20 research outputs found

    FPGA-based Acceleration of Detecting Statistical Epistasis in GWAS

    Get PDF
    AbstractGenotype-by-genotype interactions (epistasis) are believed to be a significant source of unexplained genetic variation causing complex chronic diseases but have been ignored in genome-wide association studies (GWAS) due to the computational burden of analysis. In this work we show how to benefit from FPGA technology for highly parallel creation of contingency tables in a systolic chain with a subsequent statistical test. We present the implementation for the FPGA-based hardware platform RIVYERA S6-LX150 containing 128 Xilinx Spartan6-LX150 FPGAs. For performance evaluation we compare against the method iLOCi[9]. iLOCi claims to outperform other available tools in terms of accuracy. However, analysis of a dataset from the Wellcome Trust Case Control Consortium (WTCCC) with about 500,000 SNPs and 5,000 samples still takes about 19hours on a MacPro workstation with two Intel Xeon quad-core CPUs, while our FPGA-based implementation requires only 4minutes

    Fiuncho: a program for any-order epistasis detection in CPU clusters

    Get PDF
    Financiado para publicación en acceso aberto: CRUE/CISUG[Abstract]: Epistasis can be defined as the statistical interaction of genes during the expression of a phenotype. It is believed that it plays a fundamental role in gene expression, as individual genetic variants have reported a very small increase in disease risk in previous Genome-Wide Association Studies. The most successful approach to epistasis detection is the exhaustive method, although its exponential time complexity requires a highly parallel implementation in order to be used. This work presents Fiuncho, a program that exploits all levels of parallelism present in x86_64 CPU clusters in order to mitigate the complexity of this approach. It supports epistasis interactions of any order, and when compared with other exhaustive methods, it is on average 358, 7 and 3 times faster than MDR, MPI3SNP and BitEpi, respectively.Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This work was supported by the Ministry of Science and Innovation of Spain (PID2019-104184RB-I00 / AEI / 10.13039/501100011033), the Xunta de Galicia and FEDER funds of the EU (CITIC-Centro de Investigación de Galicia accreditation 2019–2022, Grant no. ED431G 2019/01), Consolidation Program of Competitive Research (Grant no. ED431C 2021/30), and the FPU Program of the Ministry of Education of Spain (Grant no. FPU16/01333).Xunta de Galicia; ED431G 2019/01Xunta de Galicia; ED431C 2021/3

    Parallelizing Epistasis Detection in GWAS on FPGA and GPU-Accelerated Computing Systems

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in IEEE - ACM Transactions on Computational Biology and Bioinformatics. The final authenticated version is available online at: http://dx.doi.org/10.1109/TCBB.2015.2389958[Abstract] High-throughput genotyping technologies (such as SNP-arrays) allow the rapid collection of up to a few million genetic markers of an individual. Detecting epistasis (based on 2-SNP interactions) in Genome-Wide Association Studies is an important but time consuming operation since statistical computations have to be performed for each pair of measured markers. Computational methods to detect epistasis therefore suffer from prohibitively long runtimes; e.g., processing a moderately-sized dataset consisting of about 500,000 SNPs and 5,000 samples requires several days using state-of-the-art tools on a standard 3 GHz CPU. In this paper, we demonstrate how this task can be accelerated using a combination of fine-grained and coarse-grained parallelism on two different computing systems. The first architecture is based on reconfigurable hardware (FPGAs) while the second architecture uses multiple GPUs connected to the same host. We show that both systems can achieve speedups of around four orders-of-magnitude compared to the sequential implementation. This significantly reduces the runtimes for detecting epistasis to only a few minutes for moderatelysized datasets and to a few hours for large-scale datasets.London. Wellcome Trust; 076113London. Wellcome Trust; 08547

    FPGAs in Bioinformatics: Implementation and Evaluation of Common Bioinformatics Algorithms in Reconfigurable Logic

    Get PDF
    Life. Much effort is taken to grant humanity a little insight in this fascinating and complex but fundamental topic. In order to understand the relations and to derive consequences humans have begun to sequence their genomes, i.e. to determine their DNA sequences to infer information, e.g. related to genetic diseases. The process of DNA sequencing as well as subsequent analysis presents a computational challenge for recent computing systems due to the large amounts of data alone. Runtimes of more than one day for analysis of simple datasets are common, even if the process is already run on a CPU cluster. This thesis shows how this general problem in the area of bioinformatics can be tackled with reconfigurable hardware, especially FPGAs. Three compute intensive problems are highlighted: sequence alignment, SNP interaction analysis and genotype imputation. In the area of sequence alignment the software BLASTp for protein database searches is exemplarily presented, implemented and evaluated.SNP interaction analysis is presented with three applications performing an exhaustive search for interactions including the corresponding statistical tests: BOOST, iLOCi and the mutual information measurement. All applications are implemented in FPGA-hardware and evaluated, resulting in an impressive speedup of more than in three orders of magnitude when compared to standard computers. The last topic of genotype imputation presents a two-step process composed of the phasing step and the actual imputation step. The focus lies on the phasing step which is targeted by the SHAPEIT2 application. SHAPEIT2 is discussed with its underlying mathematical methods in detail, and finally implemented and evaluated. A remarkable speedup of 46 is reached here as well

    GPU-accelerated exhaustive search for third-order epistatic interactions in case–control studies

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in Journal of Computational Science. The final authenticated version is available online at: https://doi.org/10.1016/j.jocs.2015.04.001[Abstract] Interest in discovering combinations of genetic markers from case–control studies, such as Genome Wide Association Studies (GWAS), that are strongly associated to diseases has increased in recent years. Detecting epistasis, i.e. interactions among k markers (k ≥ 2), is an important but time consuming operation since statistical computations have to be performed for each k-tuple of measured markers. Efficient exhaustive methods have been proposed for k = 2, but exhaustive third-order analyses are thought to be impractical due to the cubic number of triples to be computed. Thus, most previous approaches apply heuristics to accelerate the analysis by discarding certain triples in advance. Unfortunately, these tools can fail to detect interesting interactions. We present GPU3SNP, a fast GPU-accelerated tool to exhaustively search for interactions among all marker-triples of a given case–control dataset. Our tool is able to analyze an input dataset with tens of thousands of markers in reasonable time thanks to two efficient CUDA kernels and efficient workload distribution techniques. For instance, a dataset consisting of 50,000 markers measured from 1000 individuals can be analyzed in less than 22 h on a single compute node with 4 NVIDIA GTX Titan boards. Source code is available at: http://sourceforge.net/projects/gpu3snp/

    High-Order Epistasis Detection in High Performance Computing Systems

    Get PDF
    Programa Oficial de Doutoramento en Investigación en Tecnoloxías da Información. 524V01[Resumo] Nos últimos anos, os estudos de asociación do xenoma completo (Genome-Wide Association Studies, GWAS) están a gañar moita popularidade de cara a buscar unha explicación xenética á presenza ou ausencia de certas enfermidades nos humanos.Hai un consenso nestes estudos sobre a existencia de interaccións xenéticas que condicionan a expresión de enfermidades complexas, un fenómeno coñecido como epistasia. Esta tese céntrase no estudo deste fenómeno empregando a computación de altas prestacións (High-Performance Computing, HPC) e dende a súa perspectiva estadística: a desviación da expresión dun fenotipo como a suma dos efectos individuais de múltiples variantes xenéticas. Con este obxectivo desenvolvemos unha primeira ferramenta, chamada MPI3SNP, que identifica interaccións de tres variantes a partir dun conxunto de datos de entrada. MPI3SNP implementa unha busca exhaustiva empregando un test de asociación baseado na Información Mutua, e explota os recursos de clústeres de CPUs ou GPUs para acelerar a busca. Coa axuda desta ferramenta avaliamos o estado da arte da detección de epistasia a través dun estudo que compara o rendemento de vintesete ferramentas. A conclusión máis importante desta comparativa é a incapacidade dos métodos non exhaustivos de atopar interacción ante a ausencia de efectos marxinais (pequenos efectos de asociación das variantes individuais que participan na epistasia). Por isto, esta tese continuou centrándose na optimización da busca exhaustiva de epistasia. Por unha parte, mellorouse a eficiencia do test de asociación a través dunha implantación vectorial do mesmo. Por outro lado, creouse un algoritmo distribuído que implementa unha busca exhaustiva capaz de atopar epistasia de calquera orden. Estes dous fitos lógranse en Fiuncho, unha ferramenta que integra toda a investigación realizada, obtendo un rendemento en clústeres de CPUs que supera a todas as súas alternativas no estado da arte. Adicionalmente, desenvolveuse unha libraría para simular escenarios biolóxicos con epistasia chamada Toxo. Esta libraría permite a simulación de epistasia seguindo modelos de interacción xenética existentes para orde alto.[Resumen] En los últimos años, los estudios de asociación del genoma completo (Genome- Wide Association Studies, GWAS) están ganando mucha popularidad de cara a buscar una explicación genética a la presencia o ausencia de ciertas enfermedades en los seres humanos. Existe un consenso entre estos estudios acerca de que muchas enfermedades complejas presentan interacciones entre los diferentes genes que intervienen en su expresión, un fenómeno conocido como epistasia. Esta tesis se centra en el estudio de este fenómeno empleando la computación de altas prestaciones (High-Performance Computing, HPC) y desde su perspectiva estadística: la desviación de la expresión de un fenotipo como suma de los efectos de múltiples variantes genéticas. Para ello se ha desarrollado una primera herramienta, MPI3SNP, que identifica interacciones de tres variantes a partir de un conjunto de datos de entrada. MPI3SNP implementa una búsqueda exhaustiva empleando un test de asociación basado en la Información Mutua, y explota los recursos de clústeres de CPUs o GPUs para acelerar la búsqueda. Con la ayuda de esta herramienta, hemos evaluado el estado del arte de la detección de epistasia a través de un estudio que compara el rendimiento de veintisiete herramientas. La conclusión más importante de esta comparativa es la incapacidad de los métodos no exhaustivos de localizar interacciones ante la ausencia de efectos marginales (pequeños efectos de asociación de variantes individuales pertenecientes a una relación epistática). Por ello, esta tesis continuó centrándose en la optimización de la búsqueda exhaustiva. Por un lado, se mejoró la eficiencia del test de asociación a través de una implementación vectorial del mismo. Por otra parte, se diseñó un algoritmo distribuido que implementa una búsqueda exhaustiva capaz de encontrar relaciones epistáticas de cualquier tamaño. Estos dos hitos se logran en Fiuncho, una herramienta que integra toda la investigación realizada, obteniendo un rendimiento en clústeres de CPUs que supera a todas sus alternativas del estado del arte. A mayores, también se ha desarrollado una librería para simular escenarios biológicos con epistasia llamada Toxo. Esta librería permite la simulación de epistasia siguiendomodelos de interacción existentes para orden alto.[Abstract] In recent years, Genome-Wide Association Studies (GWAS) have become more and more popular with the intent of finding a genetic explanation for the presence or absence of particular diseases in human studies. There is consensus about the presence of genetic interactions during the expression of complex diseases, a phenomenon called epistasis. This thesis focuses on the study of this phenomenon, employingHigh- Performance Computing (HPC) for this purpose and from a statistical definition of the problem: the deviation of the expression of a phenotype from the addition of the individual contributions of genetic variants. For this purpose, we first developedMPI3SNP, a programthat identifies interactions of three variants froman input dataset. MPI3SNP implements an exhaustive search of epistasis using an association test based on the Mutual Information and exploits the resources of clusters of CPUs or GPUs to speed up the search. Then, we evaluated the state-of-the-art methods with the help of MPI3SNP in a study that compares the performance of twenty-seven tools. The most important conclusion of this study is the inability of non-exhaustive approaches to locate epistasis in the absence of marginal effects (small association effects of individual variants that partake in an epistasis interaction). For this reason, this thesis continued focusing on the optimization of the exhaustive search. First, we improved the efficiency of the association test through a vector implementation of this procedure. Then, we developed a distributed algorithm capable of locating epistasis interactions of any order. These two milestones were achieved in Fiuncho, a program that incorporates all the research carried out, obtaining the best performance in CPU clusters out of all the alternatives of the state-of-the-art. In addition, we also developed a library to simulate particular scenarios with epistasis called Toxo. This library allows for the simulation of epistasis that follows existing interaction models for high-order interactions

    A Hybrid-parallel Architecture for Applications in Bioinformatics

    Get PDF
    Since the advent of Next Generation Sequencing (NGS) technology, the amount of data from whole genome sequencing has been rising fast. In turn, the availability of these resources led to the tapping of whole new research fields in molecular and cellular biology, producing even more data. On the other hand, the available computational power is only increasing linearly. In recent years though, special-purpose high-performance devices started to become prevalent in today’s scientific data centers, namely graphics processing units (GPUs) and, to a lesser extent, field-programmable gate arrays (FPGAs). Driven by the need for performance, developers started porting regular applications to GPU frameworks and FPGA configurations to exploit the special operations only these devices may perform in a timely manner. However, applications using both accelerator technologies are still rare. Major challenges in joint GPU/FPGA application development include the required deep knowledge of associated programming paradigms and the efficient communication both types of devices. In this work, two algorithms from bioinformatics are implemented on a custom hybrid-parallel hardware architecture and a highly concurrent software platform. It is shown that such a solution is not only possible to develop but also its ability to outperform implementations on similar- sized GPU or FPGA clusters in terms of both performance and energy consumption. Both algorithms analyze case/control data from genome- wide association studies to find interactions between two or three genes with different methods. Especially in the latter case, the newly available calculation power and method enables analyses of large data sets for the first time without occupying whole data centers for weeks. The success of the hybrid-parallel architecture proposal led to the development of a high- end array of FPGA/GPU accelerator pairs to provide even better runtimes and more possibilities

    FPGAs in der Bioinformatik: Implementierung und Evaluierung bekannter bioinformatischer Algorithmen in rekonfigurierbarer Logik

    Get PDF
    Life. Much effort is taken to grant humanity a little insight in this fascinating and complex but fundamental topic. In order to understand the relations and to derive consequences humans have begun to sequence their genomes, i.e. to determine their DNA sequences to infer information, e.g. related to genetic diseases. The process of DNA sequencing as well as subsequent analysis presents a computational challenge for recent computing systems due to the large amounts of data alone. Runtimes of more than one day for analysis of simple datasets are common, even if the process is already run on a CPU cluster. This thesis shows how this general problem in the area of bioinformatics can be tackled with reconfigurable hardware, especially FPGAs. Three compute intensive problems are highlighted: sequence alignment, SNP interaction analysis and genotype imputation. In the area of sequence alignment the software BLASTp for protein database searches is exemplarily presented, implemented and evaluated. SNP interaction analysis is presented with three applications performing an exhaustive search for interactions including the corresponding statistical tests: BOOST, iLOCi and the mutual information measurement. All applications are implemented in FPGA-hardware and evaluated, resulting in an impressive speedup of more than in three orders of magnitude when compared to standard computers. The last topic of genotype imputation presents a two-step process composed of the phasing step and the actual imputation step. The focus lies on the phasing step which is targeted by the SHAPEIT2 application. SHAPEIT2 is discussed with its underlying mathematical methods in detail, and finally implemented and evaluated. A remarkable speedup of 46 is reached here as well.Das Leben. Sehr viel Aufwand wird getrieben um der Menschheit einen Einblick in dieses faszinierende und komplexe, aber fundamentale Thema zu erlauben. Um Zusammenhänge zu verstehen und Folgen ableiten zu können hat der Mensch begonnen sein Genom zu sequenzieren, d.h. seine DNA zu bestimmen um daraus Informationen, z.B. in Bezug auf Erbkrankheiten folgern zu können. Der Prozess der DNA-Sequenzierung sowie die darauffolgenden Analysen sind schon allein wegen der riesigen Datenmengen eine Herausforderung für aktuelle Rechensysteme. Laufzeiten von über einen Tag für die Analyse einfacher Datensätze sind üblich, selbst wenn der Prozess bereits auf einem Computercluster ausgeführt wird. Diese Arbeit zeigt, wie dieses gängige Problem im Bereich der Bioinformatik mit rekonfigurierbarer Hardware, speziell FPGAs, angegangen werden kann. Es werden drei rechenintensive Themengebiete hervorgehoben: Sequenzalignment, SNP-Interaktionsanalyse und Genotyp-Imputation. Beispielhaft wird im Bereich des Sequenzalignments die Software BLASTp für die Suche in Proteinsequenzdatenbanken vorgestellt, implementiert und evaluiert. Die SNP-Interaktionsanalyse wird mit drei Verfahren zur vollständigen Suche von Interaktionen inklusive des dazugehörigen statistischen Tests vorgestellt: BOOST, iLOCi und die Messung der Transinformation. Alle Verfahren werden auf FPGA-Hardware implementiert und evaluiert, mit einer bestechenden Beschleunigung im dreistelligen Bereich gegenüber Standard-Rechnern. Das letzte Gebiet der Genotyp-Imputierung ist ein zweiteiliges Verfahren bestehend aus dem Phasing und der eigentlichen Imputation. Der Schwerpunkt liegt im Phasing-Schritt, der mit dem SHAPEIT2-Tool adressiert wird. SHAPEIT2 wird ausführlich mit den zugrunde liegenden mathematischen Methoden diskutiert, und schließlich implementiert und evaluiert. Auch hier wird ein beachtlicher Speedup von 46 erreicht

    Discovering Higher-order SNP Interactions in High-dimensional Genomic Data

    Get PDF
    In this thesis, a multifactor dimensionality reduction based method on associative classification is employed to identify higher-order SNP interactions for enhancing the understanding of the genetic architecture of complex diseases. Further, this thesis explored the application of deep learning techniques by providing new clues into the interaction analysis. The performance of the deep learning method is maximized by unifying deep neural networks with a random forest for achieving reliable interactions in the presence of noise

    From genotypes to organisms: State-of-the-art and perspectives of a cornerstone in evolutionary dynamics

    Get PDF
    Understanding how genotypes map onto phenotypes, fitness, and eventually organisms is arguably the next major missing piece in a fully predictive theory of evolution. We refer to this generally as the problem of the genotype-phenotype map. Though we are still far from achieving a complete picture of these relationships, our current understanding of simpler questions, such as the structure induced in the space of genotypes by sequences mapped to molecular structures, has revealed important facts that deeply affect the dynamical description of evolutionary processes. Empirical evidence supporting the fundamental relevance of features such as phenotypic bias is mounting as well, while the synthesis of conceptual and experimental progress leads to questioning current assumptions on the nature of evolutionary dynamics-cancer progression models or synthetic biology approaches being notable examples. This work delves into a critical and constructive attitude in our current knowledge of how genotypes map onto molecular phenotypes and organismal functions, and discusses theoretical and empirical avenues to broaden and improve this comprehension. As a final goal, this community should aim at deriving an updated picture of evolutionary processes soundly relying on the structural properties of genotype spaces, as revealed by modern techniques of molecular and functional analysis.Comment: 111 pages, 11 figures uses elsarticle latex clas
    corecore