228 research outputs found

    A Comprehensive Review of DC-DC Converters for EV Applications

    Get PDF
    DC-DC converters in Electric vehicles (EVs) have the role of interfacing power sources to the DC-link and the DC-link to the required voltage levels for usage of different systems in EVs like DC drive, electric traction, entertainment, safety and etc. Improvement of gain and performance in these converters has a huge impact on the overall performance and future of EVs. So, different configurations have been suggested by many researches. In this paper, bidirectional DC-DC converters (BDCs) are divided into four categories as isolated-soft, isolated-hard, non-isolated-soft and non-isolated-hard depending on the isolation and type of switching. Moreover, the control strategies, comparative factors, selection for a specific application and recent trends are reviewed completely. As a matter of fact, over than 200 papers have been categorized and considered to help the researchers who work on BDCs for EV application

    Ultrahigh step-up dc-dc converter for distributed generation by three Degrees of Freedom (3DoF) approach

    Get PDF
    This paper proposes a novel dc-dc converter topology to achieve an ultrahigh step-up ratio while maintaining a high conversion efficiency. It adopts a three degree of freedom approach in the circuit design. It also demonstrates the flexibility of the proposed converter to combine with the features of modularity, electrical isolation, soft-switching, low voltage stress on switching devices, and is thus considered to be an improved topology over traditional dc-dc converters. New control strategies including the two-section output voltage control and cell idle control are also developed to improve the converter performance. With the cell idle control, the secondary winding inductance of the idle module is bypassed to decrease its power loss. A 400-W dc-dc converter is prototyped and tested to verify the proposed techniques, in addition to a simulation study. The step-up conversion ratio can reach 1:14 with a peak efficiency of 94% and the proposed techniques can be applied to a wide range of high voltage and high power distributed generation and dc power transmission

    Performance comparison of input current ripple reduction methods in UPS applications with hybrid PEM fuel cell/supercapacitor power sources

    Full text link
    An uninterruptible power supply (UPS) system with different input current ripple reduction methods is proposed, and a comparison research has been conducted about these methods. The proposed UPS system consists of a 63-cell 300 W proton exchange membrane (PEM) fuel cell stack, two 16-cell supercapacitors (SCs) in series, a high-efficiency push-pull DC/DC converter and a half-bridge DC/AC inverter. Besides that the traditional push-pull DC/DC converter has inherent advantages of low input-current stress and high voltage conversion ratio, the SCs, LC filter, and an active clamp circuit are employed to reduce the input current ripples in the UPS system. First, the input current ripple generation and performance without an external component are analyzed and modeled in the PEM fuel cell. Then the input current ripple reduction methods mentioned above are proposed and operated in the designed UPS system. Finally, the experimental results show that the input current ripple can be further reduced by using different current ripple reduction approaches, and the active compensation method has better performance than the passive compensation method. The input current ripple is less than 5% of the rated input current. © 2014 Elsevier Inc. All rights reserved

    Performance Enhancement of High Step-up DC-DC Converter to Attain High Efficiency and Low Voltage Stress

    Full text link
    This study proposes a new high voltage gain and high-efficiency DC-DC converter to interface renewable energy resources into dc nanogrid. The proposed topology is formed by a coupled inductor to achieve high voltage gain and low stress on the active switch. The switch voltage stress is significantly low compared to the output voltage. Thus, efficiency is improved by utilizing a low voltage rating MOSFET. Furthermore, the utilization of couple inductor eliminated the reverse recovery losses of diodes. The converter consists of the least number of components that decrease the overall system cost. The steady-state operation and analysis of the proposed converter are discussed comprehensively. The experimental performance is verified by building and testing a prototype in the laboratory. The experimental results prove the consistency with the theoretical analysis. The converter depicts a peak efficiency of 97.10% in the laboratory

    High step up DC-DC converter topology for PV systems and electric vehicles

    Get PDF
    This thesis presents new high step-up DC-DC converters for photovoltaic and electric vehicle applications. An asymmetric flyback-forward DC-DC converter is proposed for the PV system controlled by the MPPT algorithm. The second converter is a modular switched-capacitor DC-DC converter, it has the capability to operate with transistor and capacitor open-circuit faults in every module. The results from simulations and tests of the asymmetric DC-DC converters have suggested that the proposed converter has a 5% to 10% voltage gain ratio increased to the symmetric structures among 100W – 300W power (such as [3]) range while maintaining efficiency of 89%-93% when input voltage is in the range of 25 – 30 V. they also indicated that the softswitching technique has been achieved, which significantly reduce the power loss by 1.7%, which exceeds the same topology of the proposed converter without the softswitching technique. Moreover, the converters can maintain rated outputs under main transistor open circuit fault situation or capacitor open circuit faults. The simulation and test results of the proposed modularized switched-capacitor DC-DC converters indicate that the proposed converter has the potential of extension, it can be embedded with infinite module in simulation results, however, during experiment. The sign open circuit fault to the transistors and capacitors would have low impact to the proposed converters, only the current ripple on the input source would increase around 25% for 4-module switched-capacitor DC-DC converters. The developed converters can be applied to many applications where DC-DC voltage conversion is alighted. In addition to PVs and EVs. Since they can ride through some electrical faults in the devices, the developed converter will have economic implications to improve the system efficiency and reliability

    Modeling and control of a high power soft-switched bi-directional DC/DC converter for fuel cell applications

    Get PDF
    This work presents a new high power, bi-directional, isolated dc-dc converter for a fuel cell energy management system that will be fitted into a test vehicle being built by Ford Motor Company. The work includes two parts. The first part is to propose a new topology and analyze the principles of the circuits operation. Design guidelines with detailed circuit simulations are presented to verify the feasibility of the new circuit topology. Based on the conceptual understanding of the converter, the mathematical model is also derived to design a control system that achieves soft start up and meets the performance requirements. The second part is to fabricate a 1.6 kW prototype converter in the laboratory. Using the prototype, the steady state performance of the open loop system was tested to verify the analysis and simulation results. A dual half-bridge topology is presented to implement the required power rating using the minimum number of devices. Unified zero-voltage-switching (ZVS) is achieved in either direction of power flow to eliminate switching losses for all devices, increase the efficiency of the system and reduce the electromagnetic interference (EMI). Compared to the other soft-switched dc-dc converters, neither a voltage-clamping circuit nor extra switching devices and resonant components are required in the proposed circuit for soft-switching implementation. All these new features allow efficient power conversion and compact packaging. Different start-up schemes are proposed to successfully limit the in-rush current when the converter is started in the boost mode of operation. The full control system including the start-up scheme is developed and verified using simulation results based upon the average model. A 1.6 kW prototype of the converter has been built and successfully tested under full power. The experimental results of the converter\u27s steady-state operation confirm the simulation analysis

    Fault-Tolerant Converter with a Modular Structure for HVDC Power Transmitting Applications

    Get PDF
    For the high-voltage direct-current (HVDC) power transmission system of offshore wind power, dc/dc converters are the potential solution to collect the power generated by off-shore wind farms to HVDC terminals. The converters operate with high-voltage gain, high efficiency, and fault tolerance over a wide range of operating conditions. In this paper, an isolated ultrahigh step-up dc/dc converter with a scalable modular structure is proposed for HVDC offshore wind power collection. A flyback-forward converter is employed as the power cell to form the expandable electrically isolated modular dc/dc converter. The duty ratio and phase-shift angle control are also developed for the proposed converter. Fault-tolerant characteristics of the converter are illustrated through the redundancy operation and fault-ride-through tests. Redundancy operation is designed to maintain high operation efficiency of the converters and fault-ride-through operation improves the converter reliability under harsh operating conditions. Analytical studies are carried out, and a 750-W prototype with three modular cells is built and experimentally tested to verify the performance of the proposed modular dc/dc converter

    A Quasi-Resonant Bidirectional Converter with Soft-Switching Operation for Energy Storage Applications

    Get PDF
    The increased penetration of renewable energy power systems to produce clean and sustainable energy has led to the increased usage of various types of energy storage devices, such as high power density battery technologies, flywheel energy storage and super-capacitors. Energy storage devices are essential in any renewable generation systems to ensure providing uninterruptible and reliable power. Typically, a power electronic converter is required to serve as the intermediary between the common grid in a renewable energy system and the energy storage device. To be specific, the power converter must be able to facilitate bidirectional power flow between the grid and the energy storage device. Since the voltage level of the energy storage device is often much lower than the grid voltage level, the bidirectional converter must ensure that the voltage level can be stepped up or down efficiently as per the system requirements depending on the direction of the power flow. In this thesis, a unique quasi-resonant bidirectional converter topology is proposed for energy storage application. The proposed circuit only requires two switches to achieve bidirectional power flow. Hence, compared to the conventional dual-active bridge (DAB) based bidirectional converter topologies that require 8 switches, the total number of active switching devices required the proposed topology is greatly reduced. In addition, both switches in the proposed topology are able to achieve zero voltage switching (ZVS) turn-on and zero current switching (ZCS) turn-off to minimize the switching power losses without using additional auxiliary circuits. The operating principles and design equations of the proposed circuit will be discussed in details in this thesis. An extended version of the proposed topology that employs a modular design structure for high power application is also presented and discussed. Simulation results and experimental works on a proof-of-concept hardware prototype are given to highlight the performance of the proposed bidirectional converter

    Three-port DC-DC converter for stand-alone photovoltaic systems

    Get PDF
    System efficiency and cost effectiveness are of critical importance for photovoltaic (PV) systems. This paper addresses the two issues by developing a novel three-port dc-dc converter for stand-alone PV systems, based on an improved Flyback-Forward topology. It provides a compact single-unit solution with a combined feature of optimized maximum power point tracking (MPPT), high step-up ratio, galvanic isolation, and multiple operating modes for domestic and aerospace applications. A theoretical analysis is conducted to analyze the operating modes followed by simulation and experimental work. This paper is focused on a comprehensive modulation strategy utilizing both PWM and phase-shifted control that satisfies the requirement of PV power systems to achieve MPPT and output voltage regulation. A 250-W converter was designed and prototyped to provide experimental verification in term of system integration and high conversion efficiency

    Boost Interleaved Converter Integrated Voltage Multiplier Module for Renewable Energy System

    Get PDF
    This document presents a high step-up converter, which is apt for renewable energy system. Through a voltage multiplier unit composed of switched capacitors and coupled inductors, a conventional interleaved boost converter obtains high step-up gain without operating at extreme duty ratio. The design of the proposed converter not only reduces the current stress but also constrains the input current ripple, which decreases the conduction losses and lengthens the lifetime of the input source. In addition, due to the lossless passive clamp performance, leakage energy is recycled to the output terminal. Hence, large voltage spikes across the main switches are alleviated, and the efficiency is improved. Even the low voltage stress makes the low-voltage-rated MOSFETs be adopted for reductions of conduction losses and cost. Finally, the prototype circuit with 40-V input voltage, 380-V output, and 1000-W output power is operated to verify its performance. The highest efficiency is 97.1%. Index Terms - Voltage multiplier module. Boost–flyback converter, high step-up, photovoltaic (PV) system
    • …
    corecore