252 research outputs found

    High fidelity radiosity rendering at interactive rates

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1996.Includes bibliographical references (p. 66-69).by Stephen Lincoln Hardt.M.Eng

    Interactive global illumination on the CPU

    Get PDF
    Computing realistic physically-based global illumination in real-time remains one of the major goals in the fields of rendering and visualisation; one that has not yet been achieved due to its inherent computational complexity. This thesis focuses on CPU-based interactive global illumination approaches with an aim to develop generalisable hardware-agnostic algorithms. Interactive ray tracing is reliant on spatial and cache coherency to achieve interactive rates which conflicts with needs of global illumination solutions which require a large number of incoherent secondary rays to be computed. Methods that reduce the total number of rays that need to be processed, such as Selective rendering, were investigated to determine how best they can be utilised. The impact that selective rendering has on interactive ray tracing was analysed and quantified and two novel global illumination algorithms were developed, with the structured methodology used presented as a framework. Adaptive Inter- leaved Sampling, is a generalisable approach that combines interleaved sampling with an adaptive approach, which uses efficient component-specific adaptive guidance methods to drive the computation. Results of up to 11 frames per second were demonstrated for multiple components including participating media. Temporal Instant Caching, is a caching scheme for accelerating the computation of diffuse interreflections to interactive rates. This approach achieved frame rates exceeding 9 frames per second for the majority of scenes. Validation of the results for both approaches showed little perceptual difference when comparing against a gold-standard path-traced image. Further research into caching led to the development of a new wait-free data access control mechanism for sharing the irradiance cache among multiple rendering threads on a shared memory parallel system. By not serialising accesses to the shared data structure the irradiance values were shared among all the threads without any overhead or contention, when reading and writing simultaneously. This new approach achieved efficiencies between 77% and 92% for 8 threads when calculating static images and animations. This work demonstrates that, due to the flexibility of the CPU, CPU-based algorithms remain a valid and competitive choice for achieving global illumination interactively, and an alternative to the generally brute-force GPU-centric algorithms

    High-fidelity rendering on shared computational resources

    Get PDF
    The generation of high-fidelity imagery is a computationally expensive process and parallel computing has been traditionally employed to alleviate this cost. However, traditional parallel rendering has been restricted to expensive shared memory or dedicated distributed processors. In contrast, parallel computing on shared resources such as a computational or a desktop grid, offers a low cost alternative. But, the prevalent rendering systems are currently incapable of seamlessly handling such shared resources as they suffer from high latencies, restricted bandwidth and volatility. A conventional approach of rescheduling failed jobs in a volatile environment inhibits performance by using redundant computations. Instead, clever task subdivision along with image reconstruction techniques provides an unrestrictive fault-tolerance mechanism, which is highly suitable for high-fidelity rendering. This thesis presents novel fault-tolerant parallel rendering algorithms for effectively tapping the enormous inexpensive computational power provided by shared resources. A first of its kind system for fully dynamic high-fidelity interactive rendering on idle resources is presented which is key for providing an immediate feedback to the changes made by a user. The system achieves interactivity by monitoring and adapting computations according to run-time variations in the computational power and employs a spatio-temporal image reconstruction technique for enhancing the visual fidelity. Furthermore, algorithms described for time-constrained offline rendering of still images and animation sequences, make it possible to deliver the results in a user-defined limit. These novel methods enable the employment of variable resources in deadline-driven environments

    An asynchronous method for cloud-based rendering

    Get PDF
    Interactive high-fidelity rendering is still unachievable on many consumer devices. Cloud gaming services have shown promise in delivering interactive graphics beyond the individual capabilities of user devices. However, a number of shortcomings are manifest in these systems: high network bandwidths are required for higher resolutions and input lag due to network fluctuations heavily disrupts user experience. In this paper, we present a scalable solution for interactive high-fidelity graphics based on a distributed rendering pipeline where direct lighting is computed on the client device and indirect lighting in the cloud. The client device keeps a local cache for indirect lighting which is asynchronously updated using an object space representation; this allows us to achieve interactive rates that are unconstrained by network performance for a wide range of display resolutions that are also robust to input lag. Furthermore, in multi-user environments, the computation of indirect lighting is amortised over participating clients

    Implementation and Analysis of an Image-Based Global Illumination Framework for Animated Environments

    Get PDF
    We describe a new framework for efficiently computing and storing global illumination effects for complex, animated environments. The new framework allows the rapid generation of sequences representing any arbitrary path in a view space within an environment in which both the viewer and objects move. The global illumination is stored as time sequences of range-images at base locations that span the view space. We present algorithms for determining locations for these base images, and the time steps required to adequately capture the effects of object motion. We also present algorithms for computing the global illumination in the base images that exploit spatial and temporal coherence by considering direct and indirect illumination separately. We discuss an initial implementation using the new framework. Results and analysis of our implementation demonstrate the effectiveness of the individual phases of the approach; we conclude with an application of the complete framework to a complex environment that includes object motion

    Remote and scalable interactive high-fidelity graphics using asynchronous computation

    Get PDF
    Current computing devices span a large and varied range of computational power. Interactive high-fidelity graphics is still unachievable on many of the devices widely available to the public, such as desktops and laptops without high-end dedicated graphics cards, tablets and mobile phones. In this paper we present a scalable solution for interactive high-fidelity graphics with global illumination in the cloud. Specifically, we introduce a novel method for the asynchronous remote computation of indirect lighting that is both scalable and efficient. A lightweight client implementation merges the remotely computed indirect contribution with locally computed direct lighting for a full global illumination solution. The approach proposed in this paper applies instant radiosity methods to a precomputed point cloud representation of the scene; an equivalent structure on the client side is updated on demand, and used to reconstruct the indirect contribution. This method can be deployed on platforms of varying computational power, from tablets to high-end desktops and video game consoles. Furthermore, the same dynamic GI solution computed on the cloud can be used concurrently with multiple clients sharing a virtual environment with minimal overheads.peer-reviewe

    Efficient multi-bounce lightmap creation using GPU forward mapping

    Get PDF
    Computer graphics can nowadays produce images in realtime that are hard to distinguish from photos of a real scene. One of the most important aspects to achieve this is the interaction of light with materials in the virtual scene. The lighting computation can be separated in two different parts. The first part is concerned with the direct illumination that is applied to all surfaces lit by a light source; algorithms related to this have been greatly improved over the last decades and together with the improvements of the graphics hardware can now produce realistic effects. The second aspect is about the indirect illumination which describes the multiple reflections of light from each surface. In reality, light that hits a surface is never fully absorbed, but instead reflected back into the scene. And even this reflected light is then reflected again and again until its energy is depleted. These multiple reflections make indirect illumination very computationally expensive. The first problem regarding indirect illumination is therefore, how it can be simplified to compute it faster. Another question concerning indirect illumination is, where to compute it. It can either be computed in the fixed image that is created when rendering the scene or it can be stored in a light map. The drawback of the first approach is, that the results need to be recomputed for every frame in which the camera changed. The second approach, on the other hand, is already used for a long time. Once a static scene has been set up, the lighting situation is computed regardless of the time it takes and the result is then stored into a light map. This is a texture atlas for the scene in which each surface point in the virtual scene has exactly one surface point in the 2D texture atlas. When displaying the scene with this approach, the indirect illumination does not need to be recomputed, but is simply sampled from the light map. The main contribution of this thesis is the development of a technique that computes the indirect illumination solution for a scene at interactive rates and stores the result into a light atlas for visualizing it. To achieve this, we overcome two main obstacles. First, we need to be able to quickly project data from any given camera configuration into the parts of the texture that are currently used for visualizing the 3D scene. Since our approach for computing and storing indirect illumination requires a huge amount of these projections, it needs to be as fast as possible. Therefore, we introduce a technique that does this projection entirely on the graphics card with a single draw call. Second, the reflections of light into the scene need to be computed quickly. Therefore, we separate the computation into two steps, one that quickly approximates the spreading of the light into the scene and a second one that computes the visually smooth final result using the aforementioned projection technique. The final technique computes the indirect illumination at interactive rates even for big scenes. It is furthermore very flexible to let the user choose between high quality results or fast computations. This allows the method to be used for quickly editing the lighting situation with high speed previews and then computing the final result in perfect quality at still interactive rates. The technique introduced for projecting data into the texture atlas is in itself highly flexible and also allows for fast painting onto objects and projecting data onto it, considering all perspective distortions and self-occlusions

    Spatial Sound Rendering – A Survey

    Get PDF
    Simulating propagation of sound and audio rendering can improve the sense of realism and the immersion both in complex acoustic environments and dynamic virtual scenes. In studies of sound auralization, the focus has always been on room acoustics modeling, but most of the same methods are also applicable in the construction of virtual environments such as those developed to facilitate computer gaming, cognitive research, and simulated training scenarios. This paper is a review of state-of-the-art techniques that are based on acoustic principles that apply not only to real rooms but also in 3D virtual environments. The paper also highlights the need to expand the field of immersive sound in a web based browsing environment, because, despite the interest and many benefits, few developments seem to have taken place within this context. Moreover, the paper includes a list of the most effective algorithms used for modelling spatial sound propagation and reports their advantages and disadvantages. Finally, the paper emphasizes in the evaluation of these proposed works

    Doctor of Philosophy

    Get PDF
    dissertationReal-time global illumination is the next frontier in real-time rendering. In an attempt to generate realistic images, games have followed the film industry into physically based shading and will soon begin integrating global illumination techniques. Traditional methods require too much memory and too much time to compute for real-time use. With Modular and Delta Radiance Transfer we precompute a scene-independent, low-frequency basis that allows us to calculate complex indirect lighting calculations in a much lower dimensional subspace with a reduced memory footprint and real-time execution. The results are then applied as a light map on many different scenes. To improve the low frequency results, we also introduce a novel screen space ambient occlusion technique that allows us to generate a smoother result with fewer samples. These three techniques, low and high frequency used together, provide a viable indirect lighting solution that can be run in milliseconds on today's hardware, providing a useful new technique for indirect lighting in real-time graphics

    High-fidelity graphics using unconventional distributed rendering approaches

    Get PDF
    High-fidelity rendering requires a substantial amount of computational resources to accurately simulate lighting in virtual environments. While desktop computing, with the aid of modern graphics hardware, has shown promise in delivering realistic rendering at interactive rates, real-time rendering of moderately complex scenes is still unachievable on the majority of desktop machines and the vast plethora of mobile computing devices that have recently become commonplace. This work provides a wide range of computing devices with high-fidelity rendering capabilities via oft-unused distributed computing paradigms. It speeds up the rendering process on formerly capable devices and provides full functionality to incapable devices. Novel scheduling and rendering algorithms have been designed to best take advantage of the characteristics of these systems and demonstrate the efficacy of such distributed methods. The first is a novel system that provides multiple clients with parallel resources for rendering a single task, and adapts in real-time to the number of concurrent requests. The second is a distributed algorithm for the remote asynchronous computation of the indirect diffuse component, which is merged with locally-computed direct lighting for a full global illumination solution. The third is a method for precomputing indirect lighting information for dynamically-generated multi-user environments by using the aggregated resources of the clients themselves. The fourth is a novel peer-to-peer system for improving the rendering performance in multi-user environments through the sharing of computation results, propagated via a mechanism based on epidemiology. The results demonstrate that the boundaries of the distributed computing typically used for computer graphics can be significantly and successfully expanded by adapting alternative distributed methods
    • …
    corecore