the metallic car, where the antenna is installed. The antenna provides
reflectivity, but it is masked with the reflectivity of the metallic car top in the graph.
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Figure 6. The focused field amplitude of a metallic car with an antenna. Frequency range: 220 GHz–
330 GHz (BW = 110 GHz).

Finally, Figure 7 depicts the total image with the antenna installed on the top, using a bandwidth
of 10 GHz around 300 GHz. The shape of the focused field is like that in Figure 4 due to the antenna
contribution being added to the reflectivity of the metallic car top.

 
(a) 

Figure 7. Cont.
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(b) 

Figure 7. The focused field amplitude of a metallic car with an antenna. Frequency range: 295 GHz–
305 GHz (BW = 10 GHz). (a) XY plane representation; (b) 3D representation of the focused field.

4. Discussion

The measured fields are focused on different image planes along the z-axis (z = 0.4787 m) where
the capability of the system for focusing on different longitudinal distances (along the z-axis) and
different frequency ranges and bandwidths, over different transversal planes (XY planes), may be
observed. The experimental results show that using a wide bandwidth (110 GHz) is not required
in order to obtain a good performance. The performance was of sufficient quality using 10 GHz
bandwidth around 300 GHz. The resolutions would be:

Δz ∼ 1/ΔB (9)

Δx, Δy ∼ λ0/(2 sinθ0) (10)

tanθ0 ∼ X0/Z0 or Y0/Z0 (11)

where ΔB is the frequency bandwidth of the measurement, λ0 is the central frequency wavelength, θ0 is
the target angle visualization seen from the measurement distance, and Z0 and X0, are the scanning
distances along the x-axis and y-axis, respectively.

Differential imaging is obtained by means of calculating the difference of the experimental data
(total image obtained from focused field amplitude) measured using the car, including with a monopole
antenna short-circuited (ON state) and without the antenna (OFF state or open-circuited antenna).
As stated in Section 2, the short-circuited antenna represents the antenna placed on the top of the car,
which is in contact with the car’s metal surface.

The objective is to obtain the currents created by the antenna over the surface of the vehicle
without getting dazzled (“flash-out”) by the higher intensity of the currents on the antenna itself.
A differential image may be produced due to the difference in module between the focused field
amplitude images with the antenna (see Figures 6 and 7) and without the antenna (see Figures 4 and 5),
resulting in the current distribution of the antenna that is shown in Figures 8 and 9.
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Figure 8. Differential focused field amplitude between the metallic car with and without an antenna.
Frequency range: 220 GHz to 330 GHz (BW = 110 GHz).

 
Figure 9. Differential focused field amplitude between the metallic car with and without an antenna.
Frequency range: 295 GHz to 305 GHz (BW = 10 GHz).
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In Figure 8, it can be identified that the strong central spot corresponding to the antenna has
disappeared and, instead, the nearby currents to the antenna are visualized. The maximum can be
clearly identified.

Figure 9 depicts the current distribution calculated as a differential focused field amplitude using
a frequency range from 295 GHz to 305 GHz (BW = 10 GHz) to assess influence of bandwidth in
differential imaging.

The differential focused field amplitude is higher with a bandwidth of 10 GHz around 300 GHz
compared with a BW of 110 GHz from 220 GHz to 330 GHz. This effect is due to the gain variation
of the horns across the frequency range. The imaging system performs an averaging through all the
bandwidths, and the horn antenna gain variation generates this change in the amplitude, with higher
amplitude when the BW is lower. However, the image resolution is better when the BW is greater [3].
If the application requires high resolution, then the BW parameter should be maximized.

5. Conclusions

In this work, an application of the approach in the near-field exploration of metallic objects
explained in [3] is used to perform the focusing of a metallic car with and without a monopole antenna
in order to estimate the induced currents on the vehicle surface using a differential methodology.
This method makes it possible to estimate the distribution of the currents induced by the antenna on the
vehicle’s surface using a very simple method, which is also combined with the frequency-dimension
scale translation.

The technique presented in [3] has been extended to a different measurement scenario in a 3D
scan in the terahertz band and by using the differential current concept as both a novel form and a
major contribution.

The findings verify that, while distance discrimination increased with the bandwidth, the transverse
resolution (XY plane) did not change significantly.

The results show promising performance from this technique using differential currents, as depicted
in the 300 GHz band. Gaining knowledge of these vehicle-antenna-created currents may offer hints
regarding the impact produced by the shapes (borders and corners), discontinuities (slots and windows),
or materials (composition or roughness) introduced into the vehicular platform.
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