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Abstract
Genotype-by-genotype interactions (epistasis) are believed to be a significant source of unex-
plained genetic variation causing complex chronic diseases but have been ignored in genome-
wide association studies (GWAS) due to the computational burden of analysis. In this work we
show how to benefit from FPGA technology for highly parallel creation of contingency tables
in a systolic chain with a subsequent statistical test. We present the implementation for the
FPGA-based hardware platform RIVYERA S6-LX150 containing 128 Xilinx Spartan6-LX150
FPGAs. For performance evaluation we compare against the method iLOCi[9]. iLOCi claims
to outperform other available tools in terms of accuracy. However, analysis of a dataset from
the Wellcome Trust Case Control Consortium (WTCCC) with about 500,000 SNPs and 5,000
samples still takes about 19 hours on a MacPro workstation with two Intel Xeon quad-core
CPUs, while our FPGA-based implementation requires only 4 minutes.
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1 Introduction

High-throughput genotyping technologies allow the collection of hundreds of thousands to a
few million genetic markers, such as single nucleotide polymorphisms (SNPs), from individual
DNA samples. In genome-wide association studies (GWAS) these genotypes are typically mea-
sured for several thousand individuals and then linked to a given phenotype of each individual,
such as the presence (case) or absence (control) of an associated disease. In classical GWAS
each genetic marker is analyzed separately in order to identify markers showing differences in
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genotype frequencies between cases and controls. Unfortunately, this approach is generally not
powerful enough to model complex traits for which the detection of joint genetic effects (epista-
sis) needs to be considered [5, 7]. In (2-way) statistical epistasis each pair of measured markers
is therefore tested in order to discover significant interactions that explain the given phenotype.
Consequently, a number of algorithms have been developed to address the problem of detecting
epistasis in recent years [1, 13, 17]. The main goal of these approaches is to find pairs of SNPs
whose joint values show a statistically significant difference between cases and controls and
thus they provide a list with these pairs that could explain a substantial proportion of genetic
variation leading to disease.

Computing epistasis is highly time-consuming due to the large number of pairwise tests to
be calculated; e.g. already for a moderately-sized dataset consisting of 500,000 SNPs there
are about 125 billion pairwise interaction tests to be performed. Thus, many existing tools for
calculating epistasis [6, 11, 14] require several days for processing moderately-sized datasets and
several weeks to months for processing large-scale datasets on a standard CPU. Since both the
availability and size of GWAS datasets are increasing rapidly, finding faster solutions is of high
importance to research in this area. In this paper we address this problem by taking advantage of
both fine-grained (by using of reconfigurable hardware (FPGAs)) and coarse-grained parallelism
(using a number of FPGAs in parallel). Our parallel architecture is based on a systolic chain
of processing elements for pairwise contingency table creation and a subsequent statistical test.
Since contingency table creation is a common operation, our solution is easily adaptable to
accelerate a large variety of epistasis tools by interchanging the statistical test implementation.
In this paper we have chosen the test method of iLOCi [9] as a proof-of-concept. We show that
this approach leads to an acceleration of between two and three orders of magnitude compared
to the CPU-based approach.

2 Statistical Epistasis

2.1 Background

To perform large-scale epistasis studies, a lot of methods for pairwise interaction tests ex-
ist [13, 17], balancing between reducing runtimes and keeping the error rate low. CPU-based
approaches, such as BOOST [14, 16], MDR [11], MB-MDR [4], iLOCi [9] etc., often result in long
runtimes for exhaustive searches. Therefore prefiltering techniques may be applied to reduce
the amount of SNP pairs, as in SIXPAC [10], SNPRuler [15], SNPHarvester [22], TEAM [24]
and Screen and Clean [21]. Other methods take advantage from special architectures, such as
GPUs, to perform an exhaustive analysis, e.g. GBOOST [23], SHEsisEpi [3], EpiGPU [2] and
others.

However, most of these methods have one thing in common, they compute contingency tables
(see Sect. 2.2) for each SNP pair before calculating a significance value. Our approach presented
in this paper focuses on exhaustive analysis of SNP pairs and shows how FPGA technology can
be applied to create and prepare contingency tables for significance tests concurrently on a
large scale. We target the RIVYERA architecture with 128 FPGAs (see Sect. 3 for details) to
significantly speedup pairwise interaction tests. RIVYERA is already successful in accelerating
other bioinformatics applications, such as Smith-Waterman alignments or BLAST database
searches [18, 19, 20] and hence, shows promise for this target as well.

Furthermore, the calculation of the significance value in our method is exchangeable. Thus,
our solution may be applied to many existing methods performing an exhaustive analysis.
Other approaches may not directly be adapted to our method, but prefiltering techniques, such
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Figure 1: Contingency tables for cases and controls. ncase
ij and nctrl

ij reflect the number of
occurrences for the corresponding genotype combination in the current SNP pair.

as filtering of single SNPs, can trivially be implemented in the preprocessing phase. In our
presentation we chose the iLOCi method [9] (see Sect. 2.3) as an example for an exhaustive
search.

2.2 Contingency Tables

A typical GWAS dataset consists of two groups of samples (cases and controls) which are
genotyped at a set of marker positions (SNPs). In this paper we consider biallelic markers for
diploid organisms which is the common use case, i.e. genotypes may appear as homozygous
wild (w), heterozygous (h) or homozygous variant (v) type. For pairwise interaction analysis
a contingency table is created for each pair of SNPs separately for case and control group.
Therefore, with n denoting the total number of SNPs, n(n − 1)/2 tables have to be created
(instead of n2 due to the symmetry of SNP pairs). For moderate-size datasets, such as the
Wellcome Trust Case Control Consortium (WTCCC) datasets [12] with about 500,000 SNPs,
this implies about 125 billion tables. This huge amount of calculations is challenging for any
computing system.

Contingency tables in pairwise interaction tests with biallelic markers have dimension 3 ×
3, one entry for each possible combination of genotypes. The entries reflect the number of
occurrences each combination of genotypes appears in the dataset for the corresponding SNP
pair in either case and control group (see Fig. 1).

2.3 iLOCi

We have chosen iLOCi as an example application to test and compare against our implemen-
tation. iLOCi claims to outperform other tools, such as MDR [11] or BOOST [14], in terms of
accuracy. However, according to the authors, analysis of a WTCCC dataset [12] with about
500,000 SNPs and 5,000 samples still takes about 19 hours on a MacPro workstation.

iLOCi computes a significance value pdiff for every possible pair of SNPs. This value is based
on the previously created contingency tables as in Fig. 1 and is calculated as follows.

pdiff =
∣∣pctrl − pcase

∣∣ (1)

Let ncase
ij denote the genotype counts for the combination i and j of the current SNP pair in all

case samples (i, j ∈ {0, 1, 2} corresponding to the three possible genotypes). pcaseij then denotes

the relative probability
ncase
ij

ncase whereby ncase is the number of samples from the case group. Thus,
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Figure 2: The RIVYERA S6-LX150 system.

pcase is calculated as follows.
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The same applies analogously to the control samples for calculation of pctrl.
The higher the pdiff value the greater is the probability for an interaction [9]. Thus, unlike

other algorithms, such as BOOST [14], which filter the results by a threshold, iLOCi saves the
n best results (e.g. n = 1000) and presents the corresponding SNP pairs in a sorted list.

3 RIVYERA S6-LX150 Architecture

In 2008 the computing platform RIVYERA [8], originally developed for cryptanalysis, was
introduced for problems related to bioinformatics. Here, the specific model RIVYERA S6-
LX150 is presented.

The basic structure consists of two elements, a multiple-FPGA system and a server grade
mainboard with standard PC components. The FPGA system consists of up to 16 FPGA
modules with 8 Xilinx Spartan6-LX150 FPGAs each (upgrades allow up to 16 FPGAs on one
module). Furthermore, each FPGA is connected to 256MB DDR3-SDRAM. The mainboard
is equipped with two Intel Xeon E5-2620 CPUs (6 cores @ 2GHz each) with 128GB of RAM
running a Linux OS. This system is later referred to as host.

The bus system implemented on the RIVYERA FPGA computer is organized as a systolic
chain, i.e. every FPGA on an FPGA module is connected by fast point-to-point connections
to each neighbor forming a ring. An additional member of this ring forms the communication
controller. It provides the interconnection of each module to its neighboring modules and,
on the first module, the uplink to the host via PCIe. An API hides control of the complete
bus system and ensures transparency of the communication to the developer. Besides normal
point-to-point transmissions, the API provides broadcast facilities and methods for configuring
the FPGAs. A picture and the design structure of the RIVYERA S6-LX150 system is shown
in Fig. 2.
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Figure 3: Overview of the systolic chain of processing elements for contingency table creation.

4 Parallel Creation of Contingency Tables

4.1 Systolic Chain of Processing Elements

We have designed a systolic chain of processing elements (PEs) on each FPGA to concurrently
generate as many contingency tables as possible. The genotype data is distributed among all
FPGAs such that each FPGA processes two intervals of SNPs with all corresponding genotypes
of all samples. The data has to be organized in genotypes grouped by cases and controls for
each SNP. The contingency tables are created while the data from both intervals is streamed
SNP-wise through the chain.

Each PE contains a local memory to store the complete genotype data for one SNP and a
number of counters for the entries of the contingency table. The genotype data stream from the
previous PE in the chain is directly provided to the next PE after one clock cycle. However, if
the local SNP memory has not been initialized yet, the data of the first SNP is streamed into
this memory and not provided to the next PE. After initialization of the local SNP, the next
SNP in the stream is directly compared to the stored SNP genotype by genotype. For each
pair of genotypes the corresponding counter is incremented. Since the genotypes are ordered
by case and control group, the contingency table for each group is ready after processing the
last genotype of a SNP for the corresponding group in the stream. The tables are provided
to a transport bus afterwards and carried to a postprocessing unit which could be an entity
calculating a statistic. After each SNP in the stream, the counters of the PE are reset for the
next contingency table.

If the streaming process has finished all SNPs from both initial intervals, it starts all over
but leaving out the first k SNPs, if k is the number of PEs in the chain. In the next iteration
the first 2k SNPs are left out, and so on. The process stops until all SNPs from the first interval
are to be left out. This way all possible SNP pairings in the first interval, i.e. each pair contains
only SNPs from the first interval, and between both intervals, i.e. each pair contains a SNP
from each interval, are processed. This makes an efficient distribution of the whole set of SNPs
among all available FPGAs possible (see Sect. 4.3). Figures 3 and 4 show the design overview
of the systolic chain of PEs and the processing sequence of an example dataset of six SNPs and
three PEs.

After calculating the statistic, the results are filtered before being provided to the host. The
filter could be threshold-based or, as for iLOCi, storage of the n best results.
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Figure 4: Sequence of processing an example dataset of six SNPs with a chain of three PEs in
nine steps. Black squares indicate SNP pair combinations to be processed while white squares
indicate already processed pairs. Grey squares are currently being processed while an arrow on
the vertical axis indicates the currently streamed SNP.

4.2 Specifics Regarding iLOCi

For the implementation of the iLOCi significance test, we have optimized the overall structure
regarding the requirements in Eqs. (1) and (4). Obviously, the same calculations are made for
pcase and pctrl. Hence, we have implemented Eq. (4) only once, sharing the resources for both
calculations. Furthermore, the entries of the contingency table are required as sums. Thus,
we have changed the representation of a contingency table to contain only three values a, b
and c according to the following definitions whereby nij denotes ncase

ij or nctrl
ij respective to the

current group on turn.

a = n00 − n02 − n20 + n22 (5)

b =
∑
j

n0j +
∑
j

n2j (6)

c =
∑
i

ni0 +
∑
i

ni2 (7)

These values are calculated on-the-fly by each PE while streaming the genotype data. The
calculation of p for pcase and pctrl respectively directly follows from Eq. (4).

p =
a√
bc

(8)

The implementation of Eq.(8) requires FPGA resources for one multiplier, one square root
extractor and one divider. The multiplication is processed in integer arithmetics while square
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Figure 5: Example SNP distribution among seven FPGAs. Only SNP pairs below the dashed
line have to be considered.

root extraction and division require double precision floating point arithmetics. Each com-
ponent is implemented as a pipeline such that in every clock cycle new input data can be
processed. This is necessary since all PEs provide their contingency tables at once with only
one clock cycle delay. Furthermore, the FPGA resources are optimally utilized.

pcase is calculated before pctrl for each concurrently processed SNP pairs. Thus, these values
have to be stored in a FIFO buffer. After calculating pctrl the corresponding pcase is extracted
from the buffer and the difference according to Eq. (1) is computed. Finally, the n-best results
of this FPGA are stored in a buffer and provided to the host which collects the final n-best
results from all FPGAs afterwards.

4.3 Distribution of Data

To achieve good load balancing for a large number of FPGAs the distribution of genotype data
has to follow a certain scheme. Due to the symmetry of the contingency tables only n(n− 1)/2
tables have to be created for cases and controls (with n the number of SNPs). Therefore, we
employ a scheme that enables us to create almost redundant-free SNP pairings while keeping
the workload balanced.

Figure 5 shows an example how SNPs would be distributed if seven FPGAs were available.
Each FPGA receives two SNP intervals, one interval on the horizontal and one on the vertical
axis. According to Sect. 4.1, a rectangular tile of the table space is calculated with this data.
Exploiting the symmetry again, the triangle below the symmetry axis (dashed line) is always
processed as well for no extra cost. Unfortunately, it is inevitable that a few of these triangles
are calculated multiple times. Hence, duplicate results may be produced by different FPGAs
which are filtered by the host software. One FPGA (no. 7 in the figure) is reserved for the
remaining triangle which is not covered by the calculation of a rectangle.

This scheme obviously works for a number of available FPGAs in the sequence of triangular
numbers (1, 3, 6, 10, 15, 21, 28, . . . ) plus one for the last triangle. As our RIVYERA
system contains 128 FPGAs, the nearest number is 120. Hence, to avoid idle FPGAs at all,
we split all available FPGAs in two groups with slightly different interval sizes. With this
configuration applied on a WTCCC dataset, each FPGA gets two intervals of about 30, 000
SNPs with all corresponding 5, 000 genotypes for each SNP. Since genotypes are coded in a two
bit representation, only 75MB of memory are required, easily fitting in the local DRAM.
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Architecture Energy Time
Speed

(M tests/s)

RIVYERA S6-LX150 780W 0.05 kWh 4m 520.83
2x Intel Xeon quad-core @ 2.4GHz 260W 4.94 kWh 19 h 1.83
nVidia GeForce GTX Titan 250W 25.50 kWh ∼102 h ∼0.34

Table 1: iLOCi performance for analysis of a dataset with 500,000 SNPs and 5,000 samples.
GPU results are extrapolated.

5 Performance Evaluation and Results

Our implementation of the iLOCi test on RIVYERA S6-LX150 contains 100 PEs on each
FPGA for creation of contingency tables and allows to store up to 1000 best results. The
FPGA resources are utilized by about 80% regarding the FPGA’s slices, leaving enough buffer
for more complex tests. The chip frequency is 100MHz for IO and 150MHz for genotype
streaming, counting and calculation of the significance. The FPGA specification has been
developed using the Xilinx ISE Design Suite and the VHDL programming language.

iLOCi [9] takes about 19 hours on a MacPro workstation with two Intel Xeon quad-core
CPUs @ 2.4GHz for a WTCCC dataset [12] with 500,000 SNPs and 5,000 samples. In contrast,
our RIVYERA S6-LX150 implementation requires less than 4 minutes, leading to a speedup
of more than 285. As iLOCi uses the OpenCL interface, we are also able to measure its
performance on a GPU system, specifically an nVidia GeForce GTX Titan. Due to a surprisingly
poor performance on this system, we have used the iLOCi example dataset with only 8,000
SNPs and 4,901 samples to extrapolate the runtimes for the WTCCC dataset. We have set
the number of stored best results to 1,000 but applied no extra parameters. The runtime is
94 s to calculate the ∼ 8, 0002/2 = 32× 106 tests. Extrapolated to the ∼ 500, 0002/2 tests of a
WTCCC dataset, the runtime would be more than four days.

Table 1 lists runtimes of the implementations including their respective power consumption
during the operation and their total energy consumption for this task. For the CPU and GPU
versions, we have chosen the corresponding thermal design power specification without any
peripheral, while we have actually measured the energy consumption of the RIVYERA S6-
LX150 system with the on-board IPMI interface.

Furthermore, we have compared the runtime of our iLOCi implementation against other
methods that perform an exhaustive creation of contingency tables on the same dataset size
(see Table 2). To accomplish this, we have determined the speed in tests per second and
interpolated from the published results of the corresponding authors. We made an exception
for GBOOST [23]. Since it is freely available and performs best in our compared GPU solutions,
we measured the performance on two of our own systems as well. All results have to be treated
carefully since the comparison is done over different architectures. However, it shows that our
implementation on the RIVYERA architecture is able to outperform other architectures by far.

6 Conclusion

Recent advances in high-throughput genotyping technologies establish the need for fast imple-
mentations of statistical epistasis in GWAS. Recent work has shown how GPUs can be used
to accelerate such methods. In this paper we have demonstrated that reconfigurable hardware
based on FPGAs is another promising alternative for this task. We have presented an efficient
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Method Architecture Time
Speed

(M tests/s)

RIVYERA iLOCi FPGA (128x Spartan6-LX150) 4m 520.83

GBOOST * GPU (GeForce GTX Titan) 1 h 01m 34.23
GBOOST * GPU (GeForce GTX650Ti) 2 h 41m 12.97
GBOOST [23] GPU (GeForce GTX285) 2 h 43m 12.81
EpiGPU [2] GPU (GeForce GTX580) 2 h 55m 11.90
SHEsisEpi [3] GPU (2x GeForce GTX285) 27 h 1.29

iLOCi [9] CPU (2x Xeon quad-core @ 2.4GHz) 19 h 1.83
BOOST [14] CPU (@ 3GHz) 121 h 0.29

Table 2: Performance comparison of different GWAS methods based on exhaustive creation of
contingency tables for analysis of a dataset with 500,000 SNPs and 5,000 samples. Results are
interpolated from the publications of the corresponding authors, except those marked with (*)
have actually been measured.

and flexible parallel architecture for contingency table creation with a subsequent statistical
test. Since contingency table creation is common to most epistasis tools our architecture can
thus be used to accelerate a large variety of tools by simply interchanging the statistical test
core. As a proof-of-concept we have implemented the iLOCi algorithm. This leads to a speedup
of between two and three orders of magnitude on the RIVYERA S6-LX150 system compared
to the CPU-based iLOCi implementation. Furthermore, we have shown speedups of one to two
orders of magnitude compared to the GPU-based implementations GBOOST and EpiGPU.

The utilized Spartan6-LX150 FPGA is still based on 45 nm technology. Newer technology
on the market, e.g. a cutting-edge Xilinx Kintex7 based on 28 nm technology provides around
three times more logic resources, 10 times more DSPs for faster floating-point computations
and 7 times more BRAM for local storage. Furthermore, the smaller transistors in the 28 nm
structure allow faster reaction times and thus, higher frequencies. Extrapolating our results
to a Kintex7, we expect a further performance gain of around one order of magnitude. A
RIVYERA system equipped with 128 FPGAs of this type would make it possible to compute
statistical epistasis of large-scale datasets consisting of around 5 million SNPs and ten thousand
individuals in less than one hour.

Our future work includes evaluating our existing architecture to other epistasis algorithms
and extending it to calculate 3-way interactions.
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Cleynen, Emilie Théâtre, Benôıt Charloteaux, Malu Luz Calle, Louis Wehenkel, and Kristel Van
Steen. An efficient algorithm to perform multiple testing in epistasis screening. BMC Bioinfor-
matics, 14(138), April 2013.

[5] Brendan Maher. Personal Genomes: the Case of the Missing Heritability. Nature, 456(7218):18–21,
2008.

[6] Jonathan Marchini, Peter Donnelly, and Lon R Cardon. Genome-wide strategies for detecting
multiple loci that influence complex diseases. Nature Genetics, 37:413–417, 2005.

[7] Jason H. Moore, Folkert W. Asselbergs, and Scott M. Williams. Bioinformatics Challenges for
Genome-Wide Association Studies. Bioinformatics, 26(4):445–455, 2010.
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