33 research outputs found

    Design, Fabrication and Testing of Monolithic Low-Power Passive Sigma-Delta Analog-to-Digital Converters

    Full text link
    Analog-to-digital converters are critically important in electronic systems. The difficulty in meeting high performance parameters increases as integrated circuit design process technologies advance into the deep nanometer region. Sigma-delta analog-todigital converters are an attractive option to fulfill many data converter requirements. These data converters offer high performance while relaxing requirements on the precision of components within an integrated circuit. Despite this, the active integrators found within sigma-delta analog-to-digital converters present two main challenges. These challenges are the power consumption of the active amplifier and achieving gain-bandwidth necessary for sigma-delta data converters in deep nanometer process technologies. Both of these challenges can be resolved through the replacement of active integrators with passive integrators at the expense of resolution. Three passive sigma-delta topologies were examined and characterized in detail. Two of these topologies were first-order and second-order noise shaping topologies. A new passive topology was developed which was determined to be optimal in resolution compared to the two traditional designs. This topology exhibits a first-order signal transfer function and a second-order noise transfer function. A method for increasing resolution of passive sigma-delta data converters despite inherent performance constraints was developed. Three example circuits were designed, fabricated and tested using On Semiconductor’s C5 500 nanometer CMOS process. These designs were optimized for low power and utilized memory sense amplifiers as quantizing elements. The first circuit, using passive lumped on-chip elements for the noise shaping network achieved a power consumption of 100 micro-watts and an effective resolution of 8-bits. The second circuit replaced the lumped components with switched-capacitor elements and achieved a power consumption of 6.75 micro-watts and an effective resolution of 9.3 bits. The third circuit was designed as a case study for the application of the proposed topology to “K-delta-1- sigma” modulators. This circuit achieved a power consumption of 10 milli-watts and an effective resolution of 8.5 bits

    Design of RF/IF analog to digital converters for software radio communication receivers

    Get PDF
    Software radio architecture can support multiple standards by performing analogto- digital (A/D) conversion of the radio frequency (RF) signals and running reconfigurable software programs on the backend digital signal processor (DSP). A slight variation of this architecture is the software defined radio architecture in which the A/D conversion is performed on intermediate frequency (IF) signals after a single down conversion. The first part of this research deals with the design and implementation of a fourth order continuous time bandpass sigma-delta (CT BP) C based on LC filters for direct RF digitization at 950 MHz with a clock frequency of 3.8 GHz. A new ADC architecture is proposed which uses only non-return to zero feedback digital to analog converter pulses to mitigate problems associated with clock jitter. The architecture also has full control over tuning of the coefficients of the noise transfer function for obtaining the best signal to noise ratio (SNR) performance. The operation of the architecture is examined in detail and extra design parameters are introduced to ensure robust operation of the ADC. Measurement results of the ADC, implemented in IBM 0.25 µm SiGe BiCMOS technology, show SNR of 63 dB and 59 dB in signal bandwidths of 200 kHz and 1 MHz, respectively, around 950 MHz while consuming 75 mW of power from ± 1.25 V supply. The second part of this research deals with the design of a fourth order CT BP ADC based on gm-C integrators with an automatic digital tuning scheme for IF digitization at 125 MHz and a clock frequency of 500 MHz. A linearized CMOS OTA architecture combines both cross coupling and source degeneration in order to obtain good IM3 performance. A system level digital tuning scheme is proposed to tune the ADC performance over process, voltage and temperature variations. The output bit stream of the ADC is captured using an external DSP, where a software tuning algorithm tunes the ADC parameters for best SNR performance. The IF ADC was designed in TSMC 0.35 µm CMOS technology and it consumes 152 mW of power from ± 1.65 V supply

    Design of sigma-delta modulators for analog-to-digital conversion intensively using passive circuits

    Get PDF
    This thesis presents the analysis, design implementation and experimental evaluation of passiveactive discrete-time and continuous-time Sigma-Delta (ΣΔ) modulators (ΣΔMs) analog-todigital converters (ADCs). Two prototype circuits were manufactured. The first one, a discrete-time 2nd-order ΣΔM, was designed in a 130 nm CMOS technology. This prototype confirmed the validity of the ultra incomplete settling (UIS) concept used for implementing the passive integrators. This circuit, clocked at 100 MHz and consuming 298 μW, achieves DR/SNR/SNDR of 78.2/73.9/72.8 dB, respectively, for a signal bandwidth of 300 kHz. This results in a Walden FoMW of 139.3 fJ/conv.-step and Schreier FoMS of 168 dB. The final prototype circuit is a highly area and power efficient ΣΔM using a combination of a cascaded topology, a continuous-time RC loop filter and switched-capacitor feedback paths. The modulator requires only two low gain stages that are based on differential pairs. A systematic design methodology based on genetic algorithm, was used, which allowed decreasing the circuit’s sensitivity to the circuit components’ variations. This continuous-time, 2-1 MASH ΣΔM has been designed in a 65 nm CMOS technology and it occupies an area of just 0.027 mm2. Measurement results show that this modulator achieves a peak SNR/SNDR of 76/72.2 dB and DR of 77dB for an input signal bandwidth of 10 MHz, while dissipating 1.57 mW from a 1 V power supply voltage. The ΣΔM achieves a Walden FoMW of 23.6 fJ/level and a Schreier FoMS of 175 dB. The innovations proposed in this circuit result, both, in the reduction of the power consumption and of the chip size. To the best of the author’s knowledge the circuit achieves the lowest Walden FOMW for ΣΔMs operating at signal bandwidth from 5 MHz to 50 MHz reported to date

    A Continuous-Time Delta-Sigma Modulator for Ultra-Low-Power Radios

    Get PDF
    The increasing need of digital signal processing for telecommunication and multimedia applications, implemented in complementary metal-oxide semiconductor (CMOS) technology, creates the necessity for high-resolution analog-to-digital converters (ADCs). Based on the sampling frequency, ADCs are of two types: Nyquist-rate converters and oversampling converters. Oversampling converters are preferred for low-bandwidth applications such as audio and instrumentation because they provide inherently high resolution when coupled with proper noise shaping. This allows to push noise out of signal band, thus increasing the signal-to-noise ratio (SNR). Continuous time delta-sigma ADCs are becoming more popular than discrete-time ADCs primarily because of inherent anti-aliasing filtering, reduced settling time and low-power consumption. In this thesis, a 2nd-order 4-bits continuous-time (CT) delta-sigma modulator (DSM) for radio applications is designed. It employs a 2nd-order loop filter with a single operational amplifier. Implemented in a 65-nanometer CMOS technology, the modulator runs on a 0.8-V supply and achieves a SNR of 70dB over a 500-kHz signal bandwidth. The modulator operates with an oversampling ratio (OSR) of 16 and a sampling frequency of 16MHz. In the first chapter the principles of ΔΣ modulators are analysed, introducing the differences between discrete-time (DT) modulators and continuous-time (CT) modulators. In the next chapter the techniques to design a ΔΣ modulators for ultra-low-power radios are presented. The third chapter talks over the design of the operational amplifier, which appears inside the loop filter. In the fourth chapter the performance of the complete ΔΣ modulator, which employs a flash quantizer, is shown. Finally, in the last chapter, a performance analysis is carried out replacing the flash quantizer with an asynchronous SAR quantizer. The analysis shows that a further reduction of the quantizer power consumption of about 40% is possible. The conjunction of this replacement with the power-saving technique implemented in the loop filter appears relevant

    Time-Interleaved Analog-to-Digital-Converters: Modeling, Blind Identification and Digital Correction of Frequency Response Mismatches

    Get PDF
    Analog-to-digital-conversion enables utilization of digital signal processing (DSP) in many applications today such as wireless communication, radar and electronic warfare. DSP is the favored choice for processing information over analog signal processing (ASP) because it can typically offer more flexibility, computational power, reproducibility, speed and accuracy when processing and extracting information. Software defined radio (SDR) receiver is one clear example of this, where radio frequency waveforms are converted into digital form as close to the antenna as possible and all the processing of the information contained in the received signal is extracted in a configurable manner using DSP. In order to achieve such goals, the information collected from the real world signals, which are commonly analog in their nature, must be converted into digital form before it can be processed using DSP in the respective systems. The common trend in these systems is to not only process ever larger bandwidths of data but also to process data in digital format at ever higher processing speeds with sufficient conversion accuracy. So the analog-to-digital-converter (ADC), which converts real world analog waveforms into digital form, is one of the most important cornerstones in these systems.The ADC must perform data conversion at higher and higher rates and digitize ever-increasing bandwidths of data. In accordance with the Nyquist-Shannon theorem, the conversion rate of the ADC must be suffcient to accomodate the BW of the signal to be digitized, in order to avoid aliasing. The conversion rate of the ADC can in general be increased by using parallel ADCs with each ADC performing the sampling at mutually different points in time. Interleaving the outputs of each of the individual ADCs provides then a higher digitization output rate. Such ADCs are referred to as TI-ADC. However, the mismatches between the ADCs cause unwanted spurious artifacts in the TI-ADC’s spectrum, ultimately leading to a loss in accuracy in the TI-ADC compared to the individual ADCs. Therefore, the removal or correction of these unwanted spurious artifacts is essential in having a high performance TI-ADC system.In order to remove the unwanted interleaving artifacts, a model that describes the behavior of the spurious distortion products is of the utmost importance as it can then facilitate the development of efficient digital post-processing schemes. One major contribution of this thesis consists of the novel and comprehensive modeling of the spurious interleaving mismatches in different TI-ADC scenarios. This novel and comprehensive modeling is then utilized in developing digital estimation and correction methods to remove the mismatch induced spurious artifacts in the TI-ADC’s spectrum and recovering its lost accuracy. Novel and first of its kind digital estimation and correction methods are developed and tested to suppress the frequency dependent mismatch spurs found in the TI-ADCs. The developed methods, in terms of the estimation of the unknown mismatches, build on statistical I/Q signal processing principles, applicable without specifically tailored calibration signals or waveforms. Techniques to increase the analog BW of the ADC are also analyzed and novel solutions are presented. The interesting combination of utilizing I/Q downconversion in conjunction with TI-ADC is examined, which not only extends the TI-ADC’s analog BW but also provides flexibility in accessing the radio spectrum. Unwanted spurious components created during the ADC’s bandwidth extension process are also analyzed and digital correction methods are developed to remove these spurs from the spectrum. The developed correction techniques for the removal of the undesired interleaving mismatch artifacts are validated and tested using various HW platforms, with up to 1 GHz instantaneous bandwidth. Comprehensive test scenarios are created using measurement data obtained from HW platforms, which are used to test and evaluate the performance of the developed interleaving mismatch estimation and correction schemes, evidencing excellent performance in all studied scenarios. The findings and results presented in this thesis contribute towards increasing the analog BW and conversion rate of ADC systems without losing conversion accuracy. Overall, these developments pave the way towards fulfilling the ever growing demands on the ADCs in terms of higher conversion BW, accuracy and speed

    DEMONSTRATOR SYSTEM FOR THE PHASE-I UPGRADE OF THE TRIGGER READOUT ELECTRONICS OF THE ATLAS LIQUID ARGON CALORIMETERS AT THE LHC

    Get PDF
    I started my Ph.D. at the Physics Department of the Universit`a degli Studi di Milano in November 2014. I carried out my research activity within the ATLAS experiment at the Large Hadron Collider (LHC) at CERN, mainly focusing on the upgrade of the ATLAS Liquid Argon (LAr) electromagnetic calorimeter Phase-I trigger electronics. The main topic of my doctoral project is the implementation of VHDL firmware for the Field Programmable Gate Arrays (FPGAs) of the new calorimeter trigger electronics. I spent the first of the three Ph.D. years working in Milano and the last two years at CERN, supported by a contract awarded from the ATLAS LAr calorimeter group. During the three years of activity, I contributed to the development and maintenance of the FPGA readout firmware for the LAr Phase-I demonstrator system, set up and installed in the ATLAS detector during summer 2014. The purpose of the system is to validate the energy reconstruction and collect real collision data using a pre-prototype of the future front-end and back-end electronics. In addition, I joined the group working on the firmware development for the FPGAs of the new Phase-I back-end boards. I was asked to be in charge of the firmware module for decoding the Timing Trigger and Control (TTC) signals coming from the LHC central trigger processor

    Towards a fully integrated quantum optic circuit

    Get PDF
    corecore