
© 2021 Hashim Sharif

APPROXHPVM: A RETARGETABLE COMPILER FRAMEWORK FOR
ACCURACY-AWARE OPTIMIZATIONS

BY

HASHIM SHARIF

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois Urbana-Champaign, 2021

Urbana, Illinois

Doctoral Committee:

Professor Vikram Adve, Chair
Professor Sarita Adve
Assistant Professor Sasa Misailovic
Professor Saman Amarasinghe, MIT
Associate Professor Henry Hoffmann, University of Chicago

Abstract

With the increasing need for machine learning and data processing near the edge, software
stacks and compilers must provide optimizations for alleviating the computational burden on
low-end edge devices. Approximate computing can help bridge the gap between increasing
computational demands and limited compute power on such devices. We present ApproxH-
PVM, a portable optimizing compiler and runtime system that enables flexible, optimized
use of multiple software and hardware approximations in a unified easy-to-use framework.
ApproxHPVM uses a portable compiler IR and compiler analyses that are designed to en-

able accuracy-aware performance and energy tuning on heterogeneous systems with multiple
compute units and approximation methods. ApproxHPVM automatically translates end-to-
end application-level quality metrics into accuracy requirements for individual operations.
ApproxHPVM uses a hardware-agnostic accuracy-tuning phase to do this translation that
provides greater portability across heterogeneous hardware platforms.
ApproxHPVM incorporates three main components: (a) a compiler IR with hardware-

agnostic approximation metrics, (b) a hardware-agnostic accuracy-tuning phase to identify
error-tolerant computations, and (c) an accuracy-aware hardware scheduler that maps error-
tolerant computations to approximate hardware components. As ApproxHPVM does not
incorporate any hardware-specific knowledge as part of the IR, it can serve as a portable
virtual ISA that can be shipped to all kinds of hardware platforms.
We evaluate ApproxHPVM on 9 benchmarks from the deep learning domain and 5 im-

age processing benchmarks. Our results show that our framework can offload chunks of
approximable computations to special-purpose accelerators that provide significant gains in
performance and energy, while staying within user-specified application-level quality met-
rics with high probability. Across the 14 benchmarks, we observe from 1-9x performance
speedups and 1.1-11.3x energy reduction for very small reductions in accuracy.
ApproxTuner extends ApproxHPVM with a flexible system for dynamic approximation

tuning. The key contribution in ApproxTuner is a novel three-phase approach to approximation-
tuning that consists of development-time, install-time, and run-time phases. Our approach
decouples tuning hardware-independent and hardware-specific approximations, thus provid-
ing retargetability across devices. To enable efficient autotuning of approximation choices,
we present a novel accuracy-aware tuning technique called predictive approximation-tuning.
It can optimize the application during development-time and can also refine the optimization
with (previously unknown) hardware-specific approximations at install-time.

ii

We evaluate ApproxTuner across 11 benchmarks from deep learning and image process-
ing domains. For the evaluated convolutional neural networks, we show that using only
hardware-independent approximation choices provides a mean speedup of 2.2x (max 2.7x)
on GPU, and 1.4x mean speedup (max 1.9x) on the CPU, while staying within 2 percentage
points of inference accuracy loss. For two different accuracy-prediction models, our predic-
tive tuning strategy speeds up tuning by 13.7x and 17.9x compared to conventional empirical
tuning while achieving comparable benefits.

iii

Dedicated to my parents (Shahid Sharif & Lalarukh Shahid), sister (Zainab) & my life
partner, Hareem Dar, for their unconditional love and support.

iv

ACKNOWLEDGMENTS

I owe a debt of gratitude to people who have helped me in my Ph.D. journey. First, I
would like to thank my Ph.D. advisor Professor Vikram Adve, who has been my mentor
throughout these years. Vikram has been inspirational to me in many ways, not only as
a role model in research, but also as a great person. Vikram’s mentorship has taught me
the importance of always aiming high, being resilient and persistent, and to not be shy of
continuously challenging yourself. His long term vision on Compilers and Systems research
has helped me learn how to better position my ideas and work in the context of the broader
challenges and opportunities faced by the community. Despite his busy schedule, he has
always been available to discuss research and career goals, and always taken a keen interest in
my progression as a researcher. Through thick and thin, Vikram has been extremely positive
and supportive, which made it easier to cope with the challenges of a Ph.D. program. For
these, I will be ever grateful to Vikram.
I would like to say a special thanks to Dr. Sasa Misailovic and Dr. Sarita Adve who

have also played a significant role in my development as a researcher. Sasa has been ever
available to discuss research ideas and spent significant amount of time with me to help
me refine these further. Sasa has played an important role in pushing me to continuously
improve my work and encouraging me to make it more widely impactful. I have greatly
learned from his expertise in Approximate Computing and Programming Languages. Sarita
has also played a key role in my research by asking the hard questions that forced me to
think more deeply about my research directions. Her drive for top quality research and her
ability to connect ideas from different research areas has helped me broaden my own thought
process. I am extremely grateful to both Sasa and Sarita for being wonderful mentors and
collaborators through this journey.
I am particularly grateful to people who believed in my abilities early in my career and

pushed me to pursue a Ph.D. program. My friend Waqas Iftikhar was instrumental in
encouraging me to pursue research and grad studies and gave me the confidence that I can
make it to a top school. The detailed conversations about career goals with Waqas helped
me a great deal in carving out a pathway to a research career. Waqas also encouraged me
to join the Lahore University of Management Sciences (LUMS) for a research internship
which played a major role in preparing me for grad school. At LUMS, Dr. Fareed Zaffar
was my research mentor from whom I learnt a great deal about research, academia, and
the academic publication process. Dr. Fareed spent a great deal of time with me preparing

v

me for grad school and helping me build a research profile by involving me in multiple very
interesting research projects. Post the internship and throughout my Ph.D., Dr. Fareed has
continued to offer his support and guidance for which I am very grateful. My collaborator
Dr. Ashish from SRI International has also been a very positive influence. I have learnt a
great deal from Ashish about Systems research and continue to do so. I am very grateful for
the positive encouragement and guidance he has always provided.
My research was not possible without the contributions and the support of my highly tal-

ented collaborators. These include Yifan Zhao, Akash Kothari, Maria Kotsifakou, Muham-
mad Huzaifa, Prakalp Srivastava, Abdul Rafae Noor, Adel Ejjeh, Peter Pao-Huang, Nathan
Zhao, Arun Narenthiran, and Dr. Girish Chaudhry. To Yifan, Akash, and Maria: I thor-
oughly enjoyed our time together working on the HPVM project. Throughout our journey
on the ApproxHPVM and ApproxTuner work, we took all challenges head-on and worked
together truly as a team. Huzaifa, you went above and beyond in helping me with Computer
Architecture related queries. Not only were these conversations very helpful, it was always
fun catching up.
I am also extremely grateful to friends and relatives that have been very supportive of me

taking up grad school and always believed in me to perform well. These include Shehroze
Farooqi, my friend who is also pursuing his Ph.D. at the University of Iowa, and has always
been a positive influence. Talal Anwar, my close friend from undergrad has been more than
supportive and helpful whenever I have turned to him for help. I am extremely grateful to
both of them. I also owe a thanks to Haris, my cousin who always believed in me, my Aunt,
Shaheena, who has helped me in many ways. Abubakar, my cousin who pursued a degree
in Computer Science was the first to encourage me to take up CS, and always offered very
sound career advice in my early years. I owe a special thanks to my wife’s parents, Bushra
Dar and Ishfaq Dar, for being pillars of support through this journey, and standing by me
through thick and thin. The positive encouragement, guidance, and words of wisdom have
helped me both academically and in my personal life.
I am more than thankful to the University of Illinois at Urbana-Champaign (UIUC) Staff

that has been more than willing to help me out with any academic and non-academic queries.
Kathy Runck, Viveka Kudaligama, and Maggie Chappell have went above and beyond in
their assistance and support. Glen Rundblom at Engineering IT support has helped me and
my colleagues out in the most stressful times; whenever we required urgent IT assistance
close to paper deadlines. For these, I am very grateful.
For anything I have become, the excellent education I was fortunate to receive, and for

the opportunities I was able to secure was never possible without the unconditional love,
support, encouragement, and guidance of my parents, Shahid Sharif, and Lalarukh Shahid.

vi

My father Shahid is my hero and my inspiration. From him, I learnt the values of hard
work, making smart decisions in life, integrity and honesty, and the virtue of going out
of the way to help friends, family, and colleagues. From early years, my father’s love for
his medical profession instilled in me the importance of being true to your profession and
having a good work ethic. Throughout my Ph.D., he has been the most supportive, helping
me to be positive through the toughest of times, and always reminding me to be positive.
My mother has been a similar positive influence, always taking my mind off the negatives
and helping me focus on the task at hand. She has always believed in my abilities as a
student and trusted me to succeed through challenging times. Zainab, my sister, has been a
huge influence of my professional career. She has been extremely supportive of my graduate
studies and always believed in me. Her love, care, and support has been instrumental in me
achieving better things. I am also very grateful to my paternal grandparents, who are sadly
no longer with me, for the great love, care and support they offered in my early years of
education. This thesis would have made them very proud.
In the journey of my degree, I met Hareem Dar, my life partner, companion, and best

friend. I feel extremely luck to have met her and extremely fortunate to have her as part of
my life. I have learned a number of positive virtues from her, including the importance of
being resilient, hard working, forgiving, and not losing sight of the most important things.
I always seek her advice on career and non-career related things, and always receive useful
guidance. Through thick and thin, she has stood beside me, steady as a rock. Without the
positivity she brings to my life, I could not have imagined completing this degree. I was
more than lucky to have had Hareem on my side as part of this wonderful journey.

vii

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1
1.1 Approximate Systems: Motivation . 1
1.2 Challenges in Approximation Tuning . 4
1.3 Limitations of State of the Art . 7
1.4 Problem Statement . 8
1.5 Contributions . 8

CHAPTER 2 RELATED WORK . 18
2.1 Approximation-Aware Programming Languages 18
2.2 Systems for Offline Autotuning . 20
2.3 Approximation-Driven Adaptive Systems . 21
2.4 Compilers for Machine Learning . 23
2.5 Compilers for Heterogeneous Systems . 23
2.6 Approximation Techniques . 25
2.7 Analytical Techniques for Approximation Tuning 27

CHAPTER 3 CHALLENGES IN APPROXIMATION TUNING 28
3.1 Diverse Range of Heterogeneous Systems . 28
3.2 Source Code Portability . 29
3.3 Object Code Portability . 30
3.4 Manual Tuning is Challenging . 30
3.5 Large Tradeoff Space Combining Multiple Approximations 31
3.6 High Cost of Empirical Autotuning . 31
3.7 Optimization Choice Depends on Runtime Conditions 32
3.8 Application-Specific End-to-End Effects of Approximation 32

CHAPTER 4 APPROXHPVM: A PORTABLE COMPILER IR FOR ACCURACY-
AWARE OPTIMIZATIONS . 34
4.1 Introduction . 34
4.2 ApproxHPVM Internal Representation and System Workflow 36
4.3 Accuracy-Aware Mapping and Optimization 42
4.4 Methodology . 47
4.5 Evaluation . 53
4.6 Conclusion . 63

CHAPTER 5 APPROXTUNER: COMPILER AND RUNTIME SYSTEM FOR
ADAPTIVE APPROXIMATIONS . 64
5.1 Introduction . 64
5.2 ApproxTuner Overview . 67
5.3 Development-Time Tuning . 72

viii

5.4 Install-Time Tuning . 76
5.5 Runtime Approximation Tuning . 77
5.6 Evaluation Methodology . 79
5.7 Evaluation . 82
5.8 Exploratory Study: Tuning for Pruned Models 90
5.9 Conclusion . 91

CHAPTER 6 APPROXROBOTICS: THE COST AND ACCURACY TRADE-
OFF FOR SMALL MOBILE ROBOTS . 93
6.1 Introduction . 93
6.2 Background: Robot System Design . 95
6.3 Approximation: Model Pruning . 99
6.4 Experimental Methodology . 99
6.5 Evaluation . 101
6.6 Discussion and Conclusions . 109

CHAPTER 7 IMPLICATIONS FOR CURRENT PRACTICE 110

CHAPTER 8 FUTURE WORK . 113
8.1 Support for More Application Domains . 113
8.2 Translation to Approximate Hardware Accelerators 113
8.3 Automatic Generation of Approximate Kernels 114
8.4 Domain-Specific Approximation Techniques 114
8.5 Extending Approximation-Tuning with Model Retraining Support. 115

REFERENCES . 116

ix

CHAPTER 1: INTRODUCTION

1.1 APPROXIMATE SYSTEMS: MOTIVATION

With the slowdown of Moore’s Law and the end of Dennard scaling, the gap between hard-
ware performance and the computational demands of software applications is widening [1].
A recent trend that contributes to this gap is edge computing ; a computing paradigm that
brings computation closer to where data is being gathered, to improve response times, re-
duce network bandwidth usage, and reduce cloud costs [2, 3, 4]. Some examples of edge
devices include mobile phones, IoT devices, small autonomous robots, and drones among
many others. In contrast to high budget cloud environments (that use high-end servers),
edge computing has tighter constraints on the cost of deployed hardware [5]. Also, edge
devices are battery powered; hence power- and energy-efficiency is a key consideration. De-
sign characteristics that enable low-cost, low-power hardware include: fewer compute cores,
lower clock frequencies, and smaller local and global memories. These design characteristics
also cause the hardware to be compute and memory constrained.
A wide range of different kinds of computations are being deployed on the edge including

image and video processing, object classification, speech recognition, facial recognition, data
analytics, among others [6, 7, 8]. These applications are very compute-intensive, which
often renders it completely infeasible to run such computations on resource-constrained edge
hardware devices. An example of one such compute-intensive edge computing application
are visually-guided autonomous navigation systems that use deep neural networks (DNNs)
for object detection, object classification, and regression tasks [9, 10]. The latest neural
network architectures provide reasonable end-to-end prediction accuracy which makes them
suitable for use with autonomous navigation controllers, but these require computing millions
of operations for each data input image [11, 12, 13], which results in high execution times,
and high power and energy usage.
Many computations in these edge computing application domains are inherently approxi-

mate, in the sense that the input data are often derived from noisy sensors and output results
are often probabilistic, e.g., for object classification or facial recognition, or also noisy, e.g.,
for image and audio streams. Such computations can often tolerate small errors that intro-
duce some acceptable degradation in the quality of the output result [14]. This fault tolerance
property of applications has lead to the adoption of approximate computing techniques ; soft-
ware and hardware optimizations that trade-off small amounts of accuracy (or result quality)
for gains in performance and/or energy.

1

Approximation Technique Reference Systems
Load Value Approximation Miguel et al. [15], Sutherland et al. [16]

Approximate Writes Fang et al. [17]
Voltage Scaling Chippa et al. [18]

Compute Precision Tuning Gonzalez et al. [19] Duben et al. [20]
DRAM Refresh Rate Reduction Jung et al. [21], Liu et al. [22]

Analog Computation Srivastava et al. [23], Li et al. [24], Amant et al. [1]
InExact Hardware Kang et al. [25], Kulkarni et al. [26]

Neural Processing Units Esmailzadeh et al. [27, 28]

Table 1.1: Various hardware approximation techniques proposed by different studies.

Approximation Technique Reference Systems
Task Skipping Goiri et al. [29], Raha et al. [30]

Loop Perforation Hoffman et al. [31], Sidiroglou et al. [32]
Input Sampling Samadi et al. [33]
Barrier Elision Misailovic et al. [34]

Function Substitution Zhu et al. [35], Ansel et al. [36]
Approximate Memoization Keramidas et al. [37], Rahimi et al. [38]
Approximate Parallelization Misailovic et al.[39]

Dynamic Knobs Hoffman et al. [40, 41], Xu et al. [42]
DNN weight pruning Han et al. [43], Han et al. [44], LeCun et al. [45]

Low Rank Factorization Han et al. [44]
Perforated Convolutions Figurnov et al. [46]

DNN Quantization Han et al. [43] Sakr et al. [47], Bulat et al. [48]
DNN Weight Sharing Han et al. [43]
Lossy Compression Samadi et al. [49]

Table 1.2: Various software approximation techniques proposed by different studies.

Approximation techniques have been proposed at several different layers of the system
stack ranging from low-level hardware primitives for approximation, approximate functions
in software libraries, and compiler optimizations. At the hardware architecture level, ap-
proximations have been applied in many different components: floating-point units, caches,
DRAM, and specialized analog and digital accelerators [23, 1, 27]. The use of specialized
accelerators is becoming widespread with hardware vendors incorporating these as part of
commercial System on Chips (SoCs). Specialized accelerators are being used in widely
varied domains domains including computer vision [50, 51, 52], natural language process-
ing [53, 54, 55], and graphics among others. These accelerators provide orders-of-magnitude
energy and performance improvements over general-purpose hardware. Some popular com-
mercial accelerators (at the time of writing this document) include Google Tensor Process-

2

ing Units (TPUs) [50], Nvidia NVDLA [51], and Intel Movidius [52]. These accelerators,
Nvidia GPUs (commonly used for machine learning), and also a few CPUs support reduced
precision in FP16 (16-bit floating point) and INT8 (8-bit Integers) as hardware-supported
approximations. Table 1.1 lists a few hardware approximations.
Approximate techniques are similarly diverse at the software level. These include function

substitution (use of approximate function variants), loop perforation [56, 32] (skipping loop
iterations), barrier elision [57] (speculatively skipping barriers), reduction sampling [35] (re-
duction using subset of inputs), among many others. In the deep learning domain, domain-
specific optimizations such as weight pruning [45, 43] (removing less important weights) and
low-rank factorization [58] (reducing the rank of tensor computations) are gaining popularity
given their ability to significantly compress deep neural network (DNN) model weights (up
to 50x [43]) with minimal accuracy impact. Software approximations have the advantage
of being applicable across different hardware devices without needing any special hardware
support. Moreover, software and hardware approximations can be potentially combined (as
we show in our work) to gain even higher performance benefits. Table 1.2 lists a few software
approximations.
Tolerance to errors varies highly across applications and different application components.

Not all application kernels (or operations) are resilient in the face of errors. Some kernels can
tolerate significant inaccuracy with minimal impact on the end-to-end application quality,
while even small errors in some kernels can result in unacceptable quality degradation. The
choice of approximation is also important since different approximation types introduce
different kinds of errors (e.g., Gaussian, Uniform, Random). This behavior motivates the
need for analyses that identify the error resiliency of different application kernels and select
which operators/kernels to approximate and what kinds of approximations to apply.
There is need for easy-to-use systems that facilitate end-users in using approximations

for their applications. Many prior compiler and runtime systems include support for ap-
proximations [59, 60, 61, 62, 49, 33, 44, 31, 63, 36, 40, 41, 57, 56, 64]. In a typical usage
scenario, end-users provide high-level specifications for desired quality of service (QoS) and
performance constraints. A quality-of-service (QoS) constraint is a bounded change in a
(usually domain-specific) quality metric, such as a numerical reduction in inference accu-
racy for a machine learning model, or a reduction in peak signal-to-noise ratio (PSNR) for
an image processing computation. High-level specifications are important since they relieve
users from having deep insights on low-level application kernels and the impact of different
approximations on individual kernels.
Many prior systems have focused on the problem of approximation tuning [59, 60, 61, 62,

44, 49, 33, 36]; an optimization problem that maximizes performance and/or energy benefits

3

(possibly other objectives), while satisfying some high-level quality constraint (e.g., inference
accuracy in machine learning models). The optimization problem includes selecting for each
application operation an approximation knob; a discrete-valued parameter of an approxima-
tion method that can be modified to control the quality, energy, and run time (e.g., rate of
loop perforation). The approximation tuning phases identifies candidate configurations. A
configuration is an assignment of zero or more approximation choices to every operation in
the program, together with a setting of the knobs for all the assigned approximations. The
search space for optimizations is the set of all possible configurations.
Previous systems for approximation tuning have significant limitations including: i) some

systems require significant user-guidance [61, 62, 65, 64], ii) some do not exploit hardware-
specific approximation choices nor translate code to heterogeneous compute units [59, 60,
61, 36, 49, 33, 65, 31, 63], iii) many systems support limited approximation techniques [56,
34, 31, 63, 46, 35, 66, 32, 67], iv) lack support for combining different approximation tech-
niques [31, 63, 46, 35, 66, 68, 69, 32, 67], v) many systems have no support for dynamically
changing approximation knobs [36, 59, 60, 61, 62, 67, 33]. Our work fundamentally improves
over prior work by addressing the aforementioned limitations. This dissertation proposes a
retargetable compiler and runtime system that supports abstractions for approximate com-
puting, incorporates a wide range of approximations types, supports combining different
approximations in a single program, and includes a flexible and easy-to-use approximation
tuning framework. The several challenges that arise in the design of our system are detailed
next in Section 1.2, and limitations of prior systems are detailed in Section 1.3.

1.2 CHALLENGES IN APPROXIMATION TUNING

In practice, a realistic application (e.g., a neural network or a combination of an image
processing pipeline and an image classification network) can make use of multiple approxi-
mation techniques for different computations in the code, each with its own approximation
knobs that must be tuned, to achieve the best results. For example, our work shows that for
the ResNet-18 convolutional neural network, which contains 22 tensor operations, the best
combination (considering accuracy-performance tradeoff) is to use three different approxima-
tions with different parameter settings in different operations. A major open challenge is how
to select, configure, and tune the parameters for combinations of one or more approximation
techniques, while meeting end-to-end requirements on energy, latency, and accuracy. Several
specific challenges arise in meeting this goal. These challenges are detailed in Section 3 and
briefly explained here:

4

1.2.1 Diverse Range of Heterogeneous Systems

"Heterogeneous systems" refer to hardware platforms composed of multiple compute units
with different microarchitectures that communicate over some shared interface (e.g., com-
mon global shared memory). One real-world example are mobile SoCs that include CPUs for
general purpose tasks, GPUs for graphics and machine learning, and additional specialized
accelerators for audio/video decoding, computer vision tasks, and DSP among other tasks.
This diversity in hardware facilitates performance and power efficiency but introduces chal-
lenges for compilers that must target different ISAs, optimize code for each kind of processor,
and maximize local and overall hardware utilization.
Compute units of different hardware types (e.g., CPUs, GPUs, accelerators) and across

different generations of the same hardware type (e.g, different generations of Nvidia GPUs)
provide different approximation options and also differing accuracy-vs-performance trade-
offs [70]. From the approximation-tuning perspective, domain-specific accelerators are par-
ticularly interesting since they support hardware-specific approximations (e.g. analog com-
pute accelerators [23], low-precision ML accelerators [50, 51, 52]) that can offer orders-of-
magnitude performance and energy improvements. To maximize overall performance and
energy improvements, a compiler framework must be able to map to these efficient hardware
primitives.

1.2.2 Source and Object Code Portability

Since software applications (especially for mobile phones and IoT devices) are expected to
cater to a range of different devices, software portability is an important requirement, not just
at the source-code level but also the ability to ship software that can execute on a wide range
of systems. Applications for both desktop and mobile (e.g., smartphone or tablet) systems
are almost always shipped by application teams to end-users in a form that can execute
on multiple system configurations (e.g., with different vector ISAs or GPUs). GPUs, for
example, provide virtual instructions sets, e.g., PTX [71] or HSAIL [72], to enable software
to be shipped as “virtual object code” that is translated to particular hardware instances only
on the end-user’s system. A critical goal for real-world use of such approaches is to enable
software to be shipped as portable virtual object code, while deferring the hardware-specific
aspects of accuracy-performance-energy optimizations to be performed after shipping [73]
(e.g., on the end-user’s device or on servers in an app store).

5

1.2.3 Large Search Space and High-cost of Empirical Tuning

The variety of software and hardware approximations with many accuracy-performance
trade-offs introduce a large search space of possible configurations that is hard to navigate
efficiently. In our work, for ResNet-50 with 53 convolution layers and 63 approximation
knobs for each convolution layer, the total search space includes a total of 7e91 unique con-
figurations. Since an exhaustive search over this large search space is completely infeasible,
heuristic alternatives are employed to intelligently navigate a fraction of the search space.
One such approach is autotuning : an optimization that uses heuristic search techniques (e.g.,
genetic algorithms, hill climbers, random search) to navigate a subset of configurations, and
uses a (developer-specified) fitness function to compute the cost/profitability for each evalu-
ated configuration [74, 36, 75]. Empirical autotuning uses empirical evaluations (i.e., running
the program binary) to measure the attributes of interest such as quality of service (QoS)
measurements, (e.g., inference error in CNNs) throughout, latency, and energy usage among
possible others. We find that approximation-tuning via empirical tuning takes days (on a
server-class machine) for some benchmarks - 1.5 days for VGG16 and 11 days for ResNet50.
These long empirical tuning times motivate the need for efficient tuning.

1.2.4 Optimization Choice Depends on Run-time Conditions

Dynamic optimization capabilities are important in deployments where runtime conditions
are likely to keep changing. Few examples of such changing conditions are:

• Varying system workloads. Increasing system load can cause applications to be
unresponsive or miss deadlines.

• Low power modes. Low-power modes usually involve power gating compute cores
and reducing processor and memory clock frequencies [76, 77], leading to overall system
slowdowns.

• Changing QoS requirements. The nature of the operating environments can impact
QoS (Quality of Service) requirements. For instance, a autonomous robot navigating
in a dark environment may require a higher accuracy mode compared to a robot
navigating in daylight.

6

1.3 LIMITATIONS OF STATE OF THE ART

Current programming environments (languages, compilers, libraries, frameworks) both in
production use and in the research literature, have several limitations in supporting flexible
use of approximation techniques for performance and efficiency:

• Not easy to use. Many systems (EnerJ [61], ACCEPT [62], DECAF [65], Chisel [59],
Rely [60], Petabricks [36], ApproxNet [64]) are not easy to use since they either re-
quire users to port their applications to new programming languages (Chisel [59] and
Rely [60]), require source code changes (ApproxNet [64]), or require programmer-
guided annotations to separate approximate and precise data and instructions (En-
erJ [61], ACCEPT [62], DECAF [65]). Ideally, an approximation tuning system should
only require from the user a high-level end-to-end quality specification and the unmod-
ified program (in source or IR form), to generate optimized versions.

• Support limited range of approximations. Many systems support a very limited
range of known approximation techniques, typically one or two approximation tech-
niques [56, 34, 31, 63, 46, 35, 66, 78, 68, 69, 32, 67]. Some systems (PowerDial [40] and
JouleGuard [41]) require that the knobs for controlling performance-quality trade-offs
are exposed by the application developers as configuration options (e.g., command-
line inputs) that are tuned by a runtime system, and do not support any software,
algorithmic, or hardware approximations.

• Do not combine different approximation choices. Combining different approx-
imation choices is attractive since it allows for choosing a combination of knobs (per
operation/sub-computation) that maximizes performance and energy benefits, while
staying within the accuracy constraint. Most systems do not support combining mul-
tiple approximation techniques in a single application, which requires tuning approx-
imation parameters for different computational kernels in an application [56, 34, 31,
63, 46, 35, 66, 68, 69, 32, 67].

• Lack the capability to target heterogeneous systems. Most such systems (with
exception of ACCEPT [62]) do not exploit heterogeneous hardware compute units that
offer a variety of approximation choices with potential of providing significant speedups
and energy reductions [59, 60, 61, 36, 49, 33, 65, 31, 63, 44, 64, 40, 41]. The TVM
system can compile machine learning workloads for a variety of heterogeneous compute
devices (CPUs, GPUs, and accelerators), but has no support for targeting accelerator-
specific approximations, and doesn’t have the ability to tune approximation choices.

7

• Do not support source and object code portability. None of the systems for
accuracy-aware tuning [62, 61, 65, 59, 60, 63, 31, 49, 33, 36] uses or builds on top
of a portable compiler IR representation that can be used as a format for shipping
application code (with approximation information included).

• Lack of support for dynamic approximation tuning. Many systems (Petabricks [36],
ACCEPT [62], Chisel [59], Rely [60], EnerJ [61], Paraprox [33], TVM [67]) do not
provide any support for dynamically adapting approximation choices under changing
resource constraints, such as changing workloads, battery capacity, or varying time
budgets for inference decisions. Systems that support runtime tuning (PowerDial [40],
JouleGuard [41] MCDNN [44], ApproxNet [64], SpeedGuard [31]) do not support any
of the other key requirements in this list, including diverse approximation techniques,
high-level specification, software portability, and heterogeneous hardware targets.

1.4 PROBLEM STATEMENT

Given the diversity of approximation techniques and the varying error tolerance across ap-
plications, determining a mapping of approximations to computational kernels while achiev-
ing an acceptable trade-off between application-level accuracy and performance or energy is
an open research problem. Different kernels within an application are amenable to different
kinds of approximation techniques often with varying approximation knob settings [33]. To
make it easy to use approximations for delivering performance and energy improvements,
there is a need for a framework that automatically discovers an optimal mapping of approx-
imation knobs to program operations.
Moreover, application developers and end users cannot be expected to specify error toler-

ances in terms of the system-level parameters required by the various approximation tech-
niques, or even know about many of them: we need automated mapping strategies that
can translate application-level specifications (e.g., tolerable classification error in a machine
learning application) to system-level parameters (e.g., neural network parameter precision
or circuit-level voltage swings).

1.5 CONTRIBUTIONS

To develop a retargetable, portable, efficient, and easy-to-use compiler framework for
approximate computing, I adopted a 2-step strategy.

8

My first work on ApproxHPVM focuses on developing an Intermediate Representation
(IR) that includes portable abstractions for approximation metrics, and an accompanying
compiler framework that intelligently allocates approximation budget to individual sub-
computations in a programs, generates code for approximate accelerators, and can map to
hardware-specific parameters and knobs that control approximation.
My second work on ApproxTuner extends ApproxHPVM with an efficient approximation

tuning framework that includes a novel 3-phase approximation-tuning approach, supports a
wider range of approximation choices, and adds support for dynamic adaptation of approx-
imation knobs.
I also perform a preliminary study that characterizes the flexibility for approximations in a

real-world visual perception system used for autonomous robot navigation. Our study shows
that this system has much room for inaccuracy, allowing approximations to deliver significant
performance improvements. These observations reinforce that approximation-tuning systems
like ApproxHPVM and ApproxTuner are very applicable in real-world deployments.

1.5.1 ApproxHPVM: A Portable Compiler IR for Accuracy-Aware Optimizations

Existing systems for accuracy-aware optimizations do not provide a fully automated
framework that is able to target multiple heterogeneous devices with diverse approximation
choices. We propose ApproxHPVM, a unified compiler IR and framework that provides
ease of programming and object-code portability – and does in a fully automatic manner:

• Programmers only have to specify application-level, end-to-end error tolerance con-
straints, and ApproxHPVM can use this information to optimize and schedule pro-
grams on a heterogeneous system containing multiple approximation techniques; and

• ApproxHPVM enables software portability by using a hardware-agnostic, accuracy-
aware compiler IR and virtual ISA, and by partitioning the accuracy-energy-performance
optimizations into a hardware-agnostic stage and a hardware-specific stage, where soft-
ware can be shipped between the two stages.

The ApproxHPVM compiler is developed as an extension of Heterogeneous Parallel Virtual
Machine (HPVM) [79], a retargetable compiler infrastructure and portable virtual ISA for
heterogeneous parallel systems. HPVM itself is built on LLVM [80], and can use LLVM
compiler passes and code generators for individual tasks. Using HPVM allows us to target
diverse heterogeneous parallel systems, and facilitates developing an accuracy-aware IR that

9

serves as a fully self-contained, portable virtual ISA that can be shipped and mapped to a
variety of hardware configurations.
ApproxHPVM takes as input a program written in Keras (a high-level library for de-

signing neural networks and tensor-based programs) or HPVM-C (extensions for describing
HPVM dataflow graphs using C functions), and end-to-end quality metrics that quantify
the acceptable difference between approximate and non-approximate outputs. Our custom
frontends compile code in Keras or HPVM-C to the ApproxHPVM Intermediate Represen-
tation (IR). The compiler performs optimization steps on the ApproxHPVM IR that map
individual approximable computations within the program to specific hardware components
and specific chosen approximation techniques. The approximation mappings are chosen
such that they minimize execution time and maximize energy savings, while satisfying the
given end-to-end constraints with high probability. To our knowledge, ApproxHPVM is the
first system to support the combination of these capabilities: a) full automation from end-
to-end application-level quality specifications, b) support for using multiple approximation
techniques in a single program, c) ability to exploit hardware-specific approximations and
targeting heterogeneous systems, and d) supporting object code portability (using a portable
IR representation).
ApproxHPVM solves three key challenges to achieve these goals:

• For applications with multiple approximable computations, it automatically translates
end-to-end error specifications to individual error budgets and bounds per approx-
imable computation (e.g, a tensor operation), while statistically guaranteeing with
high probability that the end-to-end specifications are satisfied

• It automatically determines how to map approximable computations to a variety of
compute units and multiple approximation mechanisms, including efficient special-
purpose accelerators designed to provide improved performance with lower accuracy
guarantees.

• It optionally provides object code portability by decoupling the approximation mapping
and compilation problem into a hardware-independent autotuning phase (at development-
time) and a subsequent hardware-dependent mapping phase (at install-time).

The portability is optional because it does not always come for free: the optimization
choices may sometimes be suboptimal compared to a single, end-to-end and hardware-specific
strategy (we show this in our Evaluation). ApproxHPVM supports either strategy, and so
the unified, hardware-specific strategy can be used when portability is not a requirement.

10

ApproxHPVM solves these challenges in a domain-specific manner, through a number of
key features. ApproxHPVM extends HPVM with a set of approximable domain-specific
operations as part of the IR, which enables the compiler to identify approximable compu-
tations, and also to define hardware-independent but domain-specific approximation metrics
as attributes of those operations. ApproxHPVM is the first compiler to support approxima-
tion metrics at the IR level. Currently, ApproxHPVM (and ApproxTuner) supports tensor
computations which are general enough to support a number of important application do-
mains such as neural networks and image processing. As part of future work, we believe our
framework can be extended to an even wider range of application domains.
For assigning per-operation approximation metrics, our custom autotuner uses randomized

artificial error injection to measure the sensitivity of individual tensor operations and uses
it to translate end-to-end specifications to approximation metrics at an operation-level. The
error injection phase is hardware-agnostic and inserts errors of varying magnitude (chosen by
the autotuner) sampled from standard error distributions (e.g., Gaussian). The hardware-
specific approximation selection phase at install-time uses these approximation metrics and
uses a simple lookup table (per approximation method per IR operation) to perform the
translation very efficiently.
Specifically we make the following contributions:
Retargetable Compiler IR and Virtual ISA with Approximation Metrics: We

show how to capture hardware-agnostic approximation metrics in a parallel compiler IR,
while preserving retargetability across a wide range of heterogeneous parallel hardware.
Moreover, the IR can serve as a hardware-agnostic virtual ISA, and so software can be
shipped between the two optimization stages to achieve virtual object code portability for
approximate computing applications.
Hardware-agnostic Accuracy Tuning: Given an end-to-end user-provided quality

metric (e.g., reduced inference accuracy or PSNR for images), our hardware-independent ac-
curacy tuner computes the corresponding accuracy requirements for individual IR operations
that can satisfy the end-to-end goal.
Accuracy-aware Hardware Scheduling: The second stage maps individual tensor op-

erations to specific target compute units and to specific approximation options within those
compute units, by taking into account the error tolerance of operations and the accuracy
guarantees provided by the target compute unit.
Evaluation on Target Platform: We evaluate 9 DNN benchmarks and 5 image pro-

cessing filters, using two different accuracy thresholds for each: 1% and 2% decreases in
inference accuracy for the DNNs, and 20dB and 30dB loss of PSNR for the image processing
filters. We use the NVIDIA Jetson TX2 mobile SoC [81] and extend it by adding a sim-

11

ulated version of a (fully programmable) Machine Learning accelerator called PROMISE,
which has shown to provide orders-of-magnitude energy and throughput benefits for vector
dot-product operations [23]. Our results show that ApproxHPVM can successfully assign
different tensor operations to different compute units (GPU or PROMISE) with different
approximation options, achieving speedups of 1-9x and energy reductions of 1.1-11.3x com-
pared to using FP32 precision, while statistically guaranteeing the specified accuracy metrics
with 95% probability.
ApproxHPVM is published and presented at OOPSLA’19.

1.5.2 ApproxTuner: A Compiler and Runtime System for Adaptive Approximations

The second phase of my work extends ApproxHPVM with an efficient approximation-
tuning framework called ApproxTuner. ApproxTuner adds to ApproxHPVM: a) a novel 3-
phase strategy for selecting and tuning approximations, b) support for software algorithmic
approximations, and c) capability to adapt approximation knobs at runtime.
The opportunities and challenges that motivate our ApproxTuner work are:

• Empirical autotuning is slow. Empirical evaluation of the program binary to measure
performance and accuracy can be prohibitively expensive on edge systems, requiring
weeks or months for realistic kernels, and also undesirable on cloud systems where
energy and/or monetary costs can become overwhelming. Even for medium-sized pro-
grams, empirical tuning usually requires thousands of such expensive evaluations [75].
We find that empirical tuning supported in ApproxHPVM takes days (on a server-class
machine) for some benchmarks - 1.5 days for VGG16 and 11 days for ResNet50.

• Not all hardware platforms support approximation knobs. Software algorithmic approx-
imations present an important opportunity since these do not need special hardware
support. ApproxHPVM only supported approximations exposed as hardware-specific
knobs (FP16 and PROMISE), and had no support for software algorithmic approxi-
mations. To maximize performance benefits, a system should exploit both hardware-
specific and hardware-independent software approximations.

• Changing runtime conditions affect optimization choices. Satisfying end-to-end re-
quirements (accuracy, performance, energy) may depend on many run-time conditions,
e.g., the load of the system, the state of the battery, the inputs to the computation,
or varying application demands during execution. To meet its requirements, the ap-
plication may need to adapt to the changing conditions and reconfigure during run
time.

12

ApproxTuner is able to exploit both hardware-specific and hardware-independent approx-
imations, preserve portability of source and object code, and provide runtime adaption
capabilities by decomposing the optimization process into three stages: development-time,
install-time and run-time. ApproxTuner takes as input a program and a QoS constraint,
and generates a set of possible configurations that maximize a hardware-agnostic perfor-
mance metric and produce QoS values within the constraint. The generated configurations
are organized as a trade-off curve (with QoS and performance as the axes) At install time,
the system refines this curve using hardware-specific optimizations and performance mea-
surements, then uses the refined curve for the best static choices of approximations and
parameter settings. The final tradeoff curve is included with the program binary. At run
time, the tradeoff curve is used to dynamically change approximation settings based on
run-time conditions (e.g., system slowdowns).
ApproxTuner is extensible to a wide range of software and hardware approximations. This

work evaluates five approximations – three software (hardware-independent) techniques im-
plemented for CPUs and GPUs - including, perforated convolutions (skip computing subset
of outputs), input sampling for convolutions (using subset of input values), and reduction
sampling, and two hardware-specific approximations (also supported in ApproxHPVM) -
FP16 and analog computation on PROMISE.
We find that the approximation metrics used in ApproxHPVM are not suitable for tuning

the software approximations used in ApproxTuner. This is because software approximations
(perforation and sampling) cannot be easily captured with simple attributes such as L1 or L2
norms of output tensors. We discover that L1 and L2 norms work well with approximations
that introduce noise that is independent of the inputs; this includes Gaussian random noise
injected by analog computation in PROMISE, floating-point rounding errors due to FP16,
and random bit flips. The software approximations are highly sensitive to the inputs. For
instance, what spatial values in an output tensor get skipped while doing a perforated con-
volution (approximating some output elements) can have a major impact on the application
accuracy. Accordingly, in ApproxTuner, we do not tune with hardware-agnostic approxima-
tion metrics, instead directly invoke the approximation techniques as part of our autotuning
workflow.
To address the challenge of reducing the execution time of approximation tuning, Approx-

Tuner introduces a novel technique, predictive approximation-tuning . Predictive approximation-
tuning uses one-time error profiles of individual approximations, together with error com-
position models for tensor-based applications, to predict end-to-end application accuracy1.

1The work on accuracy prediction models is lead by Yifan Zhao (yifanz16@illinois.edu) and details on
the models will also appear in his Thesis.

13

Our approach also facilitates distributed tuning since the error profile collection can happen
at multiple client devices in a distributed manner with autotuning performed on a central-
ized server. This makes install-time tuning (with hardware-specific approximations) feasible
which can otherwise be prohibitively expensive to do on a single resource-constrained edge
device.
In summary, our contributions are:

• A system that combines a wide range of existing hardware and software approximations,
supports diverse heterogeneous systems, and provides an easy-to-use programming in-
terface for accuracy-aware tuning. We show that different kinds of approximations and
approximation knobs are suited for different applications and also across sub-computations
in the same application.

• A novel three-phase accuracy-aware tuning technique that provides performance porta-
bility, retargetability to compute units with hardware-specific approximation knobs, and
dynamic tuning. It splits tuning into: 1) selection of hardware-independent approxima-
tions at development-time, 2) mapping to hardware-specific approximations at install-time,
and 3) a fast approximation selection at runtime.

• Predictive approximation-tuning, a novel technique that speeds up both development-time
and install-time analyses, achieving 14x faster tuning compared to empirical autotuning,
while identifying similar-quality configurations.

• We propose distributed predictive tuning, that enables efficient selection of hardware-
specific approximations at install-time.

• Our evaluation on 11 benchmarks (10 CNNs and 1 combined CNN + image processing
benchmark) shows:

Generic Approximations. Exploiting generic hardware-independent approximations,
ApproxHPVM achieves geometric mean speedup of 2.2x and energy reduction of 2.1x on
GPU, with merely 2 percentage points of drop in inference accuracy. On CPU, we observe
a geometric mean speedup of 1.4x and energy reduction of 1.4x.

Hardware Approximations. At install time, mapping tensor operations to PROMISE,
an analog compute accelerator, ApproxHPVM provides geometric mean speedup of 4.5x
across the benchmarks.

Runtime Adaptation for Approximations. ApproxHPVM can dynamically tune ap-
proximation knobs to counteract system slowdowns imposed by runtime conditions such
as low-power modes.

ApproxTuner is accepted and presented at PPoPP’21.

14

1.5.3 ApproxRobotics: The Cost and Accuracy Tradeoff for Small Mobile Robots

My work on ApproxHPVM and ApproxTuner, and other related works [59, 60, 61, 65, 36,
49, 33, 44, 64, 67, 42, 82] are mostly focused on tuning application sub-components (e.g.,
neural networks, image and video processing filters) in isolation and independent of the
larger application context. ApproxHPVM and ApproxTuner allow users to specify maximum
tolerable degradation in accuracy (or quality of service), but it remains unclear on how much
accuracy loss is acceptable in real-world deployments. I believe that the tolerable accuracy
degradation is highly domain-, application- and context-specific. I envision that the choice
of reasonable accuracy thresholds (to use for tuning purposes) will be guided by studies that
characterize the flexibility for approximations in real-world applications. We perform one
such study for a real-world autonomous navigation system used in agriculture robots2

We present an empirical study of tradeoffs, which highlights the significant role that
computational approximations can play in enabling low-cost visually guided autonomous
robots. Autonomous robots are increasingly reliant on visual information for perception,
planning, and control [83, 84, 85, 9, 10, 86, 87]. Visual data can be very high dimensional, yet,
with advances in deep learning, we are now seeing many applications that are able to extract
actionable information through this data. A major challenge is that inference with these
deep learning models is highly computationally expensive to run, especially on hardware
devices with limited compute and memory resources. Large robots such as autonomous cars
can afford to have much larger computational payloads, since these are powered by carbon
fuels or large batteries, have sophisticated cooling systems, the cost of compute hardware can
be kept to a small fraction of the total cost. In contrast, small battery-powered autonomous
robots such as those used for agriculture, mining, or remote area exploration, have much
tighter size, weight, and power constraints. Furthermore, cost-sensitive fields like digital
agriculture [88] impose stringent cost constraints as well. For such robots, optimizing the
computational requirements for visual navigation can be crucial.
Hence, a key open question is how the computational requirements for visual navigation

can be optimized to use low cost hardware, in small battery-operated mobile robots. An-
swering this question can provide robot system designers with the understanding necessary
to make optimal hardware choices. Indeed, conservative choices for compute hardware can
be typically traced back to unclear computational requirements of the task-specific software

2This work is done jointly and equally with Yifan Zhao (yifanz16@illinois.edu), and will also appear in
his Thesis. The software setup for the neural networks and the Extended Kalman Filter was done by Arun
Narenthiran (av7@illinois.edu), and the high-level navigation controllers are developed by Mateus Valverde
Gasparino (mvalve2@illinois.edu).

15

stack. Even more unclear to robot system designers is whether there is room to reduce
computational demands by using software optimizations.
In this paper, we provide an empirical study that sheds light on the cost and accuracy

tradeoff for small mobile robots. A key insight in this work is that, in the context of feedback
control systems, it may be possible to relax the accuracy of neural networks models for vision
(which are usually the most computationally expensive part of a navigation system), without
significantly hurting navigation robustness. In particular, we show that approximate, pruned
neural network models, which can trade off accuracy for speed, can still provide sufficient task
accuracy when used in robust closed-loop autonomous systems. This enables robot designers
to safely relax some accuracy constraints, and therefore select lower-cost hardware, without
expecting to lose task performance quality, even when performing demanding real-world
visual inference tasks such as autonomous navigation in agricultural fields.
In this work, we evaluate these research questions in the context of a small mobile agri-

cultural robot, TerraSentia (obtained from EarthSense [89]), a production agbot that is
used for autonomous navigation through corn fields for high-throughput phenotyping and a
variety of production agriculture tasks. Our results, however, are applicable to any battery
operated small robots that rely on feedback control driven by visual inference for task execu-
tion. The key goal of our work is to investigate to what extent can approximations be used to
trade off model accuracy for performance improvements (in particular, increased frames-per-
second) in the neural-network models used in small autonomous robots. These speedups can
then facilitate using lower-cost compute hardware, or performing additional computations
on the same hardware, or combinations of the two. The primary task under consideration
is visually-guided autonomous navigation between crop rows using a state-of-the-art visual
guidance system, CropFollow [90]. CropFollow uses a (low-cost) front-facing monocular RGB
camera with a pair of convolutional neural networks (CNNs) for predicting the robot heading
and the distance from crop rows, which is then used to perform autonomous row navigation.
To optimize the CNN models, we use a popular technique, structured weight pruning [91,

92, 93], which compresses CNN models by dropping a subset of convolution filters that have
relatively small weights. There is a lot of recent work on network pruning [93, 94, 95, 43,
96, 97, 98], but it remains unclear 1. if it is feasible to apply pruning to CNNs used in the
context of a larger real-world application, especially in the context of closed-loop control
2. is it acceptable to relax some accuracy to gain additional performance while avoiding
observable impact on the end-to-end quality of the application, i.e. without losing control
robustness.
Our focus on end-to-end robustness is in contrast with most existing approaches to neural

network pruning, which are aimed at retaining the computational accuracy. This conserva-

16

tive approach to pruning limits the achievable computational gains as it does not leverage
the inherent robustness of closed-loop autonomous systems.
On the other hand, with our approach of trading off accuracy without losing robustness

(measured as crashes that needed manual interventions), we are able to drive far more
aggressive computational performance improvements, ranging up to 15x (on CPU), with
close to a 2x increase in inference error. These performance speedups allow us to perform the
entire navigation pipeline, including two CNNs, Bayesian sensor fusion and Model Predictive
Control on a low-end $35 Raspberry Pi4 [99].This compares with the $876 Intel NUC [100]
used on commercial TerraSentia robots, and with the $59 Jetson Nano, the cheapest device
we found to deliver necessary performance without approximations. Moreover, the Pi4
requires 30% lower peak power than the Jetson Nano (7W vs 10W).
To evaluate if our optimizations facilitate running multiple tasks on a single resource-

constrained Raspberry Pi4, we also apply our pruning approach to corn stand counting :
a video analytics task for counting corn stands. We show that by only slightly relaxing
requirements for the accuracy of the final result counts enables stand counting to run in
real-time, concurrently with the full navigation pipeline.
Specifically, our contributions are:

• We perform the first empirical study to characterize the impact of neural network model
pruning on the end-to-end navigation quality of an autonomous robot with visually guided
feedback control.

• We show that pruning the convolutional neural network models (CNNs) used in the visual
perception system helps provide the minimal required FPS from the vision models (for
crash-free navigation) on a $35 Raspberry Pi4, making it a feasible choice for compute
hardware.

• We find that the CNN-based autonomous navigation control in the evaluated agbot is
robust to infrequent mispredictions. We also identify pruning settings that introduce
large prediction errors that greatly impact the navigation quality, resulting in crashes.

• By relaxing accuracy constraints, we show that multiple compute-intensive tasks including
the navigation pipeline and 2 instances of stand counting can run on a shared compute-
constrained Raspberry Pi4.

17

CHAPTER 2: RELATED WORK

This section presents related work in the areas of accuracy tuning, approximation-driven
adaptive systems, compilers for machine learning, compilers for heterogeneous systems,
programming languages supporting primitives for approximate computing, software- and
hardware-based approximations, and analytical techniques for approximation tuning. Ta-
ble 2.1 compares the capabilities of ApproxHPVM and ApproxTuner to other state-of-the-art
systems. The capabilities compared include: support for different kinds of approximations,
ease of use (requiring no source code modifications), retargetability across hardware archi-
tectures, support for portable object code, and approximation-tuning capabilities (runtime
and static tuning).

2.1 APPROXIMATION-AWARE PROGRAMMING LANGUAGES

Rely [60] is an imperative programming language that allows developers to specify re-
liability specifications. Rely allows developers to allocate program variables in unreliable
memories and use unreliable arithmetic and logical operations. Rely also includes analysis
that verify the correctness of the developer-specified reliability specifications. The analysis
computes the reliability of a program path as the probability that all individual operations on
the path execute reliably. Chisel [59] extends the Rely programming language with specifica-
tions for accuracy in addition to reliability (supported by Rely). The accuracy specifications
quantify the maximum acceptable difference between approximate and exact results, as op-
posed to reliability specifications that only capture the probability of a fully correct result.
Chisel requires developers to provide (non-approximate) implementations of kernels in the
Chisel programming language including desired reliability and accuracy specifications at the
function level. These specifications are used by the compiler to automatically select instruc-
tions to approximate and data to map to unrealiable memories. The limitations of these
systems include: a) require programmers to rewrite their applications in Chisel/Rely, b)
do not exploit hardware-specific approximation knobs nor support mapping to approximate
hardware accelerators, c) the approximation-tuning phase can choose low-level approximate
instructions (and memory allocations) but doesn’t support replacing high-level algorithms
with approximate variants.
The EnerJ [61] type system extends the Java programming language with type qualifiers

that distinguish precise and approximate data types. The type qualifiers are used by the
compiler and runtime to chose energy energy-efficient approximate mechanisms (instructions,

18

Table 2.1: Comparing capabilities of ApproxHPVM and ApproxTuner to most closely related
state-of-the-art systems.

Approximations Programmability Tuning Strategies
Algorithm
Approx

Accelerator
-specific
Approx

Multi
Domain
Approx

Model
Approx

No
Code
Changes

Retarget Portable
Object
Code

Runtime
Approx
Tuning

Predictive
Tuning

ApproxTuner
ApproxHPVM [102]
Rely [60]
Chisel [59]
TVM [67] .
ACCEPT [62]
PowerDial [40]
SAGE [49]
SpeedPress [32]
PetaBricks [36]
DeepCompression [43]

functions, memory allocations) that maintain correctness of the data marked as precise, and
only a best effort translation for data marked approximate. DECAF [65] generalizes the
EnerJ type system by allowing developers to specify expected probabilities of correctness
with type declarations. Like Chisel and Rely, EnerJ and DECAF have no support for map-
ping to approximate hardware accelerators. Also, EnerJ and DECAF approximate low-level
instructions but do not support algorithmic approximations. ACCEPT [62] is a compiler
framework that uses developer annotations to guide approximation choices. ACCEPT ex-
tends C and C++ to incorporate an APPROX keyword that programmers use to annotate
types (inspired by EnerJ). It uses autotuning to automatically find optimal low-level ap-
proximation parameters. ACCEPT supports an automatic neural acceleration transform
(proposed by Esmaeilzadeh et al. [101]) that selects regions of code to map to an FPGA-
based neural network accelerator. It profiles regions of code to extract pairs of inputs and
corresponding outputs, and trains a neural network to mimic the code. ACCEPT supports
only supports this very specific kind of hardware approximation and does not include gen-
eral support for using hardware-specific approximations. All these three systems require
developer-guided code changes to add type declarations.
These systems proposed a source code level approach for specifying approximation met-

rics. ApproxHPVM is the first to introduce the idea of quantifiable accuracy metrics at the
IR level. Incorporating approximation metrics at the IR level provides a portable mecha-
nism for preserving approximation metrics post-compilation and shipping these for use with
later compiler optimizations at install-time. Making approximation attributes a first-class
citizen in the compiler workflow facilitates the interaction of the accuracy-aware IR with
various front-end languages and hardware-specific features and approximations (especially
in heterogeneous systems).

19

2.2 SYSTEMS FOR OFFLINE AUTOTUNING

The Petabricks language provides programmers the flexibility to describe multiple algo-
rithms for solving a problem and specify how the different components fit together [36, 73,
103]. This allows the Petabricks compiler and runtime to create and autotune a hybrid algo-
rithm that optimizes a user-desired goal. For instance, users can specify multiple algorithm
implementations of a matrix multiply operation (within some large application) each with
varying accuracy and performance characteristics, and allow the autotuner to search for op-
timal configurations. Its auto-tuner uses heuristic techniques to navigate through a search
space of alternative program implementations. ApproxHPVM also has the ability to tune for
multiple algorithm choices and it does so without requiring any source code changes, while
Petabricks requires developers to port their code to the Petabricks programming language.
Petabricks doesn’t allow users to exploit hardware-specific mechanisms in the alternate al-
gorithm implementations. In contrast, ApproxHPVM has the ability to automatically select
low-level hardware-specific knobs, while requiring from users only a high-level specification
for desired quality of service.
Paraprox [33] is a system that identifies common data parallel patterns in code and

automatically generates tuned approximate implementations for these patterns. Paraprox
supports six different data parallel patterns including Map, Scatter, Scan, Reduce, Stencil
and Partition. Paraprox requires users to provide baseline implementations of kernels in
OpenCL or CUDA. It uses a source-to-source transformation to create approximate variants
which are compiled to binaries using traditional GPU (nvcc) and CPU compilers (gcc). Since
Paraprox does not generate low-level object code, it is fundamentally limited in its capability
to exploit low-level hardware knobs. The system supports CPUs (through OpenCL) and
GPUs (through CUDA) but doesn’t support accelerators.
Misailovic et al. [56, 32] present an offline autotuner that automatically detects which

loops to approximate. The autotuning includes two phases: 1) perforating expensive pro-
gram loops with varying perforation levels (chosen by tuner) and attempting to maximize
speedups with a certain accuracy threshold, 2) correctness testing; tests to validate that the
transformed binary has correct behaviour. This includes checks for possible memory leaks
and incorrect outputs (with respect to some set of known correct outputs). This system sup-
ports loop perforation as the only approximation technique and doesn’t serve as a generic
approximation-tuning system that supports algorithmic and/or hardware approximations.
OpenTuner [75] is a framework for building domain-specific autotuners. OpenTuner al-

lows developers to specify the search space of possible configurations, a fitness function for
ranking configurations, ability to chose from a set of available search techniques, and also

20

allows specifying custom search techniques. The core concept used by OpenTuner is the use
of ensembles of search techniques. Multiple search techniques (hill climbers, genetic algo-
rithms, random search etc.) run in parallel and collaboratively share results using a common
database. Techniques that find better configurations/results are allocated higher time bud-
gets while techniques performing poorly are allocated lesser time (or completely disabled).
OpenTuner has shown to succeed with search spaces as large as 103600 possible configurations.
OpenTuner is a generic library with reusable primitives but in itself is not a framework for
approximation-tuning, neither does it include any compiler support for code generation or
selection of low-level hardware-specific attributes. In my ApproxHPVM and ApproxTuner
work, I use the OpenTuner library to develop custom transforms for approximation tuning.

2.3 APPROXIMATION-DRIVEN ADAPTIVE SYSTEMS

PowerDial [40] uses a runtime and compiler approach to dynamically vary program
accuracy to adapt application behaviour in response to power or load fluctuations. Compiler
transforms identify program variables that host control values; values that affect performance
and accuracy (e.g., number of max iterations for a convergence loop). The compiler passes
insert callbacks that allow the PowerDial control system to directly update these variables
based on control decisions. Some limitations include: a) it requires the application to expose
control parameters as command-line inputs, b) it assumes that the program has a main
control loop that includes computations that have performance dependent on the control
variables. JouleGuard [41] is a similar runtime control system but also provides guarantees
for energy consumption.
SAGE [49] is a runtime system for approximation-tuning. It includes two phases: a) an

offline phase that generates multiple versions of target kernels with varying levels of accu-
racy, b) a runtime phase that uses a greedy algorithm to tune the per-kernel approximation
parameters to achieve high performance, while staying within user-specified accuracy thresh-
olds. As the behaviour of approximate kernels (accuracy and performance) can change at
runtime, SAGE performs (infrequent) periodic recalibration that checks the output quality
and performance and accordingly retunes the parameters. Green [104] is a similar runtime
approximation-tuning framework that monitors application QoS and includes recalibration
steps to ensure QoS constraints are met. Unlike SAGE, Green requires user to provide
approximate kernel implementations or annotate their code using C/C++ extensions.
The SpeedPress [31] compiler systems takes standard C or C++ code and automatically

applies loop perforation. SpeedPress uses profiling to measure accuracy and performance
tradeoffs for varying perforation levels applied to different program loops. The accompanying

21

runtime system called SpeedGuard uses application heartbeats to monitor the application
performance, and if it detects a slowdown, it dynamically updates the levels of loop perfora-
tion. Sculptor [63] is a similar system that dynamically varies the loop start and perforation
rates. Sculptor is more sophisticated as it intelligently chooses which instructions to skip in
different loop iterations (SpeedPress drops all instructions in a skipped iteration). The core
idea is to skip instructions that are less important to application accuracy.
MCDNN [44] is a runtime adaptation system for deep learning models. It uses a catalog

of models, each with varying speedup and accuracy tradeoffs. Based on changing perfor-
mance and accuracy constraints, MCDNN switches the model used. To ensure that model
switching cost is low, MCDNN requires the catalog of models to be in main memory. For
memory-constrained edge systems, it is impractical to host multiple neural network models
given DNNs can have millions of parameters and can occupy gigabytes of memory. In view of
these limitations, Xu et al. presented ApproxNet [64]; a network architecture that includes
a novel spatial pyramid pooling layer (SPP) that allows for early exits (effectively skipping
convolution layers). Based on changing performance and accuracy requirements, this ar-
chitecture allows for dynamically varying the number of layers used; with deeper network
configurations providing higher accuracy but also higher execution times. The major draw-
back with ApproxNet is the need for training the model from scratch which currently (on
high-end GPUs) takes days on large datasets such as ImageNet. In contrast, ApproxTuner
does dynamic adaptations for accuracy and performance without requiring any model/-
source changes (i.e., works with pretrained models). Moreover, ApproxTuner maintains a
single model (one set of model weights) in memory and is hence practical for edge systems.
The SiblingRivalry [105] system uses and extends the Petabricks Compiler system to

support online autotuning that can adapt to changing runtime conditions. For instance,
varying machine load (common in cloud and data center environments) can substantially
degrade application performance, rendering the offline autotuned program as suboptimal.
SiblingRivalry takes the approach of allocating a fraction of available compute resources for
online autotuning, with an autotuned program variation running in parallel with the normal
program execution. If the autotuned program variation performs better, it replaces the
current version. In this way, the autotuning progressively improves program performance
and allows for adapting to new changing runtime conditions. ApproxTuner is able to adapt
to runtime conditions by picking one of the configurations discovered in the offline autotuning
phase, and hence imposes no additional overheads at runtime.
Many of these systems require changes to original source code (PowerDial, JouleGuard,

Green, ApproxNet, SiblingRivalry), some are very domain-specific (MCDNN, ApproxNet),
and some of these only support one or few approximation techniques (SpeedPress, Sculptor,

22

PowerDial, JouleGuard). None of these systems provides retargetability to heterogeneous
compute units, and none of these exploits hardware-specific approximations.

2.4 COMPILERS FOR MACHINE LEARNING

TVM [67] is an end-to-end compiler framework that supports the compilation and op-
timization of machine learning workloads for multiple hardware targets, including CPUs,
GPUs, FPGAs, and accelerators, and supports multiple frontends including Tensorflow, Py-
torch, Keras and MXNet. TVM includes these key features: a) supports a tensor expression
language that makes it convenient for developers to add new tensor operations; the compiler
generates efficient low-level hardware-specific code for these high-level tensor operations, b)
program optimizations that find optimized tensor operator implementations using an ML-
based cost model, and c) graph rewriting optimizations that use the data-flow graph of
the computation. TVM provides object code portability since programs are shipped in a
portable (and differentiable) IR called Relay. TVM has a few limitations including: a) only
supports one approximation technique; precision tuning for FP16 (on GPUs), b) has no
support for algorithmic approximations, c) lacks support for approximation-tuning, and d)
has no support for dynamic adaptation.
XLA [106] from Google (now part of the MLIR [107] framework), and Glow [108] from

Facebook are also end-to-end compiler frameworks for machine learning that support multi-
ple language frontends and hardware backends. Both these compilers include many domain-
specific optimizations such as operator fusion, common sub-expression elimination (specific
to tensor operations), constant propagation (specific to tensor operations) among many oth-
ers. Like TVM, these systems only support precision tuning (to FP16), do not support
algorithmic approximations, and have no support for approximation tuning.
Like TVM, XLA, and Glow, ApproxHPVM IR includes domain-specific information about

tensor operations at the IR level. While our current implementation does not support
domain-specific (semantics preserving) optimizations such as operator fusion, this support
can be easily added in future versions. All the above systems are specific to machine learning,
while the ApproxHPVM framework is meant as a general-purpose compiler for a wider range
of tensor-based programs. Unlike these systems, ApproxHPVM system supports a wide range
of algorithmic and hardware-specific approximations in a unified framework.

2.5 COMPILERS FOR HETEROGENEOUS SYSTEMS

HeteroIR [109] is a hardware-agnostic intermediate representation that includes abstrac-
tions for common high-level accelerator operations used across heterogeneous systems. The

23

IR supports optimizations such as tiling and memory transfer reductions, and later the
compiler translates the code to architecture-specific backend models (CUDA or OpenCL).
Delite [110] is a compiler framework that facilitates the development of new domain-specific

languages (DSLs). Delite allows developers to create custom DSLs embedded as part of
Scala (a general-purpose programming language), and supports compilation to heterogeneous
devices. Delite includes a suite of common optimizations that can be used by all DSLs. This
includes standard compiler optimizations such as common subexpression elimination (CSE),
dead code elimination (DCE), and code motion. Delite also allows developers to add new
domain-specific optimizations. The Delite runtime supports execution of DSL operators on
heterogeneous compute units including CPUs, GPUs, and accelerators.
Multi-level Intermediate Representation (MLIR) [107] is a compiler framework that fa-

cilitates the development of new intermediate representations (called dialects in MLIR),
transformations and optimizations over these intermediate representations, and translation
across representations operating at different abstraction levels. For instance, Tensorflow
is a high-level domain-specific dialect in MLIR (among others), which is translated down
to the LLVM IR dialect (including other dialects in the pipeline), and eventually down to
hardware-specific dialects for CPUs, GPUs, and accelerators.
HPVM [79] is a compiler framework designed to address the performance and portability

challenges of heterogeneous parallel systems. At its core is the HPVM IR which is a parallel
program representation that uses hierarchical dataflow graphs to capture a diverse range
of coarse- and fine-grain data and task parallelism including pipeline parallelism, nested
parallelism, and SPMD-style (single program, multiple data) data parallelism. An HPVM
program consists of a set of one or more distinct dataflow graphs, which describe the com-
putationally heavy part of the program that is to be mapped to accelerators, and host code
that can initiate the execution and wait for the completion of the dataflow graphs. Nodes in
the HPVM dataflow graph (DFG) represent units of computation, and edges between nodes
describe explicit data transfer requirements between nodes. These abstractions allow HPVM
to compile from a single program representation in HPVM IR to diverse parallel hardware
targets such as multicore CPUs, vector instructions, and GPUs. ApproxHPVM builds on
and extends HPVM with approximate computing abstractions, runtime support for software
and hardware-specific approximation techniques, an approximation tuning framework, and
new code generation backends that target approximate accelerators.
While these compiler frameworks provide useful abstractions for targeting heterogeneous

systems, they do not support abstractions for approximate computing, and do not target
approximate accelerators or hardware-specific approximation choices.

24

2.6 APPROXIMATION TECHNIQUES

2.6.1 Approximate Hardware Accelerators

Recently, many machine learning accelerators are being designed in industry and academia.
The core idea that enables these accelerators to be more energy-efficient than general-
purpose processors is that they exploit the common computational and communication
patterns found in ML applications. Popular commercial accelerators at the time of writ-
ing this document include Google TPUs [50], Google Coral (TPUs for edge) [111], Nvidia
NVDLA [51], and Intel Movidius [52] among others. Both cloud and edge TPUs (Google
Coral), and NVDLA provide support for high-throughput INT8 and FP16 reduced precision
operations as available hardware approximations knobs. Intel Movidius includes support for
high throughput tensor operations in FP16.
Research studies also include many ML-specific accelerator designs. The DianNao project

proposed small footprint accelerators that provided high-throughput machine learning com-
putations. Esmaeilzadeh et al [27, 1] proposed the neural processing unit (NPU) that uses
analog computation circuitry to accelerate neural network computations. Moreover, their
work showed that general purpose applications can be algorithmically transformed into a
neural network computation, thereby facilitating execution on an NPU. Eldrige et al [112]
proposed neural-network based accelerators for approximating the results of commonly-used
mathematical functions including cos, sin, exp, log, and pow. They train the acceler-
ator on a dataset of inputs and corresponding output values and then use neural network
approximation to accelerate the computations at runtime. Their results show speedup over
the glibc implementations.
The PROMISE accelerator [23] employs in-memory, low signal-to-noise ratio (SNR) ana-

log computation on the bit lines of an SRAM array to perform faster and energy efficient
matrix operations, including convolutions, dot-products, vector adds, and others. PROMISE
consumes 3.4-5.5x less energy and has 1.4-3.4x higher throughput than application-specific
custom digital accelerators, which are themselves known to be orders of magnitude better in
terms of energy-delay product than CPUs and GPUs. The PROMISE accelerator instruction
set has a parameter swing voltage, which controls the bit-line voltage swing in the accel-
erator and allows a trade-off between accuracy and energy. The swing parameter can take
up to seven different values giving seven choices for approximation tuning. Higher voltage
modes imply higher energy-consumption (higher dynamic power) and lower computational
error, while lower voltage leads to lower energy-consumption but also higher computational
error. In our ApproxHPVM and ApproxTuner work, we use PROMISE as an example of a

25

domain-specific accelerator that provides approximation knobs. We believe our framework
is more broadly applicable to the wide range of emerging approximate accelerator platforms.

2.6.2 Software Approximations

Many studies have proposed novel software approximation techniques that reduce execu-
tion time and/or energy. Some of these include task skipping [113, 114, 115], loop perfora-
tion [56, 32, 116], approximate function substitution [104, 73, 35, 33], dynamic knobs [40]
(dynamically changing function version), reduction sampling [35, 33, 117], tuning floating-
point operations [19, 118], and approximate parallelization [39, 34, 33, 119]. These tech-
niques have been shown to work well across a variety of application domains resilient to
small errors. ApproxHPVM is developed with the goal of supporting various kinds of ap-
proximations in one unified framework. We allow developers to add custom approximations
in our framework and leverage the same approximation-tuning components that apply to
currently-supported approximations.

2.6.3 Domain-specific approximations for Machine Learning

LeCun et al. originally proposed DNN weight pruning ; a technique for pruning unimpor-
tant connections from neural networks [45]. LeCun et al. presented an analytical approach
to remove features with low saliency and using network retraining to fine-tune the weights
and recover the accuracy loss (due to pruning). Their technique prunes parameters using
the second-order derivative of the objective function (e.g., mean squared error) with respect
to the parameters.
More recently, Han et al. proposed the Deep Compression [43] that includes support for

a) pruning DNN weights with low magnitude (i.e., close to 0), b) quantizing to lower bit
representations, and c) Huffman encoding for compressing weights. The authors show that
pruning alone reduces the number of connections by 9X to 13X; quantization reduces the
number of bits that represent each connection from 32 to 5. The optimizations work together
to reduce the storage requirement of neural networks by 35X to 49X without any noticeable
accuracy degradation. The performance and energy improvements range from 3x to 7x.
Pruning arbitrary DNN weights leads to non-structured random connectivity resulting

in irregular memory accesses that are particularly inefficient on architectures specialized
for parallel processing (e.g., GPUs). Due to this, unstructured weight pruning can even
lead to slowdowns [120, 121, 122, 123]. Wen et al. propose a alternate pruning approach
called structured sparsity [120]; technique that prunes groups of weights (consecutive bytes in

26

memory). Structured pruning that removes entire output channels from convolution filters
has shown to provide speedups of up to 5x on CPUs and 3x on GPUs, with no loss in
accuracy [120].
While these machine-learning specific optimizations are not currently supported in the Ap-

proxHPVM framework, our system can work in combination with these existing techniques
to achieve even higher speedups and energy reductions. We also performed a Preliminary
experiment (Section 6.3) that shows ApproxTuner can also apply well to pruned networks
(i.e., the performance improvements add up).

2.7 ANALYTICAL TECHNIQUES FOR APPROXIMATION TUNING

Sakr et al. proposed an analytical technique [47] to determine numerical precision as-
signment for individual DNN layers, while ensuring that end-to-end accuracy stays within
user-specified bounds. The key idea is to leverage weight and activation gradients (obtained
from standard back-propagation) since they capture the sensitivity of the final output with
respect to the individual weights and activation tensors. Their technique assigns lower bit-
width precision to activations and/or weights with lower gradient values and higher precision
to activations and/or weights with higher gradient values. Lin et al. proposed a similar an-
alytical method to estimate the error impact of different precision levels [124], and uses it to
quantize layer weights and activations. Both these methods retrain the neural network to
fine-tune the weights and reduce the accuracy degradation due to quantization. Srivastava
et al [23] used Sakr’s method [47] to analytically compute the minimum voltage swing levels
for each DNN layer computation running on the analog-compute accelerator PROMISE. In
future work, we aim to reduce the need for binary invocations and simulations (as part of
autotuning) by using a combination of analytical modelling and empirical techniques.

27

CHAPTER 3: CHALLENGES IN APPROXIMATION TUNING

The impact on the quality of service (QoS) of a program can be arbitrarily high if
approximation-selection is done naively. This is because some operations (or subcompu-
tations) are error-tolerant while others are very sensitive to perturbations, and hence must
not be approximated. Mapping the less error-tolerant operations to approximations can
result in significant degradation of the end-to-end application result quality. Therefore there
is a need for an intelligent approximation-mapping phase that chooses which operations to
approximate and also tunes the level of approximation for each operator (e.g., low, medium,
high approximation). Moreover, different kinds of approximations (e.g, loop perforation,
barrier elision, function substitution) can have very different accuracy and performance im-
pact for a particular operation/computation and hence the approximation choice must also
be tuned at a per-operation basis.
In practice, a realistic application (e.g., a neural network or a combination of an image

processing pipeline and an image classification network) can make use of multiple approx-
imation techniques for different computations in the code, each with its own parameters
that must be tuned, to achieve the best results. For example, our work shows that for the
ResNet-18 convolutional neural network, which contains 22 tensor operations, the best com-
bination (considering accuracy-performance tradeoff) is to use three different approximations
with different parameter settings in different operations. A major open challenge is how to
select, configure, and tune the parameters for combinations of one or more approximation
techniques, while meeting end-to-end requirements on energy, latency, and accuracy. Several
specific challenges arise in meeting this goal:

3.1 DIVERSE RANGE OF HETEROGENEOUS SYSTEMS

"Heterogeneous systems" refer to hardware platforms composed of multiple compute units
with different microarchitectures that communicate over some shared interface (e.g., common
global shared memory). One real-world example are mobile SoCs that include CPUs for
general purpose tasks, GPUs for graphics and machine learning, and additional specialized
accelerators for audio/video decoding, computer vision tasks, and DSP among other tasks.
Different types of compute units are optimized for different goals, e.g., CPUs are suitable
for sequential processing tasks, while GPUs are more optimized for parallel tasks (provide
higher throughput). This diversity in hardware facilitates performance and power efficiency

28

but introduces challenges for compilers that must target different ISAs, optimize code for
each kind of processor, and maximize local and overall hardware utilization.
Compute units of different hardware types (e.g., CPUs, GPUs, accelerators) and across

different generations of the same hardware type (e.g, different generations of Nvidia GPUs)
provide different approximation options and also differing accuracy-vs-performance trade-
offs [70]. For instance, Nvidia Volta GPUs with tensor cores [125] provide support for high-
throughput INT8 tensor operations (e.g. matrix multiplication), while Pascal generation
GPUs only support FP16 [126]. The performance tradeoffs for a single approximation choice
also vary across different generations of the same hardware type, e.g., FP16 performance
greatly varies across Nvidia GPUs with some providing speedups as high as 2x, while others
only having only functional support for FP16 with throughput even lower than FP32 [127].
From the approximation-tuning perspective, domain-specific accelerators are particularly

interesting since they support hardware-specific approximations (e.g. analog compute accel-
erators [23], low-precision ML accelerators [50, 51, 52]) that can offer orders-of-magnitude
performance and energy improvements. To maximize overall performance and energy im-
provements, a compiler framework must be able to map to these efficient hardware primitives.

3.2 SOURCE CODE PORTABILITY

Today application developers write code in a variety of different languages including but
not limited to C/C++, C#, Python, Java, Rust, Swift, Bash, Julia, Matlab, R, Ruby among
many others. To facilitate ease of programming and productivity, domain-specific extensions
such as Tensorflow [128], Keras [129], Pytorch [130], MxNet [131] are commonly used for
developing machine learning codes. For parallel programming, OpenMP [132], CUDA [133],
OpenACC [134], Intel TBB [135], Data Parallel C++ [136] are currently popular.
Porting an existing application to use a different programming language, adding language

extensions, or adding developer annotations to facilitate optimizations is generally undesir-
able (though sometimes unavoidable) since: a) it requires a significant time investment from
software developers, and b) can introduce bugs. Given these challenges, an important goal
for compilers and libraries is to support source code portability ; using the same unmodified
(or only slightly modified) sources across different hardware types, Additionally, compiler
frameworks should abstract hardware-specific details and automatically choose appropri-
ate hardware-specific knobs and approximations without requiring source-code annotation-
s/changes.

29

3.3 OBJECT CODE PORTABILITY

Since software applications (especially for mobile phones and IoT devices) are expected to
cater to a range of different devices, software portability is an important requirement, not just
at the source-code level but also the ability to ship software that can execute on a wide range
of systems. Applications for both desktop and mobile (e.g., smartphone or tablet) systems
are almost always shipped by application teams to end-users in a form that can execute
on multiple system configurations (e.g., with different vector ISAs or GPUs). GPUs, for
example, provide virtual instructions sets, e.g., PTX [71] or HSAIL [72], to enable software
to be shipped as “virtual object code” that is translated to particular hardware instances only
on the end-user’s system. A critical goal for real-world use of such approaches is to enable
software to be shipped as portable virtual object code, while deferring the hardware-specific
aspects of accuracy-performance-energy optimizations to be performed after shipping [73]
(e.g., on the end-user’s device or on servers in an app store).

3.4 MANUAL TUNING IS CHALLENGING

Manually tuning approximation knobs for an application is challenging since it requires
developers to have insights on the accuracy and performance impact of different approxima-
tion knobs, and identify regions of code that are amenable or susceptible to approximation.
Source-level annotations for specifying parallel regions is a commonly-employed strategy
since developers usually have insights on which regions of code can be parallelized without
violating program semantics. For instance, programmers can annotate parallel loops using
OpenMP [132] extensions that declare the absence of any loop-carried dependencies. Unlike
extensions for parallelism, it is not immediately clear from the source code which sections of
code are more error-tolerant and what approximation choices are likely to provide highest
benefits. This is because: a) approximation impact is often input-dependent and must be
viewed with respect to some representative data inputs, b) approximation impact can vary
across invocations due to presence of stochastic operators (e.g., random noise), c) the per-
formance benefits of approximation knobs greatly vary across operations (even operators of
the same type) depending on input parameters, e.g., for a convolution operation these are:
strides, padding, dimensions of input and weight tensors among others.
Manual tuning is also hard since realistic programs usually have many tunable components

which creates a large space of possible settings. This challenge is detailed next.

30

3.5 LARGE TRADEOFF SPACE COMBINING MULTIPLE APPROXIMATIONS

The variety of software and hardware approximations with many accuracy-performance
and accuracy-energy trade-offs introduce a large search space of possible configurations span-
ning both software and hardware choices. A configuration setting (selected by compiler/run-
time) is an assignment of an approximation knob setting for each operation/computation,
and each operation can be mapped to multiple approximation choices. This results in an
exponential search space, specifically KN where K is number of unique approximation knobs
(per-operation) and N is the operation count. For realistic programs, this results in a very
large search space that is hard to navigate efficiently. In our work, for ResNet-50 with 53
convolution layers and 63 approximation knobs for each convolution layer, the total search
space includes a total of 7e91 unique configurations. The available approximation knobs can
include choice of precision (FP32, FP16, INT8) and alternate algorithm implementations for
common high-level operations. For instance, convolution operators in neural networks can
be replaced with more efficient implementations that use a subset of inputs (known as input
sampling).

3.6 HIGH COST OF EMPIRICAL AUTOTUNING

As described above, the search space of configurations can be large enough that an per-
forming exhaustive search is infeasible. A heuristic search that navigates a fraction of a
large search space is a feasible alternative. For code-generation and optimization, compilers
often employ autotuning : an optimization that uses heuristic search techniques (e.g., genetic
algorithms, hill climbers, random search) to navigate a subset of configurations, and uses a
(developer-specified) fitness function to assign a score that indicates the cost/profitability
for each evaluated configuration [74, 36, 75]. Empirical autotuning is a variant of autotuning
that uses empirical measurements (i.e., running the program binary) to determine the cost
and profitability of a configuration point in the search space. For approximation-tuning, the
attributes of interest are quality of service (QoS) measurements such as inference error in
convolutional neural networks (CNNs), and Peak Signal to Noise Ratio (PSNR) for image
filters, throughout, latency, and energy usage among possible others. Empirically measuring
these quantities can be expensive, especially on low-end edge systems. For instance, run-
ning ResNet-50 on Nvidia Tegra TX2 [81] (a popular edge device) takes several minutes to
process a batch of 10K images. Tuning over large search spaces can require thousands of
iterations [75], and given that each iteration can consume multiple minutes/seconds, tuning
can require weeks, even months for realistic kernels. Such high tuning cost is completely

31

infeasible for the edge and also undesirable on cloud systems where energy and/or mone-
tary costs can become overwhelming. In our work, we find that approximation-tuning via
empirical tuning takes days (on a server-class machine) for some benchmarks - 1.5 days for
VGG16 and 11 days for ResNet50. These long tuning times motivate the need for efficient
tuning.

3.7 OPTIMIZATION CHOICE DEPENDS ON RUNTIME CONDITIONS

Optimization choices can be made ahead-of-time (before code generation) or done dy-
namically at runtime. Static optimization is suitable for scenarios where conditions mostly
remain constant (e.g., a non-interactive batch processing task on the cloud) and re-optimizing
parameters is rarely required. Dynamic optimization capabilities are important in deploy-
ments where runtime conditions are likely to keep changing. Few examples of such changing
conditions are:

• Varying system workloads. Increasing system load can cause applications to be
unresponsive or miss deadlines (important to meet for real-time tasks). These slow-
downs can be counteracted with dynamically increasing approximation levels to help
achieve the desired level of application performance (with some accuracy loss).

• Low power modes. Battery powered devices (e.g., mobile phones, IoT devices) ac-
tivate low-power modes when the battery is running low. Low-power modes involve
power gating some of the available compute cores (CPU and/or GPU), and reduc-
ing processor clock frequencies to reduce dynamic power usage [76, 77] (among other
settings). These settings impose system slowdowns.

• Changing QoS requirements. The nature of the operating environments can also
impact the required level of QoS (Quality of Service). For instance, a autonomous robot
navigating in a dark environment may require a higher accuracy mode compared to a
robot navigating in daylight.

3.8 APPLICATION-SPECIFIC END-TO-END EFFECTS OF APPROXIMATION

Most studies in approximate computing literature use high-level aggregate metrics for mea-
suring application QoS. For instance, systems that tune machine learning programs use the
loss in inference accuracy as the metric to tune, while systems for image processing bench-
marks use PSNR or SSIM (Structural Similarity Index Measure). These high-level metrics

32

serve as a relative measure of quality degradation but do not quantify how the end-to-end
applications goals are affected by the loss in accuracy. Realistic programs usually include
multiple kernels and sub-computations from different application-domains, e.g, CNNs, sta-
tistical computations, probabilistic programs, low-level control code among many other kinds
of tasks. For instance, a CNN used for perception tasks is one of the many components in an
autonomous robot navigation system that potentially includes MPC (Model Predictive Con-
trollers), LIDAR processing code, FFT and Viterbi processing components among others.
How the accuracy degradation in one component affects the other interacting components,
and how it impacts the end-to-end application goals (e.g., user-experience) are important
considerations. I believe that this is an open research question and I plan to investigate this
further as part of future work.

33

CHAPTER 4: APPROXHPVM: A PORTABLE COMPILER IR FOR
ACCURACY-AWARE OPTIMIZATIONS

4.1 INTRODUCTION

We propose ApproxHPVM, a unified compiler IR and framework that provides ease of
programming and object-code portability – and does in a fully automatic manner:

• Programmers only have to specify application-level, end-to-end error tolerance con-
straints, and ApproxHPVM can use this information to optimize and schedule pro-
grams on a heterogeneous system containing multiple approximation techniques; and

• ApproxHPVM enables software portability by using a hardware-agnostic, accuracy-
aware compiler IR and virtual ISA, and by partitioning the accuracy-energy-performance
optimizations into a hardware-agnostic stage and a hardware-specific stage, where soft-
ware can be shipped between the two stages.

The ApproxHPVM system takes as input a program compiled to the ApproxHPVM Inter-
mediate Representation (IR), and end-to-end quality metrics that quantify the acceptable
difference between approximate and non-approximate outputs. It generates final code that
maps individual approximable computations within the program to specific hardware compo-
nents and specific chosen approximation techniques, while satisfying end-to-end constraints
with high probability and attempting to minimize execution time and maximize energy
savings under those constraints. To our knowledge, no previous system achieves both full
automation from end-to-end application-level quality specifications, and support for multi-
ple approximation mechanisms (on one or more heterogeneous compute units). Moreover,
previous systems do not provide object code portability.
ApproxHPVM solves three key technical challenges to achieve these goals:

• For applications with multiple approximable computations, it automatically translates
end-to-end error specifications to individual error specifications and bounds per ap-
proximable computation, while statistically guaranteeing with high probability that
the end-to-end specifications are satisfied.

• It automatically determines how to map approximable computations to a variety of
compute units and multiple approximation mechanisms, including efficient special-
purpose accelerators designed to provide improved performance with lower accuracy
guarantees.

34

• It optionally provides object code portability by decoupling the overall mapping and
compilation problem into a hardware-independent autotuning stage and a subsequent
hardware-dependent mapping stage.

The portability is optional because it does not always come for free: the optimization
choices may sometimes be suboptimal compared to a single, end-to-end and hardware-specific
strategy, as we show in our experiments. ApproxHPVM supports either strategy, and so the
unified, hardware-specific strategy can be used when portability is not a requirement. An
additional benefit of the two-stage mapping strategy is that the autotuning can be very slow,
while the second, hardware-specific stage is extremely fast, essentially just a small number
of table lookups.
ApproxHPVM solves these challenges in a domain-specific manner, through a number

of key features. The ApproxHPVM Intermediate Representation (IR) is an extension of
Heterogeneous Parallel Virtual Machine (HPVM), a retargetable compiler infrastructure
and portable virtual ISA for heterogeneous parallel systems [79]. HPVM itself is built on
LLVM [80], and can use LLVM compiler passes and code generators for individual tasks.
These design choices allow ApproxHPVM to target diverse heterogeneous parallel systems,
and also to serve as a fully self-contained, portable virtual ISA that can be shipped and
mapped to a variety of hardware configurations. ApproxHPVM defines a set of approx-
imable domain-specific operations as part of the IR, which enables the compiler to identify
approximable computations, and also to define hardware-independent but domain-specific
error metrics as attributes of those operations. The initial domain supported in our work
is tensor computations, which are general enough to support a number of important ap-
plication domains such as neural networks and image processing. (Although this approach
focuses on domain-specific operations, our design and general strategy allow the specifica-
tions to be extended to generic low-level instructions.) It uses an autotuner with randomized
error injection to translate end-to-end specifications to individual error bounds per approx-
imable computation in a hardware-independent manner, while satisfying end-to-end appli-
cation metrics. It uses a simple lookup table per approximation method per IR operation
to perform the second-stage hardware-dependent manner very fast.
Specifically, we make the following key contributions:

Retargetable Compiler IR and Virtual ISA with Approximation Metrics: We
show how to capture hardware-agnostic approximation metrics in a parallel compiler IR,
while preserving retargetability across a wide range of heterogeneous parallel hardware.
Moreover, the IR can serve as a hardware-agnostic virtual ISA, and so software can be

35

shipped between the two optimization stages to achieve virtual object code portability for
approximate computing applications.

Hardware-agnostic Accuracy Tuning: Given an end-to-end user-provided quality met-
ric (e.g., reduced inference accuracy or PSNR for images), our hardware-independent accu-
racy tuner computes the corresponding accuracy requirements for individual IR operations
that can satisfy the end-to-end goal. In this way, programmers need not understand the
details of approximation techniques in the underlying system.

Accuracy-aware Hardware Scheduling: The second stage maps individual tensor op-
erations to specific target compute units and to specific approximation options within those
compute units, by taking into account the error tolerance of operations and the accuracy
guarantees provided by the target compute unit. This mapping is a fast table-lookup, trained
using offline accuracy profiling of kernels running on the hardware.

Evaluation on Target Platform: To evaluate the efficacy of ApproxHPVM, we study 9
DNN benchmarks and 5 image processing filters, using two different accuracy thresholds for
each: 1% and 2% decreases in inference accuracy for the DNNs, and 20dB and 30dB loss of
PSNR for the image processing filters. We use the NVIDIA Jetson TX2 mobile SoC [137],
which has 8GB of shared memory between ARM cores and an NVIDIA Pascal GPU. We ex-
tend the platform by adding a simulated version of a (fully programmable) Machine Learning
accelerator called PROMISE, which has previously been shown to provide orders of mag-
nitude energy and throughput benefits for a wide range of vector dot-product operations
commonly used in ML kernels [23]. The combined platform provides 9 hardware settings to
trade-off energy and accuracy for each tensor operation: FP32 or FP16 on the GPU and 7
voltage swing levels on PROMISE. Executing all operations on the GPU with FP32 precision
is considered the exact case. Our results show that ApproxHPVM can successfully assign
different tensor operations to different compute units (GPU or PROMISE) with different
approximation options, achieving speedups of 1-9x and energy reductions of 1.1-11.3x, while
statistically guaranteeing the specified accuracy metrics with 95% probability.

4.2 ApproxHPVM INTERNAL REPRESENTATION AND SYSTEM WORKFLOW

Figure 4.1 shows the overall ApproxHPVM workflow. The primary input is a program
written using high-level abstractions of the Keras library [138], a popular open-source library
for deep neural networks on TensorFlow. Our frontend translates a Keras source program
to the ApproxHPVM IR. The second input is a programmer-specified end-to-end quality
threshold, a domain-dependent parameter. For the neural network domain, we use the

36

acceptable loss in final classification accuracy and for image processing pipelines, we use
desired PSNR of the approximated output.

Figure 4.1: ApproxHPVM System Workflow

ApproxHPVM’s overall goal is to map the
computations of the program to the com-
pute units on a target system, along with
selected approximation parameter values on
each compute unit, so that the program out-
puts satisfy the specified end-to-end accu-
racy. We decompose this mapping problem
into a hardware-agnostic first stage and a
hardware-specific second stage.
The hardware-agnostic accuracy-tuning

phase takes an end-to-end quality threshold
and computes the error tolerance for individ-
ual ApproxHPVM operations, adding these
requirements in the IR. This phase guaran-
tees that if these error tolerances for individual operations are (independently) satisfied,
then the end-to-end accuracy specification will also be satisfied with some high probability,
e.g., 95%. The output of this stage is hardware-agnostic ApproxHPVM code, which is legal
LLVM and can optionally be used as a virtual instruction set to ship the code as “virtual
object code” to one or more targets [80]. For each target, a (static) accuracy-aware hardware
mapping phase chooses which compute units should execute each tensor operation, and op-
timizes any approximation parameters available on each compute unit to minimize energy
and/or maximize performance, while satisfying the individual accuracy constraints on each
operation. Finally, the code generation phase leverages the hardware-specific backends to
generate code for each compute unit. In our work, we build a) a GPU backend that targets
the cuDNN and cuBLAS libraries, which are optimized for high-level tensor operations, and
b) a PROMISE backend that targets a library that performs optimized tensor computations
on the PROMISE hardware simulator. The GPU can use FP32 or FP16 values for the net-
work weights and bias values, where FP32 is considered exact. PROMISE can only use 8-bit
integers, and offers a choice of seven voltage values to further trade off accuracy for energy
(see Section 4.3.2).
ApproxHPVM is inspired by and builds on HPVM [79], a dataflow graph compiler IR for

heterogeneous parallel hardware. We extend the HPVM IR to support execution of basic
linear algebra tensor computations and to specify accuracy metrics for each operation. We

37

Table 4.1: Tensor intrinsics in the ApproxHPVM representation.

Tensor Intrinsic Description
i8* @hpvm.tensor.mul(i8* lhs, i8* rhs) Performs a matrix multiply operation on the in-

put tensors.
i8* @hpvm.tensor.conv(i8* input, i8* filter,
i32 stride, i32 padding)

Applies a convolution filter on input tensor with
given stride and padding.

i8* @hpvm.tensor.add(i8* lhs, i8* rhs) Element-wise addition on input tensors.
i8* @hpvm.tensor.reduce_window(i8* in-
put, i32 reduction_type, i32 window_size)

Performs a (configurable) reduction operation
over a specified window size on the input tensor.

i8* @hpvm.tensor.relu(i8* input) Element-wise relu activation function.
i8* @hpvm.tensor.clipped.relu(i8* input) Element-wise clipped relu activation function.
i8* @hpvm.tensor.tanh(i8* input) Element-wise tanh activation function.
i8* @hpvm.tensor.map(i8* function, i8* in-
put1, i8* input2, . . .)

Zips multiple equal-shaped tensors and applies
function element-wise.

i8* @hpvm.tensor.reduce(i8* function, i8* in-
put, i32 axis)

Performs a reduction operation along an axis of
the input tensor.

first briefly discuss the HPVM IR in the next subsection, and then describe our extensions
to it.

4.2.1 Background: HPVM Dataflow Graph

HPVM [79] is a framework designed to address the performance and portability challenges
of heterogeneous parallel systems. At its core is the HPVM IR which is a parallel program
representation that uses hierarchical dataflow graphs to capture a diverse range of coarse-
and fine-grain data and task parallelism including pipeline parallelism, nested parallelism,
and SPMD-style (single program, multiple data) data parallelism. We showed that these
abstractions allow HPVM to compile from a single program representation in HPVM IR to
diverse parallel hardware targets such as multicore CPUs, vector instructions, and GPUs.
ApproxHPVM leverages the existing infrastructure of HPVM and extends it to compile to
our heterogeneous approximate computing platform.
An HPVM program consists of a set of one or more distinct dataflow graphs, which

describe the computationally heavy part of the program that is to be mapped to accelerators,
and host code that can initiate the execution and wait for the completion of the dataflow
graphs. Nodes in the HPVM dataflow graph (DFG) represent units of computation, and
edges between nodes describe explicit data transfer requirements between nodes. Each DFG
node can be instantiated multiple times at runtime, effectively enabling its computation to
be performed multiple times. The dynamic instances of a DFG must be independent, i.e.,
safe to execute in parallel. Different nodes can access the same shared memory locations
by passing pointers along edges, which is important for modern heterogeneous systems that

38

support cache-coherent global and partial shared memory. A node can begin execution once
it receives a data item on every one of its input edges.
The HPVM DFG is hierarchical, i.e., a node can itself contain an entire DFG. Such nodes

are called internal nodes, while other nodes are leaf nodes. Computations in leaf nodes are
represented by ordinary LLVM scalar and vector instructions, and can include loops, function
calls, and memory accesses. The @hpvm.createNode instruction is used to create a node
in the HPVM DFG, and the @hpvm.createEdge is used to connect an output of a node
to an input of another node in HPVM. The @hpvm.bind.input instruction is used to
map an incoming edge of an internal node to the input of a node in the internal DFG of this
node. @hpvm.bind.output instructions serve a similar purpose for outgoing edges.
The execution of a DFG is initiated by a “launch” operation in host code, and is asyn-

chronous by default. The host can block to wait for outputs from a DFG, if desired.

4.2.2 Tensor Operations in ApproxHPVM

Domain-specific languages such as Tensorflow and Pytorch allow for improved programmer
productivity and have gained wide-spread adoption. Accordingly, compilers such as XLA
for TensorFlow [106] and TVM for MxNet [67] are beginning to support efficient mapping
of high-level domain-specific abstractions to heterogeneous parallel compute units includ-
ing CPUs, GPUs, FPGAs, and special-purpose accelerators, and to run-time libraries like
cuDNN or cuBLAS.
A general-purpose parallel IR such as HPVM translates high-level operations into generic

low-level LLVM instructions. However, such early lowering of domain-specific operations can
result in loss of important semantic information that may be needed by a back end to target
run-time libraries or domain-specific accelerators. Reconstructing the higher-level semantics
after lowering is generally very difficult and sometimes infeasible.
Instead, we choose to incorporate high-level but broadly applicable operations into HPVM

IR directly. In this work, we extend the HPVM IR representation with linear algebra tensor
operations that allow for naturally expressing tensor-based applications. Tensors are used
in a wide range of important domains, including mechanics, electromagnetics, theoretical
physics, quantum computing, image processing and machine learning. For instance, convolu-
tional neural networks may be expressed using generic linear-algebra operations. This design
choice provides two essential benefits: a) it enables efficient mapping of tensor operations
to special purpose hardware and highly optimized target-specific runtime libraries, such as
cuDNN for GPUs, and b) it allows approximation analyses to leverage domain-specific infor-

39

define i8* @tensorConvNode(i8* %input, i8* %filter) {
%result = call i8* @tensor.conv(i8* %input, i8* %filter, i32* %strides,

i32* %padding)
return i8* %result

}

define i8* @tensorAddNode(i8* %input, i8* %bias_weights) {
%result = call i8* @tensor.add(i8* %input, i8* %bias_weights)
return i8* %result

}

define i8* @tensorReluNode(i8* %input) {
%result = call i8* @tensor.relu(i8* %input)
return i8* %result

}

define void @DFG_root(i8* %W, i8* %X, i8* %B) { ; DFG Root node
; Creating DFG nodes
%nodeConv = call i8* @hpvm.createNode(i8* @tensorConvNode)
%nodeAdd = call i8* @hpvm.createNode(i8* @tensorAddNode)
%nodeRelu = call i8* @hpvm.createNode(i8* @tensorReluNode)
; Creating data-flow edges between different DFG nodes
call void @hpvm.createEdge(i8* %nodeConv, i8* %nodeAdd, 1, 0, 0, 0)
call void @hpvm.createEdge(i8* %nodeAdd, i8* %nodeRelu, 1, 0, 0, 0)
; Binding the parent input to inputs of the leaf nodes
call void @hpvm.bind.input(i8* %nodeConv, 0, 0, 0)
call void @hpvm.bind.input(i8* %nodConv, 1, 1, 0)
call void @hpvm.bind.input(i8* %nodeAdd, 2, 1, 0)
; Binding final DFG node output to parent node output
call void @hpvm.bind.output(i8* %nodeRelu, 0, 0, 0)

}

Figure 4.2: Convolution layer sub-operations represented as ApproxHPVM tensor intrinsics.
The dataflow nodes are connected through explicit dataflow edges using HPVM intrinsics.

mation, because the approximation properties, parameters, and analysis techniques usually
are determined by properties of the domain.
Table 4.1 presents the list of tensor intrinsics introduced in ApproxHPVM. The tensor

operations in ApproxHPVM are represented as calls to LLVM intrinsic functions (the same
approach used by HPVM). The intrinsic calls appear to existing LLVM passes as calls to
unknown external functions, so existing passes remain correct. For applications where all
data-parallelism occurs via the tensor operations, the dataflow graph is only used to capture
pipelined and task parallelism across nodes, while data-parallelism is captured by the tensor
operation(s) within individual nodes.

40

Figure 4.2 presents a single neural network convolution layer encoded in ApproxHPVM.
The encoding uses three tensor intrinsics: @tensor.conv, @tensor.add, and @tensor.relu.
The DFG_root function is the root of the dataflow graph, and would be invoked by host
code. The root node is an internal graph node, which creates the leaf nodes tensorConvNode,
tensorAddNode and tensorReluNode (using hpvm.createNode calls) and connects the nodes
through dataflow edges (using hpvm.createEdge calls). The leaf nodes invoke the tensor
intrinsics to perform tensor computations on the input tensors. The output of the last node
in the dataflow graph is connected to the output of the root node and is returned back to
the caller.

4.2.3 Approximation Metrics in the IR

The second key feature of ApproxHPVM is the use of hardware-independent approxima-
tion metrics that quantify the accuracy of unreliable and approximate computations. We
attach error metrics, defined below, as additional arguments to high-level tensor operations.
Our design allows the specifications to be added to generic low-level instructions, but we do
not use that in this work. To express the (allowable) difference between approximate and
exact tensor outputs, we use vector distance metrics:

• Relative L1 error: Le
1 = L1(A−G)

L1(G)
where L1(X) =

∑
i |xi|

The numerator captures the sum of absolute differences between the approximate ten-
sor output A and the golden tensor output G. The denominator is the L1 norm of the
golden output tensor, so that the ratio is the relative error.

• Relative L2 error: Le
2 = L2(A−G)

L2(G)
where L2(X) =

√∑
i x

2
i

This is similar to the Le
1 norm, except that the numerator represents the Euclidean

distance and the denominator uses the L2 norm.

Note that the relative L1 error and relative L2 error are non-negative and lie in the the
range [0, +∞). Figure 4.3 shows how the approximation metrics are represented in the
compiler IR. The two approximation parameters for each tensor operation are attached as
additional arguments to the respective intrinsic functions. While our current system only
uses the two metrics described, our implementation and analyses can be easily extended to
include additional approximation metrics.

41

define i8* @tensorConvNode(i8* %input, i8* %filter) {
%result = call i8* @tensor.conv(i8* %input, i8* %filter, i32* %strides,

i32* %padding, float %relative_l1, float %relative_l2)
return i8* %result

}

define i8* @tensorAddNode(i8* %input, i8* %bias_tensor) {
%result = call i8* @tensor.add(i8* %input, i8* %bias_tensor, float

%relative_l1, float %relative_l2)
return i8* %result

}

define i8* @tensorReluNode(i8* %input) {
%result = call i8* @tensor.relu(i8* %input, float %relative_l1, float

%relative_l2)
return i8* %result

}

Figure 4.3: Tensor intrinsics annotated with accuracy metrics. The accuracy metrics Le
1 and

Le
2 are passed as parameters to the intrinsic calls.

4.3 ACCURACY-AWARE MAPPING AND OPTIMIZATION

In this section, we describe the accuracy-aware mapping of computations to hardware
compute units in the ApproxHPVM system. ApproxHPVM uses a hardware-agnostic accu-
racy tuning phase (Section 4.3.1) to determine per-operation accuracy requirements and an
efficient accuracy-aware scheduler (Section 4.3.2) that maps the approximable components
to hardware compute units and hardware-level system parameters.

4.3.1 Hardware-Agnostic Accuracy Tuning

The goal of hardware-independent accuracy tuning is to compute the accuracy require-
ments (represented by the Le

1 and Le
2 defined earlier) for each operation so that, if the

individual requirements are satisfied, the user-provided end-to-end quality metric is met.
For instance, a user may specify an acceptable classification accuracy degradation of 1%,
allowing the tuner to lower the accuracy constraints on a tensor multiply operation by 10%.
By computing the individual accuracy constraints, the tuner enables the hardware scheduler
to map individual tensor operations to approximate hardware independently. This inde-
pendence goal is a compromise: better energy efficiency or performance or both might be
achieved if two or more operations were considered together in the second stage, but that
would require a combinatorial optimization problem across all operations, compute units,

42

and approximation choices. Using independent decisions allows a much faster decision prob-
lem in the second stage.

Figure 4.4: Hardware-agnostic accuracy-
tuning workflow.

Figure 4.4 describes the overall workflow
of the accuracy-tuning phase. The heart of
the accuracy-tuner is an autotuning search
that uses statistical error injection to model
potential run-time errors and directly exe-
cutes the program on a standard GPU to
measure the end-to-end accuracy vs. the ex-
pected (“golden”) output. If the hardware
target was known, the autotuner could skip
the (artificial) error injection and instead
execute the program on the target with a
selected mapping and selected approxima-
tion settings to estimate the error. Instead,
the autotuner uses a hardware-agnostic er-
ror model and objective function to perform the search. Since our tuner uses statistical error
injection to validate the accuracy constraints, the autotuner enforces the accuracy threshold
to be met with a certain tunable success rate (fixed at 95% in our experiments).
Autotuning framework. Considering realistic applications with multiple tunable oper-

ations, the size of the search space makes exhaustive search intractable. To enable efficient
search, we use OpenTuner [75], an extensible framework for building domain-specific au-
totuners. OpenTuner allows users to configure a domain-specific search space and specify
a custom objective function. Prior work has shown that OpenTuner provides promising
results with enormous search spaces, exceeding 103600 possible configurations. Leveraging
OpenTuner, we build our custom accuracy tuner that tunes the error knob for each ten-
sor operation while minimizing an objective function. The objective functions we use are
described below. In our experiments, we are able to extract high-quality configurations
while searching through only a small subset of the full search space. For our experiments,
we run OpenTuner for a total of 1000 iterations, where each iteration generates a unique
configuration.
Inputs. The accuracy-tuner takes as input an end-to-end accuracy threshold T, and the

target program compiled to ApproxHPVM, and generates a set of configurations, defined
below.
Error Injection. The accuracy tuner works by injecting errors into the outputs of in-

dividual tensor operations and predicting their impact on end-to-end accuracy. The key

43

Configuration: {
hpvm.tensor.mul: 5,
hpvm.tensor.add: 6,
hpvm.tensor.tanh: 4

}

Figure 4.5: Example configuration output of the hardware-agnostic autotuner. The numeric
value corresponds to error budget assigned to each tensor operation.

to making our decomposed strategy work is to do this analysis in a hardware-independent
manner. We achieve this by using a simple, hardware-agnostic error model, where errors
in the outputs of tensor values X[i] are injected as: X[i] = X[i] × (1 + E × N (0, 1)). The
parameter E provides a simple, linear error model optimized by the autotuner, producing
hardware-agnostic error values that can be mapped by the back-ends to hardware-specific
approximation choices.
In our analysis, we choose the value of E from 1 to 15, increasing linearly, thereby linearly

increasing the Le
1 and Le

2 metrics. In our experiments, we tune the values of the L1 error
norm ranging from 0.5% to 40%.
Search Space and Configurations. A configuration in the autotuning search consists

of a value of the error parameter E assigned to each of the tensor operations in the target
program. By selecting this value at each operation, the autotuner controls the magnitude
of error injected into each tensor operation. For instance, one configuration for the code in
example 4.2 is shown in Figure 4.5.
For every configuration generated by the accuracy tuner, the final accuracy is empirically

evaluated by running the program with the tuned level of error injection. If the measured
end-to-end accuracy is below the threshold, the configuration is rejected. Otherwise, the
configuration is saved as a candidate configuration.
Measuring Success Rate. Since we used statistical error injection to evaluate candi-

date configurations, our end-to-end “guarantee” can be probabilistic, at best. Consistent
with prior work in optimistic parallelization [39], we use statistical testing to determine the
probabilistic guarantee provided by each candidate configuration. The statistical accuracy
test runs each candidate configuration with additional random error injection trials, where
the magnitude of error is determined by the selected error knobs. We treat each run as a
Bernoulli trial which succeeds if the execution satisfies the user-defined accuracy threshold
T and fails otherwise. For measuring the success rate Rsuccess, we execute each configuration
for 100 runs and accept a configuration if the statistical accuracy test has a minimum success
rate of 95%.

44

Hardware-independent objective functions. All remaining candidate configurations
satisfy the end-to-end accuracy threshold with a minimum success rate Rmin, and can be
ranked to achieve our goal of maximizing energy efficiency and performance. We use a
hardware-independent objective function to do so, using operation count as a proxy for
execution time, and assuming that higher allowable errors yield better energy efficiency.
Thus, we heuristically compute a cost function CTotal of a candidate configuration as:

CTotal(config) =
N∑
i=0

C(op(i), E(i)) (4.1)

The total cost of a configuration is defined as the sum of the cost of each operation at
the selected error knob. The individual operation costs must increase with execution time
and decrease as allowable error increases. We include three alternative objective functions,
where we use the error knob E as a proxy for error:

C1(op, E) =
Nc(op)

logE
C2(op, E) =

Nc(op)

E
C3(op, E) =

Nc(op)

E2
(4.2)

Here, Nc(op) computes the total count of multiplication and add operations performed
as part of the higher-level tensor operation, op. Note that the more expensive operations
(higher Nc(op)) are likely to prefer a higher error value, which prefers scheduling these
operations for more approximate hardware, in the hope of achieving higher overall benefits.
The autotuner generates configurations once for each of the objective functions. We ship
the IR with the top 10 configurations for each of the three objective functions, allowing the
hardware scheduler to select the best performing configuration for the specific deployment.

4.3.2 Accuracy-Aware Scheduling

Given an application in ApproxHPVM along with error norms Le
1 and Le

2 for each tensor
operation in the ApproxHPVM dataflow graph, the goal is to choose the right hardware
setting for each operation. We envision that multiple software and hardware approximate
computing techniques will be available as a choice for each operation. The scheduler attempts
to find a configuration that maximizes energy efficiency and performance while meeting the
individual accuracy constraints per operation.
Accuracy-aware scheduling presents these challenges: (C1) given error metrics, selecting

a hardware knob corresponding to each operation. (C2) Maximizing energy and/or perfor-
mance based on an objective function. (C3) Incurring low runtime cost, thereby enabling
dynamic scheduling.

45

Approximate Computing Hardware: In this work, we map and compile tensor opera-
tions onto two hardware compute units: an NVIDIA GPU and a programmable mixed-signal
accelerator for machine learning called PROMISE [23]. Computations are offloaded to an
NVIDIA GPU using the cuDNN library, which supports both 32-bit (FP32) and 16-bit
floating point (FP16) operations. FP16 computation reduces execution time and energy by
1.5-4x compared to FP32, at the cost of reduced accuracy [139, 140].
The PROMISE accelerator employs in-memory, low signal-to-noise ratio (SNR) analog

computation on the bit lines of an SRAM array to perform faster and energy efficient ma-
trix operations, including convolutions, dot-products, vector adds, and others. As shown
in [23], PROMISE consumes 3.4-5.5x less energy and has 1.4-3.4x higher throughput than
application-specific custom digital accelerators, which are themselves known to be orders of
magnitude better in terms of energy-delay product than NVIDIA GPUs. The PROMISE ac-
celerator instruction set has a parameter swing voltage, which controls the bit-line voltage
swing in the accelerator and allows a trade-off between accuracy and energy. The swing
parameter can take up to seven different values giving us seven choices for the PROMISE
hardware, denoted in this paper as P1, P2, . . . , P7, in increasing order of voltage and
decreasing error.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0

1

2

3

4

5

6

7

8

L1
 E

rr
o

r

Ti
m

e
 a

n
d

 E
n

e
rg

y
Im

p
ro

ve
m

e
n

t

K

FP16 Time

P7 Time

P1 Time

FP16 Energy

P7 Energy

P1 Energy

FP16 L1 Error

P7 L1 Error

P1 L1 Error

Figure 4.6: Time and energy improvement,
and Le

1 for the following hardware knobs:
FP16, P7, and P1. PROMISE is faster and
less accurate than FP16, which is faster and
less accurate than FP32. P1 and P7 Time
curves overlap since execution time is constant
across different swing values.

For our hardware platform including a
GPU and PROMISE, we have 9 different
choices (FP16, FP32 on GPU and P1-P7 on
PROMISE) for mapping each tensor opera-
tion. Figure 4.6 shows the speedup, energy
reduction, and accuracy of 3 hardware set-
tings – P1, P7, and FP16. These are mea-
sured for a matrix multiplication of matrix
M1 of size 5000 ×K and matrix M2 of size
K × 256, where K ∈ {28, 29, . . . , 215}. The
matrices are initialized with random values
from uniform distribution U(0, 1).
For readability, we do not show curves for

P2-P6, which follow the same trends as P1
and P7. The left Y-axis shows speedup and
energy reduction over FP32. The right Y-
axis depicts error in the computation by showing Le

1 of the matrix multiplication for each
hardware setting.

46

The graph shows that the Le
1 of different hardware settings remains constant for different

values of K. FP16 is most accurate followed by P7 and P1 in that order. FP16 is slower
than P7 and P1 for all K and also consumes more energy than P7 and P1, except for an
anomaly for K = 256, 512. As the swing voltage level decreases in PROMISE, the energy
consumption reduces, hence P1 has lower energy than P7. However, the execution time
remains constant across the different swing values in PROMISE, hence P7 and P1 time
curves overlap.
Mapping Le

1 and Le
2 metrics to Hardware Settings:

We generated similar graphs to Figure 4.6 for all ApproxHPVM tensor operations for
each hardware setting FP16, P7, P6, . . . P1. These operations include tensor multiplication,
addition, convolution, activations (tanh, relu, clipped relu), and window reductions (max-
pooling, avg-pooling, min-pooling). We used this data to find the maximum Le

1 and Le
2

constraints tolerable by each hardware setting for each operation. We observed that the Le
1

and Le
2 metrics for each hardware setting had very little variation across different tensor sizes,

thereby serving as a useful metric for measuring errors in tensor operations. Our backend
maps a tensor operation to the least accurate hardware setting that meets the Le

1 and Le
2 con-

straints of the operation. Since the mapping from individual operation L1 error and L2 error
to hardware knobs is merely a table lookup operation, hardware scheduling is an inexpensive
step. This makes our hardware specific mapper very lightweight, which in the future can be
used for dynamic scheduling or for SoC design space exploration. Moreover, our approach is
extensible to other hardware compute units since it merely requires adding a mapping from
the hardware-agnostic approximation metrics to the hardware-specific approximation knobs
of the target hardware.

4.4 METHODOLOGY

4.4.1 Platform

For our experiments, we assume a modern System-on-Chip (SoC) architecture with CPUs,
GPUs, and accelerators that communicate via main memory. The specific system we model
is an NVIDIA Jetson TX2 developer kit [137], augmented with the PROMISE programmable
machine learning accelerator [23]. PROMISE does not exist as real hardware, and we instead
obtained the PROMISE simulator from its authors and extended it with a memory timing
and energy model.
To model the overall system, one approach would be to use a cycle-accurate integrated

CPU-GPU-PROMISE simulator, but this is impractical due to several prohibitive limitations
of current state-of-the-art GPU simulators such as GPGPU-Sim. First, they do not support

47

Table 4.2: System parameters for TX2 and PROMISE.

TX2 Parameters
CPU Cores 6
GPU Cores 2

GPU Frequency 1.12 GHz
DRAM Size 8 GB

DRAM Bandwidth 58.4 GB/s peak; 33 GB/s sustained
DRAM Energy 20 pJ/bit

PROMISE Parameters
Banks 256× 16 KB

Frequency 1 GHz

dynamic linking of libraries such as cuDNN and cuBLAS. Moreover, they do not support
newer PTX instructions required by these libraries. Second, regardless of library support,
simulator execution is orders of magnitude slower than real hardware, which makes running
real world DNNs and realistic data sets infeasible.
Instead, we opted for a split approach to model the SoC. We ran the GPU tensor oper-

ations on the real GPU and the PROMISE tensor operations on the PROMISE simulator.
Since all communication between different system agents occurs via main memory, read-
s/writes to/from main memory sufficiently model communication between the CPU, GPU,
and PROMISE. For instance, if a particular layer executes on the GPU and the next layer
executes on PROMISE, we just assume that PROMISE obtains all the required data from
main memory. Therefore, this approach accurately models the behavior of a modern SoC
architecture.
For our GPU experiments, we used an NVIDIA Jetson TX2 developer kit [137]. This

board contains the NVIDIA Tegra TX2 SoC [81], that contains a Pascal-family GPU with 2
Streaming Multiprocessors (SMs), each with 128 CUDA cores (FP32 ALUs). The board has
the same system architecture as our target SoC. Table 5.2 lists the relevant characteristics
of both Tegra TX2 and the PROMISE simulator. Finally, due to our split approach, the
functional and timing aspects of our experiments were split as well.

4.4.2 Functional Experiments

To verify the functional correctness of our generated binaries and to measure the end-
to-end accuracy of each network with different configurations, we used the GPU in tandem
with PROMISE’s functional simulator. If a layer was mapped to the GPU, the corresponding
tensor operations were executed on the GPU. If a layer was mapped on PROMISE, it was

48

offloaded to PROMISE’s functional simulator. Consequently, the final result was the same
as it would be if these operations were all executed on a real SoC containing both a GPU
and PROMISE. Since the PROMISE simulator adds Gaussian random error to each run, we
use statistical testing to measure the fraction of program runs that satisfy the end-to-end
quality metric - we call this Rsuccess. We ran each configuration 200 times to obtain the
mean and standard deviation of the classification accuracy, and Rsuccess of the configuration.

4.4.3 Timing Experiments

GPU. To measure the execution time and energy of tensor operations on the GPU, we built a
performance and energy profiling tool. While an application is running, the tool continuously
reads GPU and DRAM power from Jetson’s voltage rails via an I2C interface [141] at 1 KHz
(1 ms period). Furthermore, it associates each GPU tensor operation with a begin and end
timestamp pair. Once the application has finished execution, execution time is calculated by
simply taking the difference between the begin and end timestamp of the tensor operation.
Then, energy is calculated by integrating the power readings using 1 ms timesteps.
We used this tool to obtain per-tensor operation time and energy for both FP32 and

FP16 for each benchmark. To obtain reliable results for each operation, we did 100 runs
per benchmark, and used the average time and energy. The coefficient of variation was
less than 1% after 100 runs. Instead of rerunning an operation on the GPU each time we
ran a configuration, we collected these results once per benchmark and tabulated them.
Then, whenever a particular tensor operation or network layer was mapped to the GPU, we
obtained the required values from this lookup table.

PROMISE. Using the functional simulator obtained from the authors of PROMISE, we
built a timing and energy model for PROMISE. Since the compute and memory access pat-
tern of PROMISE is known a priori based on the operation being performed, a cycle-accurate
simulator is not required and analytically computing both time and energy is sufficient. This
analytical model first calculates the mapping of input matrices to PROMISE’s banks, and
then computes the time and energy of 1) loading the data from main memory, 2) performing
the computation, and 3) writing data back to main memory. We extended the baseline
PROMISE design with a programmable DMA engine (pDMA) [142, 143]. PROMISE oper-
ates on INT8 data and requires a data layout transformation, both of which are handled by
pDMA. All the required data is loaded into PROMISE before starting the computation.
For the compute model, we used the pipeline parameters obtained from the authors of

PROMISE [144]. For the main memory model, we empirically measured peak sustained

49

Table 4.3: Description of Evaluated Benchmarks.

(a) DNN Benchmarks, corresponding datasets, layer count,
and classification accuracy with FP32 baseline.

Network Dataset Layers Accuracy
FC-4 MNIST 4 93.72%
LeNet MNIST 4 98.7%
AlexNet CIFAR-10 6 79.16%

AlexNet v2 CIFAR-10 7 85.09%
ResNet-18 CIFAR-10 22 89.44%
VGG-16-10 CIFAR-10 15 89.41%
VGG-16-100 CIFAR-100 15 66.19%
MobileNet CIFAR-10 28 83.69%

Shallow MobileNet CIFAR-10 14 88.4%

(b) Image Processing Benchmarks and corresponding
datasets. The Description shows the composition of filters
that forms the particular image pipeline.

Filter Dataset Description
GEO Caltech 101 Gaussian-Emboss-Outline
GSM Caltech 101 Gaussian-Sharpen-MotionBlur
GEOM Caltech 101 Gaussian-Emboss-Outline-MotionBlur
GEMO Caltech 101 Gaussian-Emboss-MotionBlur-Outline
GSME Caltech 101 Gaussian-Sharpen-MotionBlur-Emboss

bandwidth and energy per bit on our Jetson TX2 development board to ensure that both
PROMISE and the GPU used the same memory system. The DRAM energy reported by
PROMISE and the energy measured on Jetson TX2 was highly correlated, validating our
model.

Integration. Similar to the functional experiments, we obtained the total time and energy
for a network by summing the time and energy of each layer. If the layer was scheduled on
PROMISE, PROMISE’s timing and energy simulator was invoked to get the time and energy.
If the layer was scheduled on the GPU, a lookup was performed on the FP32/FP16 time
and energy tables that were generated after profiling. If consecutive operations required a
different precision, quantization was performed and its time and energy overhead was added
to the total. PROMISE performed quantization internally while a CUDA kernel performed
quantization for the GPU.

50

4.4.4 Benchmarks

Our evaluation includes 9 DNN benchmarks and 5 image processing pipelines, detailed in
Table 5.1 and Table 4.3b, respectively.

DNN Benchmarks. We include a range of different convolutional neural networks for 3
different datasets: MNIST [145], CIFAR-10, and CIFAR-100 [146]. The MNIST dataset
includes 60K grey-scale images of handwritten digits 0 through 9. The CIFAR-10 dataset
contains 60K 3 × 32 × 32 sized color images belonging to 10 classes, 6K images per class.
CIFAR-100 includes 60K 3×32×32 sized color images belonging to 100 distinct classes, with
600 images belonging to each class. For each of the three datasets, the dataset is divided into
50K images for training and 10K for inference. The inference set is divided equally into cal-
ibration and validation sets (5K each). The calibration set is used for the autotuning phase
that identifies approximable computations, and the validation set is used for evaluating the
performance, energy, and accuracy of each autotuned configuration (combination of hardware
knobs). We use popular DNN benchmarks including LeNet[147], AlexNet [148] (reference
implementation [149]), ResNet-18 [12], VGG-16 [11] (reference implementation [150]), Mo-
bileNet [151], and Shallow MobileNet [151]. We trained VGG-16 for both CIFAR-10 and
CIFAR-100 since it has been shown to provide relatively good end-to-end accuracy on both
the datasets [150]. We also created a variant of Alexnet (called Alexnet v2) that includes
an extra convolution layer (a total of 6 convolution layers) and provides approximately 6%
higher end-to-end accuracy. We include MobileNet which is an efficient DNN model with
respect to both performance and model size. We also include a shallow version of the original
MobileNet architecture (similar to the shallow model proposed in the original work) called
Shallow MobileNet that includes 14 layers as opposed to 28 layers in the full MobileNet
model. Shallow MobileNet provides approximately 5% higher accuracy on CIFAR-10 com-
pared to the full MobileNet model, because for CIFAR-10, which involves small images
and only 10 classes, the larger network is prone to overfitting. We also include a 4 layer
fully-connected DNN, called FC-4, trained on the MNIST dataset.

Image Processing Benchmarks. We also include 5 convolution-based image processing
benchmarks (Table 4.3b). We construct these benchmarks by including different combina-
tions of commonly-used image filters: Gaussian (G), Emboss (E), Outline (O), MotionBlur
(M), and Sharpen (S). At the IR level, the filters are represented as tensor convolutions, with
the exception of Emboss which is a convolution followed by a bias add operation. To evaluate
the filters, we used the Caltech 101 dataset [152] that includes a set of 9145 images. The
dataset includes a mix of small and large images, so we resized all the images to 240× 300

pixels to allow running the filters on a batch of images. We converted the color images to

51

(a) Original (b) GSM (FP32) (c) GSM PSNR=32dB (d) GSM PSNR=22dB

Figure 4.7: Sample output from GSM (Gaussian-Sharpen-MotionBlur) benchmark. 4.7a:
Original image; 4.7b: GSM baseline output (FP32 without approximation); 4.7c, 4.7d: GSM
output approximated at PSNR30 and PSNR20 respectively.

grey-scale since our cuDNN-based backend does not support convolution on separate RGB
channels. For evaluation, we split the images into two sets of 4572 images for calibration
and validation. The calibration set is used by the autotuning step, and the validation set is
used to evaluate the average PSNR and violation rate of each configuration provided by the
autotuner.

4.4.5 Quality Metrics

For the DNN benchmarks, we studied an accuracy loss of 1% (Loss1%) and 2% (Loss2%).
Loss1% refers to an accuracy degradation of 1% with respect to the baseline and Loss2%

refers to an accuracy degradation of 2% compared to the baseline. The baseline uses FP32
for all computations with no approximation.
For the image processing benchmarks, we use PSNR to quantify the error in the output

of the processed image in comparison to the baseline. We use two PSNR loss thresholds
of 30db (PSNR30) and 20db (PSNR20). (Quality loss of about 20-25dB is considered to
be acceptable in lossy situations, such as wireless transmission [153, 154].) To illustrate
the visual impact, Figure 4.7 shows the impact of such losses between for the output of
the GSM pipeline applied to a sample image, at "exact" (FP32 precision on the GPU),
and with additional losses of PSNR30, and PSNR20 due to approximations. The GSM
pipeline introduces noticeable blur without approximations. PSNR 32.2 dB only causes a
small perceptible difference in the image, while reducing PSNR to 22.3 dB results in an
observable visual difference, but still acceptable in many situations. While autotuning these
filter pipelines, we also measure the violation rate that quantifies the fraction of images that
do not meet the target PSNR. Consistent with prior work in approximating video filters [42],
we use 5% as an acceptable threshold for the violation rate. Similar to the DNN benchmarks,
the baseline uses FP32 for all filter computations.

52

4.5 EVALUATION

This section presents an evaluation of ApproxHPVM. Our evaluation seeks to answer the
following research questions:

1. What are the performance and energy benefits provided by the ApproxHPVM frame-
work, which uses only application-level end-to-end error tolerance specifications?

2. Does increased error threshold allow for increased performance and energy benefits?

3. Can ApproxHPVM techniques apply to different end-to-end quality metrics (PSNR,
Accuracy)?

4. How does two-stage autotuning using a hardware-agnostic first stage compare against
direct hardware-specific autotuning?

5. How is performance affected by changes in hardware configuration?

4.5.1 Performance and Energy Evaluation

DNN Benchmarks. Figure 4.8 shows the aggregate results for all nine DNN benchmarks
for Loss1% and Loss2% experiments.
For each network, we report the results for the best performing configuration with respect

to the energy-delay (ED) product. The configuration is a set of hardware knobs that control
the level of approximation. In our system, the knobs for approximation are FP16 (16-bit
FP), and the 7 distinct swing voltage levels of the PROMISE accelerator. To give more
insight into how our accuracy-aware scheduler maps DNN layers to hardware, Figure 4.8c
shows the best configuration selected by the ApproxHPVM autotuner and hardware mapper.
Each entry shows the number of DNN layers mapped to each distinct hardware setting. For
instance, for Loss1%, ApproxHPVM maps 1 layer in LeNet to FP16, 1 layer to P7 (swing
voltage level 7), and 2 layers to P4 (swing voltage level 4). In Section 4.5.2 we compare how
well the configurations attained by the hardware-agnostic tuner perform in comparison to
the optimal (in scenarios where determining the optimal is feasible) and against hardware-
specific autotuning (where computing optimal is not feasible).
Figure 4.8 shows that nearly all configurations given by the ApproxHPVM framework

improve upon the FP32 baseline. The performance improvement ranges from 1.02x (ResNet
Loss1%) to 9x (FC-4 Loss2%). The energy reduction ranges from 1.14x (ResNet Loss1%)
to 11.3x (AlexNet Loss2%). Most networks obtain from 1.5x–4x (1.5x–5x) improvements in

53

0

1

2

3

4

5 loss1% loss2%
9x 9x

(a) Speedup

0

1

2

3

4

5

6 loss1% loss2%
10.6x 11.3x

(b) Energy Reduction
Mean Classification Accuracy Hardware Knob Settings
FP32 Loss1% Loss2% Loss1% Loss2%

FC-4 93.72 93.47± 0.2 92.41± 0.2 P7:3, P6:1 P4:3, P5:1
LeNet 98.7 98.28± 0.1 98.26± 0.1 FP16:1, P4:2, P7:1 FP16:1, P4:3, P5:1
AlexNet 79.16 78.51± 0.2 78.43± 0.2 FP16:1, P6:3, P7:2 FP16:1, P7:1, P6:1, P4:3

AlexNet v2 85.09 84.52± 0.1 84.45± 0.1 FP32:3, P7:4 FP32:2, FP16:1, P7:2, P6:2
ResNet-18 89.44 88.84± 0.1 88.54± 0.1 FP32:1,FP16:18,P7:3 FP32:1, FP16:16, P7:5
VGG-16-10 89.41 88.64± 0.1 87.77± 0.2 FP32:4,FP16:4,P7:7 FP32:1,FP16:4,P7:2,P6:1,P5:2,P4:5
VGG-16-100 66.19 65.97± 0.2 64.97± 0.1 FP32:1,FP16:9,P7:5 FP32:1, FP16:8, P7:3, P6:3
MobileNet 83.69 83.05± 0.1 82.35± 0.1 FP16:25, P7:3 FP16:22, P7:6

MobileNet-SH 88.4 88.08± 0.1 86.74± 0.2 FP16:12, P7:2 FP32:1, FP16:9, P7:3, P6:1

(c) Mean Classification Accuracy and Hardware Knob Settings

Figure 4.8: Speedup and energy reduction (over baseline) of all nine DNNs for Loss1% and
Loss2% experiments (higher is better). 4.8a: Speedup. 4.8b: Energy reduction. 4.8c: Mean
accuracy ± standard deviation, and hardware knob settings showing the number of layers
mapped to each type of hardware knob (for both Loss1% and Loss2%) where FP32: 32-bit
floating point on GPU; FP16: 16-bit floating point on GPU; Px: PROMISE with swing x.

performance (energy). Figure 4.8c shows the mean and standard deviation of the end-to-
end accuracy for the different DNNs for both Loss1% and Loss2% experiments. The final
accuracy of each configuration is within the corresponding allowable accuracy loss threshold
of 1% and 2%.
We observe most of the DNNs to be amenable to using the approximation mechanisms for

multiple layers. Figure 4.8c shows that a number of layers in the DNNs are often mapped to
the PROMISE accelerator, which provides significant performance and energy improvements
over the GPU. AlexNet obtains the highest energy benefit (11.3x energy reduction) since
5 of the total 6 layers are mapped to PROMISE in both Loss1% and Loss2% experiments.
Note that when moving from Loss1% to Loss2%, more layers in AlexNet could utilize lower
PROMISE voltage levels (that provide higher benefits), thereby providing an extra 6% en-
ergy reduction. For VGG-16-10, the difference is more significant with 48% extra energy
reduction when moving from Loss1% to Loss2%. For MobileNet and Shallow MobileNet, we
observe energy reductions ranging from 1.5x to 1.78x and performance improvements rang-

54

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

GEO GSM GEOM GEMO GSME

p30 p20
6.1x

(a) Speedup

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

GEO GSM GEOM GEMO GSME

p30 p20
2.1x 7.9x

(b) Energy Reduction
PSNR30 PSNR20

GEO 38.9± 2.52 38.9± 2.53
GSM 34.18± 2.3 24.26± 2.4
GEOM 40.52± 1.56 38.48± 1.67
GEMO 50.41± 1.91 28.55± 2.22
GSME 51.28± 2.79 28.62± 2.44

(c) Mean PSNR

PSNR30 PSNR20

GEO FP16:3 FP16:3
GSM FP16:2, P7:1 FP16:1, P7:1, P6:1
GEOM FP16:3, P7:1 FP16:3, P6:1
GEMO FP16:4 FP16:3, P7:1
GSME FP16:4 FP16:3, P7:1

(d) Hardware Knob Settings

Figure 4.9: Speedup and energy reduction (over baseline) of all 5 image processing bench-
marks for PSNR30 (p30) and PSNR20 (p20) thresholds. 4.9a: Speedup. 4.9b: Energy
reduction. 4.9c: Mean PSNR ± standard deviation. 4.9d: Hardware knob settings shows
the number of convolution layers mapped to each type of hardware knob (for both PSNR30

and PSNR20) where FP32: 32-bit floating point on GPU; FP16: 16-bit floating point on
GPU; Px: PROMISE with swing x.

ing from 1.21x to 1.39x. Note that the MobileNet DNN has been specifically optimized for
improved performance, and Shallow MobileNet achieves even better performance while also
preserving high accuracy. Our results show that by exploiting approximations we can achieve
further gains even for such optimized models. For ResNet-18, hardware-agnostic tuning only
provides marginal performance (up to 1.1x) and energy gains (up to 1.2x) for both Loss1%
and Loss2%. In Section 4.5.2, we show that for ResNet, the hardware-specific tuner also pro-
vides small improvements, showing that this DNN architecture is not very amenable to the
approximation choices offered by our hardware platform. Other approximation techniques
may achieve better gains for ResNet.

Image Processing Benchmarks. Figure 4.9 shows the aggregate results for all 5 image
processing benchmarks. Figures 4.9a, 4.9b, 4.9c show the performance improvement, energy
reduction, and mean PSNR of PSNR30 and PSNR20 experiments.
Figure 4.9 shows that nearly all configurations given by the ApproxHPVM framework

achieve performance and energy benefits. The performance improvement ranges from 1.04x
(GEO PSNR30) to 6.1x (GSM PSNR20). The energy reduction ranges from 1.2x (GEO

55

PSNR30) to 7.9x (GSM PSNR20). Note that for GSM, we see a further energy reduction of
3.7x and performance improvement of 3.5x when reducing the quality metric from PSNR30

to PSNR20, as the autotuner and mapper are able to offload the Gaussian and MotionBlur
filters to PROMISE. We see similar trends for the GEOM, GEMO, and GSME benchmarks
when reducing the quality threshold to PSNR20 (Figure 4.9d).
The FP16 computations also provide both improved performance and energy efficiency

though not as significant as the PROMISE accelerator. For instance, for the GEO benchmark
the autotuner could not map any operation to PROMISE for either PSNR30 or PSNR20

but we still achieve a small 4% performance and 18% energy improvement with FP16. For
the GEO filter benchmark, we do not observe any benefits when moving from PSNR30 to
PSNR20 since none of the filters could be mapped to a precision level lower than FP16 i.e
mapping any one filter (of the total 3) to PROMISE would produce images below PSNR20.
Note that the selected hardware knobs in 4.8c and 4.9d vary across DNNs with differing

approximation settings for PROMISE swing levels and GPU precision. This reinforces the
need for accuracy-tuning on a per-DNN basis since each DNN has different error-tolerance
characteristics.

0

5

10

15

20

25

30

Conv1 Conv2 Conv3 Conv4 Conv5 FC1 Total

Time Energy

Figure 4.10: Speedup and energy reduction over base-
line for all six layers of AlexNet (Loss2%). Conv1 cannot
be mapped to PROMISE and is executed using FP16.
It thus observes the smallest benefit and also signif-
icantly reduces the overall time and energy improve-
ment.

AlexNet Layer-wise Analysis.
To gain more insight into the ben-
efits observed by ApproxHPVM,
we perform a layer-wise analysis of
the Loss2% AlexNet configuration.
Figure 4.10 shows the layer-wise
breakdown of performance and en-
ergy improvement for this con-
figuration. The autotuner iden-
tifies that Conv1 cannot be run
on PROMISE because it is highly
error prone and mapping it to
PROMISE results in an unaccept-
able accuracy loss. Therefore,
Conv1 is mapped to FP16, which
only provides a 1.3x performance improvement and a 2.1x energy reduction. For the
other five layers, ApproxHPVM identifies these as being error-tolerant and maps them to
PROMISE. The speedup ranges from 5x (FC1) to 11x (Conv2), and the energy reduction
ranges from 5.4x (FC1) to 30x (Conv2) for these five layers. Compared to the performance
improvement, the energy reduction is higher due to the fact that convolution layers are

56

typically memory bound, and costly memory accesses constitute most of the total energy
in FP32. The high data locality provided by the specialized storage of PROMISE drasti-
cally reduces that cost. Overall, ApproxHPVM achieves a speedup of 4.4x and an energy
reduction of 11.3x for AlexNet with only a 2% loss in accuracy.
Statistical Accuracy Tests. For all benchmarks, we measured the success rate RSuccess of
our configurations by measuring the fraction of program runs where the measured end-to-
end metric (accuracy degradation or PSNR violation rate) satisfies the programmer-specified
threshold. For configurations generated by the autotuner, 94% configurations passed the sta-
tistical accuracy test by achieving Rsuccess > 95% on the target hardware (PROMISE+GPU).
This shows that our hardware-agnostic approach yields configurations which benefit from
approximation and yet remain within the programmer-specified constraint when evaluated
on the target hardware platform.
To evaluate the effectiveness of our hardware-agnostic autotuning approach, we compare

against hardware-specific autotuning. While hardware-agnostic autotuning provides several
benefits including portability and facilitating efficient dynamic scheduling, it can poten-
tially lead to sub-optimal mappings. In the hardware-agnostic autotuning phase, error bud-
gets are allocated to individual tensor operations without knowledge of the approximation
choices offered by a specific hardware platform. This can potentially waste error budgets
when the autotuner allocates an error budget to an operation that cannot be approximated
on the target hardware. To conduct the hardware-specific autotuning experiment, we use
OpenTuner (as in the hardware-agnostic tuner) to directly search over the set of hardware
knobs that maximize performance and energy while satisfying the end-to-end quality met-
ric. For our target platform, these hardware knobs include FP32, FP16, and the 7 levels of
PROMISE, providing a total of 9 hardware knobs for each operation. For a fair comparison
with hardware-agnostic tuning, we use the same number of Autotuner iterations - 1000. For
FC-4, LeNet, and the 5 image benchmarks, we found the configuration search space to be
tractable for exhaustive search and hence compare against exhaustive search. The perfor-
mance and energy of hardware-agnostic (HA) normalized to hardware-specific (HS) is shown
for both DNN and image processing benchmarks in Figures 4.11a, 4.11b, 4.11c, and 4.11d.

4.5.2 Hardware-Agnostic vs Hardware-Specific Tuning

For the DNN benchmarks, we observe that on average hardware-agnostic tuning is within
10% performance and 15% energy of hardware-specific tuning. For VGG16-10 Loss2, we
observe a significant difference of 32% in performance and 46% in energy. The difference
occurs since hardware-specific tuning is able to map the most expensive convolution layers to

57

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 loss1% loss2%

(a) Normalized DNN Speedup

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 loss1% loss2%

(b) Normalized DNN Energy Reduction

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

GEO GSM GEOM GEMO GSME

p30

p20

(c) Normalized Image Benchmark Speedup

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

GEO GSM GEOM GEMO GSME

p30

p20

(d) Normalized Image Benchmark Energy Reduc-
tion

Figure 4.11: Speedup and Energy reduction of hardware-agnostic autotuning compared to
hardware-specific autotuning. All bars are normalized to the corresponding best hardware-
specific autotuning configuration.

PROMISE while the hardware-agnostic tuner was able to map fewer layers to the accelerator.
The particular reason for the difference is that the hardware-agnostic tuner allocates error
budgets to tensor operations without knowing the approximation mechanisms on the target
hardware. For instance, the hardware tuner would allocate error budgets to tensorRelu and
tensorPooling operations unaware that the PROMISE accelerator does not add error to these
operations (since they are executed in the digital domain). The wasted error budget can
sometimes result in missed opportunities for utilizing that error budget elsewhere. However,
as majority of the results show, the difference between hardware agnostic and hardware-
specific tuning is not significant in most cases. Interestingly, for FC-4 and LeNet, hardware-
agnostic is within 5% and 10%, respectively, of the energy reduction achievable by the optimal
configuration (given by the exhaustive search).
ResNet-18 only achieves a small performance improvement of up to 1.1x and energy re-

duction of up to 1.2x with hardware-agnostic tuning, and up to 1.5x performance improve-
ment and 1.6x energy reduction with hardware-specific tuning. As Figure 4.8c shows, for

58

ResNet-18 most layers were found to be less error-tolerant by the autotuner and could not
be mapped to PROMISE. Note that in an attempt to maximize opportunities for approx-
imation, the hardware-agnostic tuner maps a number of ResNet layers to FP16. However,
for certain layers we observe that FP16 provides slightly worse performance (and energy)
compared to FP32, thereby neutralizing any benefits provided by FP16 computation. We
found this to be an anomaly, since in general computations provide both performance and
energy improvements on FP16.
For the image processing benchmarks, we compare against exhaustive search for all 5

benchmarks since the search space is tractable. Among the 5 different types of filters uses in
the benchmarks, only Gaussian and MotionBlur can be offloaded to PROMISE because of
the minimum vector length (64) imposed by PROMISE. Hence, the other 3 filters, Emboss,
Sharpen, and Outline, have two hardware choices, FP16 and FP32. In 8 of the 10 total
experiments (PSNR30 and PSNR20 for each image processing benchmark), the performance
improvement matches that of the optimal configuration determined by exhaustive search.
For energy, 5 of the 10 hardware-agnostic results match the optimal, while 3 are within
0.03% of the optimal. For GEMO PSNR20 and GSME PSNR20, we see a significant
difference in both performance (48%) and energy (54%) when compared to the optimal
configuration. The large difference is observed because of a single sub-optimal decision
where the hardware-agnostic tuner maps the first Gaussian filter to FP16, whereas the
hardware-specific tuner maps it to PROMISE. The hardware-agnostic tuner is unaware that
PROMISE cannot map small vector sizes to PROMISE and allocates error budget to the
other filters (Emboss, Outline, Sharpen), thereby reducing the error budget that could be
allocated to the Gaussian filter. Though hardware-agnostic tuning is sub-optimal in this
specific example, the fact that it can distribute error budgets independent of the hardware
makes it a more flexible choice when considering a variety of hardware platforms that may
have very different characteristics.
Overall, our results show that hardware-agnostic autotuning performs reasonably well

compared to hardware-specific autotuning and exhaustive search. We believe that hardware-
agnostic autotuning is more flexible since it allows for shipping code with hardware-independent
approximation metrics, which can in turn be used by a wide variety of hardware devices.
Shipping application programs tuned for each unique hardware platform is infeasible in
practice. Moreover, hardware-specific autotuning will be infeasible in scenarios where the
hardware tuning takes an excessively long time, for instance design-space exploration in
FPGA synthesis. The proposed hardware-agnostic approach also enables flexible dynamic
scheduling where the target device can be chosen at runtime given the error tolerance of an
operation and the accuracy guarantee provided by the target compute unit. In scenarios

59

where hardware platform details are known and hardware tuning is feasible in practice, the
ApproxHPVM also facilitates such hardware-specific autotuning.
Non-optimality of hardware-agnostic tuning. The hardware-agnostic accuracy-

tuning approach is suboptimal since error budgets allocated in the tuning phase may not
be fully utilized when mapping to approximation knobs in hardware. For instance, the
hardware-agnostic tuner may allocate an error budget to a tensor operation for which no
approximate version is present on the target hardware platform. More generally, a tensor
operation may only be able to use a fraction of its error budget, leaving the rest unused. In
theory, wasted error budgets in one operation can be reapportioned to other operations that
can utilize the error budget. Currently, we don’t support such error reapportioning because
the second (hardware-specific) mapping stage selects an approximation choice independently
for each operation.
Another mode in which hardware-agnostic tuning is sub-optimal is that multiple IR oper-

ations with individual error budgets are merged into a single hardware operation in the
back-end code generator, which requires assigning a single approximation option to all
those operations. This in turn forces conservative choice of approximation that satisfies
the error budget of all such operations. For example, in our hardware mapping phase for
the PROMISE accelerator, multiple tensor operations are sometimes mapped to a single
PROMISE operation. When selecting the voltage swing for the PROMISE operation, we
make the conservative choice of choosing the least error budget allocated to each of the
individual tensor operations. Such conservative choices waste the error budget for some of
the operations. Notice that the hardware-specific autotuner can be constrained to avoid this
problem because it can take into account the actual mapping of IR operations to hardware
operations, while selecting the approximation choices. As part of future work, we will study
techniques for composing error budgets allocated to individual tensor operations. Analyses
for composing error budgets should, in turn, allow for more precise selection of hardware
knobs.

4.5.3 Autotuning Times

We built our autotuner by leveraging the interface provided by the OpenTuner frame-
work [75]. We ran our autotuning experiments on an NVIDIA V100 GPU with 5120 cores
and 16GB HBM2 global memory. Both the cuDNN-based runtime (for running FP32, FP16)
and the PROMISE simulator leverage the parallelism offered by the GPU. For both the
hardware-agnostic (HA) and hardware-specific (HS) tuning experiments, we use 1000 iter-
ations of the autotuner (searching over 1000 points in the search space). The tuning times

60

Table 4.4: Hardware-agnostic (HA) and Hardware-specific (HS) autotuning times (in hours).

Benchmark HA HS
FC-4 1.4 5.11
LeNet 4.4 5.9
AlexNet 16.5 16.8

AlexNet v2 17.6 15.2
ResNet-18 13.7 15.3
VGG-16-10 32.1 31
VGG-16-100 20.8 24.4
MobileNet 16.2 11.3

MobileNet-SH 11.4 8.2
GEOM 12.6 5.9
GEMO 8.4 3.8
GSME 11.2 4.9
GEO 7.7 0.3
GSM 10.8 0.7

in hours for hardware-agnostic and hardware-specific experiments for each benchmark are
included in Table 4.4. Note that for FC-4, Lenet-5, and the five image filter benchmarks
GEO, GSM, GEOM, GEMO, GSME, the hardware-specific phase does a fully exhaustive
search since the search space is tractable for these benchmarks. The HS autotuning times
for these benchmarks include the time for performing the exhaustive search. The HS tuning
times for the image benchmarks are low given that the search space is small. Since only the
Gaussian and MotionBlur filter could be mapped to PROMISE, the other filters can only
map to 2 hardware choices - FP32 and FP16. For instance, for the GSM (Gaussian-Sharpen-
MotionBlur) filter, HS exhaustive search only needs to search through 9×2×9 = 162 unique
configurations, as opposed to 1000 iterations in the HA tuner. Hence for the image filter
benchmarks, the HS tuning times are lower than in HA tuning. While exhaustive search
was possible in this scenario, for a system with more approximation choices for each opera-
tion (more accelerator knobs, perforation, sampling etc.), such exhaustive search through all
combinations may not be feasible. For the DNNs, the HA and HS times are mostly similar
since both autotuner runs are assigned equal iterations.

4.5.4 Hardware Sensitivity

To validate the benefits of ApproxHPVM across different hardware characteristics, we
study the impact of pDMA and number of PROMISE banks on performance and energy.
pDMA: In deep learning, GEMM-based convolutions maps convolution X ~ W into a
product of two matrices PX and PW , known as patch matrices. Using GEMM for con-
volution is desirable because GEMM is typically a highly optimized operation, and both

61

0

0.05

0.1

0.15

0.2

0.25

w/ pDMA w/o pDMA w/ pDMA w/o pDMA

Time Energy

Unpatching

Leakage

Compute

Memory

Patching

Quantization

Figure 4.12: Normalized execution time and energy for AlexNet with and without pDMA.
Without pDMA, PROMISE relies on the GPU to perform quantization, patching, and un-
patching; these overheads reduce the performance and energy improvement over FP32.

NVIDIA’s cuDNN library [155] and PROMISE perform GEMM-based convolution. The
overhead of GEMM-based convolution consists of two data layout transformations: “patch-
ing” to generate matrices PX and PW , and “unpatching” to convert the GEMM’s output to
the application’s desired format.
In cuDNN, patching and unpatching are done in on-chip memory to minimize this over-

head [155]. In PROMISE, we can either use the pDMA scheme described in Section 4.4.3
or rely on the GPU to perform patching and unpatching. Similarly, quantization to/from
INT8 can be performed either by pDMA or by the GPU before/after PROMISE’s execu-
tion. In order to compare these two choices, we implemented CUDA kernels for patching,
unpatching, and quantization, and compared their performance and energy to pDMA. We
pipelined patching/unpatching with PROMISE’s execution to maximize performance.
Figure 4.12 shows execution time and energy, normalized to FP32, for the Loss2% AlexNet

configuration with and without pDMA. While pipelining minimizes the time overhead, the
entire energy cost of the GPU kernels is still incurred. Moreover, the increased data move-
ment (the patch matrix is 121x larger than the input matrix in Conv2) causes both time
and energy to increase further. Nonetheless, PROMISE without pDMA still achieves a 4.1x
speedup and 6.3x energy reduction compared to FP32. While the benefits are higher with
pDMA (4.4x performance and 11.3x energy), these results show our approach is effective
regardless of the method used.
#Banks:
We performed a scaling study of the number of PROMISE banks to establish the suitability

of a 256 bank configuration. Figure 4.13 shows the execution time and energy of FC4 as the
number of banks is increased, as well as the area overhead associated with the increasing

62

0

5

10

15

20

25

30

35

40

45

0

5

10

15

20

25

30

32 64 128 256 512 1024

%
 o

f
So

C
A

re
a

Ti
m

e
 a

n
d

 E
n

e
rg

y
Im

p
ro

ve
m

e
n

t

Number of Banks

Time Energy Area

Figure 4.13: Speedup and energy reduction over FP32, and area for FC4 vs the number of
PROMISE banks. The SoC contains 4B transistors.

number of banks. Using 256 banks, PROMISE strikes a balance between performance,
energy, and area – it only consumes 10% of a 4B transistor SoC’s area and still significantly
outperforms FP32.

4.6 CONCLUSION

In this paper, we introduced ApproxHPVM, a compiler IR that introduces hardware-
agnostic accuracy metrics that are decoupled from hardware-specific information. We aug-
ment ApproxHPVM with an accuracy-tuning analysis that lowers the accuracy requirements
of IR operations given an end-to-end quality metric, while the hardware scheduling phase uses
the extracted constraints to map to different approximation choices. Our results show that
ApproxHPVM provides promising results on a heterogeneous target platform with multiple
hardware compute units. Across 14 benchmarks in the deep learning and image processing
domains, we observe performance speedups ranging from 1-9x and energy reductions ranging
from 1.1-11.3x. As ApproxHPVM does not include hardware-specific information at the IR
level, we envision ApproxHPVM to be extensible to a wide range of approximate computing
hardware. Moreover, we believe that the hardware-independent accuracy constraints can
also be satisfied by software-only techniques for approximation.

63

CHAPTER 5: APPROXTUNER: COMPILER AND RUNTIME SYSTEM
FOR ADAPTIVE APPROXIMATIONS

5.1 INTRODUCTION

With the ubiquitous deployment of machine-learning and big data processing workloads [156],
improvements are increasingly important for optimizing these workloads. A wide range of
different kinds of computations are being deployed on both the cloud and the edge, includ-
ing image processing, object classification, speech recognition, and face recognition [6, 7, 8].
These applications are compute-intensive, which often renders it infeasible to run such com-
putations on resource-constrained edge computing systems, and also drives up operational
costs in data centers [157, 158, 159].
Many computations in these domains are inherently approximate, in the sense that the in-

put data are often derived from noisy sensors and output results are often probabilistic, e.g.,
for object classification or facial recognition, or also noisy, e.g., for image and audio streams.
Such computations can trade off small amounts of result quality for improved performance
and efficiency [14]. Previous research has presented many individual domain-specific and
system-level techniques for trading accuracy for performance. For instance, reduced pre-
cision models are widespread in deep learning [160, 161, 162]. Recent specialized acceler-
ators incorporate hardware-specific approximation knobs that provide orders-of-magnitude
improvements in the performance and energy benefits achieved in exchange for relaxing
accuracy [163, 23, 50, 164, 165, 101]. Such techniques provide an important opportunity
to improve performance and/or energy of applications for emerging heterogeneous parallel
systems.
In practice, a realistic application (e.g., a neural network or a combination of an image

processing pipeline and an image classification network) can make use of multiple approxi-
mation techniques for different computations in the code, each with its own parameters that
must be tuned, to achieve the best results. For example, our experiments show that for the
ResNet-18 network, which contains 22 tensor operations, the best combination is to use three
different approximations with different parameter settings in different operations. A major
open challenge is how programmers can select, configure, and tune the parameters for com-
binations of one or more approximation techniques, while meeting end-to-end requirements
on energy, latency, and accuracy. Several specific challenges arise in meeting this goal:
Large Trade-off Space Combining Multiple Approximations. The variety of software
and hardware approximations with many accuracy-performance and accuracy-energy trade-

64

offs induce a large search space spanning both software and hardware choices, as large as
7e+91 in our benchmarks. The optimization tasks include selecting the versions of individual
data structures and algorithms (e.g., number representation and tensor operators in CNNs),
mapping each computation to a specific compute unit, and tuning various knobs – parameters
that impact the performance and accuracy of the application.
High cost of measuring accuracy and performance. A heuristic search for optimal
approximation choices requires determining attributes such as quality of service (e.g., infer-
ence error or PSNR), throughput, and energy. Empirically measuring these quantities by
running approximate program versions is prohibitively expensive on edge systems, requiring
weeks or months for realistic kernels, and undesirable on cloud systems where energy and/or
monetary costs can become overwhelming. We find that empirical tuning can take days (on
a server-class machine) for some of our benchmarks - 1.5 days for VGG16 and 11 days for
ResNet50. These high tuning times motivate the need for efficient tuning.
Diverse range of heterogeneous systems. The diversity of hardware compute units [70]
means that different ones provide different approximation options and differing accuracy-vs-
performance trade-offs. Domain-specific accelerators that support hardware-specific approx-
imations (e.g. analog compute accelerators [23], low-precision ML accelerators [50, 51, 52])
can offer orders-of-magnitude performance and energy improvements. Moreover, for some
domains (e.g., smartphones or tablets), software portability is essential since modern appli-
cations must execute on widely varying system configurations [166], but different systems
may require very different sets of approximation choices.
Optimization choice depends on run-time conditions. Satisfying end-to-end require-
ments may depend on many run-time conditions, e.g., the load of the system, the state of the
battery, the inputs to the computation, or varying application demands during execution.
To meet its requirements, the application may need to adapt to the changing conditions and
reconfigure during run time.

5.1.1 ApproxTuner System

We present ApproxTuner, an automatic framework for accuracy-aware optimization of
applications, given user-provided high-level end-to-end quality specifications. It addresses
all of the challenges above, and is the first and only system to handle all of these.
ApproxTuner tackles the last two challenges above — hardware-specific, yet portable, tun-

ing and run-time adaptation — by decomposing the optimization process into three stages:
development-time, install-time and run-time. The system selects hardware-independent ap-
proximations and creates a Pareto-optimal trade-off curve for them at development time. At

65

install time, the system refines this curve using hardware-specific optimizations and perfor-
mance measurements, then uses the refined curve for the best static choices of approximations
and parameter settings. The final Pareto curve is included with the program binary. At run
time, the system optionally adapts these choices based on run-time conditions, using the
final Pareto curve to keep the overheads of run-time adaptation very low.
To address the first two challenges – efficiently navigating the large trade-off space and

efficient performance and quality estimation – ApproxTuner introduces a novel technique,
predictive approximation-tuning . Predictive approximation-tuning uses one-time error pro-
files of individual approximations, together with error composition models for tensor-based
applications, to predict end-to-end application accuracy1. Our approach also facilitates
distributed tuning since the error profile collection can happen at multiple client devices
in a distributed manner with autotuning performed on a centralized server. This makes
install-time tuning (with hardware-specific approximations) feasible which can otherwise be
prohibitively expensive to do on a single resource-constrained edge device.

5.1.2 Contributions

In summary, our contributions are:

• A system that combines a wide range of existing hardware and software approximations,
supports diverse heterogeneous systems, and provides an easy-to-use programming in-
terface for accuracy-aware tuning. We show that different kinds of approximations and
approximation knobs are suited for different applications and also across sub-computations
in the same application.

• A novel three-phase accuracy-aware tuning technique that provides performance porta-
bility, retargetability to compute units with hardware-specific approximation knobs, and
dynamic tuning. It splits tuning into: 1) selection of hardware-independent approxima-
tions at development-time, 2) mapping to hardware-specific approximations at install-time,
and 3) a fast approximation selection at runtime.

• Predictive approximation-tuning, a novel technique that speeds up both development-time
and install-time analyses. For two different accuracy-prediction models, our predictive
tuning strategy speeds up tuning by 13.7x and 17.9x compared to conventional empirical
tuning while achieving comparable benefits.
1The work on accuracy prediction models is lead by Yifan Zhao (yifanz16@illinois.edu) and details on

the models will also appear in his Thesis.

66

• Our evaluation on 11 benchmarks (10 CNNs and 1 combined CNN + image processing
benchmark) shows:

Generic Approximations. Exploiting generic hardware-independent approximations,
ApproxTuner achieves geometric mean speedup of 2.2x and energy reduction of 2.1x on
GPU, with merely 2 percentage points of drop in inference accuracy. On CPU, we observe
a geometric mean speedup of 1.4x and energy reduction of 1.4x.

Hardware Approximations. At install time, mapping tensor operations to PROMISE,
an analog compute accelerator, ApproxTuner provides geometric mean speedup of 4.5x
across the benchmarks.

Runtime Adaptation for Approximations. ApproxTuner can dynamically tune ap-
proximation knobs to counteract system slowdowns imposed by runtime conditions such
as low-power modes.

5.2 ApproxTuner OVERVIEW

Figure 5.1 shows the high-level workflow for ApproxTuner. ApproxTuner builds on the
HPVM and ApproxHPVM compiler systems [79, 102], which are briefly described below.
ApproxTuner takes as input programs written in Keras or PyTorch for convolutional neural
networks, or CNNs, or an extension of C that can be compiled to HPVM [79] (for other
tensor-based programs), and compiles them to the ApproxHPVM internal representation
(IR) [102]. ApproxHPVM manages the compilation to various compute units (Section 5.2.1).
ApproxTuner optimizes the computations in this IR using three phases: 1) developmen-

t-time, 2) install-time, and 3) run-time (Section 5.2.2). ApproxTuner’s goal is to select
combinations of software and hardware approximations (detailed in Section 5.2.3) that max-
imize performance and energy benefits.

5.2.1 Preliminaries and Terminology

ApproxHPVM. HPVM IR is a dataflow graph-based parallel program representation that
captures coarse- and fine-grain data and task parallelism. HPVM provides a portable IR and
a retargetable compiler framework that can target diverse compute units including CPUs,
GPUs and FPGAs.
ApproxHPVM is an extension of HPVM [79] with added support for tensor operations,

and limited support for accuracy-aware tuning (see Section 2). The tensor operations rep-

67

resent data parallel computations to support application domains such as CNNs and image
processing.
ApproxHPVM also adds additional backends to the HPVM framework, including one

for cuDNN on NVIDIA GPUs and one for a programmable analog in-memory compute
accelerator called PROMISE [23].
This work focuses on approximations for a set of predefined tensor operations included in

ApproxHPVM, such as convolutions, matrix multiplication, ReLU, map, and reduce. The
full list of supported intrinsics is listed in Table 4.1.
These operations are the units of scheduling and approximation in ApproxTuner, where a

schedule is a mapping of tensor operations to compute units in the target system.
Hardware-independent approximations for an operation are those whose impact on the

quality of a program is fixed, regardless of the hardware used to execute the operation.
Some approximations, like the use of (IEEE) FP16 instead of FP32 may have hardware-
independent semantics (when available) and yet may be implemented in hardware for effi-
ciency.
Other approximations are called hardware-specific. The impact on energy and performance

will usually be hardware-dependent for both kinds of approximations.
Quality of Service. A quality-of-service (QoS) metric is a (usually domain-specific) metric
over the quality of some computation, such as the inference accuracy of a machine learning
model, or the peak signal-to-noise ratio (PSNR) of an image processing application. For
a tensor-based program, its QoS metric function QoS : Tout × Tgold → R takes the output
tensor Tout and the gold tensor Tgold, and produces a scalar value.
A QoS constraint is a constraint over the QoS level of an application. As QoS is con-

ventionally a higher-better value, we assume a QoS constraint is always a lower bound; the
opposite case can be treated similarly.
Knobs, Configurations, and Tradeoff Curves. ApproxTuner supports approximation
methods implemented in software or hardware. Software techniques may be algorithmic or
system-level (Section 5.2.3). An approximation knob is a discrete-valued parameter of an
approximation method that can be modified to control the quality, energy, and run time.
Each tensor operation may be assigned an approximation choice or none. A configuration

is a map Config : op → Int that assigns an approximation knob value to every tensor
operation in the program. Zero value denotes no approximation. The search space is the set
of all possible configurations.
A tradeoff point is a triple (QoS,Perf, config), which records the quality-of-service and the

performance (e.g., latency, throughput, or energy) of the configuration (on a representative
input set). The set of all tradeoff points, denoted S, represents the tradeoff space. To

68

compare tradeoff points, we define a dominance relation, 4, in the usual way [167]: a point
s1 = (QoS1,Perf1, config1) is dominated by another point s2 = (QoS2,Perf2, config2) iff
it has both lower QoS and worse performance. Formally, s1 4 s2 iff QoS1 ≤ QoS2 and
Perf1 ≤ Perf2. Strict dominance, s1 ≺ s2, is defined as dominance when the two points are
not equal.
A search algorithm explores a subset of the tradeoff space S ⊆ S to find desirable tradeoff

points. One way to describe desirable points is through Pareto sets. The Pareto set of a
tradeoff set S is its subset consisting of non-dominated points:

PS (S) = { s | s ∈ S ∧ ∀s′ ∈ S . s ⊀ s′ } (5.1)

This set defines the tradeoff curve, which contains linear segments between the points in the
Pareto set. These points thus have the best tradeoffs that the search algorithm was able to
find. We will also use a relaxed version, PSε, which includes tradeoff points that are close
to (i.e., within an ε distance from) the points in the Pareto set:

PS ε (S) = { s | s ∈ S ∧ ∃s∗ ∈ PS(S) . dist(s, s∗) ≤ ε } (5.2)

Here, dist as the usual Euclidean distance in the tradeoff space.
Different search algorithms may explore different subsets of the tradeoff space, e.g., S1 and

S2. To numerically characterize a Pareto set, PS(S1) or PS(S2), researchers use a variety
of quality indicators [167]. In this paper we use a hypervolume indicator that measures
the size of the dominated subspace. It corresponds to the area-under-curve (AUC) of the
tradeoff curve. To compare PS(S1) and PS(S2), we compute the difference between their
hypervolume indicators on a desired interval between QoSmin and QoSmax.

5.2.2 Overview of Three Stages of ApproxTuner

Our goal is to automatically select approximation knobs that minimize energy and/or
maximize performance for a given program or its component, while satisfying some user-
specified end-to-end QoS constraint. We refer to this task as approximation-tuning and do
it in three stages:
The development-time stage (Section 5.3) computes a tradeoff curve using only hardware-

independent approximations. ApproxTuner takes as input a program and a QoS constraint,
and generates a set of possible configurations, S0, that maximize a hardware-agnostic per-
formance metric and produce QoS values within the constraint. These configurations are

69

Figure 5.1: ApproxTuner workflow.

used to create the relaxed tradeoff curve, PSε(S0) (much smaller than S0) which is shipped
with the application.
The install-time stage (Section 5.4) uses the development-time trade-off curves and

measures the actual performance of each configuration in those trade-off curves on the target
hardware. Next, we create a refined trade-off curve, PS(S ′), where S ′ is the PSε curve from
development-time updated with real performance measurements. This stage can be run any
time that the target hardware is known.
If hardware-specific approximations (not known at development time) are available, which

may also change the QoS metrics, the install-time stage performs a new autotuning step that
includes the hardware approximations
The run-time stage (Section 5.5), takes the program’s final trade-off curves from the

install-time phase and uses them for dynamic approximation tuning. The system can track
various metrics (e.g. load, power, and frequency variations) and provide feedback to the
dynamic control, which computes a target speedup (and configuration) to maintain the
required level of performance.

5.2.3 Approximation Methods

ApproxTuner is extensible to a wide range of software and hardware approximations.
This work evaluates five approximations below – the first three are software (hardware-inde-
pendent) techniques implemented for CPUs and GPUs; the fourth is a previously proposed
experimental hardware accelerator representing a hardware-specific approximation; and the

70

fifth (reduced floating point precision, IEEE FP16) has hardware-independent semantics.
We summarize these below:
Filter sampling for convolutions. Li et al. [91] proposed an approximation technique that
compresses convolution filters by removing feature maps (i.e. channels) that have relatively
low L1-norms (sum of absolute values). Based on this, we implement our own variant of
filter sampling that supports dynamic knobs for approximation. Our implementation prunes
an equal fraction of filter elements across all feature maps with a fixed stride. It has 9 knob
values spread across i) sampling rates for filter sampling: 50% (skip 1 out of 2), 33% (skip 1
out of 3), and 25% (skip 1 out of 4) and ii) the initial offset at which elements are skipped;
this has a noticeable impact on overall accuracy, as different offsets align with more or less
important filter elements
Perforated convolutions. Figurnov et al. [168] proposed perforated convolutions ; an al-
gorithmic approximation that computes a subset of the convolution output tensor, and in-
terpolates the missing values using nearest neighbor averaging of computed tensor elements.
Our implementation skips rows and columns of the tensor operation outputs at a regular
stride, then interpolates the missing output elements. It has 18 knob values: i) skipping
rows or columns, ii) skip rate: 50%, 33%, and 25%, and iii) initial offset.
Reduction sampling. Zhu et al. [35] proposed reduction sampling ; an algorithmic approx-
imation that computes a reduction operation using a subset of inputs. Our implementation
supports 3 knob values for sampling ratio: 50%, 40%, and 25%. For reductions like average,
sum, or multiply, we scale the result by an appropriate constant.
PROMISE, an approximate analog accelerator. [23]. Our implementation considers
PROMISE for tensor convolutions and matrix multiplications. PROMISE is an analog
chip and its voltage swings introduce statistical (normally distributed) errors in the output
values. The knob values are 7 different voltage levels (P1-P7), in increasing order of voltage
(energy) and decreasing error. No mode in PROMISE produces exact results; all voltage
levels introduce some errors. Srivastava et al. [23] show that PROMISE consumes 3.4-5.5x
less energy and has 1.4-3.4x higher throughput compared to custom non-programmable
digital accelerators.
IEEE FP16. Our implementation has FP16 versions of all tensor operations, including the
two approximate algorithms above. FP16 can be used or not for an operation; there is no
additional knob value. Although FP16 requires hardware support, its semantics (impact on
QoS) is hardware-independent and hence can be accounted for in the development stage.
Since FP16 availability is not guaranteed, we produce two trade-off curves at development
time, one for FP16 and one for FP32, then use the appropriate one at install time.

71

The above set offers many choices for approximation. For each convolution operation,
ApproxTuner offers 9 knobs for filter sampling, 18 knobs for perforation, and for each per-
foration/sampling knob, both FP32 and FP16 are supported. Convolution operations can
also be mapped to an FP32-only (considered most-accurate) or FP16-only variant - adding 2
more knobs. PROMISE hardware offers 7 knobs. Currently, we do not combine perforation,
sampling, and PROMISE at the same operation. In total, this results in 63 = (9 * 2 + 18
* 2 + 2 + 7) knobs for each convolution operation, 8 = 3 * 2 + 2 knobs for each reduction,
and 2 choices for every other tensor operation.

5.3 DEVELOPMENT-TIME TUNING

At development time, we tune the application for hardware-independent approximations.
We propose predictive approximation tuning, which collects per-operation performance and
accuracy profiles prior to the search, and then uses compositional models to predict QoS
and performance to guide the autotuning search. This approach does not invoke the pro-
gram binary for every autotuning iteration. In contrast, conventional empirical autotuning
evaluates a configuration by actually running the program binary (e.g., CNN inference)
which can be expensive, especially when many autotuning iterations are required to explore
large search spaces.

5.3.1 Overview of Predictive Tuning

Algorithm 5.1 describes our predictive approximation tuning in the function PredictiveTuner.
It consists of five steps:

• Profile collection: Lines 12-15 in Algorithm 5.1 collects a QoS profile for the given
application per operation, per knob setting (§ 5.3.2).

• QoS predictor refinement: Lines 18-20 refines a parameter α of the QoS prediction
model (§ 5.3.3) used in the following autotuning, so that the predictor fits better to the
program to be tuned.

• Autotuning: Lines 23-30 heuristically explore the configuration space in a fixed number
of iterations. The QoS prediction model and performance prediction model (§ 5.3.4) direct
this search towards better configurations. We use the OpenTuner tool [75] which contains
a number of algorithms for exploring large configuration spaces.

• Tradeoff curve construction: Line 33 selects autotuning configurations that are in or
close to the Pareto set (§ 5.3.5).

72

Algorithm 5.1: Predictive Approximation Tuning
1 Inputs:
2 • P: target program
3 • C: calibration inputs for profiling
4 • K: knobs that apply to each operator in P
5 • QoSmin: minimal acceptable QoS
6 • nCalibrate: number of calibration runs used to tune α
7 • nIters: number of autotuning iterations
8 • ε1, ε2: maximum distances of a configuration to the Pareto set
9 Output: A trade-off curve for P

10 Function PredictiveTuner(P,C,K,QoSmin, nCalibrate, nIters, ε1, ε2)
11 // Step 1: collect QoS Profile
12 map qosProfiles;
13 foreach (op, knob) ∈ K do
14 (∆Q, ∆T) = gatherQoSProfile(P, C, op, knob);
15 qosProfiles[(op, knob)] = (∆Q, ∆T);

16

17 // Step 2: initialize and tune predictor to find coefficient α
18 autotuner = AutoTuner (P, K, nIters, QoSmin);
19 predictor = Predictor (qosProfiles);
20 α = predictor.calibrate (autotuner, nCalibrate);
21

22 // Step 3: Autotune with QoS and Perf. prediction Models
23 set candidateConfigs;
24 while autotuner.continueTuning() do
25 config = autotuner.nextConfig();
26 predQoS = predictor.calculateQoS (config, α);
27 predPerf = predictor.calculatePerf (config);
28 autotuner.setConfigFitness (config, predQoS, predPerf);
29 if predQoS > QoSmin then
30 candidateConfigs ∪= (predQoS, predPerf, config);

31

32 // Step 4: Take configs within ε distance of the tradeoff curve
33 paretoConfigs = PSε1 (candidateConfigs);
34

35 // Step 5: Filtering invalid configurations at the end of tuning
36 set filteredConfigs;
37 foreach (predQoS, predPerf, config) ∈ paretoConfigs do
38 realQoS = measureRealQoS (P, C, config);
39 if realQoS > QoSmin then
40 filteredConfigs ∪= (realQoS, predPerf, config);

41 return PSε2(filteredConfigs);

73

• QoS validation: Lines 36-40 empirically measure the QoS of configurations in previous
step, and selects configurations with measured QoS greater than threshold.

5.3.2 Gathering QoS Profiles

QoS profiles are gathered for each unique pair of tensor operation and approximation
knobs. Algorithm 5.1 infers (Line 13) a list of such (op, knob) pairs from the input K, which
is a mapping from each tensor operation in program P to the set of knobs applicable to it.
The profiles are collected by running the entire program (with calibration inputs) but we
approximate a single operator at a time.
The QoS profile consists of: 1) an end-to-end QoS metric, e.g., classification accuracy

in CNNs or mean square error (see Section 5.6), and 2) final raw tensor output of the
application, e.g., for CNNs, output of the softmax operation. The profiles are stored as
two tables Q and T . Q maps (op, knob) to the corresponding end-to-end QoS. T maps
(op, knob) to the raw tensor output Tout. We also measure and store the QoS and raw
tensor output of the baseline version, which has no approximations, denoted as QoSbase

and Tbase, respectively.

5.3.3 Models for QoS Prediction

We propose and evaluate two different error composition models Π1 and Π2, for a program
P :

Π1(config) = QoS (Tbase + α ·
∑
op∈P

∆T (op, knob), Tgold) (5.3)

Π2(config) = QoSbase + α ·
∑
op∈P

∆Q(op, knob) (5.4)

where knob = config(op), α is the coefficient to be refined, and

∆T (op, knob) = T (op, knob)− Tbase, (5.5)

∆Q(op, knob) = Q(op, knob)−QoSbase, (5.6)

The model Π1 computes the QoS of a configuration by 1) summing the errors in the end-
to-end raw tensor outputs for each (op, knob) pair in the configuration config, 2) adding this
sum to the baseline raw tensor output (Tbase), and then 3) computing the QoS over this

74

summation. The model captures how approximations affect the errors in the raw output
(for a single approximation) and sums the effects of all, before applying the QoS function.
This allows Π1 to work well with classification accuracy as the QoS metric, since accuracy
is computed as an argmax probability of all candidate classes (essentially the raw tensor
output), and is hence tolerant to errors in the raw outputs as long as the probability of the
(correct) predicted class(es) stays the highest.
The model Π2 is a coarser-grained model that does not examine individual tensor outputs.

Instead, it uses QoS profile table, Q, to compute the QoS loss of a configuration by summing
over the end-to-end QoS loss for each (op, knob) pair in config. Π2 (which only sums scalar
losses) is computationally less expensive than Π1 (which sums raw tensors), but is also
relatively less precise, as shown in our evaluation.
Predictor Calibration using Regression. Both Π1 and Π2 can be viewed as linear re-
gression models with a single coefficient α that scales the errors of each error profile. This
coefficient allows the predictor to adapt to specific error propagation within the application.
On Line 20, predictor.calibrate evaluates the real QoS of a small number of configu-
rations (e.g., 50 are sufficient in our experiments), and updates α so that the predicted QoS
fits the observed QoS better.
Scope of the Predictive Models. We have applied our predictive models to fixed DAGs
of tensor operations in the context of CNNs and to one image processing benchmark, but
they can be applied to other tensor domains. For these models to work, the program must
meet the following criteria:

• The control flow must be deterministic and input-independent. This ensures that the error
profile of different knobs captures the error behavior of the same control flow, and can be
composed.

• The operators should have no side-effects.
• For predictor Π1, the shapes of raw tensor outputs (i.e., number of dimensions and extents

of each dimension) must match, since these outputs are summed up in the model. This
requires that the output tensor shape is input-independent and fixed.

5.3.4 Models for Performance Prediction

To guide the tuner, we use a simple hardware-agnostic performance prediction model. As
a proxy for execution time, we use the count of compute and memory operations, computed
analytically for each tensor op with closed-form expressions using input tensor sizes, weight
tensor sizes, strides, padding, etc. This calculation has negligible cost.

75

The total execution cost of a configuration is the sum of the cost for each operation with
the knob the tuner selected,

CTotal(config) =
N∑
i=0

C(config.op[i], config.knob[i]). (5.7)

We assume the operation count is reduced by a factor that is proportional to the approx-
imation level (e.g, 50% vs 25% perforation). Thus, we estimate execution time of running
operation op with approximation knob knob by:

C(op, knob) =
Nm(op)

Rm(knob)
+

Nc(op)

Rc(knob)
, (5.8)

where Nc and Nm are the analytically-computed number of compute and memory opera-
tions, respectively, for the baseline (non-approximate) version of op. Rm and Rc are the
corresponding reduction factors and are specific to the selected approximation knob. E.g.,
for FP16 50% filter sampling, Rm = 4 since the operation loads 2× fewer bytes due to
FP16 and performs 2× fewer loads due to sampling, and has Rc = 2 since it skips half the
computations.
The number of operations does not perfectly reflect actual speedup, as other factors change

with the size of computation, such as cache friendliness. However, for the same operator,
an approximation that reduces more operations is likely faster than one that reduces fewer
operations. Therefore, this performance predictor ranks configurations correctly by their
speedup, which suffices for autotuning purposes.

5.3.5 Configuration Filtering

Autotuning often discovers many candidateConfigs. To reduce the overhead of empir-
ical validation, we filter away configurations that are not in or close to the Pareto set. On
Line 33, points in the Pareto set or with distance to the Pareto set less than ε1 are kept
(by Equation 5.2). Similarly, an ε2 controls the configuration filtering on Line 41. ε1 and ε2
are user-selected thresholds that control the quality and the space of trade-off curve and the
time of our three-stage tuning.

5.4 INSTALL-TIME TUNING

The install-time tuning phase takes the tradeoff curve from the development-time tun-
ing (PS ε), together with the same calibration inputs for profiling (C), hardware-specific

76

knobs (K) for each operator on the edge device, the number of edge devices nedge, and the
other parameters from the development-time tuning. This step refines the shipped trade-off
curves with real performance measurements and creates a new trade-off curve. Option-
ally, distributed predictive tuning is invoked to further optimize the program by exploiting
hardware-specific approximations supported on the target platform. Distributed predictive
tuning divides the tuning burden across multiple participating edge devices.
Software-only knobs. In this case, all steps are done on the edge-device. It runs the
configuration from the input trade-off curve PS ε on the inputs from C. Similarly to Lines
36-40 from Algorithm 5.1, it measures both the real QoS and performance (development-
time stage collected only QoS), and filters the candidate configurations that do not satisfy
the thresholds. Finally, for the resulting filtered set S ′ it constructs the final tradeoff curve
PS(S ′).
Hardware-specific knobs. We distribute predictive tuning across the server and edge-
devices in three main steps:

• This phase is distributed across edge-devices. Each device gathers profiles for |C|/nedge
calibration inputs. For hardware-specific approximations in K, the devices collect the QoS
profiles as in Lines 12-15 from Algorithm 5.1.

• The edge-devices send the QoS profiles to a centralized server. It merges the profiles
– taking the mean of ∆Q (change of QoS) in the profile, while concatenating the ∆T

(change of tensor output) together. It then runs the predictive tuning as in Lines 18-30
from Algorithm 5.1. Because the approximation choices cannot be decoupled (as we found
in initial prototype experiments), we cannot simply reuse the curves from development-
time, but instead perform a fresh autotuning step that combines software and hardware
approximations and constructs new trade-off curves.

• The server sends the configurations to the edge-devices. Each edge device validates an
equal fraction of the total configurations and filters the configurations by measuring both
the real QoS and performance (similar to Lines 36-40 in Algorithm 5.1).

• The server receives the filtered configurations from each of the participating edge devices
and computes the final trade-off curve, PS(S1 ∪S2 ∪ ...∪Sn), where Si are configurations
returned by edge device i; these are configurations with real QoS higher than the user-
specified QoS threshold. This is the final curve that the server sends back to the devices.

5.5 RUNTIME APPROXIMATION TUNING

A key capability of ApproxTuner is the ability to adapt approximation settings at run-
time to meet application goals such as throughput or responsiveness, in the face of changing

77

system conditions such as load variation, frequency scaling or voltage scaling, or changing
application demands. Our runtime control assumes that the program is running in isolation
on the target hardware. Significant prior work has addressed the problem of multi-tenancy
(e.g., [169]) and can be incorporated in our approach.
ApproxTuner allows users to specify a desired target for performance and/or energy usage,

and then uses the trade-off curve (built at install-time) to select configurations that allow
for meeting these goals. Runtime conditions (e.g., lowering processor frequency) can impose
system slowdowns which may cause the application performance to fall below the desired
target. In these scenarios, the dynamic tuner switches configurations to choose a different
point from the performance-accuracy trade-off space.
Performance is measured for each invocation, which is one execution of the target code,

e.g., the entire CNN or entire image-processing pipeline (for one batch of images). A system
monitor measures the execution time over a (configurable) sliding window of most recent
batch N executions (k − N , . . . , k − 2, k − 1). If the average performance of the sliding
window executions falls below the desired target, the dynamic tuner is invoked. In this
case, ApproxTuner chooses a configuration from the trade-off curve that achieves the target
performance level. The runtime tuner switches configurations simply by using different
approximation knob settings, which are parameters to the operations for each tensor method
(e.g., perforation and sampling rates), and hence has negligible overhead.
One challenge is that there may not be an exact point matching the desired speedup in

the trade-off curve, so our system allows the user to select between two policies for achieving
the target speedup:

1. Enforce Required Speedup in each Invocation. It picks from the trade-off curve a
configuration that provides speedup equal to or higher than the desired speedup. Picking
a point from the curve is a O(log(|PS|) operation, as it is implemented as binary search
over the trade-off curve stored as a sorted array data structure in memory.

2. Achieve Average Target Performance over Time. It probabilistically selects be-
tween two configurations, with their performance the closest below and above the required
performance over a period of time (on average). The probabilities of selecting each of
these two points, p1 and p2, are calculated such that p1 · Perf1 + p2 · Perf2 = Perftarget, as
in [35]. For instance, if required speedup is 1.3x and the closest points on the curve provide
1.2x and 1.5x speedup, the configurations are randomly selected between invocations, with
respective probabilities 2/3, and 1/3 so that the average speedup is 1.3x.

Policy 1 is better suited for hard or soft real-time systems, where computations must meet
deadlines. Policy 2 is a better choice when application throughput is a goal.

78

5.6 EVALUATION METHODOLOGY

Datasets. We use: MNIST [145] CIFAR-10 [146] and the ImageNet dataset ILSVRC
2012 [170]. CIFAR-10 and MNIST have 60K images (50K train set and 10K test set).
For ImageNet, we use 10K randomly sampled images (from 200 randomly selected classes)
from its 50K validation set. We divide each test set into equal-sized calibration set (for
auto-tuning) and test sets (for evaluation).
Benchmarks. We use several CNNs (Table 5.1) and an image processing benchmark that
combines a CNN (AlexNet2) with the Canny edge detection pipeline).

Table 5.1: CNN benchmarks, their datasets, layer count, classification accuracy with FP32 baseline,
and size of auto-tuning search space.

Network Dataset Layers Accuracy Search Space
AlexNet [148] CIFAR-10 6 79.16% 5e+8
AlexNet [148] ImageNet 8 55.86% 5e+8
AlexNet2 CIFAR-10 7 85.09% 2e+10

ResNet-18 [12] CIFAR-10 22 89.44% 3e+22
ResNet-50 [12] ImageNet 54 74.16% 7e+91
VGG-16 [11] CIFAR-10 15 89.41% 3e+22
VGG-16 [11] ImageNet 15 72.88% 3e+22

MobileNet [151] CIFAR-10 28 83.69% 1e+26
LeNet [171] MNIST 4 98.70% 3e+3

5.6.1 Quality Metrics

For CNNs, we measure accuracy degradation with respect to the baseline, denoted ∆QoSx%

for a degradation of x%. For the image processing benchmark, we use average PSNR, be-
tween the output images x and ground truth images x0, given by:

PSNR(x, x0) := −10 log10

∑
i

(x[i]− x0[i])2 (5.9)

(PSNRy denotes a PSNR of y.) A higher PSNR implies better image quality. The
predictive models use the mean square error (exponential of PSNR) as the QoS metric.
Baseline: For our baseline, we map all computations to FP32 with no approximations.

5.6.2 Implementation

Our tensor library (targeted through our compiler backends) uses cuDNN for most tensor
operators, but cannot use it for convolutions because it is proprietary and we cannot mod-
ify it to implement custom algorithms for perforation/sampling. Instead, we developed a

79

Table 5.2: System parameters for the Edge Device. NVIDIA Tegra TX2 board including the
PROMISE accelerator on chip.

Tegra TX2 PROMISE
CPU Cores 6 Memory Banks 256× 16 KB
GPU SMs 2 Frequency 1 GHz

CUDA Cores 256
GPU Frequency 1.12 GHz

DRAM Size 8 GB

hand-optimized convolution operator using CUDA, and optimized using cuBLAS, memory
coalescing, and tuning hardware utilization, thread divergence, and scratchpad usage. Our
CPU implementations vectorize tensor processing loops using OpenMP.
Our implementation is within 10% of PyTorch’s production CUDA-based backend on

average. CuDNN is much faster (2.8X on average), since it is able to use proprietary, device-
specific tuning. Since perforation and sampling reduce both the compute and memory
operations, we expect them to give similar speedups even with the proprietary cuDNN
routines.

5.6.3 Hardware Setup

Client Device Setup.
The client device we use for our experiments (Table 5.2) is the NVIDIA Jetson Tegra

TX2 developer board [137], commonly used in edge applications such as robotics and small
autonomous vehicles [172, 173, 174].
We model an SoC that adds to the TX2 a simulated PROMISE accelerator for machine

learning [23]. GPU, CPU, and PROMISE communicate through global shared memory. We
use a split approach for profiling. We measure performance and power via direct execution
on the GPU and CPU. Our profiler continuously reads GPU, CPU and DRAM power from
Jetson’s voltage rails via an I2C interface [175] at 1 KHz (1 ms period). Energy is calculated
by integrating the power readings using 1 ms timesteps. To model PROMISE, we use
the functional simulator and the validated timing and energy model [23] obtained from its
authors.
Server Setup. We use a server-class machine for development-time tuning and for co-
ordinating install-time distributed predictive tuning. It includes two NVIDIA GeForce
1080Ti GPUs each with 3584 CUDA cores and 11GB of global memory, 20 Intel Xeon
cores (2.40GHz) and 65GB RAM.

80

Table 5.3: System Parameters for Server Device used for development-time autotuning.

Server Setup
NVIDIA GeForce GPU Intel Xeon CPU
GPU Cores 3584 CPU cores 20

GPU Frequency 1.12 GHz CPU Frequency 2.40GHz
GPU SMs 136 DRAM Size 65 GB

Global Memory Size 11 GB

5.6.4 Autotuning Setup

For autotuning search, we use the OpenTuner [75] library. For both empirical and predic-
tive tuning, we use the default OpenTuner setting that uses an ensemble of search techniques
including Torczon hillclimbers, variants of Nelder-Mead search, a number of evolutionary
mutation techniques, and random search.
For each QoS threshold, we run the tuner for a maximum of 30K iterations. We declare

convergence if tuning result doesn’t improve over 1K consecutive iterations. The iterations
required per QoS threshold varies across benchmarks, from 1K (LeNet) to 28K (ResNet-50).
Predictive and Empirical tuning convergence rates are similar across all benchmarks with
an average 8.7K iterations, and 8.2K iterations, respectively.
Selecting Configurations for Shipping. Before QoS validation, we select configurations
that lie within an ε1 distance to the Pareto set (Line 33 of Algorithm 5.1); after auto-
tuning, we select and ship configurations within ε2 distance to the Pareto set (Line 41).
These distance thresholds ε1,2 are computed per-benchmark to limit the maximum number
of configurations validated and shipped. We chose ε1,2 so that at most 50 configurations are
validated and shipped. For our benchmarks, this reduces the number of points by 87x.
Distributed Predictive Tuning Setup. We emulate a setting with 100 edge devices and
a single-server coordinator. Lacking 100 TX2 boards, we measure performance on 1 (out of
100) distributed invocations on the actual TX2 hardware, for 1/100 of the total calibration
inputs. Error profiling and accuracy validation use functional execution on the server.
Runtime Approximation Tuning. On the Tegra TX2, we vary GPU frequency to mimic
low-power execution modes, using 12 different frequencies from 1.3Ghz to 319Mhz. The
performance goal given to the runtime is to maintain the level of performance offered at the
highest frequency mode (1.3Ghz). The frequency is updated after a batch of inputs has been
processed and before the next batch starts. The frequency change is applied instantaneously.
For reliable measurements, we run 200 batches of 500 images each; we divide the 5K test

set into 10 batches and have 20 such runs. We average the processing time and accuracy
across batches. The experiments use Control strategy 2 from Section 5.5, with a sliding
window size of 1 batch execution (500 images). When frequency is reduced at the end of

81

batch n, we measure the imposed slowdown at end of batch n + 1, compute the required
speedup to meet the target performance, and ApproxTuner picks a new configuration from
the trade-off curve. Batch n + 2 is then executed with new approximation configuration.
The overhead of the runtime system to switch between configurations is negligible.

5.7 EVALUATION

We experimentally show benefits of ApproxTuner. We analyze each of 3-stage in Sec-
tion 5.7.1, (development-time), Section 5.7.4 (install-time), and Section 5.7.5 (runtime).
We characterize tuned approximations in Section 5.7.2. We show predictive tuning in Sec-
tion 5.7.3. We demonstrate composite tuning (with multiple QoS metrics) in Section 5.7.6.

5.7.1 Performance and Energy Improvements

Improvements for GPUs. Figures 5.2a and 5.2b show the performance and energy
benefits achieved on the Tegra’s GPU. The X-axis presents the benchmarks, and the Y-axes
represent improvements over the FP32 baseline. We show the results for three levels of spec-
ified accuracy reduction in percentage points: ∆QoS1%, ∆QoS2%, ∆QoS3%. These tuning
results have only hardware-independent approximations (FP16, perforation, sampling). The
improvements are reported after trying both predictors Π1 and Π2, and choosing the best
result (we compare the two predictors in Section 5.7.3).
For ∆QoS1%, ∆QoS2%, and ∆QoS3%, the mean speedups are 2.13x, 2.21x, and 2.26x. The

maximum speedup achieved is 2.75x for VGG-16-ImageNet at ∆QoS3%. On average, FP16
alone provides 1.63x speedup, and moreover, has little effect on accuracy. Sampling and
perforation together give an additional 1.4x speedup, on top of FP16 (e.g., total average
speedups of 2.26x for ∆QoS3%).
Figures 5.2a and 5.2b show that increasing loss threshold from 1%, to 2%, and 3%, provides

higher improvements in six out of ten benchmarks, since it allows the tuner to gradually apply
more aggressive approximation levels. Four networks (VGG16-100, ResNet50, MobileNet,
LeNet), do not show gradual improvement, because more aggressive sampling and perforation
of most layers increase the quality loss immediately beyond 3%.
Energy reductions (Fig. 5.2b) are loosely correlated with performance increases. For

∆QoS1%, ∆QoS2%, and ∆QoS3%, the mean energy reductions are 1.98x, 2.05x and 2.09x.
Improvements for CPUs.
The mean speedups for CPUs for ∆QoS1%, ∆QoS2% and ∆QoS3% are 1.31x, 1.38x and

1.42x. Figure 5.4a shows the speedups for individual benchmarks. The maximum speedup

82

2.13
2.21

2.26

Sp
ee

du
p

1.00

1.50

2.00

2.50

3.00

Alex
net

Alex
net_

im
ag

en
et

Alex
net2

Res
net1

8

Res
net5

0

Vgg16
_1

0

Vgg16
_1

00

Vgg16
_im

ag
en

et

Mobile
net

Len
et

Geo
-m

ea
n

∆QoS 1% ∆QoS 2% ∆QoS 3%

(a)

1.98
2.05 2.09

En
er

gy
 R

ed
uc

tio
n

1.00

1.50

2.00

2.50

3.00

Alex
net

Alex
net_

im
ag

en
et

Alex
net2

Res
net1

8

Res
net5

0

Vgg16
_1

0

Vgg16
_1

00

Vgg16
_im

ag
en

et

Mobile
net

Len
et

Geo
-m

ea
n

∆QoS 1% ∆QoS 2% ∆QoS 3%

(b)

Figure 5.2: (a) Speedups and (b) Energy reductions achieved on GPU using generic approx-
imations for ∆QoS1%, ∆QoS2%, ∆QoS3%.

2.12
1.97

2.25

Sp
ee
du

p

1.00

1.50

2.00

2.50

3.00

Al
ex
ne
t

Al
ex
ne
t_i
ma
ge
ne
t

Al
ex
ne
t2

Re
sn
et1
8

Re
sn
et5
0

Vg
g1
6_
10

Vg
g1
6_
10
0

Vg
g1
6_
im
ag
en
et

Mo
bil
en
et

Le
ne
t

Ge
o-m

ea
n

Predictive-∏1 Predictive-∏2 OpenTuner-Empirical

Figure 5.3: Speedups on GPU with predictive and empirical tuning at development time for
∆QoS3%.

is 1.89x for VGG16-CIFAR10. The energy benefits (across thresholds) are quite similar.
Figure 5.4b shows the speedups for individual benchmarks. The benefits on the CPU are
significantly lower than on the GPU (though still valuable) since the ARM CPUs on the

83

Jetson TX2 board do not support FP16, and so the performance and energy benefits are
due only to sampling and perforation. This particularly affects MobileNet and ResNet-50,
which are not amenable to sampling or perforation.

1.31

1.38
1.42

Sp
ee

du
p

1.00

1.25

1.50

1.75

2.00

Alex
net

Alex
net_

im
ag

en
et

Alex
net2

Res
net1

8

Res
net5

0

Vgg16
_1

0

Vgg16
_1

00

Vgg16
_im

ag
en

et

Mobile
net

Len
et

Geo
-m

ea
n

∆QoS 1% ∆QoS 2% ∆QoS 3%

(a)

1.33

1.41
1.46

En
er

gy
 R

ed
uc

tio
n

1.00

1.25

1.50

1.75

2.00

Alex
net

Alex
net_

im
ag

en
et

Alex
net2

Res
net1

8

Res
net5

0

Vgg16
_1

0

Vgg16
_1

00

Vgg16
_im

ag
en

et

Mobile
net

Len
et

Geo
-m

ea
n

∆QoS 1% ∆QoS 2% ∆QoS 3%

(b)

Figure 5.4: (a) Speedups and (b) Energy reductions achieved on CPU using generic approx-
imations for ∆QoS1%, ∆QoS2%, ∆QoS3%.

5.7.2 Characterizing Approximations

Table 5.4 shows the best performing GPU configurations found by ApproxTuner when
the QoS constraint is set to 3 percentage point drop in inference accuracy. These show the
number of tensor operations that are assigned to the supported approximation knob settings
(or assigned no approximation).
General Trends. We find that the first few layers in the CNNs are relatively less suitable
for approximations compared to the later layers. For 4 of the 10 CNN benchmarks, the first
layer is not mapped to any of the approximation knobs (other than FP16). In ResNet-18
and MobileNet, the first 3 layers are not mapped to perforation or sampling. These insights
show the importance of combining different approximations and the importance of tuning the
choices of combinations to balance accuracy vs. performance gains.

84

We summarize some interesting insights for some representative CNNs. The other CNNs
show similar behaviors to the ones mentioned below (for example, AlexNet2-CIFAR10 be-
haves similarly to AlexNet-CIFAR10.)
LeNet: We find LeNet to be highly approximable. The two convolution layers in LeNet
can map to a variety of different approximation knobs (both perforation and sampling) with
reasonable accuracy impact (below the threshold).
AlexNet-CIFAR10: None of the layers in AlexNet (across configurations) map to the
perforated convolutions approximation, while all layers (in most configurations) are amenable
to filter sampling. We also find that certain convolution operators (in layers 3, 4 and 5) have
relatively less room for approximations since only 25% sampling could be mapped to these
layers - higher levels of sampling result in high accuracy losses.
ResNet18: Across all configurations, 7 of the 21 convolution layers are not mapped to any
approximation. Interestingly, 4 of the 21 layers are only mapped to 33% perforation and all
4 perforations start at different start offsets. Such observations confirm the hypothesis that
varying start offsets with perforation (and sampling) combine well together.
VGG16-100: We find that 3 layers in VGG16-100 can only be mapped to column-based
perforation while row-based perforation leads to high accuracy loss. This shows the value of
having row vs column perforation as a knob exposed to the tuner.
MobileNet: For the best configuration on GPU, only 8 layers (out of 28) could be mapped
to approximation techniques without significant accuracy loss, which is why MobileNet has
the least performance improvement (1.50× speedup) across benchmarks. Interestingly, we
find that certain layers in MobileNet (in layers 5, 9, 10) map well to column perforation but
have high accuracy loss with row perforation.
VGG-16-ImageNet: It is much more amenable to filter sampling than perforation (similar
to AlexNet). Convolution layers 6, 9, and 10 can map to all knobs of sampling.
ResNet50-ImageNet: Across all configurations, at most 13 convolution (from a total of 53)
are mapped to any approximation (excluding FP16), with 10 convolution operators mapped
to 25% perforation. As a result, ResNet50-ImageNet achieves a relatively low speedup of
1.77×, a large portion of which comes from FP16.

5.7.3 Predictive vs Empirical Tuning

Comparing Speedups. We compare our predictive approximation tuning with empirical
tuning, both using OpenTuner system [75]. Figure 5.3 illustrates results for the maximum
bound of 3%. It shows that predictors Π1 and Π2 provide (geometric) mean speedups of
2.12x and 1.97x, compared with 2.25x for empirical tuning. For ResNet-50, Π1 was not

85

Table 5.4: Approximation knobs for top performing GPU configuration (maximum speedup)
for ∆QoS3%.

Benchmark Occurrences of Approximation Knobs
LeNet-5 samp-50%:1 perf-50%:1 FP16:2
AlexNet-CIFAR10 FP16:2 samp-50%:3 samp-25%:1
AlexNet2 FP16:3 perf-50%:1 samp-50%:2 perf-33%:1
VGG-16-10 FP16:4 perf-50%:3 perf-33%:2 samp-50%:6
VGG-16-100 FP16:4 perf-50%:2 samp-50%:8 perf-33%:1
ResNet-18 FP16:13 perf-50%:6 perf-33%:2 samp-25%:1
MobileNet FP16:20 perf-50%:3 perf-33%:3 perf-25%:2
AlexNet-ImageNet FP16:2 perf-50%:1 perf-25%:3
VGG-16-ImageNet FP16:8 perf-50%:1 samp-50%:7
ResNet50-ImageNet FP16:38 perf-50%:1 perf-33%:4 perf-25%:10

usable because it required too much memory. Moreover, using Π1 or Π2, whichever is best,
for each network, gives a mean speedup of 2.26x, which matches empirical tuning. For most
benchmarks, Π1 effectiveness is similar to empirical tuning; Π2 provides lower speedups
because it systematically underestimates accuracy loss for some benchmarks, and therefore
chooses configurations for those benchmarks that are later removed in the accuracy validation
phase.
Effectiveness of Predictors. Figure 5.5 shows the AUC for each benchmark. The mean
AUC across benchmarks for Π1 is 3.37 which is close to empirical tuning an AUC 3.4. Across
benchmarks, Π2 gives a much lower AUC of 2.79 which shows that Π2 is less effective at
finding high quality configurations. These values do not include ResNet-50 since Π1 could
not be applied to ResNet-50 due to memory constraints.
Autotuning Times. Table 5.5 shows the autotuning time for predictive tuning compared
to empirical tuning using OpenTuner. Predictive-p1 and Predictive-p2 are on average 13.75x
and 17.9x faster than empirical tuning. Π1 calculations are significantly slower than Π2’s
on large tensors, e.g., 3.8x and 6.7x slower on VGG16-ImageNet and AlexNet-ImageNet,
respectively. This shows the importance of having both predictors: for large models and
data sets, Π2 is more likely to be feasible and gives good speedups with reasonably good
accuracy, while Π1 is usually more precise but requires more memory.

5.7.4 Install-time tuning

We evaluate the efficacy of our install-tuning strategy in exploiting the low voltage knobs
in the PROMISE accelerator that trade accuracy for energy savings (Section 5.2.3).
Energy Reductions using PROMISE accelerator. Figure 5.6 shows the energy reduc-
tions achieved with install-time predictive distributed tuning compared to empirical tuning.

86

Figure 5.5: Area under the tradeoff curve (AUC) obtained through predictive and empirical
autotuning. Each tradeoff curve is ∆QoS against speedup, and the area is computed between
∆QoS = 0 and ∆QoS = 3.

Table 5.5: Predictive Tuning times compared to Empirical (in minutes). “P1-red” and “P2-red” are
speedups compared to Empirical.

Benchmark Empirical Pred-P1 Pred-P2 P1-red P2-red
LeNet 11.4 1.0 1.1 11.21x 10.61x

AlexNet-CIFAR10 418.7 9.9 11.7 42.27x 35.80x
AlexNet2 133.9 11.1 12.4 12.09x 10.78x
VGG-16-10 1015.3 36.2 25.8 28.06x 39.35x
VGG-16-100 494.6 30.8 25.2 16.03x 19.64x
ResNet18 373.1 27.3 38.4 13.68x 9.72x
MobileNet 772.7 58.7 38.4 13.17x 20.10x

AlexNet-ImageNet 661.1 240.1 25.5 2.75x 25.93x
VGG-16-ImageNet 1937.1 334.9 143.5 5.78x 13.50x
ResNet50-ImageNet 16272.9 — 1042.6 — 15.61x

Geo-mean 13.75x 17.90x

The energy reductions are achieved by mapping tensor operations to the PROMISE accel-
erator and lowering the analog read swing voltages to further lower energy use at the cost of
increased error. On average, using predictor Π1 provides 4.5x energy reduction, compared to
empirical that provides 4.8x reduction. Using predictor Π2 provides reduction of 3.6x. It is
lower than Π1 due to higher prediction error, which leads to missing optimal configurations
during search space exploration.

5.7.5 Runtime Approximation Tuning

GPU frequency has a significant impact on the average system power for Tegra Tx2 (sim-
ilar for other edge devices). In other words, reducing GPU frequency helps lower overall

87

power consumption. Figure 5.8 shows how the GPU, DDR memory, and total system (SYS)
average power (over 10 runs) varies with increasing frequency. These measurements are gath-
ered for ResNet18-CIFAR10 (others have similar trends). While DDR power only slightly
increases (DDR frequency is kept constant), the GPU power increases 7x when frequency in-
creases from 318MHz to 1300MHz. Overall, average power increases by 1.9x with frequency
increasing from 319MHz to 1300MHz.
Due to space constraints, we show 3 of the evaluated CNNs in Figure 5.7 (others show

similar behavior). The X-axis presents the different frequencies, which we vary over time.
The left Y-axis presents the normalized execution time, relative to time taken at the highest
frequency level (1.3Ghz in our experiment). The right Y-axis presents the model accu-
racy (in %).
As we reduce the frequency, the baseline configuration (blue lines in Figure 5.7) slows down

substantially, while accuracy remains unaffected. ApproxTuner’s dynamic tuning counter-
acts the slowdown and maintains the original average batch processing time (orange lines),
while gracefully degrading the inference accuracy (yellow lines, right Y-axis).
The experiment demonstrates that the amount of slowdown tolerated depends on the

permissible QoS threshold. For instance, for ResNet18, a slowdown of 1.45x (at 675Mhz)
can be counteracted with a accuracy drop of 0.33 percentage points, but as much as 1.75x (at

12.6 15.9
10.8

10.5

4.5

8.6

3.3

12.8 16.7
12.2

10.6

4.8

En
er

gy
 R

ed
uc

tio
n

1

2

3

4

5

6

Alex
net

Alex
net_

im
ag

en
et

Alex
net2

Res
net1

8

Res
net5

0

Vgg16
_1

0

Vgg16
_1

00

Vgg16
_im

ag
en

et

Mobile
net

Len
et

Geo
-m

ea
n

Predictive-Π1

12.6 9.8

Predictive-Π2 OpenTuner-Empirical

Figure 5.6: Energy reductions on GPU + PROMISE with install-time distributed predictive
tuning (p1, p2) and empirical tuning for ∆QoS3%.

88

(a) (b)

(c)

Figure 5.7: The figures a), b) and c) show our runtime approximation tuning trades off accuracy to
maintain the same level of responsiveness when frequency levels are reduced. The times on y-axis
are normalized with respect to performance achievable at highest frequency (1.3Ghz). Without
dynamic approximations (the blue line), applications slows down.

497 MHz) can be compensated with an accuracy drop of 1.25 points. At 497MHz, there is
a 1.72x reduction in average power consumed (Figure 5.8). Similarly, for AlexNet-ImageNet
and AlexNet2-CIFAR10, frequency can be reduced up to 586MHz (with 1.7 and 1.9 points of
accuracy loss), while maintaining performance. This reduces average power consumption by
1.66x and 1.62x, respectively (power-frequency graphs not shown for AlexNet and AlexNet2).

5.7.6 Combining CNNs and Image Processing

We experiment with a combined CNN and Image processing benchmark to evaluate: a)
can ApproxTuner tune for multiple QoS metrics? and b) do the predictive tuning strategies
apply beyond CNNs?
The application consists of a CNN (AlexNet2 on CIFAR-10) to classify images to one

of target classes, and only images belonging to specific classes are forwarded for Canny
edge detection. QoS is a pair (PSNR, accuracy), where PSNR measures the quality of
edge detection and accuracy measures if the correct images were sent to the image filter.

89

Figure 5.8: GPU (blue line), DDR (orange line), and overall system (grey line) power across
frequency levels.

Figure 5.9 presents the best configurations achieved on GPU with each QoS pairs. Nine
QoS pairs are evaluated with three different values of PSNR and three different accuracy
values. The Y-axis shows speedup compared to FP32 baseline. As either threshold loosens
(PSNR decreases or accuracy loss increases), speedup increases, since the tuner finds more
opportunities for approximation.
For all pairs (PSNR, accuracy), predictive and empirical tuning find configurations with

comparable speedups, while predictive is 20.1× faster. In five of the nine pairs, predictive
tuning gives slightly higher speedups. Our inspection shows that this is the effect of the
non-deterministic nature of OpenTuner (i.e., randomness in search).

5.8 EXPLORATORY STUDY: TUNING FOR PRUNED MODELS

Model compression techniques such as pruning [97] and quantization [176, 177] have grown
popular. The primary goal of DNN pruning is to reduce the model size and it is shown that
it doesn’t always offer performance improvements [120, 121, 122, 123]. Although adding
pruning (and quantization) to ApproxTuner is beyond the scope of this paper, we want to
investigate if approximations intended for speedup (such as perforation and sampling) can
be applied to pruned models with acceptable accuracy loss.
We perform this experiment in a Pytorch framework with our supported approximations

emulated (using artificial error injections) and applied to pruned models, using empirical
tuning. We consider perforation (for convolutions) and not filter sampling since the latter is

90

Figure 5.9: Speedups achieved on GPU for a grid of accuracy (horizontal) and PSNR (vertical)
thresholds.

similar to pruning (skipping connections). We are currently unable to do this in ApproxTuner
since it does not support sparse tensors required by pruned models. We consider MobileNet,
VGG16, and ResNet18 (CIFAR-10) pruned up to 95.6%, 95.6%, and 91.4%, respectively,
using learning rate rewinding [92].
Figure 5.10 shows the results of optimizing pruned models. Pruning itself causes a small

drop in accuracy (<1%). The X-axis shows additional drop in accuracy incurred by ap-
proximations (perforation). Y-axis shows the resulting reduction in multiply-accumulate
operations (MACs). We report MACs as a proxy measurement for speedup; we were unable
to measure actual execution times since ApproxTuner does not have efficient sparse kernel
implementations.
For less than <1% additional loss in accuracy, across three benchmarks we observe notice-

able reduction in MACs (over the pruned model). The configurations for MobileNet model
give up to 1.3x reduction in MACs, similar for VGG16, and 1.2x reduction for ResNet18.
The key takeaways are that (a) approximation techniques (other than feature sampling),
can be applied to pruned models without unacceptable loss of accuracy, and (b) that these
techniques have at least the potential to give valuable additional speedups.

5.9 CONCLUSION

We proposed ApproxTuner, a compiler and runtime system that uses a 3-phase tuning
approach including development-time, install-time, and runtime tuning. ApproxTuner uses
performance and accuracy prediction heuristics to tune the program at development-time

91

Figure 5.10: Results of tuning pruned models.

and generates a tradeoff curve, it refines this tradeoff curve with performance measurements
and hardware-specific approximations at install-time, and uses this tradeoff curve at runtime
to switch configurations efficiently in response to changing runtime conditions. Across 11
benchmarks, ApproxTuner delivers a geometric mean performance improvement of 2.1x on
the GPU, and 1.3x on the CPU, with only 1 percentage point drop in accuracy. Dynamic
tuning capabilities allow ApproxTuner to adapt application performance to changing run-
time conditions. Overall, ApproxTuner provides a generic approximation-tuning framework
that is extensible to a wide range of software and hardware approximations, for important
application domains such as neural networks and image processing. Our future work includes
extending ApproxTuner to other domains and applying it with an even broader of algorithmic
optimizations.

92

CHAPTER 6: APPROXROBOTICS: THE COST AND ACCURACY
TRADEOFF FOR SMALL MOBILE ROBOTS

6.1 INTRODUCTION

This paper presents an empirical study of tradeoffs, which highlights the significant role
that computational approximations can play in enabling low-cost visually guided autonomous
robots. Autonomous robots are increasingly reliant on visual information for perception,
planning, and control [83, 84, 85, 9, 10, 86, 87]. Visual data can be very high dimensional,
yet, with advances in deep learning, we are now seeing many applications that are able to ex-
tract actionable information through this data. A major challenge is that inference with these
deep learning models is highly computationally expensive to run, especially on hardware de-
vices with limited compute and memory resources. Large robots such as autonomous cars
can afford to have much larger computational payloads, since these are powered by carbon
fuels or large batteries, have sophisticated cooling systems, the cost of compute hardware can
be kept to a small fraction of the total cost. In contrast, small battery-powered autonomous
robots such as those used for agriculture, mining, or remote area exploration, have much
tighter size, weight, and power constraints. Furthermore, cost-sensitive fields like digital
agriculture [88] impose stringent cost constraints as well. For such robots, optimizing the
computational requirements for visual navigation can be crucial.
Hence, a key open question is how the computational requirements for visual navigation

can be optimized to use low cost hardware, in small battery-operated mobile robots. An-
swering this question can provide robot system designers with the understanding necessary
to make optimal hardware choices. Indeed, conservative choices for compute hardware can
be typically traced back to unclear computational requirements of the task-specific software
stack. Even more unclear to robot system designers is whether there is room to reduce
computational demands by using software optimizations.
In this paper, we provide an empirical study that sheds light on the cost and accuracy

tradeoff for small mobile robots. A key insight in this work is that, in the context of feedback
control systems, it may be possible to relax the accuracy of neural networks models for vision
(which are usually the most computationally expensive part of a navigation system), without
significantly hurting navigation robustness. In particular, we show that approximate, pruned
neural network models, which can trade off accuracy for speed, can still provide sufficient task
accuracy when used in robust closed-loop autonomous systems. This enables robot designers
to safely relax some accuracy constraints, and therefore select lower-cost hardware, without

93

expecting to lose task performance quality, even when performing demanding real-world
visual inference tasks such as autonomous navigation in agricultural fields.
In this work, we evaluate these research questions in the context of a small mobile agri-

cultural robot, TerraSentia (obtained from EarthSense [89]), a production agbot that is
used for autonomous navigation through corn fields for high-throughput phenotyping and a
variety of production agriculture tasks. Our results, however, are applicable to any battery
operated small robots that rely on feedback control driven by visual inference for task execu-
tion. The key goal of our work is to investigate to what extent can approximations be used to
trade off model accuracy for performance improvements (in particular, increased frames-per-
second) in the neural-network models used in small autonomous robots. These speedups can
then facilitate using lower-cost compute hardware, or performing additional computations
on the same hardware, or combinations of the two. The primary task under consideration
is visually-guided autonomous navigation between crop rows using a state-of-the-art visual
guidance system, CropFollow [90]. CropFollow uses a (low-cost) front-facing monocular RGB
camera with a pair of convolutional neural networks (CNNs) for predicting the robot heading
and the distance from crop rows, which is then used to perform autonomous row navigation.
To optimize the CNN models, we use a popular technique, structured weight pruning [91,

92, 93], which compresses CNN models by dropping a subset of convolution filters that have
relatively small weights. There is a lot of recent work on network pruning [93, 94, 95, 43,
96, 97, 98], but it remains unclear 1. if it is feasible to apply pruning to CNNs used in the
context of a larger real-world application, especially in the context of closed-loop control
2. is it acceptable to relax some accuracy to gain additional performance while avoiding
observable impact on the end-to-end quality of the application, i.e. without losing control
robustness. Our focus on end-to-end robustness is in contrast with most existing approaches
to neural network pruning, which are aimed at retaining the computational accuracy. This
conservative approach to pruning limits the achievable computational gains as it does not
leverage the inherent robustness of closed-loop autonomous systems.
On the other hand, with our approach of trading off accuracy without losing robustness

(measured as crashes that needed manual interventions), we are able to drive far more
aggressive computational performance improvements, ranging up to 15x (on CPU), with
close to a 2x increase in inference error. These performance speedups allow us to perform the
entire navigation pipeline, including two CNNs, Bayesian sensor fusion and Model Predictive
Control on a low-end $35 Raspberry Pi4 [99].This compares with the $876 Intel NUC [100]
used on commercial TerraSentia robots, and with the $59 Jetson Nano, the cheapest device
we found to deliver necessary performance without approximations. Moreover, the Pi4
requires 30% lower peak power than the Jetson Nano (7W vs 10W).

94

In realistic deployment scenarios, these robots may perform additional tasks such as real-
time data analytics [178], automatic weed removal [179, 178], and automated berry pick-
ing [180] among others.
To evaluate if our optimizations facilitate running multiple tasks on a single resource-

constrained Raspberry Pi4, we also apply our pruning approach to corn stand counting :
a video analytics task for counting corn stands. We show that by only slightly relaxing
requirements for the accuracy of the final result counts enables stand counting to run in
real-time, concurrently with the full navigation pipeline.
Specifically, our contributions are:

• We perform the first empirical study to characterize the impact of neural network model
pruning on the end-to-end navigation quality of an autonomous robot with visually guided
feedback control.

• We show that pruning the convolutional neural network models (CNNs) used in the visual
perception system helps provide the minimal required FPS from the vision models (for
crash-free navigation) on a $35 Raspberry Pi4, making it a feasible choice for compute
hardware.

• We find that the CNN-based autonomous navigation control in the evaluated agbot is
robust to infrequent mispredictions. We also identify pruning settings that introduce
large prediction errors that greatly impact the navigation quality, resulting in crashes.

• By relaxing accuracy constraints, we show that multiple compute-intensive tasks including
the navigation pipeline and 2 instances of stand counting can run on a shared compute-
constrained Raspberry Pi4.

6.2 BACKGROUND: ROBOT SYSTEM DESIGN

6.2.1 Hardware Setup.

The TerraSentia robot is a compact, light weight robot designed to maneuver between
crop rows for commodity crops such as corn, and soybean. It is 55.88 cm long, 30.48 cm
wide and 33.02 cm tall and weighs about 13.6 kg.
In the configuration used for our study, it used a forward-facing camera with 720p res-

olution at 30 fps for row following using the algorithm in [90]. It also has two identical
side cameras on the left and right which are used for high-throughput phenotyping. An

95

Figure 6.1: Workflow of the CropFollow [90] Navigation Pipeline. The front camera images
feed into CNNs for distance and heading predictions. The CNN predictions are fused with
IMU measurements using an Extended Kalman Filter (EKF). The fused state estimations
are used by the MPC for computing angular velocity commands.

embedded 6 DoF Inertial Measurement Unit (IMU) gathers real-time measurements of an-
gular velocity and acceleration. The robot also hosts two 2D horizontal-scanning LIDARs
(one scanning parallel to the ground in the front and one perpendicular in the back) that
are not used in this work. The TerraSentia comes standard with an Intel NUC 10i7FNH
as the primary computer, and a Raspberry Pi3 as a secondary (controls) computer. The
Pi3 on the standard robot runs lower-level control logic, such as the speed and the angular
rate controller. There are a myriad of other digital processors onboard which are delegated
to lower-level control or data-collection tasks that are not relevant here. The Intel NUC is
used for the compute-intensive tasks, and in particular CNN models used with the visual
navigation pipeline [90] run on the integrated GPU. In addition, it runs the high-level MPC

96

controller and real-time data processing workloads. An Intel NUC 10i7FNH of the same
specification as on the robot costs $876 at the time of release [181]. In our work, we want
to replace the Intel NUC on the robot with a single Raspberry Pi4 board that costs $35.
The Raspberry Pi4 includes a quad core cortex-A72 (ARM v8) with max CPU frequency of
1.5 GHz with 2 GB of main memory. The Pi4 has an integrated GPU that is dedicated for
graphics-only.

6.2.2 Autonomous Navigation Software Setup.

Figure 6.1 shows the workflow of the vision-based navigation pipeline [90].
Perception Module. We utilize the CropFollow visual navigation system developed

in [90] as the primary perception module. The perception module takes as input 320 ×
240 RGB images (resized from 720P resolution) and outputs robot heading θ and relative
distance d in the crop row using a CNN for heading prediction and another CNN for distance
prediction. The relative distance d is the ratio of the left distance (from center of robot to left
crop row) to the total distance between two rows, i.e., d = dL/(dL+dR). CropFollow uses a
ResNet-18 backbone pretrained on ImageNet and fine-tuned on labelled crop data, and has
been extensively field validated [90]. In CropFollow, the last layer in both models is modified
to output a continuous value for regression task. We make no architectural modifications to
CropFollow other than neural network approximations described in Section 6.3, below.
Our goal in this work is to study the effect of network optimization on the robustness

of the perception and control system. For this purpose, we replaced the default ResNet-18
in CropFollow with the SqueezeNet-v1.1 model [182] since it has 4.4× fewer parameters
and 3.3× fewer floating point operations (FLOPs) than ResNet-18. SqueezeNet-v1.1 also
has a lower execution time (3.3× faster) and lower accuracy (14% higher error in heading
prediction and 11% higher error in distance prediction) compared to ResNet-18. This makes
SqueezeNet an interesting trade-off point.
IMU Fusion with Extended Kalman Filter. An Extended Kalman Filter (EKF)

is used to fuse CNN predictions with inertial measurements from IMU. The Kalman filter
reduces the effect of uncertainties from a single source (vision or IMU), thereby reducing
the probability of abrupt control variations (e.g., a sudden large turn). The Kalman filter
takes as input a) CNN distance prediction, b) CNN heading prediction, c) robot’s linear
speed from the wheel encoders, d) angular speed from the IMU, and e) the robot state at
the previous time step sk−1, to compute the current state sk. This state includes a heading
estimate and a distance estimate.

97

Model Predictive Controller. A non-linear Model Predictive Controller (MPC) re-
ceives the EKF estimates for heading and distance and solves a constrained optimization
problem (with curvature radius as constraints) to compute angular velocity commands that
keep the robot following the reference path. Since we evaluate “row following,” the reference
path is a straight line through the center of the crop lane.

6.2.3 Real-time Stand Counting Task.

Real-time analytics tasks in digital agriculture are relevant for crop breeders, and also
farmers that need to closely monitor crop health and crop yield [183]. Performing these
tasks in real-time has the advantage of 1. delivering results faster to users, 2. reducing
data transfer and storage costs for large video/data recordings to be analyzed offline, and
3. reduced cloud and server costs for analyzing the data [2]. One such task we evaluate is
corn stand counting: using a stream of images from side cameras to count the number of
corn stands in each crop row. This process involves object detection, which is extremely
expensive for resource constrained systems [184] and challenging to execute in real-time.
We evaluate two algorithmic variants for corn stand counting with the goal of achieving
reasonable accuracy, while being able to perform this task in real-time.
The first algorithm standc-track uses an object detector for detecting individual corn

stands in image frames, and an object tracker that keeps track of specific corn stand instances
across frames to avoid duplicate counting of the same corn stand. For each image frame, the
detector returns bounding boxes around corn stands, which are sent to the tracker to update
its internal state. This approach is similar to other methods for object tracking [185, 186]
and can be used in other similar tasks that require real-time object tracking [187].
We also evaluate a relatively inexpensive algorithm, standc-stride, which uses the

assumption that the robot travels at a constant speed. This is a reasonable assumption
when the robot is in autonomous mode in which it maintains constant speed. Using this
constant robot speed known ahead of time, the algorithm selects frames from the image
stream at a stride such that the corn stands are not repeated in these frames, nor are any
stands missed. Therefore, the overall stand count is the sum of counts (given by object
detector) over these frames. This algorithm applies object detection to much fewer frames
compared to the other variant.
In both variants, we use a Single Shot MultiBox Detector (SSD) as the object detector

[188], with a MobileNet-v2 [189] backbone. For object tracking, we use SORT [190], which
is the fastest object tracking algorithm in MOT Challenge 20 [191].

98

6.3 APPROXIMATION: MODEL PRUNING

In the literature, many different generic or domain-specific approximation techniques have
been proposed for optimizing neural network computations with (potentially) small loss in
inference accuracy. These include perforated convolutions [192] (skipping and interpolating
some output computations), weight pruning (skipping some features in the convolutional
filters) [45, 43, 91, 92], and integer quantization [43] to name a few. In this work, we apply
weight pruning to the convolutional neural networks used in the navigation pipeline and
corn stand counting task.
Weight pruning can be categorized into two major types: 1. unstructured pruning [45, 43]

which removes individual weights that are deemed less important to the overall compu-
tational accuracy (e.g, low-magnitude values), and 2. structured pruning [91, 193] which
removes groups of contiguous weights, for instance, entire filters and channels from convo-
lution layer weights. Unstructured pruning provides much higher reduction in model sizes
(up to 13× in prior work [43]) than structured pruning (up to 4.5× in prior work [193])
since it allows removing weights at a finer granularity. However, prior work [121] has shown
that unstructured pruning introduces unpredictable sparsity in the underlying tensor com-
putations (e.g., convolutions, matrix multiplications), which can lead to slowdown on highly
parallel architectures not well suited to irregular computational patterns, such as GPUs.
In contrast, structured pruning preserves dense computation patterns, which better utilizes
parallel hardware and thus often delivers higher speedups.
In this work, we adopt the structured pruning technique proposed by Li et al. [91]. We

start by training the network for a fixed number of epochs. Then, we repeatedly 1. remove a
fraction of filters with lowest L1-norm values from each convolution layer, and 2. retrain for a
fixed (smaller) number of epochs to recover some accuracy. While [91] is a one-shot pruning
technique, we use it iteratively to obtain multiple models with different performance-accuracy
tradeoffs.
We apply this structured pruning approach to heading and distance prediction models

(Section 6.2.2), and the object detection model (Section 6.2.3) used in corn stand counting.
In these models, convolutions are the most computation-intensive operations, hence, pruning
filters improves performance.

6.4 EXPERIMENTAL METHODOLOGY

Datasets and Model Training. Both ResNet-18 and SqueezeNet-v1.1 for heading and
distance prediction are pretrained on ImageNet and fine-tuned on 25K corn images with

99

heading and distance ratio labels generated from manually annotated vanishing lines [90].
20K images are used for training and 5K images for validation. The learning rate used for
both models is 1e-4 (with AdamW optimizer).
Heading and distance prediction are regression tasks, and they use the mean-squared error

l2 as the loss function in training. We also report the 95-percentile of mean-absolute error
l1 on the validation set: 95% of the validation set images have a mean-absolute error below
this value. For these scalar regression tasks, l1 and l2 are defined as:

l1(pr, gt) := |pr − gt|, l2(pr, gt) := (pr − gt)2 (6.1)

where pr is the predicted value and gt is the groundtruth.
The object detector SSD-MobileNet-V2 is pretrained on the COCO [194] dataset and

fine-tuned on 1K corn-only images with manually labelled bounding boxes. With a 4-to-1
split, 800 images are used for training and 200 for validation. In addition, common data
augmentation techniques are applied. The learning rate used this model is 2e-4.
In the evaluation of stand counting algorithm (as opposed to evaluation of object detector),

we use a dataset of 60 videos, each labelled with the total stand count (a number). Both
datasets are captured using the side cameras during navigation runs of 0.5 m/s. This dataset
contains the same kind of corn (early-season corn) as the object detector is trained on.
For all 3 models, the initial training (baseline models) lasts 100 epochs, and for each prune

step, additional 10 retraining epochs are performed with the same learning rate as initial
training.
Model Pruning. We apply the pruning technique in Section 6.3 with 20 iterations. Each

pruning iteration removes 20% filters with lowest L1-norm independently for each layer.
Due to skip connections in ResNet and SqueezeNet, often fewer than 20% filters get

skipped – skip connections require that filters at non-matching output indices be retained
(to avoid mismatch in output dimensions). Each of the 20 pruning iterations generates
a pruned model that is progressively more pruned and has fewer filters than the previous
iteration. We refer to the output model of each pruning iteration as a prune level and label
these from 1 to 20 inclusive (0 is the unpruned baseline). Higher prune level means fewer
parameters and floating-point operations (FLOPs) but higher error.
We use the same prune level for both heading and distance models when evaluating the

navigation quality. This is because both models run concurrently with their collective output
fed into the EKF, hence, one model running slower than the other slows down the pipeline.
Hardware Setup. We use a Raspberry Pi4 (Section 6.2.1) to evaluate whether pruning

enables the use of low-cost hardware. To understand the impact of FPS (image frames

100

processed per second) changes, we need a device that provides high-enough FPS to allow
artificially varying the FPS. For this, we use a NVIDIA Jetson Nano (4GB memory) [195]
that provides approximately 25 FPS on the baseline ResNet-18 models for heading and
distance prediction.
Field Experiments Setup. We performed our experiments on production corn fields

in late season (fully-grown corn). Each navigation run covers 360 meters over four different
corn rows, each 90 meters in length. Each run varies between 6 minutes to 12 minutes
depending on the robot speed. We evaluate 5 navigation speeds: 0.5 m/s, 0.6 m/s, 0.8 m/s,
1.0 m/s, and 1.2 m/s.
In all the runs, (at least) one human observer follows the robot and measures the number of

crashes, which is when the robot crashes into the corn due to row-following algorithm failure
and requires human intervention. The number of crashes in a run decides its navigation
quality. Correspondingly a crash-free run is a run with strictly 0 crashes.
Offline Analyses. To facilitate our offline analysis (done after field experiments), we

recorded experimental data as rosbags [196] for these rostopics : front camera outputs, head-
ing and distance CNN outputs, EKF outputs, and MPC outputs.
Frameworks and Toolchains. All the DNN models are trained and pruned in PyTorch

before being exported to ONNX [197], a standard intermediate representation for neural
networks. For executing the models on the Raspberry Pi4 CPU, we use the ONNX run-
time [198] with all optimizations enabled. For model execution on Jetson Nano, we use
the NVIDIA TensorRT compiler [199] which automatically applies optimizations including
quantization to FP16, and layer fusion, among others.
The Kalman filter (EKF) and MPC, are developed as ROS components in C++ and

Python for the CropFollow work, and their code is not modified in our work.

6.5 EVALUATION

We evaluate these research questions: RQ1: Does pruning reduce the latency of CNN
predictions and improve the FPS (frames processed per second). RQ2. What are the
minimum FPS requirements from the vision models for crash-free navigation, and does
pruning help satisfy these minimum FPS requirements on the Raspberry Pi4? RQ3. How
do ResNet-18 and SqueezeNet pruned models compare in terms of delivering crash-free
navigation? RQ4. Can pruning object detection models used in corn stand counting enable
it to execute real-time, concurrently with navigation? RQ5. How does prediction error and
FPS impact navigation quality?

101

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
Speed (m/s)

0

1

2

3

4

5
FP

S

Figure 6.2: Minimal required
FPS of the vision DNNs for
different navigation speeds.

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
FPS

0

2

4

6

8

10

12

Cr
as

he
s

Figure 6.3: Impact of in-
creasing FPS on navigation
stability at 1.0 m/s mea-
sured by crashes, using base-
line ResNet-18 heading and
distance models.

0 2 4 6 8 10 12 14
95th-percentile heading loss (deg)

100

101

102

FP
S

0

1 2
3 4

56
78

9
10

11 12
13 14

15
16

17

18

19

20

0 1

2 3
45 6

7 8

9
10

11
12

13

14

15
16

17
1819

20

ResNet-18
SqueezeNet v1.1

Figure 6.4: 95th percentile
loss (in degree) and FPS
of ResNet-18 and SqueezeNet
heading models at different
prune levels (annotated on
each point).

We begin with (i) establishing the minimal FPS requirements of the vision models (heading
and distance) necessary for robust navigation at different navigation speeds, and (ii) evaluate
the accuracy-vs-FPS tradeoff for the individual neural networks at various pruning levels.

6.5.1 Establishing Minimal FPS Requirements

For a model FPS f , where navigation is crash-free, we declare f to be the minimal FPS
if all lower FPS values lead to crashes. In practice, we check 0.5 FPS below f to confirm
f as the minimal FPS and consider this to be sufficient precision. Figure 6.2 shows how
the minimal FPS of the heading and distance models (baseline ResNet-18 models) varies
with increasing robot speed. At 0.5 m/s, 2 FPS was sufficient for crash-free navigation.
At the highest speed of 1.2 m/s, the minimal FPS is 5. Overall, minimal FPS increases
with increasing navigation speed. The reason is that higher speeds require faster control
decisions from the MPC, which requires faster heading and distance estimates from the
EKF, subsequently related to the FPS of the CNN predictions (Figure 6.1).
Figure 6.3 shows how increasing FPS improves the navigation quality. This experiment

is performed on the Jetson Nano with the baseline ResNet-18 models and navigation speed
set to 1.0 m/s. At an FPS of 2 (lower than minimal FPS), the robot had 12 crashes over
the 360-meter run. Increasing the FPS to 3 reduces the number of crashes to 1. With FPS
greater than or equal to 4, the navigation stabilized and resulted in no crashes.

6.5.2 Evaluating Prune Levels on Validation Set

Figure 6.4 shows the tradeoff space of prune levels (level 0 for baseline) for the head-
ing prediction model; distance prediction models show a similar trend. The tradeoff is

102

0 3 6 9 12 15 18 21
Prune Level

0

10

20

30

40
Cr

as
he

s
Crashes
FPS

0.0
2.5
5.0
7.5
10.0
12.5
15.0
17.5
20.0

FP
S

Minimal FPS

Figure 6.5: ResNet-18 perfor-
mance (FPS) and navigation
quality (crashes) across dif-
ferent prune levels.

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
Speed (m/s)

0

2

4

6

8

Pr
un

e
le

ve
l

Figure 6.6: Minimal prune
level to achieve the required
FPS for different navigation
speeds.

0 1 2 3 4 5 6 7 8 9
Prune Level

0

2

4

6

8

10

Cr
as

he
s

Crashes
FPS

0.0
2.5
5.0
7.5
10.0
12.5
15.0
17.5
20.0

FP
S

Minimal FPS

Figure 6.7: SqueezeNet per-
formance (FPS) and naviga-
tion quality (crashes) across
different prune levels.

between performance measured in FPS (number of images processed per second) and the
95th-percentile loss (defined in Section 6.4) on validation set. Losses for the heading model
are measured in degrees. Therefore, points to the upper left are better tradeoff points. The
performance is measured when running the models on the Raspberry Pi4 in isolation (no
other task running) – the results when running the complete CropFollow algorithm (including
both DNN models, EKF and MPC) is shown later.
SqueezeNet is both smaller and less accurate than ResNet-18, thus covering a different

part of the tradeoff space. The baseline version of heading SqueezeNet has 95th-percentile
loss 14% higher than baseline heading ResNet-18, and baseline distance SqueezeNet (not
shown here) has 11% higher loss than distance ResNet-18. On the other hand, baseline
SqueezeNet is 3.3× faster than baseline ResNet-18 (5.5 FPS compared to 1.7).
Figure 6.4 shows that pruning provides significant speedups in FPS. With each higher

prune level (each point is labeled with the prune level in the figure) the loss and FPS both
increase. At the highest prune level of 20, ResNet-18 provides 43 FPS (a 25× increase
from 1.7 FPS of baseline), while SqueezeNet provides 132 FPS (24× from 5.5 FPS). When
considering relatively lower accuracy loss, ResNet-18 provides a better tradeoff as these
points are more to the above and left than the SqueezeNet ones. For instance, ResNet-18
heading model at prune level 20 has higher FPS (43 FPS) while also having slightly lower
loss (7.2 degrees) than SqueezeNet prune level 6 (36 FPS and 7.4 degrees). This shows,
somewhat surprisingly, that pruning the larger, more accurate (but initially more expensive)
model can achieve better frame rates and better accuracy than the smaller model.

6.5.3 Using Pruned Models to Achieve Minimal FPS

We now answer the second research question: whether pruning the vision models makes
it possible to deploy the navigation pipeline on a single Raspberry Pi4 (including EKF,

103

0 3 6 9 12 15 18 21
Prune Level

0

5

10

15

20

25

30
Re

la
ti

ve
 E

rr
or

 (
pe

rc
en

t)

Error Threshold

standc-stride
standc-track

Figure 6.8: Relative error (in
percent) of two stand count-
ing algorithms, measured at
their respective minimal FPS.

0 3 6 9 12 15 18 21
Prune Level

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

FP
S

standc-stride minimal FPS

standc-track minimal FPS

standc-stride
standc-track

Figure 6.9: FPS of de-
tector in two stand count-
ing algorithms. FPS of
stand-stride is measured
with 2 instances running,
while FPS of stand-track is
measured with 1 instance.

R0 S0 R4 R6 R9 S4 S6 R13 R20 S9
Navigation Model

0

4

8

12

16

St
an

d
Co

un
ti

ng
 M

od
el

Low FPS
Low Accuracy
Feasible

Figure 6.10: Prune levels of
vision model in navigation
and detector in stand count-
ing. Rx represents ResNet-
18 level x; S for SqueezeNet.
Each point is color-coded by
its feasibility.

MPC, and other ROS components). Without pruning and with the full pipeline running,
the baseline ResNet-18 models deliver 0.9 FPS, which is significantly less than the minimal
FPS requirement described in Section 6.5.1 (2 FPS @ 0.5 m/s). Section 6.5.2 demonstrates
pruning can provide significant performance gains with some loss in accuracy. Two questions
are left unclear: (a) are these performance gains enough to achieve the minimal FPS for
crash-free navigation, and (b) whether the additional accuracy loss affects the navigation
quality. We use ResNet-18 models in these experiments.
For speed 1.2 m/s, Figure 6.5 shows how varying the prune levels affects the FPS and the

navigation quality (number of crashes). The purple line shows the minimal required FPS
from Figure 6.2, which is 5 FPS for speed 1.2 m/s. The red line shows the FPS achieved at
the different prune levels. As higher prune levels are evaluated (left to right on x-axis), the
FPS increases (right-side y-axis), while the blue line showing the number of crashes (left-side
y-axis) steadily decreases. At prune level 9, the FPS surpasses the minimal FPS, and the
number of crashes reduce to 0. This result shows that pruning not only provides the minimal
FPS, but also the prediction accuracy of the models is still reasonable enough to correctly
guide the control decisions. We evaluate the prediction accuracy of this setting further in
Section 6.5.6.
Figure 6.6 shows the minimal prune level required to achieve the minimal FPS (of ResNet-

18) on the Pi4 across different speeds. Higher speeds require higher FPS, as shown in
Figure 6.2, and hence higher prune levels.

104

6.5.4 Comparing ResNet and SqueezeNet Pruned Models

We discuss how different prune levels of ResNet-18 and SqueezeNet compare in terms
of navigation quality. Figure 6.5 shows the evaluated prune levels (x-axis) for ResNet-18
at speed 1.2 m/s. For ResNet-18, the navigation quality increases as the FPS surpasses
the minimum, and does not decrease at higher prune levels (13 and 20), even though the
prediction error is expected to increase, as shown in Figure 6.4.
For a comparison, Figure 6.7 shows the prune levels, the FPS, and the number of crashes

of SqueezeNet for each evaluated setting. The baseline SqueezeNet provides an FPS of
2.1, which is insufficient for stable navigation and results in 11 crashes. Then, SqueezeNet
provides 6.1 FPS at prune level 4 and 10.8 FPS at prune level 6, both surpassing the minimum
and resulting in no crashes. However, unlike ResNet-18, prune level 9 that delivers sufficient
FPS (19.5 FPS) still results in entirely unstable navigation with 9 crashes. The higher
prune level results in much higher errors (see Figure 6.4), causing the increased crashes.
This result shows the importance of tuning the prune levels to find a suitable tradeoff between
performance and prediction accuracy. In Section 6.5.6, we further discuss how high prediction
errors in the vision models can lead to poor quality control decisions.

6.5.5 Navigating with Task – Real-time Stand Counting

We examine the fourth research question – how model pruning improves stand counting
results – using the two stand counting algorithms in Section 6.2.3. We run 2 instances of
stand counting in parallel (for left and right video streams), concurrently with the navigation
pipeline, all running on the Pi4. For accuracy evaluation, we calculate themean relative error
of stand counts over a video data set (Section 6.4):

MRE(pr, gt) :=
1

N

N−1∑
i=0

|pr[i]− gt[i]|
gt[i]

(6.2)

where N is the size of the dataset, pr is the predicted stand counts, and gt is the
groundtruth stand counts. Throughout this experiment, we use an acceptable accuracy
threshold of 15% mean relative error, and since the evaluation dataset is recorded at 0.5
m/s, we set navigation speed to 0.5 m/s.
Hard FPS Constraints. Based on the navigation speed of 0.5 m/s, we calculate that

the stride at which standc-stride skips entire frames is 15, i.e., two frames that are 15
frames apart would contain non-overlapping but adjacent views. Therefore, 1 image is sent
to detector per 15 images. Together, this yields a minimum requirement of 2 FPS which is

105

a hard constraint. Similarly, we find 16 FPS to be a hard constraint for standc-track,
which uses the SORT object tracker, below which the stand counting quality is irrecoverable.
Intuitively, this is because SORT does not consider image features (only bounding boxes).
It is significantly more difficult to track stands below some FPS where consecutive frames
move more than the distance between bounding boxes.
Algorithm Comparison. Figures 6.8 and 6.9 shows the stand count errors and FPS

achieved by the detector respectively. In Figure 6.8, errors are measured at the FPS require-
ment of each algorithm. With standc-track, we find even the most pruned model cannot
provide 16 FPS with 2 instance running. Therefore, in Figure 6.9, FPS of standc-track
is measured with 1 instance, while stand-stride is with 2 instances.
For each algorithm, a prune level is feasible only if its error is below threshold in Figure

6.8 and its FPS is above threshold in 6.9. Therefore for standc-track, prune level 18 gives
the lowest error of 11.7%, while for standc-stride, the lowest error of 11.8% is achieved
at step 10. While both algorithms achieve similar lowest error within the given hardware
constraint, standc-stride outperforms standc-track as it can execute with 2 instances.
When counting the stands in a field, this will reduce the travel distance of the robot by half
as the robot only need to cover alternate rows. We will use standc-stride for the stand
counting algorithm in the following evaluation.
Tradeoff Space of Stand Counting and Navigation. Figure 6.10 illustrates the over-

all tradeoff space, presented by prune level options in both navigation and stand counting.
For the vision models in the navigation pipeline, there are two “families” of models: Rx
represents ResNet-18 at prune level x, and Sx represents SqueezeNet at prune level x. They
are sorted on the x-axis by the FPS they provide. Each point represents two choices, made
for the two prune levels, and leads to one of three outcomes: 1. Low FPS, when either nav-
igation or stand counting doesn’t meet its FPS requirement; 2. Low Accuracy, when either
component doesn’t meet its accuracy requirement; 3. Feasible, when there is no violation in
accuracy or FPS.
The FPS numbers are measured with standc-stride and navigation pipeline running

together. The accuracy of stand counting is shown above in this subsection, while for the
navigation accuracy we use results from 6.5.3 and 6.5.4.
Given the heavily compute-constrained hardware, the feasible region in the figure is far

away from the origin (baseline). The first feasible navigation model, SqueezeNet at prune
level 6, is 6.5× faster than SqueezeNet baseline and 21.5× faster than ResNet-18 baseline.
This shows aggressive approximations are necessary in both components for the system to
meet its requirements.

106

0 50 100 150 200 250 300 350
Time (sec)

0.3

0.4

0.5

0.6

0.7
D

is
ta

nc
e

0 100 200 300 400 500
Time (sec)

10 8 6 4 2 0
Time Before Crash (sec)

0.3

0.4

0.5

0.6

0.7

D
is

ta
nc

e

4 3 2 1 0
Time Before Crash (sec)

Centered
Left
Right

Figure 6.11: Distance prediction (point location) and
groundtruth (point color) of ResNet prune level 9 (top-left)
and 20 (top-right), and two crashes from SqueezeNet prune
level 9 (bottom).

2 0 2
x (m)

0

2

4

6

8

10

y
(m

)

2.3 FPS

2 0 2
x (m)

0

2

4

6

8

10

y
(m

)

5 FPS

Estimated left row
Estimated right row
Estimated robot position
MPC mid horizon prediction

Figure 6.12: MPC predictions
- ResNet prune level 4 (2.3
FPS) vs ResNet prune level 4
(5 FPS).

6.5.6 Analyzing Navigation Quality Across Pruning Settings

The evaluations above has shown that both the prediction accuracy and FPS of the models
affect navigation quality, by comparing the navigation quality of different prune levels. Below
we further demonstrate these effects with some additional analyses, and show the different
failing patterns of navigation when prediction error is too high or FPS is too low.
Effect of model prediction error. Here we compare the distance prediction and

groundtruth in some runs to show the distance prediction error.
Since the groundtruth distance values in a run is unknown, we manually annotate some

image frames retrieved from rosbag recordings. For prune level 9 and 20 of ResNet-18 that
are crash-free, we label the whole 360-meter run. In addition, we select 2 crashes from prune
level 9 of SqueezeNet and label 10 seconds before each crash. We annotate images with
categorical labels: images visibly on the left or right boundary are labelled as “left” and
“right”, otherwise “center.” Two human annotators label these images and cross-check the
labels to reduce annotation ambiguity.
Top of Figure 6.11 shows the distance predictions and groundtruth over time in the run

for ResNet-18 prune level 9 (left plot) and ResNet-18 prune level 20 (right plot). Each dot
represents one time-step (1 second granularity); its y-value is the distance prediction at the
moment, and its color indicates the groundtruth label of the corresponding image frame.
The distance predictions used here are IMU-fused EKF distance (Section 6.2.2) instead of
the distance model’s output, which better display how mispredictions mislead MPC even
with IMU corrections. These predictions are between 0 (left-most) and 1 (right-most). The
range 0.4-0.6 is considered the center of the corn row (demarcated on the figure).

107

This figure shows two types of mispredictions. A red (left) or yellow (right) dots in the
center region is a false negative, which tells the controller the robot is centered when it’s
not, and may lead to a crash. A green dot outside the center region is a less dangerous false
positive, because when the robot is centered, there is more time to recover from an incorrect
turn.
Prune level 20 of ResNet-18 has more false positives, and is less well-centered (seen from

more yellow dots) than prune level 9. However, in both runs most of the predictions are
overall correct, and our field experiments (Section 6.5.3) confirmed that both settings lead
to crash-free navigation. In contrast, prune level 9 of SqueezeNet results in multiple crashes
and an overall unstable run. Figure 6.11 shows the 2 crashes selected from this run; other
crashes have similar behavior. For both crashes, the central region of the figures show that
the model consistently predicts the robot to be in the center while it is on the right boundary.
This makes the robot susceptible to crashing into the right corn boundary. Due to these
mispredictions, 9 crashes in total occurred in this run.
Effect of model FPS. The output of MPC at a given moment shows the path that the

robot decides to take in the near future, which we find to be effective in highlighting the
effect of vision model FPS.
We first define the mid-horizon prediction output from MPC. At each moment, the MPC

solves an optimization problem to obtain N “amount of turn” values (presented as angular
velocity values) that the robot executes in the subsequent time steps. More specifically, with
the Dubins’ car model [200], the path that the robot will follow in the near future (over
the MPC horizon) is a function of these N angular velocity values. MPC optimizes these
values to minimize a cost function that measures the centeredness of the MPC horizon. The
MPC horizon is 4 meters long with 19 angular velocities commands spaced at 0.2 meters.
The mid-horizon prediction is defined as the mid-point (2 meters from current position) of
the full MPC horizon. We pick the mid-horizon prediction for illustration since subsequent
MPC output updates the current one, and the robot is unlikely to follow the full horizon
from any output.
Figure 6.12 shows the estimated robot position (from encoders and IMU), left/right row

(from EKF using IMU and vision models), and MPC mid-horizon prediction (from MPC),
when running navigation at speed 1.2 m/s with the ResNet-18 models at prune level 4. As
shown in Figure 6.3, ResNet-18 prune level 4 results in crashes since it only delivers 2.3 FPS
while 5 FPS is the minimal FPS requirement at speed 1.2 m/s. Left of Figure 6.12 shows 10
seconds before one such crash using the rosbag recording for this run without modification.
On the right of Figure 6.12, we reenact the same crash but with the vision model running

at a higher FPS. We apply the same vision models to the front camera video from rosbag

108

recording at 5 FPS, and supply these to MPC to generate new MPC mid-horizon predictions;
this is performed offline.
Figure 6.12 illustrates how increasing FPS of CNN predictions can potentially improve

the control decisions and avoid a crash. In the left plot, the MPC mid-horizon predictions
are closer to the row boundaries (blue and orange dotted lines) and overlaps in some cases,
indicating that the robot is likely to border on or collide into the boundary when following
this given path. The right plot shows that MPC predictions are relatively more centered
and in no instance overlaps with the row boundaries. This is because higher FPS predictions
allow the MPC to quickly calibrate the angular velocity commands, and accordingly the path
predictions. Overall, the experiment shows how high FPS of CNN predictions can improve
navigation control.

6.6 DISCUSSION AND CONCLUSIONS

Alternate Choices for Compute Hardware. For vision-based navigation, the $59
Jetson Nano (2GB) the $75 Myriad were also feasible alternatives to the NUC, providing
25 FPS (on GPU) and 10 FPS respectively, for vision models. However, Intel Myriad needs
a host device to which it connects via USB, and hence the cost of compute would need to
account for a host board. In contrast, the Jetson Nano is a standalone device with on board
CPU and GPU. Since Nano provides sufficient FPS on the baseline models (using the GPU),
pruning the models is not strictly necessary for navigation alone. However pruning models on
the Nano is still beneficial since it can potentially frees up the GPU (more compute-capable
than CPU) for heavy-weight workloads while only using the CPU (which has similar specs
to Raspberry Pi4) for the full navigation pipeline. The Raspberry Pi4 was our hardware
of choice considering it has significantly lower cost ($35) and power consumption (7W)
compared to Nano (10W) [201].
Future Research. A promising avenue for future research is other agriculture tasks such

as berry-picking [180] that also use compute-intensive models. Efficiently running these tasks
on commodity edge hardware is an open research problem.
In conclusion, our study shows that exploiting accuracy-performance tradeoffs can offer

significant opportunities for optimization in autonomous robot navigation systems used in
production. We believe that these results will open up further avenues for relaxing accuracy
constraints in other related application domains, such as autonomous drones, autonomous
vehicles, and other similar mobile robots.

109

CHAPTER 7: IMPLICATIONS FOR CURRENT PRACTICE

With the slowdown of Moore’s law and end of Dennard scaling, there is increasing ex-
pectation that production compilers and runtimes deliver software optimizations that help
bridge the gap between compute demands and limited compute resources. The promising
results in this thesis show that there is an opportunity for production compilers and run-
times to re-envision application accuracy as a tunable quality knob as opposed to a strict
correctness issue, and exploit approximation techniques to achieve performance and energy
improvements. While many proposed approximations in literature have shown value in im-
proving performance for a wide range of domains, approximate computing remains a largely
untapped opportunity for optimization in production systems. I believe ApproxHPVM is
the first step towards practical adoption of approximations in real-world applications and
deployments.
ApproxHPVM and ApproxTuner are majorly focused on optimizing convolutional neural

networks (CNNs). The performance optimizations shown for these CNN models indicate
that there is potential for optimizing other machine learning models such as recurrent neu-
ral networks (RNNs), Transformers, and generative adversarial networks (GANs). Most of
these models consist of similar tensor operations, for instance, convolutions and matrix mul-
tiplication, and hence approximations in this work are also applicable in the context of other
machine learning applications, and more generally other tensor-based domains (e.g., image
processing applications). ApproxHPVM is currently limited to supporting approximations
and approximation-tuning for tensor operations, hence, in its current form it cannot be used
for non-tensor domains. ApproxHPVM is being continuously extended to include support
for a wider range of application domains and operation types.
The predictive tuning models used in ApproxTuner have only been evaluated in the context

of CNNs and an image processing benchmark. For non-tensor domains, I believe there is
potential for exploring the same idea of predicting end-to-end accuracy from the accuracy
impact on individual operations. The predictive model Π1 is less generalizable to other
domains since it uses and sums up the tensor differences before evaluating the predicted
QoS. Π2 was shown to be less precise in predicting the accuracy for CNNs but is more
generalizable to other domains since it only considers the differences in the end-to-end QoS.
ApproxHPVM draws a distinction between hardware-independent and hardware-specific

approximations. This has implications for application developers that make their programs
available for download on package managers and want to benefit from ahead-of-time opti-
mizations before shipping the application to a user’s device (mobile, laptop, tablet etc.).

110

Hardware-independent approximations produce the same result output across hardware de-
vices and can hence be performed in the ahead-of-time development-tuning phase; this ap-
proach has the benefit of reducing install-times, improving the end-use experience. On the
other hand, hardware-specific approximations (e.g., accelerators with approximation knobs)
are an important optimization opportunity that an application should exploit to achieve
maximum performance. Application developers are encouraged to identify the components
that may benefit from install-time tuning and use ApproxHPVM to autotune the program
with these additional hardware-specific knobs.
ApproxHPVM and ApproxTuner take a slightly different approach to approximation tun-

ing. ApproxHPVM uses accuracy metrics to assign error budgets in an approximation-
agnostic manner, while ApproxTuner directly tunes the program with approximations ap-
plied in autotuning loop. We found the approach of using L1 and L2 norm accuracy metrics
to work well with errors that are independent of the inputs used (random Gaussian errors)
and not well with approximations that introduce noise that is highly dependent on the values
in the input tensors (e.g., perforation, sampling). If developers are to use approximations
that introduce i.i.d. errors (independent and identically distributed), approximation metrics
have the major benefit of enabling a very fast install-time phase where approximation selec-
tion is merely a lookup table. In contrast, ApproxTuner uses the relatively more expensive
approach of retuning the program with additional hardware-specific choices, but it applies
to a much wider range of approximations since it makes no assumptions about the types of
error introduced by approximation.
ApproxHPVM is developed with the philosophy of making it easier for developers to use

approximations by exposing only high-level accuracy specifications to use for tuning. The
choice of high-level accuracy specifications to use and selection of application component
to approximate are left to the developer/user. In scenarios where the amount of tolerable
accuracy loss is unclear, users are encouraged to experiment with a variety of different
thresholds and measure the impact of the overall application quality, in the specific context
of use. For instance, the amount of PSNR loss acceptable on a image processing filter
used in a photo editing application is likely dependent on how much noise (introduced by
approximations) is imperceptible to the human eye.
Approximations are particularly relevant in application domains and usage scenarios where

loss in accuracy has minimal effect on the overall quality of the larger application deployment.
For instance, in this thesis, we show that relaxing accuracy requirements from convolutional
neural networks used in a robot navigation system had no noticeable impact on the quality
of the autonomous navigation. However, not all applications or deployment settings may
have such error tolerance. In safety critical applications (self driving vehicles, autonomous

111

planes and drones, medical equipment etc.) where correctness is paramount, even minor
degradation in accuracy may lead to unintended consequences. Hence the opportunity for
relaxing accuracy constraints is highly dependent on the context of use and the willingness
of the user to accept the worst-case result on an infrequent basis. For instance, for the
agriculture monitoring robot we experimented with approximations, the worst case result
is a robot crash - which may cause some minimal localized damage to crops and require
manual human intervention. This is contrast to settings where human life is dependent on
the guaranteed correctness of the application program.

112

CHAPTER 8: FUTURE WORK

I believe that the research directions proposed in this dissertation open up further oppor-
tunities for systems research in approximate computing. Below, I describe some possible
future directions for extending the research presented in this dissertation.

8.1 SUPPORT FOR MORE APPLICATION DOMAINS

In our work, we extended HPVM IR with tensor operations used in the deep learning and
image processing domains. The design choice of supporting high-level operations at the IR
level enables mapping to efficient hardware level primitives, facilitates translation to high-
level library operations, and allows for leveraging domain-specific analyses and optimizations.
Our implementation includes a small but representative set of operators. I believe there

is much room for incorporating a wider range of tensor operations to support a wider range
of machine learning, and image/video processing applications. Moreover, there is an oppor-
tunity to extend HPVM for other application domains including but not limited to graph
processing, probabilistic computing, augmented and virtual reality (AR/VR). Incorporating
support for these domains requires: a) identifying common high-level operators and algo-
rithms used in these domains, b) developing approximate algorithms and transformations
that provide useful accuracy and performance trade-offs, c) tailoring the approximation-
tuning analyses to work with new kinds of operators, and d) identifying and developing
metrics to use for tuning.

8.2 TRANSLATION TO APPROXIMATE HARDWARE ACCELERATORS

ApproxHPVM and ApproxTuner can map high-level IR operators to hardware knobs that
control accuracy and performance trade-offs. To demonstrate this, we used the PROMISE
analog compute accelerator that provides efficient tensor computations with some reductions
in accuracy. As part of future work, we would like to support more such (production and
research) hardware accelerators that include probabilistic and/or non-deterministic compo-
nents.
In the presence of stochastic operators, we empirically evaluate a candidate configura-

tion (mapping of approximation knobs to operators) to provide statistical guarantees (e.g.,
percentage of success over multiple runs) on the end-to-end computational accuracy being
higher than the user-given threshold. I believe there is significant room for developing static

113

analyses that provide stronger guarantees on the accuracy bounds and is extensible to dif-
ferent kinds of hardware compute units and approximation choices. These analyses should
consider: a) the random variation in stochastic hardware/software operators, b) the approx-
imation knobs selected for each computation, and c) the error propagation properties of the
target program, to compute bounds on the end-to-end program accuracy/quality.

8.3 AUTOMATIC GENERATION OF APPROXIMATE KERNELS

Currently, we use hand-written approximate kernels for convolution and reduction oper-
ations. These kernels are hand-optimized for the specific GPU (NVIDIA Jetson) and CPU
architectures (ARM A57). Due to this, these kernels are not expected to exhibit performance
speedups (and energy reductions) across different kinds of architectures. The choice of the
target architecture impacts many optimization choices including tile sizes, SIMD processors
for parallelization and vectorization, cache and scratchpad sizes, available registers among
other such low-level hardware characteristics.
Systems such as TVM [67] include support for automatically generating low-level architec-

ture specific code from high-level operators (e.g., matrix multiplication) and automatically
tune the optimization parameters. I believe there is an opportunity for combining these
automatic code generation capabilities in other similar systems with the approximation tun-
ing capabilities in ApproxHPVM and ApproxTuner. To facilitate the use of approximations
across multiple hardware architectures, it is important to relieve developers from the burden
of hand-optimizing code for each architecture by automatically generating low-level opti-
mized code for approximate kernels.

8.4 DOMAIN-SPECIFIC APPROXIMATION TECHNIQUES

In ApproxTuner and ApproxTuner we support software and hardware approximations
for tensor operations, mainly convolution operations. To maintain the generality of our
framework, we focused on supporting approximations that apply generally to tensor-based
programs and avoid using domain-specific techniques. Some domain-specific techniques
that have shown to provide significant performance benefits include: neural network prun-
ing [45, 202, 97, 120, 203], neural network quantization [124, 67] for low-bit operators, low-
rank factorization [44] for neural networks, sample skipping for image processing, frame
skipping for video processing among others. We believe that combining generic tensor-based
approximations such as input sampling and perforation (both supported in ApproxTuner)

114

with domain-specific optimizations can yield to higher performance improvements than either
of these alone. Our preliminary experiments on applying perforation and sampling (using
ApproxTuner) to pruned CNN models shows that there is potential for further improvements
(Section 6.3).

8.5 EXTENDING APPROXIMATION-TUNING WITH MODEL RETRAINING
SUPPORT.

Deep learning model optimizations such as DNN pruning use model retraining (fine-tuning
the weights) to recover the accuracy loss due to pruning network connections [43, 45]. Simi-
larly, for the deep learning benchmarks supported in our framework model retraining can be
used to help recover the accuracy loss due to approximations. Retraining can enable higher
approximation levels (i.e., more operations approximated) since fine-tuning model weights
can create a program state that is more resilient to errors due to approximations.
Retraining is usually a time-consuming task (for any reasonably sized model architecture)

and hence it is entirely infeasible to perform a retraining step for each candidate configuration
navigated in the autotuning search space. There is room for developing techniques that
selectively apply retraining to a few promising configurations, achieving a balance between
the quality of the configurations discovered and the autotuning times.

115

REFERENCES

[1] R. St. Amant, A. Yazdanbakhsh, J. Park, B. Thwaites, H. Esmaeilzadeh, A. Hassibi,
L. Ceze, and D. Burger, “General-purpose code acceleration with limited-precision
analog computation,” in Proceeding of the 41st Annual International Symposium on
Computer Architecture, ser. ISCA ’14. Piscataway, NJ, USA: IEEE Press, 2014.
[Online]. Available: https://dl.acm.org/doi/10.1145/2678373.2665746 pp. 505–516.
[Cited on pages 1, 2, and 25.]

[2] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge Computing: Vision and Challenges,”
IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637–646, 2016. [Cited on pages 1
and 98.]

[3] M. Satyanarayanan, “The Emergence of Edge Computing,” Computer, vol. 50, no. 1,
pp. 30–39, 2017. [Cited on page 1.]

[4] W. Shi and S. Dustdar, “The Promise of Edge Computing,” Computer, vol. 49, no. 5,
pp. 78–81, 2016. [Cited on page 1.]

[5] X. Zhou, R. Canady, S. Bao, and A. Gokhale, “Cost-effective hardware accelerator
recommendation for edge computing,” in 3rd {USENIX} Workshop on Hot Topics in
Edge Computing (HotEdge 20), 2020. [Cited on page 1.]

[6] H. Li, K. Ota, and M. Dong, “Learning IoT in Edge: Deep Learning for the Internet
of Things with Edge Computing,” IEEE Network, vol. 32, no. 1, pp. 96–101, Jan 2018.
[Cited on pages 1 and 64.]

[7] D. Azariadi, V. Tsoutsouras, S. Xydis, and D. Soudris, “ECG signal analysis and
arrhythmia detection on IoT wearable medical devices,” in 2016 5th International
Conference on Modern Circuits and Systems Technologies (MOCAST), May 2016, pp.
1–4. [Cited on pages 1 and 64.]

[8] M. Mehrabani, S. Bangalore, and B. Stern, “Personalized speech recognition for inter-
net of things,” in 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT), Dec
2015, pp. 369–374. [Cited on pages 1 and 64.]

[9] L. Ran, Y. Zhang, Q. Zhang, and T. Yang, “Convolutional neural network-based robot
navigation using uncalibrated spherical images,” Sensors, vol. 17, no. 6, p. 1341, 2017.
[Cited on pages 1, 15, and 93.]

[10] W. Chen, T. Qu, Y. Zhou, K. Weng, G. Wang, and G. Fu, “Door recognition and
deep learning algorithm for visual based robot navigation,” in 2014 IEEE International
Conference on Robotics and Biomimetics (ROBIO 2014). IEEE, 2014, pp. 1793–1798.
[Cited on pages 1, 15, and 93.]

[11] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-
scale Image Recognition,” CoRR, vol. abs/1409.1556, 2014. [Online]. Available:
http://arxiv.org/abs/1409.1556 [Cited on pages 1, 51, and 79.]

116

https://dl.acm.org/doi/10.1145/2678373.2665746
http://arxiv.org/abs/1409.1556

[12] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June
2016, pp. 770–778. [Cited on pages 1, 51, and 79.]

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep
convolutional neural networks,” Communications of the ACM, vol. 60, no. 6, pp. 84–
90, 2017. [Cited on page 1.]

[14] P. Stanley-Marbell, A. Alaghi, M. Carbin, E. Darulova, L. Dolecek, A. Gerstlauer,
G. Gillani, D. Jevdjic, T. Moreau, M. Cacciotti, A. Daglis, N. D. E. Jerger, B. Falsafi,
S. Misailovic, A. Sampson, and D. Zufferey, “Exploiting errors for efficiency: A survey
from circuits to algorithms,” CoRR, vol. abs/1809.05859, 2018. [Online]. Available:
http://arxiv.org/abs/1809.05859 [Cited on pages 1 and 64.]

[15] J. San Miguel, M. Badr, and N. E. Jerger, “Load value approximation,” in 2014 47th
Annual IEEE/ACM International Symposium on Microarchitecture. IEEE, 2014, pp.
127–139. [Cited on page 2.]

[16] M. Sutherland, J. San Miguel, and N. E. Jerger, “Texture cache approximation on
gpus,” in Workshop on Approximate Computing Across the Stack, 2015. [Cited on
page 2.]

[17] Y. Fang, H. Li, and X. Li, “SoftPCM: Enhancing energy efficiency and lifetime of phase
change memory in video applications via approximate write,” in 2012 IEEE 21st Asian
Test Symposium. IEEE, 2012, pp. 131–136. [Cited on page 2.]

[18] V. K. Chippa, D. Mohapatra, K. Roy, S. T. Chakradhar, and A. Raghunathan, “Scal-
able effort hardware design,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 22, no. 9, pp. 2004–2016, 2014. [Cited on page 2.]

[19] C. Rubio-González, C. Nguyen, H. D. Nguyen, J. Demmel, W. Kahan, K. Sen, D. H.
Bailey, C. Iancu, and D. Hough, “Precimonious: Tuning assistant for floating-point
precision,” in High Performance Computing, Networking, Storage and Analysis (SC),
2013 International Conference for. IEEE, 2013, pp. 1–12. [Cited on pages 2 and 26.]

[20] P. Düben, S. Yenugula, J. Augustine, K. Palem, J. Schlachter, C. Enz, T. Palmer et al.,
“Opportunities for energy efficient computing: A study of inexact general purpose pro-
cessors for high-performance and big-data applications,” in 2015 Design, Automation
& Test in Europe Conference & Exhibition (DATE). IEEE, 2015, pp. 764–769. [Cited
on page 2.]

[21] M. Jung, D. M. Mathew, C. Weis, and N. Wehn, “Approximate computing with par-
tially unreliable dynamic random access memory-approximate DRAM,” in Proceedings
of the 53rd Annual Design Automation Conference, 2016, pp. 1–4. [Cited on page 2.]

[22] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn, “Flikker: saving DRAM
refresh-power through critical data partitioning,” in Proceedings of the sixteenth inter-
national conference on Architectural support for programming languages and operating
systems, 2011, pp. 213–224. [Cited on page 2.]

117

http://arxiv.org/abs/1809.05859

[23] P. Srivastava, M. Kang, S. K. Gonugondla, S. Lim, J. Choi, V. Adve, N. S. Kim, and
N. Shanbhag, “PROMISE: An End-to-end Design of a Programmable Mixed-signal
Accelerator for Machine-learning Algorithms,” in Proceedings of the 45th Annual
International Symposium on Computer Architecture, ser. ISCA ’18. Piscataway, NJ,
USA: IEEE Press, 2018. [Online]. Available: https://doi.org/10.1109/ISCA.2018.00015
pp. 43–56. [Cited on pages 2, 5, 12, 25, 27, 29, 36, 46, 47, 64, 65, 68, 71, and 80.]

[24] B. Li, P. Gu, Y. Shan, Y. Wang, Y. Chen, and H. Yang, “RRAM-based analog ap-
proximate computing,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 34, no. 12, pp. 1905–1917, 2015. [Cited on page 2.]

[25] A. B. Kahng and S. Kang, “Accuracy-configurable adder for approximate arithmetic
designs,” in Proceedings of the 49th Annual Design Automation Conference, 2012, pp.
820–825. [Cited on page 2.]

[26] P. Kulkarni, P. Gupta, and M. Ercegovac, “Trading accuracy for power with an un-
derdesigned multiplier architecture,” in 2011 24th Internatioal Conference on VLSI
Design. IEEE, 2011, pp. 346–351. [Cited on page 2.]

[27] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural acceleration
for general-purpose approximate programs,” in Proceedings of the 2012 45th
Annual IEEE/ACM International Symposium on Microarchitecture, ser. MICRO-
45. Washington, DC, USA: IEEE Computer Society, 2012. [Online]. Available:
https://doi.org/10.1109/MICRO.2012.48 pp. 449–460. [Cited on pages 2 and 25.]

[28] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural acceleration for
general-purpose approximate programs,” Communications of the ACM, vol. 58, no. 1,
pp. 105–115, 2014. [Cited on page 2.]

[29] I. Goiri, R. Bianchini, S. Nagarakatte, and T. D. Nguyen, “ApproxHadoop: Bringing
approximations to mapreduce frameworks,” in Proceedings of the Twentieth Interna-
tional Conference on Architectural Support for Programming Languages and Operating
Systems, 2015, pp. 383–397. [Cited on page 2.]

[30] A. Raha, S. Venkataramani, V. Raghunathan, and A. Raghunathan, “Quality config-
urable reduce-and-rank for energy efficient approximate computing,” in 2015 Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2015, pp.
665–670. [Cited on page 2.]

[31] H. Hoffmann, S. Misailovic, S. Sidiroglou, A. Agarwal, and M. Rinard, “Using code per-
foration to improve performance, reduce energy consumption, and respond to failures,”
2009. [Cited on pages 2, 3, 4, 7, 8, and 21.]

118

https://doi.org/10.1109/ISCA.2018.00015
https://doi.org/10.1109/MICRO.2012.48

[32] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and M. Rinard, “Managing
performance vs. accuracy trade-offs with loop perforation,” in Proceedings of the
19th ACM SIGSOFT Symposium and the 13th European Conference on Foundations
of Software Engineering, ser. ESEC/FSE ’11. New York, NY, USA: ACM, 2011.
[Online]. Available: http://doi.acm.org/10.1145/2025113.2025133 pp. 124–134. [Cited
on pages 2, 3, 4, 7, 19, 20, and 26.]

[33] M. Samadi, D. A. Jamshidi, J. Lee, and S. Mahlke, “Paraprox: Pattern-
based Approximation for Data Parallel Applications,” in Proceedings of the 19th
International Conference on Architectural Support for Programming Languages and
Operating Systems, ser. ASPLOS ’14. New York, NY, USA: ACM, 2014. [Online].
Available: http://doi.acm.org/10.1145/2541940.2541948 pp. 35–50. [Cited on pages 2,
3, 4, 7, 8, 15, 20, and 26.]

[34] S. Misailovic, S. Sidiroglou, and M. C. Rinard, “Dancing with uncertainty,” in
Proceedings of the 2012 ACM Workshop on Relaxing Synchronization for Multicore
and Manycore Scalability, ser. RACES ’12. New York, NY, USA: ACM, 2012.
[Online]. Available: http://doi.acm.org/10.1145/2414729.2414738 pp. 51–60. [Cited
on pages 2, 4, 7, and 26.]

[35] Z. A. Zhu, S. Misailovic, J. A. Kelner, and M. Rinard, “Randomized accuracy-aware
program transformations for efficient approximate computations,” in Proceedings of
the 39th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, ser. POPL ’12. New York, NY, USA: ACM, 2012. [Online]. Available:
http://doi.acm.org/10.1145/2103656.2103710 pp. 441–454. [Cited on pages 2, 3, 4, 7,
26, 71, and 78.]

[36] J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao, A. Edelman, and
S. Amarasinghe, “PetaBricks: A Language and Compiler for Algorithmic Choice,”
in Proceedings of the 30th ACM SIGPLAN Conference on Programming Language
Design and Implementation, ser. PLDI ’09. New York, NY, USA: ACM, 2009.
[Online]. Available: http://doi.acm.org/10.1145/1542476.1542481 pp. 38–49. [Cited
on pages 2, 3, 4, 6, 7, 8, 15, 19, 20, and 31.]

[37] G. Keramidas, C. Kokkala, and I. Stamoulis, “Clumsy Value Cache: An Approxi-
mate Memoization Technique for Mobile GPU Fragment Shaders,” in Workshop on
Approximate Computing (WAPCO’15), 2015. [Cited on page 2.]

[38] A. Rahimi, L. Benini, and R. K. Gupta, “Spatial memoization: Concurrent instruction
reuse to correct timing errors in simd architectures,” IEEE Transactions on Circuits
and Systems II: Express Briefs, vol. 60, no. 12, pp. 847–851, 2013. [Cited on page 2.]

[39] S. Misailovic, D. Kim, and M. Rinard, “Parallelizing sequential programs with
statistical accuracy tests,” ACM Transactions Embedded Computing Systems (TECS),
vol. 12, pp. 88:1–88:26, May 2013. [Online]. Available: http://doi.acm.org/10.1145/
2465787.2465790 [Cited on pages 2, 26, and 44.]

119

http://doi.acm.org/10.1145/2025113.2025133
http://doi.acm.org/10.1145/2541940.2541948
http://doi.acm.org/10.1145/2414729.2414738
http://doi.acm.org/10.1145/2103656.2103710
http://doi.acm.org/10.1145/1542476.1542481
http://doi.acm.org/10.1145/2465787.2465790
http://doi.acm.org/10.1145/2465787.2465790

[40] H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic, A. Agarwal, and M. Rinard,
“Dynamic knobs for responsive power-aware computing,” ser. ASPLOS, 2011. [Cited
on pages 2, 3, 7, 8, 19, 21, and 26.]

[41] H. Hoffmann, “JouleGuard: Energy Guarantees for Approximate Applications,” in
Proceedings of the 25th Symposium on Operating Systems Principles. ACM, 2015,
pp. 198–214. [Cited on pages 2, 3, 7, 8, and 21.]

[42] R. Xu, J. Koo, R. Kumar, P. Bai, S. Mitra, S. Misailovic, and S. Bagchi,
“VideoChef: Efficient Approximation for Streaming Video Processing Pipelines,”
in 2018 USENIX Annual Technical Conference (USENIX ATC 18). Boston, MA:
USENIX Association, 2018. [Online]. Available: https://www.usenix.org/conference/
atc18/presentation/xu-ran pp. 43–56. [Cited on pages 2, 15, and 52.]

[43] S. Han, H. Mao, and W. J. Dally, “Deep Compression: Compressing Deep Neural
Networks with Pruning, Trained Quantization and Huffman Coding,” 2015. [Cited on
pages 2, 3, 16, 19, 26, 94, 99, and 115.]

[44] S. Han, H. Shen, M. Philipose, S. Agarwal, A. Wolman, and A. Krishnamurthy,
“MCDNN: An approximation-based execution framework for deep stream processing
under resource constraints,” in Proceedings of the 14th Annual International Confer-
ence on Mobile Systems, Applications, and Services. ACM, 2016, pp. 123–136. [Cited
on pages 2, 3, 7, 8, 15, 22, and 114.]

[45] Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal Brain Damage,” in Advances in
neural information processing systems, 1990, pp. 598–605. [Cited on pages 2, 3, 26,
99, 114, and 115.]

[46] M. Figurnov, A. Ibraimova, D. P. Vetrov, and P. Kohli, “PerforatedCNNs: Acceleration
through Elimination of Redundant Convolutions,” in Advances in Neural Information
Processing Systems, 2016, pp. 947–955. [Cited on pages 2, 4, and 7.]

[47] C. Sakr and N. Shanbhag, “An analytical method to determine minimum per-layer
precision of deep neural networks,” in 2018 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP). IEEE, 2018, pp. 1090–1094. [Cited on
pages 2 and 27.]

[48] A. Bulat and G. Tzimiropoulos, “XNOR-Net++: Improved binary neural networks,”
arXiv preprint arXiv:1909.13863, 2019. [Cited on page 2.]

[49] M. Samadi, J. Lee, D. A. Jamshidi, A. Hormati, and S. Mahlke, “Sage: Self-tuning
approximation for graphics engines,” in Proceedings of the 46th Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO-46. New York, NY,
USA: ACM, 2013. [Online]. Available: http://doi.acm.org/10.1145/2540708.2540711
pp. 13–24. [Cited on pages 2, 3, 4, 7, 8, 15, 19, and 21.]

120

https://www.usenix.org/conference/atc18/presentation/xu-ran
https://www.usenix.org/conference/atc18/presentation/xu-ran
http://doi.acm.org/10.1145/2540708.2540711

[50] N. P. Jouppi, C. Young, N. Patil, D. A. Patterson, G. Agrawal, R. Bajwa, S. Bates,
S. Bhatia, N. Boden, A. Borchers, R. Boyle, P. Cantin, C. Chao, C. Clark,
J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V. Ghaemmaghami, R. Gottipati,
W. Gulland, R. Hagmann, C. R. Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt,
J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan, H. Khaitan, D. Killebrew, A. Koch,
N. Kumar, S. Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin,
G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Nagarajan, R. Narayanaswami,
R. Ni, K. Nix, T. Norrie, M. Omernick, N. Penukonda, A. Phelps, J. Ross, M. Ross,
A. Salek, E. Samadiani, C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg,
A. Swing, M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Walter,
W. Wang, E. Wilcox, and D. H. Yoon, “In-Datacenter Performance Analysis of a
Tensor Processing Unit,” in Proceedings of the 44th Annual International Symposium
on Computer Architecture, ISCA 2017, Toronto, ON, Canada, June 24-28, 2017.
ACM, 2017. [Online]. Available: https://doi.org/10.1145/3079856.3080246 pp. 1–12.
[Cited on pages 2, 3, 5, 25, 29, 64, and 65.]

[51] “NVDLA Deep Learning Inference Compiler is Now Open Source,” https://developer.
nvidia.com/blog/nvdla/, 2019. [Cited on pages 2, 3, 5, 25, 29, and 65.]

[52] “Intel Neural Compute Stick 2,” https://www.intel.com/content/dam/support/us/en/
documents/boardsandkits/neural-compute-sticks/NCS2_Product-Brief-English.pdf,
2019. [Cited on pages 2, 3, 5, 25, 29, and 65.]

[53] A. X. M. Chang and E. Culurciello, “Hardware accelerators for recurrent neural net-
works on FPGA,” in 2017 IEEE International symposium on circuits and systems
(ISCAS). IEEE, 2017, pp. 1–4. [Cited on page 2.]

[54] U. Gupta, B. Reagen, L. Pentecost, M. Donato, T. Tambe, A. M. Rush, G.-Y. Wei,
and D. Brooks, “MASR: A Modular Accelerator for Sparse RNNs,” in 2019 28th Inter-
national Conference on Parallel Architectures and Compilation Techniques (PACT).
IEEE, 2019, pp. 1–14. [Cited on page 2.]

[55] Y. Guan, Z. Yuan, G. Sun, and J. Cong, “FPGA-based accelerator for long short-
term memory recurrent neural networks,” in 2017 22nd Asia and South Pacific Design
Automation Conference (ASP-DAC). IEEE, 2017, pp. 629–634. [Cited on page 2.]

[56] S. Misailovic, S. Sidiroglou, H. Hoffmann, and M. Rinard, “Quality of service
profiling,” in Proceedings of the 32Nd ACM/IEEE International Conference on
Software Engineering - Volume 1, ser. ICSE ’10. New York, NY, USA: ACM, 2010.
[Online]. Available: http://doi.acm.org/10.1145/1806799.1806808 pp. 25–34. [Cited
on pages 3, 4, 7, 20, and 26.]

[57] S. Misailovic, S. Sidiroglou, and M. C. Rinard, “Dancing with uncertainty,” in Pro-
ceedings of the 2012 ACM workshop on Relaxing synchronization for multicore and
manycore scalability. ACM, 2012, pp. 51–60. [Cited on page 3.]

121

https://doi.org/10.1145/3079856.3080246
https://developer.nvidia.com/blog/nvdla/
https://developer.nvidia.com/blog/nvdla/
https://www.intel.com/content/dam/support/us/en/documents/boardsandkits/neural-compute-sticks/NCS2_Product-Brief-English.pdf
https://www.intel.com/content/dam/support/us/en/documents/boardsandkits/neural-compute-sticks/NCS2_Product-Brief-English.pdf
http://doi.acm.org/10.1145/1806799.1806808

[58] T. N. Sainath, B. Kingsbury, V. Sindhwani, E. Arisoy, and B. Ramabhadran, “Low-
rank matrix factorization for deep neural network training with high-dimensional out-
put targets,” in 2013 IEEE international conference on acoustics, speech and signal
processing. IEEE, 2013, pp. 6655–6659. [Cited on page 3.]

[59] S. Misailovic, M. Carbin, S. Achour, Z. Qi, and M. C. Rinard, “Chisel: Reliability- and
accuracy-aware optimization of approximate computational kernels,” in Proceedings
of the 2014 ACM International Conference on Object Oriented Programming Systems
Languages & Applications, ser. OOPSLA ’14. New York, NY, USA: ACM, 2014.
[Online]. Available: http://doi.acm.org/10.1145/2660193.2660231 pp. 309–328. [Cited
on pages 3, 4, 7, 8, 15, 18, and 19.]

[60] M. Carbin, S. Misailovic, and M. C. Rinard, “Verifying Quantitative Reliability
for Programs That Execute on Unreliable Hardware,” in Proceedings of the 2013
ACM SIGPLAN International Conference on Object Oriented Programming Systems
Languages and Applications, ser. OOPSLA ’13. New York, NY, USA: ACM, 2013.
[Online]. Available: http://doi.acm.org/10.1145/2509136.2509546 pp. 33–52. [Cited
on pages 3, 4, 7, 8, 15, 18, and 19.]

[61] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and D. Grossman,
“EnerJ: Approximate Data Types for Safe and General Low-power Computation,”
in Proceedings of the 32Nd ACM SIGPLAN Conference on Programming Language
Design and Implementation, ser. PLDI ’11. New York, NY, USA: ACM, 2011.
[Online]. Available: http://doi.acm.org/10.1145/1993498.1993518 pp. 164–174. [Cited
on pages 3, 4, 7, 8, 15, and 18.]

[62] A. Sampson, A. Baixo, B. Ransford, T. Moreau, J. Yip, L. Ceze, and M. Oskin,
“ACCEPT: A programmer-guided compiler framework for practical approximate
computing,” in U. Washington, Tech. Rep. UW-CSE- 15-01-01, 2015. [Online].
Available: https://dada.cs.washington.edu/research/tr/2015/01/UW-CSE-15-01-01.
pdf [Cited on pages 3, 4, 7, 8, and 19.]

[63] S. Li, S. Park, and S. A. Mahlke, “Sculptor: Flexible approximation with selective
dynamic loop perforation,” in Proceedings of the 32nd International Conference on
Supercomputing, ICS 2018, Beijing, China, June 12-15, 2018. ACM, 2018. [Online].
Available: https://doi.org/10.1145/3205289.3205317 pp. 341–351. [Cited on pages 3,
4, 7, 8, and 22.]

[64] R. Xu, J. Koo, R. Kumar, P. Bai, S. Mitra, G. Maghanath, and S. Bagchi, “ApproxNet:
Content and Contention Aware Video Analytics System for the Edge,” arXiv preprint
arXiv:1909.02068, 2019. [Cited on pages 3, 4, 7, 8, 15, and 22.]

[65] B. Boston, A. Sampson, D. Grossman, and L. Ceze, “Probability type inference for
flexible approximate programming,” in OOPSLA. ACM, 2015, pp. 470–487. [Cited
on pages 4, 7, 8, 15, and 19.]

122

http://doi.acm.org/10.1145/2660193.2660231
http://doi.acm.org/10.1145/2509136.2509546
http://doi.acm.org/10.1145/1993498.1993518
https://dada.cs.washington.edu/research/tr/2015/01/UW-CSE-15-01-01.pdf
https://dada.cs.washington.edu/research/tr/2015/01/UW-CSE-15-01-01.pdf
https://doi.org/10.1145/3205289.3205317

[66] L. Lou, P. Nguyen, J. Lawrence, and C. Barnes, “Image Perforation: Automatically
accelerating image pipelines by intelligently skipping samples,” ACM Transactions on
Graphics (TOG), vol. 35, no. 5, pp. 1–14, 2016. [Cited on pages 4 and 7.]

[67] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, M. Cowan, H. Shen,
L. Wang, Y. Hu, L. Ceze, C. Guestrin, and A. Krishnamurthy, “TVM: An
Automated End-to-end Optimizing Compiler for Deep Learning,” in Proceedings of
the 12th USENIX Conference on Operating Systems Design and Implementation,
ser. OSDI’18. Berkeley, CA, USA: USENIX Association, 2018. [Online]. Available:
https://dl.acm.org/doi/10.5555/3291168.3291211 pp. 579–594. [Cited on pages 4, 7,
8, 15, 19, 23, 39, and 114.]

[68] C. Álvarez, J. Corbal, and M. Valero, “Fuzzy memoization for floating-point
multimedia applications,” IEEE Trans. Computers, vol. 54, no. 7, pp. 922–927, 2005.
[Online]. Available: https://doi.org/10.1109/TC.2005.119 [Cited on pages 4 and 7.]

[69] B. Thwaites, G. Pekhimenko, H. Esmaeilzadeh, A. Yazdanbakhsh, O. Mutlu, J. Park,
G. Mururu, and T. Mowry, “Rollback-free value prediction with approximate loads,”
in Proceedings of the 23rd International Conference on Parallel Architectures and
Compilation, ser. PACT ’14. New York, NY, USA: Association for Computing
Machinery, 2014. [Online]. Available: https://doi.org/10.1145/2628071.2628110 p.
493–494. [Cited on pages 4 and 7.]

[70] C.-J. Wu, D. Brooks, K. Chen, D. Chen, S. Choudhury, M. Dukhan, K. Hazelwood,
E. Isaac, Y. Jia, B. Jia et al., “Machine Learning at Facebook: Understanding Inference
at the Edge,” in 2019 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 2019, pp. 331–344. [Cited on pages 5, 29, and 65.]

[71] NVIDIA, “PTX: Parallel thread execution ISA version 2.3,” NVIDIA COMPUTE
Programmer’s Manual, vol. 3, 2010. [Online]. Available: http://developer.download.
nvidia.com/compute/DevZone/docs/html/C/doc/ptx_isa_2.3.pdf [Cited on pages 5
and 30.]

[72] B. Sander, “HSAIL: Portable compiler IR for HSA,” in Hot Chips Symposium 2013,
2013, pp. 1–32. [Cited on pages 5 and 30.]

[73] J. Ansel, Y. L. Wong, C. Chan, M. Olszewski, A. Edelman, and S. Amarasinghe,
“Language and Compiler Support for Auto-tuning Variable-accuracy Algorithms,”
in Proceedings of the 9th Annual IEEE/ACM International Symposium on Code
Generation and Optimization, ser. CGO ’11. Washington, DC, USA: IEEE Computer
Society, 2011. [Online]. Available: https://dl.acm.org/doi/10.5555/2190025.2190056
pp. 85–96. [Cited on pages 5, 20, 26, and 30.]

[74] A. H. Ashouri, W. Killian, J. Cavazos, G. Palermo, and C. Silvano, “A Survey on
Compiler Autotuning using Machine Learning,” ACM Computing Surveys (CSUR),
vol. 51, no. 5, pp. 1–42, 2018. [Cited on pages 6 and 31.]

123

https://dl.acm.org/doi/10.5555/3291168.3291211
https://doi.org/10.1109/TC.2005.119
https://doi.org/10.1145/2628071.2628110
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/ptx_isa_2.3.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/ptx_isa_2.3.pdf
https://dl.acm.org/doi/10.5555/2190025.2190056

[75] J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J. Bosboom, U.-M.
O’Reilly, and S. Amarasinghe, “OpenTuner: An Extensible Framework for Program
Autotuning,” in Proceedings of the 23rd International Conference on Parallel
Architectures and Compilation, ser. PACT ’14. New York, NY, USA: ACM, 2014.
[Online]. Available: http://doi.acm.org/10.1145/2628071.2628092 pp. 303–316. [Cited
on pages 6, 12, 20, 31, 43, 60, 72, 81, and 85.]

[76] V. Tiwari, D. Singh, S. Rajgopal, G. Mehta, R. Patel, and F. Baez, “Reducing power
in high-performance microprocessors,” in Proceedings of the 35th annual Design Au-
tomation conference, 1998, pp. 732–737. [Cited on pages 6 and 32.]

[77] A. Tiwari, M. Laurenzano, J. Peraza, L. Carrington, and A. Snavely, “Green queue:
Customized large-scale clock frequency scaling,” in 2012 Second International Confer-
ence on Cloud and Green Computing. IEEE, 2012, pp. 260–267. [Cited on pages 6
and 32.]

[78] J. Y. F. Tong, D. Nagle, and R. A. Rutenbar, “Reducing power by optimizing the
necessary precision/range of floating-point arithmetic,” IEEE Trans. VLSI Syst.,
vol. 8, no. 3, pp. 273–286, 2000. [Online]. Available: https://doi.org/10.1109/92.845894
[Cited on page 7.]

[79] M. Kotsifakou, P. Srivastava, M. D. Sinclair, R. Komuravelli, V. Adve, and
S. Adve, “HPVM: Heterogeneous Parallel Virtual Machine,” in Proceedings of
the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, ser. PPoPP ’18. New York, NY, USA: ACM, 2018. [Online]. Available:
http://doi.acm.org/10.1145/3178487.3178493 pp. 68–80. [Cited on pages 9, 24, 35,
37, 38, and 67.]

[80] C. Lattner and V. Adve, “LLVM: A Compilation Framework for Lifelong Program
Analysis and Transformation,” San Jose, CA, USA, Mar 2004, pp. 75–88. [Cited on
pages 9, 35, and 37.]

[81] D. Franklin, “NVIDIA Jetson TX2 Delivers Twice the Intelligence to the Edge,”
NVIDIA Developer Blog, 2018. [Online]. Available: https://devblogs.nvidia.com/
jetson-tx2-delivers-twice-intelligence-edge [Cited on pages 11, 31, and 48.]

[82] L. Lou, P. Nguyen, J. Lawrence, and C. Barnes, “Image Perforation: Automatically
Accelerating Image Pipelines by Intelligently Skipping Samples,” ACM Trans.
Graph., vol. 35, no. 5, pp. 153:1–153:14, 2016. [Online]. Available: https:
//doi.org/10.1145/2904903 [Cited on page 15.]

[83] S. Grigorescu, B. Trasnea, T. Cocias, and G. Macesanu, “A survey of deep learning
techniques for autonomous driving,” Journal of Field Robotics, vol. 37, no. 3, pp.
362–386, 2020. [Cited on pages 15 and 93.]

124

http://doi.acm.org/10.1145/2628071.2628092
https://doi.org/10.1109/92.845894
http://doi.acm.org/10.1145/3178487.3178493
https://devblogs.nvidia.com/jetson-tx2-delivers-twice-intelligence-edge
https://devblogs.nvidia.com/jetson-tx2-delivers-twice-intelligence-edge
https://doi.org/10.1145/2904903
https://doi.org/10.1145/2904903

[84] D. Ball, P. Ross, A. English, P. Milani, D. Richards, A. Bate, B. Upcroft, G. Wyeth,
and P. Corke, “Farm workers of the future: Vision-based robotics for broad-acre agri-
culture,” IEEE Robotics & Automation Magazine, vol. 24, no. 3, pp. 97–107, 2017.
[Cited on pages 15 and 93.]

[85] N. Sünderhauf, O. Brock, W. Scheirer, R. Hadsell, D. Fox, J. Leitner, B. Upcroft,
P. Abbeel, W. Burgard, M. Milford et al., “The limits and potentials of deep learning
for robotics,” The International Journal of Robotics Research, vol. 37, no. 4-5, pp.
405–420, 2018. [Cited on pages 15 and 93.]

[86] Y. Gu, Z. Li, Z. Zhang, J. Li, and L. Chen, “Path tracking control of field information-
collecting robot based on improved convolutional neural network algorithm,” Sensors,
vol. 20, no. 3, p. 797, 2020. [Cited on pages 15 and 93.]

[87] S. G. Vougioukas, “Agricultural robotics,” Annual Review of Control, Robotics, and
Autonomous Systems, vol. 2, pp. 365–392, 2019. [Cited on pages 15 and 93.]

[88] V. A. Higuti, A. E. Velasquez, D. V. Magalhaes, M. Becker, and G. Chowdhary,
“Under canopy light detection and ranging-based autonomous navigation,” Journal of
Field Robotics, vol. 36, no. 3, pp. 547–567, 2019. [Cited on pages 15 and 93.]

[89] “A Growing Presence on the Farm: Robots,” https://www.nytimes.com/2020/02/13/
science/farm-agriculture-robots.html, 2020. [Cited on pages 16 and 94.]

[90] “Learned visual navigation for under-canopy agricultural robots,” in Under submission
to Proc. of Robotics: Science and Systems (RSS), 2021. [Cited on pages 16, 94, 95,
96, 97, and 100.]

[91] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning Filters for Effi-
cient ConvNets,” arXiv preprint arXiv:1608.08710, 2016. [Cited on pages 16, 71, 94,
and 99.]

[92] A. Renda, J. Frankle, and M. Carbin, “Comparing Rewinding and Fine-tuning in
Neural Network Pruning,” in International Conference on Learning Representations,
2019. [Cited on pages 16, 91, 94, and 99.]

[93] S. J. Kwon, D. Lee, B. Kim, P. Kapoor, B. Park, and G.-Y. Wei, “Structured compres-
sion by weight encryption for unstructured pruning and quantization,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp.
1909–1918. [Cited on pages 16 and 94.]

[94] E. Malach, G. Yehudai, S. Shalev-Schwartz, and O. Shamir, “Proving the Lottery
Ticket Hypothesis: Pruning is all you Need,” in International Conference on Machine
Learning. PMLR, 2020, pp. 6682–6691. [Cited on pages 16 and 94.]

[95] J. Frankle and M. Carbin, “The Lottery Ticket Hypothesis: Finding Sparse, Trainable
Neural Networks,” arXiv preprint arXiv:1803.03635, 2018. [Cited on pages 16 and 94.]

125

https://www.nytimes.com/2020/02/13/science/farm-agriculture-robots.html
https://www.nytimes.com/2020/02/13/science/farm-agriculture-robots.html

[96] E. Elsen, M. Dukhan, T. Gale, and K. Simonyan, “Fast Sparse ConvNets,” in Proceed-
ings of the IEEE/CVF conference on computer vision and pattern recognition, 2020,
pp. 14 629–14 638. [Cited on pages 16 and 94.]

[97] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and connections for
efficient neural network,” in Advances in neural information processing systems, 2015,
pp. 1135–1143. [Cited on pages 16, 90, 94, and 114.]

[98] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell, “Rethinking the value of network
pruning,” arXiv preprint arXiv:1810.05270, 2018. [Cited on pages 16 and 94.]

[99] R. P. Foundation, “Buy a Raspberry Pi 4 Model B,” https://www.raspberrypi.org/
products/raspberry-pi-4-model-b/, 2019. [Cited on pages 17 and 94.]

[100] “Intel NUC Mini PC,” https://www.intel.com/content/www/us/en/products/
boards-kits/nuc.html, 2020. [Cited on pages 17 and 94.]

[101] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural Acceleration for
General-Purpose Approximate Programs,” in Proceedings of the 2012 45th Annual
IEEE/ACM International Symposium on Microarchitecture, ser. MICRO-45. USA:
IEEE Computer Society, 2012. [Online]. Available: https://doi.org/10.1109/MICRO.
2012.48 p. 449–460. [Cited on pages 19 and 64.]

[102] H. Sharif, P. Srivastava, M. Huzaifa, M. Kotsifakou, K. Joshi, Y. Sarita, N. Zhao,
V. S. Adve, S. Misailovic, and S. V. Adve, “ApproxHPVM: A Portable Compiler
IR for Accuracy-aware Optimizations,” PACMPL, vol. 3, no. OOPSLA, pp.
186:1–186:30, 2019. [Online]. Available: https://doi.org/10.1145/3360612 [Cited on
pages 19 and 67.]

[103] Y. Ding, J. Ansel, K. Veeramachaneni, X. Shen, U.-M. O’Reilly, and
S. Amarasinghe, “Autotuning algorithmic choice for input sensitivity,” in Proceedings
of the 36th ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI ’15. New York, NY, USA: ACM, 2015. [Online]. Available:
http://doi.acm.org/10.1145/2737924.2737969 pp. 379–390. [Cited on page 20.]

[104] W. Baek and T. M. Chilimbi, “Green: A Framework for Supporting Energy-
conscious Programming Using Controlled Approximation,” in Proceedings of
the 31st ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI ’10. New York, NY, USA: ACM, 2010. [Online].
Available: http://doi.acm.org/10.1145/1806596.1806620 pp. 198–209. [Cited on pages
21 and 26.]

[105] J. Ansel, M. Pacula, Y. L. Wong, C. Chan, M. Olszewski, U.-M. O’Reilly, and
S. Amarasinghe, “SiblingRivalry: Online Autotuning Through Local Competitions,”
in Proceedings of the 2012 International Conference on Compilers, Architectures and
Synthesis for Embedded Systems, ser. CASES ’12. New York, NY, USA: ACM, 2012.
[Online]. Available: http://doi.acm.org/10.1145/2380403.2380425 pp. 91–100. [Cited
on page 22.]

126

https://www.raspberrypi.org/products/raspberry-pi-4-model-b/
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/
https://www.intel.com/content/www/us/en/products/boards-kits/nuc.html
https://www.intel.com/content/www/us/en/products/boards-kits/nuc.html
https://doi.org/10.1109/MICRO.2012.48
https://doi.org/10.1109/MICRO.2012.48
https://doi.org/10.1145/3360612
http://doi.acm.org/10.1145/2737924.2737969
http://doi.acm.org/10.1145/1806596.1806620
http://doi.acm.org/10.1145/2380403.2380425

[106] “Domain-specific compiler for linear algebra to optimize tensorflow computations,”
https://www.tensorflow.org/xla/, 2018. [Cited on pages 23 and 39.]

[107] C. Lattner, J. Pienaar, M. Amini, U. Bondhugula, R. Riddle, A. Cohen, T. Shpeisman,
A. Davis, N. Vasilache, and O. Zinenko, “MLIR: A Compiler Infrastructure for the End
of Moore’s Law,” arXiv preprint arXiv:2002.11054, 2020. [Cited on pages 23 and 24.]

[108] N. Rotem, J. Fix, S. Abdulrasool, S. Deng, R. Dzhabarov, J. Hegeman, R. Levenstein,
B. Maher, N. Satish, J. Olesen, J. Park, A. Rakhov, and M. Smelyanskiy, “Glow:
Graph lowering compiler techniques for neural networks,” CoRR, vol. abs/1805.00907,
2018. [Online]. Available: http://arxiv.org/abs/1805.00907 [Cited on page 23.]

[109] A. J. Sabne, P. Sakdhnagool, S. Lee, and J. S. Vetter, “Understanding portability of
a high-level programming model on contemporary heterogeneous architectures,” IEEE
Micro, vol. 35, no. 4, 2015. [Cited on page 23.]

[110] A. K. Sujeeth, K. J. Brown, H. Lee, T. Rompf, H. Chafi, M. Odersky, and K. Olukotun,
“Delite: A compiler architecture for performance-oriented embedded domain-specific
languages,” ACM Transactions on Embedded Computing Systems (TECS), vol. 13,
no. 4s, pp. 1–25, 2014. [Cited on page 24.]

[111] “Coral,” https://coral.ai/, 2020. [Cited on page 25.]

[112] S. Eldridge, F. Raudies, D. Zou, and A. Joshi, “Neural network-based accelerators for
transcendental function approximation,” in Proceedings of the 24th edition of the great
lakes symposium on VLSI. ACM, 2014, pp. 169–174. [Cited on page 25.]

[113] M. Rinard, “Probabilistic accuracy bounds for fault-tolerant computations that discard
tasks,” ser. ICS, 2006. [Cited on page 26.]

[114] S. Chakradhar, A. Raghunathan, and J. Meng, “Best-Effort Parallel Execution Frame-
work for Recognition and Mining Applications,” ser. IPDPS, 2009. [Cited on page 26.]

[115] J. Meng, A. Raghunathan, S. Chakradhar, and S. Byna, “Exploiting the forgiving
nature of applications for scalable parallel execution,” ser. IPDPS, 2010. [Cited on
page 26.]

[116] S. Misailovic and D. Roy and M. Rinard, “Probabilistically Accurate Program Trans-
formations,” ser. SAS, 2011. [Cited on page 26.]

[117] I. Goiri, R. Bianchini, S. Nagarakatte, and T. D. Nguyen, “ApproxHadoop: Bringing
approximations to mapreduce frameworks,” in ASPLOS. ACM, 2015, pp. 383–397.
[Cited on page 26.]

[118] E. Schkufza, R. Sharma, and A. Aiken, “Stochastic optimization of floating-point pro-
grams with tunable precision,” ser. PLDI, 2014. [Cited on page 26.]

127

https://www.tensorflow.org/xla/
http://arxiv.org/abs/1805.00907
https://coral.ai/

[119] S. Campanoni, G. Holloway, G.-Y. Wei, and D. Brooks, “Helix-up: Relaxing program
semantics to unleash parallelization,” in Proceedings of the 13th Annual IEEE/ACM
International Symposium on Code Generation and Optimization. IEEE Computer
Society, 2015, pp. 235–245. [Cited on page 26.]

[120] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured sparsity in deep
neural networks,” in Advances in neural information processing systems, 2016, pp.
2074–2082. [Cited on pages 26, 27, 90, and 114.]

[121] J. Yu, A. Lukefahr, D. Palframan, G. Dasika, R. Das, and S. Mahlke, “Scalpel: Cus-
tomizing dnn pruning to the underlying hardware parallelism,” ACM SIGARCH Com-
puter Architecture News, vol. 45, no. 2, pp. 548–560, 2017. [Cited on pages 26, 90,
and 99.]

[122] B. Liu, M. Wang, H. Foroosh, M. Tappen, and M. Pensky, “Sparse convolutional neu-
ral networks,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 806–814. [Cited on pages 26 and 90.]

[123] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2015, pp. 1–9. [Cited on
pages 26 and 90.]

[124] D. Lin, S. Talathi, and S. Annapureddy, “Fixed point quantization of deep convolu-
tional networks,” in International Conference on Machine Learning, 2016, pp. 2849–
2858. [Cited on pages 27 and 114.]

[125] “NVIDIA Tesla V100 GPU Architecture,” http://images.nvidia.com/content/
volta-architecture/pdf/volta-architecture-whitepaper.pdf, 2017. [Cited on page 29.]

[126] “NVIDIA Tesla P100,” https://images.nvidia.com/content/pdf/tesla/whitepaper/
pascal-architecture-whitepaper.pdf, 2016. [Cited on page 29.]

[127] “The NVIDIA GeForce GTX 1080 GTX 1070 Founders Editions Review:
Kicking Off the FinFET Generation,” https://www.anandtech.com/show/10325/
the-nvidia-geforce-gtx-1080-and-1070-founders-edition-review/5, 2016. [Cited on
page 29.]

[128] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray,
B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng,
“Tensorflow: A system for large-scale machine learning,” in 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 16), 2016. [Online].
Available: https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
pp. 265–283. [Cited on page 29.]

[129] F. Chollet et al., “Keras,” https://github.com/fchollet/keras, 2015. [Cited on page 29.]

128

http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://www.anandtech.com/show/10325/the-nvidia-geforce-gtx-1080-and-1070-founders-edition-review/5
https://www.anandtech.com/show/10325/the-nvidia-geforce-gtx-1080-and-1070-founders-edition-review/5
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://github.com/fchollet/keras

[130] “PyTorch,” https://pytorch.org/, 2016. [Cited on page 29.]

[131] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang,
and Z. Zhang, “MXNet: A Flexible and Efficient Machine Learning Library for
Heterogeneous Distributed Systems,” CoRR, vol. abs/1512.01274, 2015. [Online].
Available: http://arxiv.org/abs/1512.01274 [Cited on page 29.]

[132] “OpenMP,” https://www.openmp.org/. [Cited on pages 29 and 30.]

[133] “CUDA Toolkit,” https://developer.nvidia.com/cuda-toolkit. [Cited on page 29.]

[134] “OpenACC,” https://www.openacc.org/. [Cited on page 29.]

[135] “Intel oneAPI Threading Building Blocks ,” https://software.intel.com/content/www/
us/en/develop/tools/oneapi/components/onetbb.html. [Cited on page 29.]

[136] “Data Parallel C++,” https://software.intel.com/content/www/us/en/develop/
documentation/oneapi-programming-guide/top/data-parallel-c-dpc.html. [Cited on
page 29.]

[137] NVIDIA, “NVIDIA Jetson TX2 Developer Kit,” 2018. [Online]. Available: https://
www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2 [Cited
on pages 36, 47, 48, and 80.]

[138] A. Gulli and S. Pal, Deep Learning with Keras. Packt Publishing, 2017. [Cited on
page 36.]

[139] N.-M. Ho and W.-F. Wong, “Exploiting half precision arithmetic in nvidia gpus,”
2017 IEEE High Performance Extreme Computing Conference (HPEC), pp. 1–7, 2017.
[Cited on page 46.]

[140] P. Micikevicius, S. Narang, J. Alben, G. Diamos, E. Elsen, D. Garcia, B. Ginsburg,
M. Houston, O. Kuchaiev, G. Venkatesh, and H. Wu, “Mixed precision training,”
in International Conference on Learning Representations, 2018. [Online]. Available:
https://openreview.net/forum?id=r1gs9JgRZ [Cited on page 46.]

[141] NVIDIA, “Jetson TX2 Power Monitor with I2C,” https://devtalk.nvidia.com/default/
topic/1000830/jetson-tx2/jetson-tx2-ina226-power-monitor-with-i2c-interface, 2018.
[Cited on page 49.]

[142] R. Komuravelli, M. D. Sinclair, J. Alsop, M. Huzaifa, M. Kotsifakou, P. Srivastava,
S. V. Adve, and V. S. Adve, “Stash: Have your scratchpad and cache it
too,” in Proceedings of the 42Nd Annual International Symposium on Computer
Architecture, ser. ISCA ’15. New York, NY, USA: ACM, 2015. [Online]. Available:
http://doi.acm.org/10.1145/2749469.2750374 pp. 707–719. [Cited on page 49.]

129

https://pytorch.org/
http://arxiv.org/abs/1512.01274
https://www.openmp.org/
https://developer.nvidia.com/cuda-toolkit
https://www.openacc.org/
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onetbb.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onetbb.html
https://software.intel.com/content/www/us/en/develop/documentation/oneapi-programming-guide/top/data-parallel-c-dpc.html
https://software.intel.com/content/www/us/en/develop/documentation/oneapi-programming-guide/top/data-parallel-c-dpc.html
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2
https://openreview.net/forum?id=r1gs9JgRZ
https://devtalk.nvidia.com/default/topic/1000830/jetson-tx2/jetson-tx2-ina226-power-monitor-with-i2c-interface
https://devtalk.nvidia.com/default/topic/1000830/jetson-tx2/jetson-tx2-ina226-power-monitor-with-i2c-interface
http://doi.acm.org/10.1145/2749469.2750374

[143] D. A. Jamshidi, M. Samadi, and S. Mahlke, “D2MA: Accelerating Coarse-grained
Data Transfer for GPUs,” in Proceedings of the 23rd International Conference on
Parallel Architectures and Compilation, ser. PACT ’14. New York, NY, USA: ACM,
2014. [Online]. Available: http://doi.acm.org/10.1145/2628071.2628072 pp. 431–442.
[Cited on page 49.]

[144] S. K. Gonugondla, M. Kang, and N. R. Shanbhag, “A variation-tolerant in-memory
machine learning classifier via on-chip training,” IEEE Journal of Solid-State Circuits,
vol. 53, no. 11, pp. 3163–3173, Nov 2018. [Cited on page 49.]

[145] Y. LeCun, C. Cortes, and C. J. Burges, “The MNIST database of handwritten digits,”
http://yann.lecun.com/exdb/mnist, 1998. [Cited on pages 51 and 79.]

[146] A. Krizhevsky, “Learning multiple layers of features from tiny images,” University of
Toronto, 05 2012. [Cited on pages 51 and 79.]

[147] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and
L. D. Jackel, “Handwritten Digit Recognition with a Back-propagation Network,” in
Proceedings of the 2nd International Conference on Neural Information Processing
Systems, ser. NIPS ’89. Cambridge, MA, USA: MIT Press, 1989. [Online]. Available:
https://dl.acm.org/doi/10.5555/2969830.2969879 pp. 396–404. [Cited on page 51.]

[148] A. Krizhevsky, I. Sutskever, and G. Hinton, “ImageNet Classification with Deep
Convolutional Neural Networks,” in Proceedings of the 25th International Conference
on Neural Information Processing Systems - Volume 1, ser. NIPS ’12. USA:
Curran Associates Inc., 2012. [Online]. Available: http://dl.acm.org/citation.cfm?id=
2999134.2999257 pp. 1097–1105. [Cited on pages 51 and 79.]

[149] W. Yang, “Classification on CIFAR-10/100 and ImageNet with PyTorch,” https:
//github.com/bearpaw/pytorch-classification/blob/master/models/cifar/alexnet.py,
2019. [Cited on page 51.]

[150] Y. Geifman, “VGG16 models for CIFAR-10 and CIFAR-100 using Keras,” https://
github.com/geifmany/cifar-vgg, 2019. [Cited on page 51.]

[151] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “MobileNets: Efficient Convolutional Neural Networks
for Mobile Vision Applications,” CoRR, vol. abs/1704.04861, 2017. [Online]. Available:
http://arxiv.org/abs/1704.04861 [Cited on pages 51 and 79.]

[152] L. Fei-Fei, R. Fergus, and P. Perona, “Learning generative visual models from few
training examples: An incremental bayesian approach tested on 101 object categories,”
in 2004 Conference on Computer Vision and Pattern Recognition Workshop, June
2004, pp. 178–178. [Cited on page 51.]

[153] N. Thomos, N. V. Boulgouris, and M. G. Strintzis, “Optimized Transmission of
JPEG2000 Streams Over Wireless Channels,” IEEE Transactions on Image Processing,
vol. 15, no. 1, January 2006. [Cited on page 52.]

130

http://doi.acm.org/10.1145/2628071.2628072
https://dl.acm.org/doi/10.5555/2969830.2969879
http://dl.acm.org/citation.cfm?id=2999134.2999257
http://dl.acm.org/citation.cfm?id=2999134.2999257
https://github.com/bearpaw/pytorch-classification/blob/master/models/cifar/alexnet.py
https://github.com/bearpaw/pytorch-classification/blob/master/models/cifar/alexnet.py
https://github.com/geifmany/cifar-vgg
https://github.com/geifmany/cifar-vgg
http://arxiv.org/abs/1704.04861

[154] X. Li and J. Cai, “Robust transmission of JPEG2000 encoded images over packet loss
channels,” in Proceedings of the 2007 IEEE International Conference on Multimedia
and Expo, ICME 2007, July 2-5, 2007, Beijing, China, 2007, pp. 947–950. [Cited on
page 52.]

[155] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro,
and E. Shelhamer, “cuDNN: Efficient Primitives for Deep Learning,” CoRR, vol.
abs/1410.0759, 2014. [Online]. Available: http://arxiv.org/abs/1410.0759 [Cited on
page 62.]

[156] J. Wang, J. Zhang, W. Bao, X. Zhu, B. Cao, and P. S. Yu, “Not just privacy: Improving
performance of private deep learning in mobile cloud,” in Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, 2018, pp.
2407–2416. [Cited on page 64.]

[157] P. Daniels and K. Iwago, “The suitability of cloud-based speech recognition engines for
language learning.” JALT CALL Journal, vol. 13, no. 3, pp. 229–239, 2017. [Cited on
page 64.]

[158] G. S. Brar, “Malleable contextual partitioning and computational dreaming,” Ph.D.
dissertation, Virginia Tech, 2015. [Cited on page 64.]

[159] J. H. Ahnn, “A practical approach to scalable big data computing for the personal-
ization of services at samsung,” in 2014 IEEE/ACM International Symposium on Big
Data Computing. IEEE, 2014, pp. 64–73. [Cited on page 64.]

[160] Mark Harris, NVIDIA, “Mixed-Precision Programming with CUDA 8,” https://
devblogs.nvidia.com/mixed-precision-programming-cuda-8/, 2016. [Cited on page 64.]

[161] P. Konsor, “Performance benefits of half precision floats,” https://software.intel.com/
en-us/articles/performance-benefits-of-half-precision-floats, 2011, accessed: 2019-11-
21. [Cited on page 64.]

[162] ARM, “Half-precision floating-point number format,” https://
developer.arm.com/docs/dui0774/e/other-compiler-specific-features/
half-precision-floating-point-number-format, 2019. [Cited on page 64.]

[163] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, O. Temam, T. Chen, Z. Du, N. Sun,
J. Wang, C. Wu, Y. Chen, O. Temam, T. Chen, Z. Du, N. Sun, J. Wang, C. Wu,
Y. Chen, and O. Temam, “DianNao: a small-footprint high-throughput accelerator for
ubiquitous machine-learning,” ACM SIGPLAN Notices, vol. 49, no. 4, pp. 269–284,
2014. [Cited on page 64.]

[164] A. Yazdanbakhsh, G. Pekhimenko, B. Thwaites, H. Esmaeilzadeh, O. Mutlu, and
T. C. Mowry, “RFVP: Rollback-Free Value Prediction with Safe-to-Approximate
Loads,” ACM Trans. Archit. Code Optim., vol. 12, no. 4, pp. 62:1–62:26, Jan. 2016.
[Online]. Available: http://doi.acm.org/10.1145/2836168 [Cited on page 64.]

131

http://arxiv.org/abs/1410.0759
https://devblogs.nvidia.com/mixed-precision-programming-cuda-8/
https://devblogs.nvidia.com/mixed-precision-programming-cuda-8/
https://software.intel.com/en-us/articles/performance-benefits-of-half-precision-floats
https://software.intel.com/en-us/articles/performance-benefits-of-half-precision-floats
https://developer.arm.com/docs/dui0774/e/other-compiler-specific-features/half-precision-floating-point-number-format
https://developer.arm.com/docs/dui0774/e/other-compiler-specific-features/half-precision-floating-point-number-format
https://developer.arm.com/docs/dui0774/e/other-compiler-specific-features/half-precision-floating-point-number-format
http://doi.acm.org/10.1145/2836168

[165] J. S. Miguel, M. Badr, and N. E. Jerger, “Load Value Approximation,” in 2014 47th An-
nual IEEE/ACM International Symposium on Microarchitecture, Dec 2014, pp. 127–
139. [Cited on page 64.]

[166] R. Smith, G. Smith, and A. Wardani, “Software reuse in robotics: Enabling portability
in the face of diversity,” in IEEE Conference on Robotics, Automation and Mechatron-
ics, 2004., vol. 2. IEEE, 2004, pp. 933–938. [Cited on page 65.]

[167] J. D. Knowles, L. Thiele, and E. Zitzler, “A tutorial on the performance assessment of
stochastic multiobjective optimizers,” TIK-Report, vol. 214, 2006. [Cited on page 69.]

[168] M. Figurnov, D. P. Vetrov, and P. Kohli, “PerforatedCNNs: Acceleration through
Elimination of Redundant Convolutions,” CoRR, vol. abs/1504.08362, 2015. [Online].
Available: http://arxiv.org/abs/1504.08362 [Cited on page 71.]

[169] W. Yuan, S. Adve, D. Jones, and R. Kravets, “Design and evaluation of a cross-layer
adaptation framework for mobile multimedia systems,” 01 2003. [Cited on page 78.]

[170] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet Large Scale Visual
Recognition Challenge,” International Journal of Computer Vision (IJCV), vol. 115,
no. 3, pp. 211–252, 2015. [Cited on page 79.]

[171] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to
document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.
[Cited on page 79.]

[172] M. Haddad, S. Cheng, L. Thao, and J. Santos, “Autonomous Navigation Powered by
Jetson TX2 and Robot Operating System.” [Cited on page 80.]

[173] A. Milioto, P. Lottes, and C. Stachniss, “Real-time semantic segmentation of crop and
weed for precision agriculture robots leveraging background knowledge in cnns,” in
2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE,
2018, pp. 2229–2235. [Cited on page 80.]

[174] C. Wiltz, “Magic Leap One Teardown: A Leap Forward for AR/VR?”
2018. [Online]. Available: https://www.designnews.com/design-hardware-software/
magic-leap-one-teardown-leap-forward-arvr/204060129459400 [Cited on page 80.]

[175] NVIDIA Developer Forums , “Power Monitoring on Jetson TX2. (2018)),” https://
forums.developer.nvidia.com/t/jetson-tx2-ina226-power-monitor-with-i2c-interface/
48754, 2018. [Cited on page 80.]

[176] R. Krishnamoorthi, “Quantizing Deep Convolutional Networks for Efficient Inference:
A Whitepaper,” arXiv preprint arXiv:1806.08342, 2018. [Cited on page 90.]

[177] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-NET: ImageNet Clas-
sification using Binary Convolutional Neural Networks,” in European conference on
computer vision. Springer, 2016, pp. 525–542. [Cited on page 90.]

132

http://arxiv.org/abs/1504.08362
https://www.designnews.com/design-hardware-software/magic-leap-one-teardown-leap-forward-arvr/204060129459400
https://www.designnews.com/design-hardware-software/magic-leap-one-teardown-leap-forward-arvr/204060129459400
https://forums.developer.nvidia.com/t/jetson-tx2-ina226-power-monitor-with-i2c-interface/48754
https://forums.developer.nvidia.com/t/jetson-tx2-ina226-power-monitor-with-i2c-interface/48754
https://forums.developer.nvidia.com/t/jetson-tx2-ina226-power-monitor-with-i2c-interface/48754

[178] W. McAllister, D. Osipychev, A. Davis, and G. Chowdhary, “Agbots: Weeding a field
with a team of autonomous robots,” Computers and Electronics in Agriculture, vol.
163, p. 104827, 2019. [Cited on page 95.]

[179] R. R Shamshiri, C. Weltzien, I. A. Hameed, I. J Yule, T. E Grift, S. K. Balasun-
dram, L. Pitonakova, D. Ahmad, and G. Chowdhary, “Research and development in
agricultural robotics: A perspective of digital farming,” 2018. [Cited on page 95.]

[180] N. K. Uppalapati, B. Walt, A. Havens, A. Mahdian, G. Chowdhary, and G. Krishnan,
“A berry picking robot with a hybrid soft-rigid arm: Design and task space control,”
Proceedings of Robotics: Science and Systems, Corvalis, Oregon, USA, 2020. [Cited
on pages 95 and 109.]

[181] N. Mott, “Intel’s Frost Canyon NUC 10 Makes Its Retail De-
but,” 2020. [Online]. Available: https://www.tomshardware.com/news/
intels-frost-canyon-nuc-10-makes-its-retail-debut [Cited on page 97.]

[182] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer,
“SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and 0.5MB model
size,” 2016. [Cited on page 97.]

[183] O. Elijah, T. A. Rahman, I. Orikumhi, C. Y. Leow, and M. N. Hindia, “An overview
of Internet of Things (IoT) and data analytics in agriculture: Benefits and challenges,”
IEEE Internet of Things Journal, vol. 5, no. 5, pp. 3758–3773, 2018. [Cited on page 98.]

[184] C. Samplawski, J. Huang, D. Ganesan, and B. M. Marlin, “Towards Objection Detec-
tion Under IoT Resource Constraints: Combining Partitioning, Slicing and Compres-
sion,” in Proceedings of the 2nd International Workshop on Challenges in Artificial
Intelligence and Machine Learning for Internet of Things, 2020, pp. 14–20. [Cited on
page 98.]

[185] Z. Zhang, E. Kayacan, B. Thompson, and G. Chowdhary, “High precision control
and deep learning-based corn stand counting algorithms for agricultural robot,” Au-
tonomous Robots, vol. 44, no. 7, pp. 1289–1302, 2020. [Cited on page 98.]

[186] W. Luo, X. Zhao, and T. Kim, “Multiple object tracking: A review,” CoRR, vol.
abs/1409.7618, 2014. [Online]. Available: http://arxiv.org/abs/1409.7618 [Cited on
page 98.]

[187] S.-C. Lin, Y. Zhang, C.-H. Hsu, M. Skach, M. E. Haque, L. Tang, and J. Mars, “The
architectural implications of autonomous driving: Constraints and acceleration,” in
Proceedings of the Twenty-Third International Conference on Architectural Support
for Programming Languages and Operating Systems, ser. ASPLOS ’18. New
York, NY, USA: Association for Computing Machinery, 2018. [Online]. Available:
https://doi.org/10.1145/3173162.3173191 p. 751–766. [Cited on page 98.]

133

https://www.tomshardware.com/news/intels-frost-canyon-nuc-10-makes-its-retail-debut
https://www.tomshardware.com/news/intels-frost-canyon-nuc-10-makes-its-retail-debut
http://arxiv.org/abs/1409.7618
https://doi.org/10.1145/3173162.3173191

[188] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg,
“SSD: Single Shot MultiBox Detector,” Lecture Notes in Computer Science, p. 21–37,
2016. [Online]. Available: http://dx.doi.org/10.1007/978-3-319-46448-0_2 [Cited on
page 98.]

[189] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “MobileNetV2: In-
verted Residuals and Linear Bottlenecks,” 2019. [Cited on page 98.]

[190] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, “Simple online and realtime
tracking,” 2016 IEEE International Conference on Image Processing (ICIP), Sep 2016.
[Online]. Available: http://dx.doi.org/10.1109/ICIP.2016.7533003 [Cited on page 98.]

[191] P. Dendorfer, H. Rezatofighi, A. Milan, J. Shi, D. Cremers, I. Reid, S. Roth,
K. Schindler, and L. Leal-Taixé, “MOT20: A Benchmark for Multi Object Tracking
in Crowded Scenes,” arXiv:2003.09003[cs], Mar. 2020, arXiv: 2003.09003. [Online].
Available: http://arxiv.org/abs/1906.04567 [Cited on page 98.]

[192] M. Figurnov, A. Ibraimova, D. Vetrov, and P. Kohli, “PerforatedCNNs: Acceleration
through Elimination of Redundant Convolutions,” arXiv preprint arXiv:1504.08362,
2015. [Cited on page 99.]

[193] S. Lin, R. Ji, C. Yan, B. Zhang, L. Cao, Q. Ye, F. Huang, and D. S. Doermann,
“Towards optimal structured CNN pruning via generative adversarial learning,” CoRR,
vol. abs/1903.09291, 2019. [Online]. Available: http://arxiv.org/abs/1903.09291 [Cited
on page 99.]

[194] T. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B. Girshick, J. Hays,
P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick, “Microsoft COCO:
common objects in context,” CoRR, vol. abs/1405.0312, 2014. [Online]. Available:
http://arxiv.org/abs/1405.0312 [Cited on page 100.]

[195] NVIDIA, “NVIDAI Jetson Nano Developer Kit,” https://developer.nvidia.com/
embedded/jetson-nano-developer-kit, 2020. [Cited on page 101.]

[196] O. Robotics, “rosbag – ROS Wiki,” 2020. [Online]. Available: http://wiki.ros.org/
rosbag [Cited on page 101.]

[197] J. Bai, F. Lu, K. Zhang et al., “ONNX: Open Neural Network Exchange,” https:
//github.com/onnx/onnx, 2019. [Cited on page 101.]

[198] J. Bai, F. Lu, K. Zhang et al., “ONNX: Open Neural Network Exchange,” https:
//www.onnxruntime.ai/about.html, 2020. [Cited on page 101.]

[199] NVIDIA, “TensorRT,” https://developer.nvidia.com/tensorrt, 2020. [Cited on
page 101.]

[200] X.-N. Bui, B. Jean-Daniel, P. Soueres, and J.-P. Laumond, “Shortest path synthe-
sis for dubins non-holonomic robot,” in Proceedings of the 1994 IEEE International
Conference on Robotics and Automation, 1994, pp. 2–7 vol.1. [Cited on page 108.]

134

http://dx.doi.org/10.1007/978-3-319-46448-0_2
http://dx.doi.org/10.1109/ICIP.2016.7533003
http://arxiv.org/abs/1906.04567
http://arxiv.org/abs/1903.09291
http://arxiv.org/abs/1405.0312
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
http://wiki.ros.org/rosbag
http://wiki.ros.org/rosbag
https://github.com/onnx/onnx
https://github.com/onnx/onnx
https://www.onnxruntime.ai/about.html
https://www.onnxruntime.ai/about.html
https://developer.nvidia.com/tensorrt

[201] A. A. Suzen, B. Duman, and B. Sen, “Benchmark Analysis of Jetson TX2, Jetson
Nano and Raspberry PI using Deep-CNN,” in 2020 International Congress on Human-
Computer Interaction, Optimization and Robotic Applications (HORA), 2020, pp. 1–5.
[Cited on page 109.]

[202] S. Anwar, K. Hwang, and W. Sung, “Structured pruning of deep convolutional neural
networks,” ACM Journal on Emerging Technologies in Computing Systems (JETC),
vol. 13, no. 3, pp. 1–18, 2017. [Cited on page 114.]

[203] H. Zhou, J. M. Alvarez, and F. Porikli, “Less is More: Towards Compact CNNs,” in
European Conference on Computer Vision. Springer, 2016, pp. 662–677. [Cited on
page 114.]

135

	CHAPTER 1 Introduction
	Approximate Systems: Motivation
	Challenges in Approximation Tuning
	Diverse Range of Heterogeneous Systems
	Source and Object Code Portability
	Large Search Space and High-cost of Empirical Tuning
	Optimization Choice Depends on Run-time Conditions

	Limitations of State of the Art
	Problem Statement
	Contributions
	ApproxHPVM: A Portable Compiler IR for Accuracy-Aware Optimizations
	ApproxTuner: A Compiler and Runtime System for Adaptive Approximations
	ApproxRobotics: The Cost and Accuracy Tradeoff for Small Mobile Robots

	CHAPTER 2 Related Work
	Approximation-Aware Programming Languages
	Systems for Offline Autotuning
	Approximation-Driven Adaptive Systems
	Compilers for Machine Learning
	Compilers for Heterogeneous Systems
	Approximation Techniques
	Approximate Hardware Accelerators
	Software Approximations
	Domain-specific approximations for Machine Learning

	Analytical Techniques for Approximation Tuning

	CHAPTER 3 Challenges in Approximation Tuning
	Diverse Range of Heterogeneous Systems
	Source Code Portability
	Object Code Portability
	Manual Tuning is Challenging
	Large Tradeoff Space Combining Multiple Approximations
	High Cost of Empirical Autotuning
	Optimization Choice Depends on Runtime Conditions
	Application-Specific End-to-End Effects of Approximation

	CHAPTER 4 ApproxHPVM: A Portable Compiler IR for Accuracy-aware Optimizations
	Introduction
	ApproxHPVM Internal Representation and System Workflow
	Background: HPVM Dataflow Graph
	Tensor Operations in ApproxHPVM
	Approximation Metrics in the IR

	Accuracy-Aware Mapping and Optimization
	Hardware-Agnostic Accuracy Tuning
	Accuracy-Aware Scheduling

	Methodology
	Platform
	Functional Experiments
	Timing Experiments
	Benchmarks
	Quality Metrics

	Evaluation
	Performance and Energy Evaluation
	Hardware-Agnostic vs Hardware-Specific Tuning
	Autotuning Times
	Hardware Sensitivity

	Conclusion

	CHAPTER 5 ApproxTuner: Compiler and Runtime System for Adaptive Approximations
	Introduction
	ApproxTuner System
	Contributions

	ApproxTuner Overview
	Preliminaries and Terminology
	Overview of Three Stages of ApproxTuner
	Approximation Methods

	Development-Time Tuning
	Overview of Predictive Tuning
	Gathering QoS Profiles
	Models for QoS Prediction
	Models for Performance Prediction
	Configuration Filtering

	Install-Time Tuning
	Runtime Approximation Tuning
	Evaluation Methodology
	Quality Metrics
	Implementation
	Hardware Setup
	Autotuning Setup

	Evaluation
	Performance and Energy Improvements
	Characterizing Approximations
	Predictive vs Empirical Tuning
	Install-time tuning
	Runtime Approximation Tuning
	Combining CNNs and Image Processing

	Exploratory Study: Tuning for Pruned Models
	Conclusion

	CHAPTER 6 ApproxRobotics: The Cost and Accuracy Tradeoff for Small Mobile Robots
	Introduction
	Background: Robot System Design
	Hardware Setup.
	Autonomous Navigation Software Setup.
	Real-time Stand Counting Task.

	Approximation: Model Pruning
	Experimental Methodology
	Evaluation
	Establishing Minimal FPS Requirements
	Evaluating Prune Levels on Validation Set
	Using Pruned Models to Achieve Minimal FPS
	Comparing ResNet and SqueezeNet Pruned Models
	Navigating with Task – Real-time Stand Counting
	Analyzing Navigation Quality Across Pruning Settings

	Discussion and Conclusions

	CHAPTER 7 Implications for Current Practice
	CHAPTER 8 Future Work
	Support for More Application Domains
	Translation to Approximate Hardware Accelerators
	Automatic Generation of Approximate Kernels
	Domain-Specific Approximation Techniques
	Extending Approximation-Tuning with Model Retraining Support.

	REFERENCES

