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Abstract

Existing radiosity rendering algorithms achieve interactivity or high fidelity, but not
both. Most radiosity renderers optimize interactivity by converting to a polygonal
representation and Gouraud interpolating shading samples, thus sacrificing visual
fidelity. A few renderers achieve improved fidelity by performing a per-pixel irradi-
ance "gather" operation, much as in ray-tracing. This approach does not achieve
interactive frame rates on existing hardware.

This thesis bridges the gap, by describing a data structure and algorithm which
enable interactive, high-fidelity rendering of radiosity solutions. In essence, our algo-
rithm "factors" the radiosity rendering computation into two components: an offline
phase, in which a per-surface representation of irradiance is constructed; and an on-
line phase, in which this representation is rapidly queried to produce a radiosity value
at each pixel. The key components of the offline phase are a conservative disconti-
nuity ranking algorithm, which identifies only the strongest discontinuities, and a
hybrid quadtree-mesh data structure which prevents combinatorial interactions be-
tween most discontinuities. The online phase involves a novel use of perspective-
correct texture-mapping hardware to produce nonlinear, analytic shading effects.

Thesis Supervisor: Seth J. Teller
Title: Assistant Professor
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Chapter 1

Introduction

1.1 Some Limitations of Polygon Hardware

Modern graphics workstations, although extraordinarily powerful, can be ill-suited

for viewing global illumination solutions. Polygon hardware typically linearizes both

geometry and shading, whereas the illumination function over a surface will in gen-

eral have discontinuities along curved contours, and vary in a non-polynomial (and

certainly non-linear) fashion even where it is smooth. Moreover, screen-space inter-

polation is not invariant under rotation, causing shading artifacts during interactive

viewing.

Polygon-rendering hardware has been successfully used in interactive walkthroughs

of globally illuminated environments [1, 5, 13]. In these interactively rendered se-

quences, however, the surface geometry is a collection of polygons, and the surface

shading is a screen-space linear interpolation of a function whose value is specified

at three points (typically, the vertices of a triangle) [12, 2]. Although higher-order

geometry primitives exist on some architectures [7, 26], even these polygonalize, then

Gouraud interpolate over, the interiors of the resulting triangles. Graphics hardware

architectures that perform higher-order shading have been built [12, 21], but are not

widely available.

These facts partially explain why many of the beautiful images published in

the global illumination literature (e.g., [23]) are produced by ray-casting algorithms



which, at each pixel, identify surface points to be shaded, then compute analytical

irradiance values there with an object-space algorithm. Given the solution data, this

rendering process can consume tens of seconds or minutes per image, depending on

scene complexity.

1.2 Towards Accurate Interactive Display

We discuss the generation of accurate irradiance and radiosity values for a polyhedral

scene rendered from an interactively-controlled viewpoint. Our implementation uses

standard rendering hardware as a massively parallel query engine operating upon a

large, object-space, parallel spatial data structure.

We assume that a hierarchical radiosity solution method is in use, which produces

as output a discretization of the input into elements annotated by radiosity values,

and an organization of interactions between elements into links annotated by blockers

(as in [17, 32]). From interactions among the blockers and light sources, we rank irra-

diance discontinuities by their strength on the receiver, and select the strongest. The

selected discontinuities partition each solution element into disjoint regions, inside

each of which none of the (selected) discontinuities can be present. We then approxi-

mate the irradiance function inside each region using a polynomial interpolant, whose

domain is the surface itself.

In an interactive session, a synthetic eyepoint moves through the scene under user

control. In a novel use of rendering hardware (normally used to display perspective-

correct textured polygons), the radiance data structure is queried in object space,

at every pixel. Next, a host-parallel pass through the query structure generates the

radiosity at each pixel from the relevant irradiance interpolant and the surface's re-

flectance and emittance. Our prototype implementation is the first to simultaneously

capture global lighting effects and evaluate superlinear radiosity interpolants at in-

teractive rates.



1.3 Algorithmic Foundations

Our algorithms and implementation build upon several ideas and techniques from the

literature:

Hierarchical radiosity. We reimplemented the algorithms of [17, 14, 15] and

use the hierarchical radiosity and shaft-culling techniques to find a diffuse energy dis-

tribution. We assume that the algorithm converges to an accurate radiosity solution,

but do not consider convergence or solver accuracy issues here.

Irradiance data structure. We use the idea of a per-surface data structure

which approximates spatially varying irradiance [33, 23, 24, 3].

Discontinuity identification. Our algorithms explicitly identify irradiance dis-

continuities, in order to improve the visual fidelity of the computed solution, as have

[4, 18, 27, 24, 31, 10].

Hardware acceleration of object-space computations. As did the "hemi-

cube" [8], "two-pass" [29], and "3D painting" [16] algorithms, we use fast graphics

hardware to discretize and accelerate object space computations.

Backprojection of occluders. We use the notion of "backprojection" for the

computation of accurate source-to-point irradiance in the presence of occlusion [10].

This thesis introduces several new ideas and techniques, among them:

Discontinuity ordering. We give an algorithm for selection from .a collection

of irradiance discontinuities via a heuristic estimate of their relative strengths at the

receiver. Although our irradiance gradient is heuristic, it is less computationally

intricate than those in [20, 33, 3]. Moreover, both discontinuities caused by emitters

and reflectors are handled.

Hybrid mesh structures. Quadtrees are fundamentally unable to model gen-

eral domains, except by a sort of generalized (and aliasing-prone) binary subdivision.

We show that a hybrid of quadtree and explicit meshing yields a meshing scheme

more flexible than quadtrees, yet more efficient than explicit meshing.

Hardware acceleration of irradiance queries. We describe a novel use

of the polygon-rendering and texture-mapping capabilities of a high-end graphics



workstation to generate real-time irradiance queries, in parallel, for all pixels of an

image. Our approach avoids both direct rendering of polygonalized elements, and the

use of screen-space interpolation (i.e., Gouraud shading).

1.4 Notation

Actual C++ classes in the implementation will be capitalized in typewriter print, e.g.

Discontinuity, while references to a concept represented by the C++ class will be

in lower-case regular print, e.g. discontinuity. With a slight abuse of notation we use

the plural of a class name, e.g. Discontinuities, to mean multiple instances of the

class, e.g. several Discontinuity objects.

1.5 Organization

The remainder of this thesis is organized as follows: Chapter 2 gives a brief description

of the global illumination problem and of the radiosity method. Chapter 3 describes

the high-speed high-fidelity rendering algorithm as an abstract algorithm requiring

three components. Chapters 4, 5, and 6 describe our implementation of the three

components. Chapter 7 gives the results of running the system on a scene of medium

complexity. Chapter 8 discusses limitations and future work. Appendix A gives a list

of all adjustable parameters in the system. Appendix B describes the user interface

and visualization tools, acting as a simplified instruction manual for the system.

All of this material can be found online at http: //graphics. ics. mit. edu/~hardt s.



Chapter 2

The Radiosity Method

2.1 Global Illumination

Shading surfaces according to some lighting model is a fundamental problem in com-

puter graphics. Illumination models can be divided into two classes, local and global.

Local models compute shading based only on the position of the surface, light, and

eye. Modern graphics workstations often provide hardware support for shading ac-

cording to some local model. However, local models ignore illumination due to light

reflected from other surfaces, as well as other global effects such as the shadowing

of one surface by another. Global illumination models, on the other hand, generate

images of greater realism by taking into account the interreflection of light between

surfaces, i.e. light can make several "bounces" before arriving at a receiver [9].

2.2 The Radiosity Method

2.2.1 Description

The radiosity method for solving the global illumination problem models each surface

as a Lambertian diffuse reflector, i.e. light reflects from the surface equally in all

directions no matter what the distribution of incoming light. Each surface has an

emittance E, the amount of energy generated by the surface itself, and a reflectance



p, the percentage of energy hitting the surface that is reflected by the surface. Given

the scene geometry and values of E and p for each surface, the radiosity method

solves for the radiosity B over each surface. Radiosity is the energy per unit area

(W/m 2 ) leaving a surface, and is ultimately the quantity used to color each pixel in a

radiosity rendered image. We mention here one other quantity of interest. Irradiance

is the energy per unit area (W/m 2) impinging on a surface. Radiosity and irradiance

are very closely related, radiosity = irradiance * reflectance + emittance. So, if one

of radiosity and irradiance is known, the other can easily be computed. For the

remainder of this paper we will often omit the explicit conversion between radiosity

and irradiance.

The radiosity solution depends fundamentally on an energy balance equation

which is approximated and solved by numerical means. We will call this the Ra-

diosity Equation. Specifically, for each element i of a set of n elements:

n

Bi = Ei + pi E BjFij (2.1)
j=1

where Ei, pi, and Bi are the emittance, reflectance, and radiosity of element i, re-

spectively. Fij is the form factor from element i to element j. This represents the

geometric relationship between element i and j and gives the amount to which the

radiosity of j affects the irradiance of i. Specifically, Fij is the "fraction of energy

that leaves element i and arrives directly at element j" [9].

In general, these n elements are some refinement of the input geometry to improve

the resolution of the radiosity solution. The refinement of input surfaces into smaller

elements often occurs concurrently with the computation of the radiosity solution,

producing greater subdivision where the radiosity function changes more rapidly.

2.2.2 View Independence

Radiosity algorithms are called view-independent solutions, since they operate in 3D

object space, independent of the eye position from which the scene will eventually be

rendered. This is as opposed to view-dependent solutions such as ray tracing, where



the solution starts with the eye position and shoots rays back from pixel locations to

compute the energy impinging on the eye along those rays. After creating an image

from one viewpoint via a view-dependent method, work must be started again from

scratch to create an image from a different viewpoint.

2.2.3 Radiosity Rendering

The view-independence of the radiosity solution allows subsequent rendering oper-

ations to be split into two phases. In the first solution phase, a radiosity solution

is computed independently of the eye location. In the second continuous rendering

phase, an eyepoint is specified and the radiosity solution is used to render an image

from that eyepoint. The solution phase can be done once, offline, and may take a

significant amount of time to compute. The rendering phase can be done many times,

reusing the same radiosity solution. An interactive radiosity walkthrough system can

be implemented if the rendering phase is performed sufficiently fast.

Most existing radiosity systems take one of two approaches to the rendering phase:

(1) Exact radiosity values are computed offline for the vertices of each element and

then the elements are rendered online using hardware Gouraud shading.

(2) After the viewpoint is specified, rays are shot back from every pixel and an

exact radiosity value is computed where the ray intersects the scene geometry.

Both methods require a means of computing an accurate radiosity value at a point

in the scene. This is achieved by recomputing the form factors to the point from ev-

ery surface visible to the point and then gathering the energy from all these surfaces.

Method (1) makes this expensive computation in the solution phase, allowing it to

achieve interactive rates in the rendering phase. However, A number of undesirable

visual artifacts such as mach bands and color "swimming" can result from Gouraud

shading, detracting from the image fidelity [11]. Method (2) produces beautiful, accu-

rate radiosity images without shading artifacts, but the expensive per-pixel radiosity

calculation in the rendering phase prevents interactive rates.



2.2.4 Strengths and Limitations of the Radiosity Method

The radiosity method' models only Lambertian diffuse reflection. This accurately

captures diffuse, eye-independent, lighting effects such as soft shadows (shadows with

regions of penumbra and umbra), and smooth falloff of light across a surface. How-

ever, it does not account for eye-dependent effects such as specular highlights and

mirror reflection. The radiosity method does not model absorption of light by the

transmitting media, such as with smoke or fog. It can model translucency with a sim-

ple extension, but not full transmission effects as they require information about the

eye location. Radiosity systems only handle static scenes, since the view-independent

solution is only valid for the geometric configuration specified when the solution is

computed.

1Here we refer to the straight-forward radiosity method described in this paper. There are
extensions to radiosity that handle some of the described phenomena with various trade-offs [9].



Chapter 3

High Fidelity Rendering

3.1 Requirements

This chapter describes our interpolant data structure, construction scheme, and ren-

dering algorithm. This assumes that we have:

1. a set of quadtrees produced by an HR algorithm;

2. an algorithm for triangulating quadtree leaves according to the strongest dis-

continuities impinging on them; and

3. a function IrradianceAtPoint 0() which computes the irradiance at any source

point due to all receivers irradiating that point.

This chapter shows how to generate a data structure which accurately represents

irradiance, and how to use this structure for rapid rendering. Solutions for 1, 2, and

3 follow in Chapters 4, 5, and 6, respectively.

3.2 Data Structure

The radiance data structure is a list of triangles, each annotated with a quadratic

interpolant for irradiance (Figure 3-1); an expression in s and t which smoothly ap-

proximates irradiance over the domain region. We use quadratic interpolants, as we



have found that constant and linear interpolants are inadequate to capture the ra-

diosity function faithfully, even in regions where it varies smoothly, and that higher

order interpolants do not significantly improve the interpolant fit.

A quadtree is generated via requirement 1 and triangulated via requirement 2.

These triangles are then assembled into a list, and an interpolant constructed for

each triangle (Figure 3-2).

Figure 3-1: One triangle's interpolant
(dark grey graph) from samples (white
sticks) of analytic irradiance (light
grey graph).

Figure 3-2: Contiguous triangle inter-
polants on a quadtree.

3.3 Constructing Interpolants

For each triangle IrradianceAtPoint (), requirement 3, is invoked at the triangle

vertices and edge midpoints, to collect six irradiance values ri. Using these six val-

ues, we construct an irradiance interpolant over the entire triangle, as a function of

barycentric coordinates (s, t) over the triangle.

Given six barycentric sample locations pi = (si, ti) and corresponding values ri,

the interpolant construction must determine coefficients A...F of the function

R(s, t) = As 2 + 2Bst + 2Cs + Dt2 + 2Et + F (3.1)

so that

R(si, ti) = ri, O < i < 6.



In general, this requires the solution of the quadratic form

( Si ti 1 0 < i < 6.

However, judicious choice of a barycentric coordinate system and sample locations

(the triangle vertices and edge midpoints) reduces the problem to solving a system

of six linear equations. We write

R(0,0)
R( , 0)
R(1, 0)
R(, )

R(0,1)
R(0, 1)

Inverting the 6 x 6 matrix symbolically and

yields the closed form solution for the coefficients:

A

B

C

D

E

F
/

multiplying by the sample vector

The six resulting floating point numbers ( A 2B

stored as the interpolant for the triangle in question.

rather than B, C, and E, avoids three multiplies during

2C D 2E F ) are then

(Storing 2B, 2C, and 2E,

subsequent evaluation.)

2ro - 4rl + 2r 2

2ro - 2rl + 2r3 - 2r5

- ro + 2r, - r2

2ro + 2r4 - 4r 5

-ro 0 - !r 4 + r5

ro

Ti,



3.4 Rendering

We now have a list L of triangles, each annotated with an irradiance interpolant

expressed in terms of triangle barycentric coordinates. Our goal is to assign each

pixel P in the output image the radiosity value for that point B (on the visible

triangle T) that projects to P. We do so with a multi-pass algorithm on a graphics

workstation.

To generate each frame of an interactively rendered sequence, we:

(a) Generate an image I1 in which every pixel P contains an encoding of which

triangle T is visible at P;

(b) Generate an image 12 in which every pixel P contains an encoding of the

barycentric coordinates B of the object-space point that projects to P;

(c) Using I1 and 12, generate the output image O by looping over all pixels P and

evaluating T's irradiance interpolant at the object-space point corresponding to

each P;

(d) Copy 0 to the framebuffer and swap it forward for display.

3.4.1 Visible Triangle Determination

Figure 3-3: I1, Triangle Figure 3-4: 12, Barycentric Figure 3-5: 0, Interpolant
identifiers. coordinates. rendering.



Task (a), visible triangle determination, is accomplished with the polygon fill and

depth-buffering hardware. Each triangle T is rendered as a solid "color", the "color"

being a 24-bit encoding of the index of T in the list of triangles L. This rendering

is done in the hardware backbuffer to avoid erasing the previous image currently

displayed in the frontbuffer. Occlusion is handled properly by the depth-buffering

hardware. After all triangles have been rendered, the framebuffer is copied to host

memory to create I1 (Figure 3-3).

3.4.2 Barycentric Coordinate Determination

Task (b) is accomplished with a 256 x 256 x 32 bit texture map. This texture consists

simply of an encoding of s and t at texel (s, t). We render each triangle, issuing it with

(floating-point) texture coordinates (0,0), (1,0), and (0, 1). The texture-mapping

hardware deposits, at each pixel, the correct texel and therefore the barycentric co-

ordinates of the point to be shaded. Note that Gouraud-interpolation hardware is

ill-suited for object-space interpolation, since it interpolates in screen space. However,

perspective-correct texture mapping hardware is widely available, and interpolates in

object space. Again, rendering is done in the backbuffer and occlusion is handled

properly by the depth-buffering hardware. Finally, after all triangles have been ren-

dered, the framebuffer is copied to host memory to create 12 (Figure 3-4).

3.4.3 Evaluating the Interpolant and Radiosity

To complete task (c), we loop over every pixel P in the output image O. The cor-

responding pixels in the scratch images I1 and 12 give the visible triangle T (and

its interpolant) at P and the barycentric coordinates B with respect to T of the

point that projects to P, respectively. T's interpolant is evaluated at B to produce

irradiance, which is then multiplied by the reflectivity of T and summed with T's

emissivity to produce radiosity.



Note that, given (s, t), evaluating

R(s, t) = As 2 + 2Bst + 2Cs + Dt2 + 2Et + F

requires only eight multiplies and five adds (the factors of two are folded into the

stored coefficients).

3.4.4 Depositing the Rendered Pixels

The final step, part (d), simply copies 0 to the display backbuffer and swaps front

and back buffers for an instantaneous update (Figure 3-5).

3.5 Costs and Parallelism

Steps (a) and (b) consist of flat-shaded polygon rendering, texture mapped polygon

rendering, and copying pixels from the framebuffer to host memory. Step (d) con-

sists of copying pixels from host memory to the framebuffer. These operations are

all extremely fast (i.e. can easily be performed at interactive rates) on a high-end

graphics workstation such as the Reality Engine [2].

The bottleneck of this algorithm is step (c), taking 10 - 100 times as long as the

other steps. Fortunately, this operation is highly parallelizable. The color of each

pixel depends only on the triangle list and the scratch images Ii and 12. Since the

color of every pixel in the output image is independent of the color of every other

pixel, there is no data dependency problem. The time to evaluate the radiosity for

any pixel is constant, so there is no load balancing problem.

On our host-parallel system, we create a separate evaluation process for each of

the N physical processors and partition all pixels on the screen equally among them.

Our implementation uses four processors (RISC R4400s running at 250 MHz), shared

memory for communication between processes, and a system of locks to synchronize

the processes.



3.6 T-vertices and Pixel Dropout

Our rendering hardware, a Silicon Graphics Reality Engine, guarantees that when two

adjacent polygons that share vertices are rendered, every pixel along the common edge

will be painted by exactly one of the two polygons.1 However, when non-overlapping2

polygons on either side of the edge do not have the exact same vertices, some pixels

along the edge may be colored by both, or neither, of the polygons. We are concerned

with a specific case of this, called a t-vertex. A t-vertex arises when an edge is shared

by polygons that do not have the same vertices along that edge. In Figure 3-6 triangles

tl, t 2 , and t 3 all have point a as a vertex, while the triangle t4 on the other side of

the edge does not.

If we restrict all quadtrees such that no neighboring nodes differ in depth by more

than one, t-vertices occur in our system in only three cases.

A Adjacent quadtree nodes differ in depth by one. In Figure 3-6, there will be a

t-vertex at a when qi, q2 , and q3 are triangulated.

B Neighboring quadtrees are triangulated such that one includes a discontinuity

that crosses the common edge and the other does not.

C Quadtrees of adjacent top-level quadrilaterals do not have the same vertices

along the shared edge (Figure 3-6, point c).

We detect case A by looking at the quadtree topology, and then employ a standard

solution for t-vertex elimination. In Figure 3-6, the larger triangle t 4 is rendered as a

quadrilateral, with an extra vertex at a. The polygons on both sides of the edge have

the same vertices along the edge, so the requirements for the hardware to eliminate

t-vertices are met.

We prevent case B from ever occurring by ensuring that if two quadtree nodes

are adjacent, and a discontinuity from one node's triangulation crosses into the other

'In implementing this, we found a bug in the Reality Engine scan conversion hardware. This
guarantee is not always met when zero-area triangles are rendered with backface culling turned on.
We worked around this by doing all backface culling ourselves in software.

2 By non-overlapping, we mean two polygons share, at most, an edge or vertex.



triangulate

Figure 3-6: A quadtree node impinged upon by a discontinuity (dark line) on the
left, with its triangulation on the right. The t-vertex at a is handled explicitly by
rendering t 4 with an extra vertex at a. A t-vertex is prevented at b by ensuring
that both leaves impinging on the discontinuity are triangulated according to the
discontinuity. A t-vertex arises at c from separate top-level quadrilaterals.

node, then the other node will also have that discontinuity in its triangulation (Figure

3-6, point b). This is described in greater detail in Section 5.5.

We do not handle t-vertices arising from C, as they are less noticeable in the

output images than those arising from A and B. T-vertices from C only occur on

the boundary between different pieces of top-level geometry, whereas those from A

or B can cause pixels to be lost in polygon interiors. If desired, type C t-vertices

could be eliminated by incorporating inter-quadrilateral adjacency information into

the quadtree leaf triangulation. Triangle edges would be marked with the locations of

quadtree vertices of adjacent quadrilaterals that touch that triangle. Triangles would

be rendered as a n-sided polygons, the triangle's three vertices plus extra vertices

along the edges.



Chapter 4

Radiosity Solution

The underlying radiosity solver is a reimplementation of the hierarchical radiosity

and wavelet radiosity algorithms described in [17, 14, 32]. The original code was

developed in C++ and IrisGL by Seth Teller and Peter Schr6der at Princeton. We

ported the solver to OpenGL and modified it for our use.

Solving the global pass of the radiosity solution provides us with

* A quadtree subdivision of the input geometry;

* A radiosity value for each quadtree node; and

* A "link" representing each element-element interaction [32];

* A set of "blockers" for each link; That is, a set containing all possible elements

that can occlude part of one element as seen from the other [32].

This computed solution satisfies the first requirement for the high fidelity rendering

algorithm; that is, it is a suitable input for the interpolant construction (Section 3.1).

4.1 Representation

The bulk of the radiosity solver is implemented as the C++ classes Quadrilateral,

Tree, Link, and Tube. The input geometry, a set of quadrilaterals, is represented with

Quadrilaterals. Associated with each Quadrilateral is the root of a quadtree, a



Tree data structure. A quadtree is partition of two-dimensional space where each

node is either a leaf or has four quadrilateral children. Each Tree node has a radiosity

value represented as the amplitude of a constant basis function. Radiosity coefficients

for nodes in the same quadtree are related such that a parent's coefficient is always

the average of its children's values.

The Link structure represents energy interactions between quadtree nodes. For

any two mutually visible points p and q on quadtrees P and Q, there will be exactly

one Link between a node in P containing p and a node in Q containing q. In addition,

a Link between a source j and receiver i contains the form factor Fij.

The initial configuration of the solver comes from associating a Tree of zero

depth with each input Quadrilateral. All possible interactions between pairs of

Quadrilaterals are computed and a Link object annotated with a potential blocker

list, Tube, is constructed for each [32]. Currently, this step is quite inefficient, requir-

ing O(n3 ) time for n input quadrilaterals. For each of the n2 pairs, check every one of

the n Quadrilaterals to see if it is a potential blocker. This time could be greatly

reduced by partioning the space with an octree and, for each pair, only considering

quadrilaterals in the octree nodes overlapping the convex hull of the pair.

4.2 Element to Element Form Factors

In general, computing element to element form factors is one of the biggest problems

in building a radiosity solver [9]. We experimented with three different methods:

1. Exact polygon to polygon form factor computation using Peter Schroeder's libff

library [28].

2. Simple disk approximation [9].

3. Take the average of the point-to-polygon form factor computations for several

points chosen randomly on the receiver. Use the same code and method de-

scribed in Section 6.2.



In all three cases we clipped each of the source and receiver polygons to the plane

of the other to deal with horizon effects, i.e. clip away the portion of one that cannot

be visible to the front face of the other. By form factor algebra, when the source

is split by the receiver plane we just clip away the invisible portion of the source.

When the receiver is split by the source, we also clip away the portion of the receiver

invisible to the source, but we must also adjust the resulting form factor by the ratio

of the area of the clipped receiver to the area of the unclipped receiver [9].

We found cases in which both 1 and 2 gave results off by at least an order of

magnitude. We chose method 3 because it gave the most stable results.

4.3 Iterative Solution

The iterative solution of the hierarchical radiosity system works as follows.

1. Each quadtree element's radiositiy coefficient is set to the quadtree's emittance.

2. A new set of radiosity values Bne is derived from the previous set B9ad using

the Radiosity equation (2.1). For all i, compute:

nBnew BoldF.
= Ei + piz: BjdFij

j=1

3. The quadtree representation of the radiosity function is refined (Section 4.4).

4. Steps 2 and 3 are repeated until the system converges, i.e. all radiosity values

undergo a relative change less than a user specified amount, (Appendix A, 7).

4.4 Solution Refinement

The question now is how to "drive" the refinement process during the radiosity so-

lution computation. After each pass "gathers" energy to elements in the quadtree,

we refine the solution mesh by subdividing quadtree nodes and by splitting single

links connecting nodes high in quadtrees into multiple links connecting nodes lower



in these quadtrees [17]. We implemented two methods for choosing when to do this

subdivision. The first is the standard method used by many existing hierarchical

radiosity solvers, based on an estimate of error in the transport of energy across a

link. The second is a new method which uses a more accurate and intuitive error

metric based on the piece-wise quadratic representation of the radiosity function.

4.4.1 Transport-Based Refinement

Description

Traditional refinement schemes use a simple estimate of the error in transporting

energy across a link. This error is relative to the change in the point-to-polygon form

factor for different points on the link's receiver and to the source radiosity [17].

Refinement Step

For every Link in the system, if the the error estimate across it is greater than the

specified error tolerance, Gur: :eps (Appendix A, 1), then the link is split in one of

two ways. The source quadtree node is subdivided and the old link is replaced by

four new links from the new children of the source to the unchanged receiver. Or, the

receiver quadtree is subdivided and the old link is replaced by four new links from

the unchanged source to the new children of the receiver. Both will tend to reduce

the error in energy transport across the link by reducing the size of the elements

involved in the interaction. The choice is made based on the relative areas of source

and receiver. To force interactions to be between elements of approximately equal

size, thus minimizing error, the larger quadtree node is the one subdivided.

4.4.2 Representation-Based Refinement

Description

The transport-based error criteria is extremely conservative, and can do far more

work on a surface than is required to capture the irradiance there faithfully (consider



hundreds of strong sources arranged so as to produce nearly constant irradiance; a

transport-based HR algorithm would subdivide to great depth to perform each source-

receiver transport accurately). Clustering techniques such as [30] ameliorate this

disadvantage somewhat, but still do not drive subdivision based on representation

error, an estimate of the error between represented radiosity and that due to all

sources irradiating the receiver.

Our representation of the radiosity function is a set of quadratic interpolants

(Section 3.2). The error in an interpolant's fit can be accurately estimated by sampling

using IrradianceAtPoint () (see Chapter 6) points in the triangle domain of the

interpolant. For each point, compare the value given by IrradianceAtPoint () with

that given by evaluating the interpolant. The representation error of a leaf is then

the maximum error in interpolant fit over all interpolants on that leaf.

Refinement Step

Loop over all leaves of the quadtrees. For each:

1. Triangulate and build interpolants;

2. Compute the representation error; and

3. Subdivide the leaf if it does not meet the globally specified error bound,

Gur: : eps (Appendix A).

Advantages and Disadvantages

In practice this produces a coarser mesh than transport-based refinement does for

solutions that give output images of equivalent quality. However, there are currently

two significant drawbacks to this method.

1. It requires significantly more time to run, as interpolants must be constructed

at every level of the quadtree. I.e. a quadtree node is only subdivided after

interpolants have been built on that node. Transport-based refinement only

requires interpolants to be built on the leaves of the tree for actual rendering.



Interpolant building, requiring several calls to IrradianceAtPoint (), is un-

doubtedly the bottleneck of the offline phase of the radiosity rendering system.

2. Representation-based refinement demands much greater accuracy and reliability

from the IrradianceAtPoint () function. If the IrradianceAtPoint () func-

tion suffers from geometric aliasing or roundoff errors, the function it describes

may have discontinuities in value where the actual irradiance function does not.

Since these artificial discontinuities are not represented in the mesh, interpolants

built across these discontinuities will generally fail to meet the error bound. In

some cases, no matter how much the system refines the quadtree solution near

such areas, the interpolant there will still fail to meet the error bounds. The

refinement process gets stuck, refining elements down to the minimum allowable

size in places where it is not truly necessary to do so.

The representation-based refinement scheme currently works well in practice for

small input scenes, but does not scale well due to the cost of building interpolants. For

larger scenes, such as in Figure 7-1, we used the transport-based refinement scheme

where interpolants are only built once, on the leaves of the final quadtrees.



Chapter 5

Dynamic Discontinuity Meshing

5.1 Motivation

The irradiance function has discontinuities due to contact and occlusion. Since

smooth interpolants do not perform well in the presence of discontinuities, researchers

have proposed the construction of "discontinuity meshes," in which the solution ele-

ments (i.e., function domains) are explicitly meshed, in order to introduce boundary

curves wherever discontinuities are detected [4, 23, 19, 24, 27, 31, 3, 10]. Once discon-

tinuities have been banished from the interior of the element, a smooth interpolant

can be fit, although for non-trivial domains this may require some fairly complex

geometric and topological infrastructure [25, 27, 23, 22].

5.2 Quadtree with Discontinuity-Meshed Leaves

We assume, as in [17], that from every quadtree solution element all sources of irra-

diance there may be found, and that relevant blockers are associated with all source-

receiver links. For each receiver element and its links, we identify the curves of irra-

diance discontinuity on the element. This is done by considering all edge-edge (EE)

and vertex-edge (VE) pairs drawn from among the light source and blockers, as in

[19, 24]. We also check all sources and receivers for horizon or contact discontinuities.

The left two images in Figure 5-4 show VE discontinuities, Figure 5-3 shows an EV
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Figure 5-1: Horizon discontinuity caused by source plane splitting receiver and contact
discontinuity caused by blocker touching receiver.

discontinuity, and Figure 5-1 shows a horizon and a contact discontinuity. Currently,

we ignore triple-edge (EEE) critical surfaces as these have a generally weak visual

effect. [19].

A general quadtree element, attempting to capture irradiance due to a multi-sided

light source shining past some number of blockers, may intersect many discontinuity

surfaces. However, quadtree subdivision of a node will tend to reduce the number of

discontinuities impinging on the node's children.

For each quadtree leaf, we rank the discontinuities affecting the element and

select the Tree: :maxLeafDisconts strongest discontinuities with weight at least

Tree: :minDiscontWeight. Tree: :maxLeafDisconts and Tree: :minDiscontWeight

are parameters to the algorithm (Appendix A). The minimum weight criteria avoids

expending computational effort meshing solution elements which are impinged upon

only by weak discontinuities. These discontinuity segments form the input to a CDT,

constrained Delaunay triangulation, algorithm [23], which produces a triangulation

containing the segments, along with adjacency information about the triangles. This

triangulation satisfies the second requirement for the high fidelity rendering algorithm

(Section 3.1).



Figure 5-2: All the discontinuities in the office scene of Figures 7-1 and 7-2.

5.3 Discontinuity Ranking

Geometric interactions (horizons and occlusion) tend to produce an enormous number

of discontinuity surfaces in a typical scene, and many of these surfaces will intersect a

typical receiver surface (Figure 5-2). However, most of the geometric discontinuities

will be quite weak radiometrically; consequently, they will have little or no visually

discernible effect. We propose a method for ranking discontinuities by a heuristic

"weight". The weight of a discontinuity produced by a specific source, blocker, re-

ceiver combination is derived by estimating the change that the discontinuity can

cause in the radiosity function at the receiver.

+Source
Blocker

Isr

Receiver

Figure 5-3: An EV(edge-vertex) discontinuity. dsb is the distance from source to
blocker. dsr, is the distance from source to receiver.

Define weight w for a VE or EV source-blocker-receiver combination. Bsrc is the



radiosity of the source. dsb and d,, are the distances along a line in the VE or EV

swath from the source to blocker and from the source to receiver, respectively. Figure

5-3 shows the configuration for an EV discontinuity. VE discontinuities are handled

similarly.

dsbw = max •d Bsrc
dbr

This weight can viewed as the product of a purely geometric and a purely ra-

diometric factor. The geometric factor max (4k) gives a measure of how close the

blocker is to the receiver. The closer the blocker is to the receiver, the faster the

source becomes visible (or obscured) as seen from a point moving from one side to

the other across the discontinuity (Figure 5-3). The radiometric factor is B,,r. The

brighter the source, the stronger the discontinuity. If you take a second to look at

the room around you, you will probably notice that all the shadows come only from

the brightest or smallest light sources.

Horizon discontinuitiy weights are computed similarly, except with the geometric

weight set to 1, the upper bound. In almost all cases, contact discontinuities give a

strong visible effect, so they are treated specially and given "infinite" weight.

5.4 Discontinuity Weight Caching

Discontinuity structures, defined below, cache the discontinuity weight so that it

is not recomputed every time it is needed.' The geometric factor of a weight never

changes, but, since element radiosity values can change between iterations of the

radiosity algorithm, the radiometric factor may become invalid. We handle this by

explicitly invalidating cached radiometric weights in the radiosity algorithm, see Sec-

tion 5.5.8.

'With such an inexpensive weight metric, it is a bit of overkill to worry too much about caching.
However, we have been experimenting with more expensive and accurate weights for which caching
does give a significant speedup (Section 8.2). We implemented a framework more general than what
is strictly necessary for the weight metric described in this thesis.
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Figure 5-4: Two separate VE(vertex-edge) source-blocker-receiver combinations cre-
ate two collinear (in this case, the same) discontinuities that are merged into one
discontinuity edge.

5.5 Triangulation

5.5.1 Discontinuities and Discontinuity Edges

Until now we have glossed over the distinction between a what is computed by consid-

ering all source-blocker-receiver VE, EV, horizon, or contact combinations and what

is actually inserted into the CDT. We call the former a discontinuity and the latter a

discontinuity edge. This distinction is important because

1. a discontinuity edge can be composed of several collinear discontinuities. Figure

5-4 gives an example of how different source-blocker-receiver combinations can

easily give rise to collinear discontinuities. In a scene of only medium complexity,

Figure 7-1, the maximum number of discontinuities forming a discontinuity edge

is 103. In this case the number is very high because a large number of the

polygons are axis-aligned;

2. discontinuities that have insufficient weight will not be inserted into the mesh,

so not all discontinuities lead to a discontinuity edge.

5.5.2 Constraints on Triangulation

Even with code to compute a CDT on an arbitrary set of 2-D segments, performing

the triangulation of all quadtree leaves according to the strongest discontinuities is

^____^_

+



not trivial because we must work within several constraints:

1. For efficiency, we only want to compute all possible discontinuities once, at

the top level, and we want this information to be propagated to children when

quadtree subdivision occurs.

2. If a discontinuity becomes part of the CDT for one leaf of a tree, it must also be

part of the CDT for all other leaves incident on that discontinuity. Otherwise a

t-vertex may arise. E.g. in Figure 3-6 no t-vertex arises at point b because both

of the quadtree leaves containing the discontinuity are triangulated according

to the discontinuity.

3. The maximum number of discontinuity edges in the CDT on a leaf is bounded

by a constant, Tree: :maxLeafDSets. DSet is defined below.

4. At any step of the iteration, for any leaf, we wish to be able to quickly combine

all collinear discontinuities of sufficient weight into a single discontinuity edge

to be inserted into the CDT for that leaf. I.e. leaf triangulation may occur

at any time and must be fast. Note that after every iteration, discontinuity

weights may change, possibly changing the set of most powerful discontinuity

edges, and requiring re-triangulation of the leaf.

We use two C++ classes, Discontinuity and DSet, to triangulate the leaves of

the quadtree and update the triangulations over multiple iterations, while meeting

these constraints.

5.5.3 Discontinuity

A Discontinuity is a non-zero length line segment annotated with some extra infor-

mation. At program startup we loop over all combinations of sources, blockers, and

receivers to compute all VE and EV Discontinuities, over all quadrilaterals whose

plane splits another quadrilateral to compute all horizon Discontinuities, and over

all quadrilaterals touching each other to compute all contact Discontinuities. This



is much less expensive than it first appears because we use visibility preprocess in-

formation, i.e. Links. We consider only source and receiver pairs that are mutually

visible, and for each pair consider only the list of potential blockers.

A Discontinuity contains:

1. two 3D endpoints, A and B, where A and B lie inside the receiver;

2. the type (VE, EV, horizon, or contact);

3. pointers to the source, blocker, and receiver quadtree nodes involved;

4. a geometric weight computed from the geometry that gave rise to the Discontinuity

(Section 5.3);

5. a cached weight (geometric plus radiometric part) computed as needed (Section

5.3);

6. a list of all DSets containing the Discontinuity (Section 5.5.5);

7. an active flag (Section 5.5.7).

5.5.4 DSets

I introduce an algorithm using a data structure called a DSet (Discontinuity Set). A

DSet for a Tree T is a nonempty set of collinear Discontinuities impinging on T.

All collinear segments will be in the same DSet.

A DSet consists of:

1. a set of Discontinuities;

2. a pointer to the Tree containing the DSet;

3. an active flag (Section 5.5.7).
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Figure 5-5: Depth 1 quadtree with Discontinuities and DSets for the root and
four children of the quadtree. < Xo, X 1 > means a Discontinuity from Xo to X 1.

5.5.5 Discontinuity and DSet Relationships

The relationship between Discontinuities, DSets, and Trees is complex. An ex-

ample is given in Figure 5-5. Note that all associations are two way. Given a Tree,

we can find all Discontinuities on that tree, and given a Discontinuity, we can

find all Trees containing that Discontinuity. The first direction is necessary for

computing the discontinuity edges to be inserted in the CDT for a Tree. The second

is needed to determine whether a Discontinuity can be activated without violating

the the Tree: :maxNumDSets requirement on any of the leaves containing it. Strictly

speaking, a Discontinuity only needs pointers to all the DSets on leaf Trees which

contain it.

5.5.6 Sharing Memory and Inheriting Discontinuities

C++ has an explicit memory management system. This means that we must be

careful to free memory no longer in use and to make reference only to memory that

is allocated. Discontinuities are shared by all quadtrees and all DSets as there is

no reason for different structures to see different state. Plus, Discontinuity weight

caching is more efficient, as after a Discontinuity internally computes and caches

its weight, all structures referencing that Discontinuity can use the cached value.

The root of a quadtree takes responsibility for the memory of all Discontinuities

under it, deleting the memory when it is deleted. This is the right thing to do, as

the only structures referencing these Discontinuities are quadtrees or structures

I YUUL



on quadtrees under the root that are also deleted when the root is deleted.

DSets, on the other hand, cannot be shared. Only some of the Discontinuities

in a parent Tree impinge on a given child of that Tree. The child needs to have its

own DSet containing exactly the Discontinuities of the parent DSet that impinge

on it. In Figure 5-5 root has a DSet containing the Discontinuities < Ao, A1 >

and < B 0, B 1 >, while its child 2 has a clipped version of the DSet that only contains

< A0, A1 >. If all the Discontinuities are clipped away, the child does not need

that DSet at all. In Figure 5-5 child 3 does not have any DSets at all. The method

DSet: :Clip() performs this DSet clipping and copying. DSets are associated with

the Tree they are contained in, a node of the quadtree. When a child Tree comes

into existence from the subdivision of a parent Tree, new DSets are created for the

child with DSet: :Clip(). Similarly, when a Tree is deleted, it deletes all its DSets.

This propagation of Discontinuities from root to children satisfies Constraint 1.

5.5.7 Active Discontinuities and Active DSets

Constraint 2, implies that if a Discontinuity is inserted as part of a discontinuity

edge in one leaf, then it must be inserted in all other leaves incident on it. This

prevents us from performing triangulation on an independent leaf-by-leaf basis. In-

stead, we start at the root of the quadtree and decide for all leaves at once which

Discontinuities will be active. A Discontinuity has its active flag set iff it will

be part of the CDT of every leaf that it intersects. Thus, a Discontinuity is either

in or out of every leaf's triangulation, not in some and out of others, and Constraint

2 is met.

We also introduce an active flag in the DSet. A DSet is active iff it contains

an active Discontinuity. Every DSet on a Tree leaf may contribute one or no

discontinuity edges to the CDT of the leaf, depending on whether or not it is active.

A DSet in a leaf is active iff it generates a discontinuity edge in the triangulation of

the leaf.

To compute the active Discontinuities and DSets in a toplevel quadtree:



1. Sort all Discontinuities by weight (using the standard C library function

qsort).

2. Traverse this sorted list from highest to lowest, trying to activate all Discontinuities.

A Discontinuity can be activated if it is above the minimum weight and if

activating it would not cause the number of active DSets on any leaf to go above

Tree: :maxLeafDisconts. Thus, constraint 3 is met.

The set of active DSets is always kept up to date, but leaves are only triangulated

as needed. To triangulate a leaf, we ask each active DSet in the leaf to compute one

segment that contains the union of its active Discontinuities. This is done quickly

by searching for the extremal endpoints in the set of all the collinear line segments.

Constraint 4 is met. We use these extremal segments (discontinuity edges) as the

constraint edges in a call to the CDT algorithm.

5.5.8 Discontinuities in the Radiosity Algorithm

We want to make sure that whenever we use the interpolants on a leaf, the triangula-

tion of the leaf exists and corresponds to the discontinuities that are currently most

powerful. Note that triangulating leaves and creating interpolants is expensive, while

computing the discontinuity weights and choosing the active DSets is cheap.

* At program startup compute all Discontinuities and the initial set of active

DSets.

* For each iteration of the radiosity algorithm:

- Run the gather/pushpull algorithm described in Section 4.3.

- Invalidate all Discontinuity weights on all Discontinuities in all Trees.

- Compute the active DSets in all toplevel quadtree. This will recompute

and cache the Discontinuity weights.

- Refine the quadtrees (Section 4.4). Any time the interpolants on a leaf are

referenced either, check that the existing triangulation is consistent with



current set of active DSets, or if there is no existing triangulation make a

new triangulation and build interpolants on it.



Chapter 6

Accurate Point Irradiance

In the spirit of "two-pass" methods [29, 23], we use the coarse hierarchical radiosity

solution to compute more accurate radiosity values at specific points on the geometry,

i.e. to implement IrradianceAtPoint (), the third requirement for the high fidelity

rendering algorithm (Section 3.1). For a point p, we compute the point-to-polygon

form factors from p to all sources visible from p. To achieve point-to-source form

factors with accurate visibility, we "backproject" potential blockers to the source

[10], discounting the source fragments thereby obscured.

We found that, although backprojection computation is expensive, it is necessary

to provide the desired level of accuracy in IrradianceAtPoint(). Initially in the

partially visible case we tried subsampling the source, dividing it into a regular grid

and summing the point to quadrilateral form factors for every grid square whose

center is visible to p. However, this method resulted in aliasing problems so severe

that quadratic interpolants could not be fit to the computed solution.



6.1 Fully Visible Point-to-Polygon Form Factor

Before going into the details of backprojection, we give the equation for the fully

visible form factor from a differential surface element at p on quadtree R to an n-

sided polygon S [6].

FFps = 1 NR - rg (6.1)
gEGs

where: Gs is the set of edges in S.

NR is the surface normal for R.

I, is a vector with magnitude equal to the angle gamma (in radians) illustrated in

Figure 6-1 and direction given by the cross product of the vectors Rg and Rg+1 as

illustrated in Figure 6-1.

Figure 6-1: Geometry for fully visible analytic form factor from p to S.

6.2 Backprojection

To compute the irradiance at point p on quadtree R, traverse all Links contributing

energy to R. For each link L add the contribution of L's source to p's irradiance.

The contribution of a source quadrilateral S to p, is the source radiosity multiplied

by the form factor from p to S.

The difficulty lies in computing the point-to-polygon form factor from p to S.



We cannot simply compute equation (6.1), as S may not be fully visible to p due to

intervening blockers or horizon effects.

6.2.1 Horizon Effects

If the source quadtree node S is split by the plane of the receiver we clip S to the

plane of R and continue with the clipped source. Note that this may turn the source

into a three- or five-sided polygon. By simple form factor algebra [9], this gives the

proper form factor from p to S. If R is split by the plane of S we check the sidedness

of p relative to S. If p is behind, the form factor is 0, otherwise we continue.

6.2.2 Full Visibility

If L has no blockers, compute the fully visible point-to-polygon form factor equation

(6.1) from from p to the (possibly clipped) source polygon and we are done. No

backprojection needs to be constructed.

6.2.3 Partial Visibility

If the interaction is not fully visible, then we must compute the backprojection of p

onto S, the portion of S visible to p (Figure 6-2). This is extremely similar to the

problem of computing a discontinuity mesh (Chapter 5). In fact, we reuse the wedge

intersect and CDT code already present in our system.

To compute the backprojection (Figure 6-2):

1. Project from point p to S all edges of all blocker quadrilaterals.

2. Use these projected line segments to form a CDT on the source.

3. Classify each triangle as visible or invisible by shooting a single ray from p to

the center of the triangle.

4. Sum the point to triangle form factors from p to all visible triangles.
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Figure 6-2: Backprojection of p onto S. Dark lines are backprojected blocker seg-
ments. Dotted lines are edges added in the triangulation of S. Shaded triangles
represent the region of S visible to p.

Each face of the graph G formed from the backprojection of all blocker edges is

guaranteed to be either entirely visible or invisible to p [10]. The CDT is a refinement

of G, so it also has this property. Thus, determining the visibility of a single point

in each triangle is sufficient to determine the visibility of the entire triangle. By form

factor algebra, the form factor from a point to an area is the sum of the form factors

from the point to each face of a partition of that area. So, this method gives us the

accurate form factor from p to S.

6.3 Point to Point Visibility

Visibility from a point p on a receiver R to a point q on a source S is computed using

the precomputed blocker list as in [32]. However, there is one case not handled by

Teller's algorithm that requires our attention. If p is on the edge of a blocker as in

Figure 6-3 its visibility can only be defined in the limit approaching p from above or

below the blocker plane.

In all cases where we call IrradianceAtPoint (), we are computing the irradiance

of a point on a non-zero area triangle and we are concerned with the irradiance at

that point as approached from inside the triangle. Since all contact discontinuities are

inserted into the discontinuity mesh, the triangle cannot cross the trace of the blocker

S source



on the receiver. Thus, in this special case, the center of the triangle can be used to

define the visibility of q with respect to p. q is visible to p iff it is visible in the limit

approaching p from the triangle center. To deal with this case in the implementation,

we simply nudge p a small fixed amount in the direction of the appropriate triangle

center and call the point-to-point visibility code (Appendix A).

Figure 6-3: q is visible from p when p is approached from the triangle centered at cl,
but invisible when p is approached from the triangle centered at c2.

6.4 Source-Receiver Contact

We run into trouble when S is adjacent to R and S ends on the inside of one of R's

edges (Figure 6-4). Equation (6.1) becomes highly nonlinear for points on R in the

neighborhood KN. So nonlinear, in fact, that quadratic interpolants around KA cannot

be fit within error tolerance no matter how much quadtree subdivision occurs.

We solve the problem by computing the irradiance function as if S were not

actually touching R. When computing the contribution of a source S to p, we first

shift S a small amount (Appendix A) before using the analytic point-to-polygon form

factor equation. This banishes the "bad" neighborhood KV from R.
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Figure 6-4: Analytic form factor equation is highly multivalued and nonlinear in the
neighborhood )V.
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Chapter 7

Results

We implemented these algorithms on a Silicon Graphics Reality Engine with four 250

MHz MIPS RISC R4400 CPUs and 512Mb of memory. The underlying radiosity solver

is a reimplementation, in C++, of the hierarchical radiosity and wavelet radiosity

algorithms described in [17, 14, 32]. The system components and code complexity

are as follows:

* Form factor and radiosity solver (18,000 lines of C++);

* Interpolant module (1500 lines of C++);

* User interface (4500 lines of C++);

* Rendering module (3000 lines of C++);

* Basic computational geometry and math modules (3000 lines of C++).

7.1 Test Scene

Our test scene, comprised of about sixty quadrilaterals, is shown in Figure 7-1. The

hierarchical radiosity algorithm, with the allowable error Gur: :eps set to 0.1W/m 2,

the maximum number of discontinuity edges per quadtree leaf Tree: :maxLeafDSets

set to 10, and the minimum discontinuity weight Tree: :minDiscontWeight set to

100, ran to convergence on this input in less than two minutes, and meshed the



input surfaces into 1622 quadtree (leaf) elements. After triangulation, there were

6576 triangles (interpolants), an average of about 4 triangles per element. Figure 7-3

shows the resulting quadtrees and triangulations. The discontinuity edges actually

used in the triangulations are a subset of those in Figure 5-2.

The interpolant construction was clearly the bottleneck, requiring two and a half

hours of CPU time (running on a single processor), about eighty times the cost of

computing the radiosity solution.

Figure 7-1: One frame of an interactive viewing session.

Figures 7-1 and 7-2 are screen snapshots taken from an interactive session viewing

the office model at NTSC (640 x 480) resolution. Our real-time rendering algorithm

achieved an average of 2.3 updates per second for this model. This simple office scene

serves to highlight the discontinuity resolution and shading abilities of the techniques

described here. Note that although the underlying mesh is relatively coarse, it still

yields a crisp image due to the use of irradiance interpolants.



Figure 7-2: A second frame, bird's eye view.

Figure 7-3: Mesh used for Figures 7-1 and 7-2.



Figure 7-4 shows a detail view of the corner near the light source, which contains

a strong horizon discontinuity. The difference between interpolant rendering and

Gouraud-shaded rendering is particularly evident in this region.

Figure 7-4: Gouraud shading (left) vs. quadratic interpolant rendering (right).



Chapter 8

Limitations and Future Work

8.1 Limitations

Our implementation has at least two limitations, namely 1) it processes only poly-

hedral scenes, and 2) since our techniques rely on graphics hardware, they operate

with relatively low numerical precision. However, we expect the latter concern to

be ameliorated by the increasing precision of next-generation software and hardware

architectures. Generalizing to non-polyhedral geometries remains a difficult problem.

8.2 Improved Weighting Metric

We are experimenting with an improved method for ranking discontinuities by their

worst-case radiometric "weight." The weight of a discontinuity produced by a specific

source, blocker, receiver combination is derived by bounding the maximum change in

the radiosity function, per unit length on the receiver. This weight will be proportional

to the source radiosity, and to the change in solid angle subtended by the source as

viewed from the receiver, as a result of motion on the receiver across the discontinuity.

The discontinuity meshing scheme could then be tied into the global error bound

Gur: :eps (Appendix A, 1).



8.3 Representation-Based Refinement

Currently, representation-based refinement (Section 4.4.2) is too slow to be practical

because it requires interpolant construction at every stage of the iteration algorithm.

We are looking into methods for accelerating calls to IrradianceAtPoint () and for

bounding representation error without actually constructing all interpolants.

8.4 Extension to Radiance

Radiosity algorithms are giving way to those for radiance, a much more complex,

4-dimensional quantity associated with each surface point's position, and a direction

from which the point is viewed. We plan to extend our algorithms to operate on a

radiance data structure, by rendering (a discretized representation of) the direction

(0, q) from which each surface point is viewed, in object space. The assembled values

(s, t, 0, 0) will then be used to evaluate a suitable 4-dimensional quadratic interpolant.



Chapter 9

Conclusion

Generating high-quality imagery that precisely captures diffuse irradiance is a compu-

tationally expensive proposition, and is arguably unachievable using polygon-based

linear-shading hardware alone. We presented a scheme in which fast integer and

floating point units, and a substantial amount of general purpose memory, were used

to capture a representation of irradiance for every point on every surface in a scene.

Later, in combination with a fast massively parallel graphics hardware rendering

architecture, the data structure is queried to produce quadratically interpolated ra-

diosity renderings at interactive rates.

One of the scheme's strengths, its use of rendering hardware, can also be con-

sidered a limitation due to that hardware's limited precision. However, software

advances (e.g., OpenGL) and hardware augmentations (e.g., higher iterator precision

and framebuffer resolution, larger textures, and object-space "Gouraud" interpola-

tion) should make these techniques both more efficient and accurate.

The realization of this technique required advances at both theoretical and prac-

tical levels. The theoretical advances of this paper were the ranking of discontinuities

by relative strengths, and a "factoring" of radiosity rendering into online and offline

components. The practical advances were the use of texture-mapping hardware for

barycentric coordinate generation, and the introduction of a hybrid quadtree-mesh,

a quadtree with discontinuity-meshed leaves.



Appendix A

List of all Parameters in System

1. A global error, Gur::eps, in W/m 2 for the transport-based and representation-

based refinement schemes.

2. The minimum allowed area, Gur::aeps, for a quadtree node in m2

3. A floating point roundoff error __meps_f for computing equality. Floats a and

b are considered equal if I a - b I< __m_epsf.

4. The minimum weight for a Discontinuity to be introduced into the quadtree

triangulation, Tree: :minDiscontWeight.

5. The maximum number of discontinuity segments used to triangulate a quadtree

leaf, Tree: :maxLeafDSets.

6. The minimum length of a backprojected segment introduced into the backpro-

jection triangulation, Backprojection: :minBPSegment. Necessary because the

CDT code is not stable when the inserted segments are too small. This is a

larger value than __m_eps_f.

7. The relative error cutoff in the iterative algorithm, Basis: :relErrorCutoff.

This determines when the solution has converged.

8. The number of extra sample points computed to determine the representation

error of an interpolant, SAMPLES x SAMPLES.



9. The distance to push the source when computing IrradianceAtPoint (),

Polygon: :ffPushOff.

10. The distance to nudge a point on the edge of a blocker to resolve visibility,

nudgeAmt.



Appendix B

User Interface

This describes the Motif interface to the system along with the OpenGL 3D visual-

ization tools.

B.1 Command Line

I only mention the most important command line options. Run "gur -h" to see all

options. "-N" sets the number of draw slave processes to use in interpolant rendering

mode. E.g. You might use "gur -N 4 scene.lrad" on a four processor machine. "-D"

disables double buffering. For machines with less than 48 bits per pixel, e.g. Indy or

Indigo II, this is the only way to see the full-resolution radiosity mode.

B.2 Layout

Upon program startup, the main window will appear. The menubar is at the top with

a small status indicator in the upper-right. The drawing area takes up the rest of

the window. There is one other top-level window, the Drawing Control Panel, which

is initially hidden. Press d or click the Drawing Control Panel button under the

Drawing menu item to hide/unhide the panel.



B.3 User Interface

B.3.1 Viewing Modes

Arcball

The default viewing mode, arcball, comes from some IrisGL code written by Ken

Shoemake that I ported to OpenGL. This mode can be entered by selecting Arcball

in the Viewing menu. Hold down the left mouse button and drag the virtual trackball

to rotate the model. If the shift or ctrl key is held down while dragging with the

left button, motion will be restricted to rotation around the coordinate axes of the

viewer or of the object, respectively. Hold down the middle mouse button and drag

to translate the model in screen space. Press shift and the middle button and drag

the cursor up/down to zoom in/out. Press ctrl and the middle button and drag the

cursor up/down to change the perspective warp.

Frustum

Select Frustum in the Viewing menu to enter the fly-through (frustum) mode. Left

mouse button moves the eyepoint forward, right moves it back. Pressing middle

button will rotate the eyepoint in the direction corresponding to the location of the

cursor on the screen. X Up, Y Up, and Z Up, in the Viewing menu specify the

up vector of the viewing frustum. Frustum Speed activates a dialog to specify the

speed at which the eyepoint moves through the scene.

B.3.2 Drawing Modes

The polygon drawing mode can be set from the Viewing menubar item. Modes can

be switched at any time and will always display the current state of the radiosity

solver. Certain modes require structures to be built or information to be computed,

so when switching drawing modes the system may take time to compute before dis-

playing anything.

In all four modes the Irradiance-2-Pixel slider in the Drawing Control Panel



controls the mapping between irradiance values in W/m 2 and pixel colors. This is

useful if the image appears too dark or too bright. Non-emitters are colored with

the product of irradiance, reflectance of the surface, and this mapping. Emitters are

always drawn white.

Flat Shading

This mode can be used to render the scene using only the constant basis functions,

but its primary purpose is to display the scene geometry and the visualization tools

Gouraud Shading

The scene is rendered as quadrilaterals corresponding to the leaves of the quadtree.

The system must first calculate and cache radiosity values on all quadtree leaf vertices.

Gouraud Shading with Discontinuities

The scene is rendered as a list of triangles, the triangulation of the quadtree leaves.

Each triangle is gouraud shaded from the evaluation of its interpolant at the vertices.

Interpolant Rendering

High fidelity interpolant rendering mode as described in Chapter 3. Use the Full

Window Radiosity button on the Drawing Control Panel to toggle between ren-

dering scratch data in the backbuffer (default) or splitting the viewport in four and

rendering scratch and final images to different sections.

B.3.3 Per-pixel Form Factors

The system provides two methods of creating a raytraced image. The RayShade but-

ton in the File menu shoots several rays through each pixel and evaluates IrradianceAtPoint ()

where the rays hit the geometry, i.e. a per-pixel form-factor evaluation. LerpShade

is similar except that the underlying interpolant is evaluated at every pixel to pro-



duce the color. This produces an image similar to that produced by the Interpolant

Rendering mode.

B.3.4 Computing Radiosity Solution

In the Iteration menu, the Iterate(Refine) button triggers one iteration of the

transport-based refinement scheme. The Iterate(Refine Interpolants) button trig-

gers the representation-based refinement scheme. The representation-based iteration

will iterate once or repeatedly until convergence depending on the setting of the It-

erate to Convergence toggle.

Note: When Iterate(Refine Interpolants) is pressed, the Compute Rep. Er-

ror option will automatically be selected. This means that when an interpolant is

built, extra samples will be taken to compute the representation error of the inter-

polant.

B.3.5 Setting Parameters

Important parameters for the system:

1. Max Error in the Iteration menu sets the error for the representation or

transport-based refinement algorithms, Gur: :eps (Section 4.4, Appendix A).

2. Min Area in the Geometry menu sets the quadtree leaf area at which subdi-

vision bottoms out Gur: : aeps (Appendix A).

3. Max Leaf Discont Segments in the Geometry menu sets the maximum

number of discontinuity segments that will be used to triangulate a quadtree

leaf (Section 5.2, Appendix A).

4. Minimum Discontinuity Weight in the Geometry menu sets the minimum

weight for a discontinuity to be considered in the triangulation of a quadtree

leaf (Section 5.2, Appendix A).



B.4 Visualization Tools

We built a number of 3D visualization tools directly into the application. These tools

visually display the internal state of the radiosity solver and renderer, giving valuable

debugging and sanity-checking information to the developers and providing a means

of demonstrating the algorithms to others.

These tools must all be used in the Flat Shading drawing mode.

B.4.1 Quadtree Face Color

By default, quadtree faces will be colored with the value of the underlying basis coef-

ficients. If Draw Trees Using Rho is set, trees will be drawn with their reflectance.

B.4.2 Quadtree Mesh

The mesh of the HR radiosity solution can be displayed with Element Mesh in the

Drawing Control Panel. Sometimes it is useful to turn off Draw Faces to better see

the mesh. The depth to which the mesh is drawn is controlled by the Mesh Depth

text field.

B.4.3 Links

Links between quadtree nodes are drawn as white, pink, or green arrows. White

represents a fully visible interaction. Pink represents an interaction where either the

source or receiver tree node splits the plane of the other. Green represents partially

visible interactions. Display of these links can be toggled with the Drawing Control

Panel Visible Links and Partial Links buttons.

B.4.4 Discontinuities

If Draw Discontinuities is selected in the Drawing Control Panel, all the potential

discontinuities in the scene will be drawn as violet line segments. This does not take

into account discontinuity weight.



B.4.5 Triangulation

The actual triangulation being used as a basis for the interpolants is viewed by select-

ing Draw Triangles in the Drawing Control Panel. Violet triangle edges represent

discontinuity segments in the mesh, green segments represent other segments inserted

into the CDT to satisfy the constraints imposed by the discontinuity segments. Note

that this is showing exactly which discontinuities have a large enough weight to be

inserted into the discontinuity mesh. It is sometimes easier to see the triangulation if

Draw Faces and Draw Discontinuities in the Drawing Control Panel are turned

off.

B.4.6 Selection

By clicking the left mouse button on certain structures, the user can select an item

of interest so that only the selected item will be drawn. Double clicking on the

background or choosing Unselect All in the Geometry menu will unselect all items.

A quadtree node can be selected by clicking on a top-level quad, or, if a quadtree

node is already selected, by clicking on one of its children.

Clicking a link once will select that link, clicking on it twice will select the link's

tube, displaying the blockers and information about the link.

If Draw Triangles is set in the Drawing Control Panel, clicking on a triangle in

a quadtree leaf will select that triangle.

If Draw Discontinuities or Draw Triangles is set in the Drawing Control

Panel, discontinuities can be selected. The source, blocker, receiver triple will be

displayed, along with information printed to the command line.

B.4.7 Triangle Graphs

When a tree (or triangle) is selected, you can display a graph of the irradiance over the

tree (triangle) as given by IrradianceAtPoint () (drawn in white) or as given by the

interpolants (drawn in blue) by turning on Analytic Irradiance or Interpolated

Irradiance in the Drawing Control Panel, respectively. Also, a graph of the difference



(drawn in red) between the two can be displayed by turning on Error Surface.

The scale of the graphs, the arbitrary mapping from irradiance in W/m 2 to linear

distance in m, can be controlled with the Graph height scale slider bar. The grid

density of the graphs can be controlled in a crude way with the Dynamic Grid

Density toggle. If turned on (default), the density of the grid over a triangle will be

proportional to the ratio of the area of that triangle to the area of the quadrilateral

it is in. Thus, the sum number of points in all the graphs over a quadrilateral will

be approximately the same no matter how finely triangulated the quadrilateral is. If

turned off, every triangle, no matter how small will be drawn with the same density

grid.

A caveat: the existing X/Motif interface is not interrupt-driven, so the system

cannot be interrupted when it is drawing or performing calculations. You must be

careful not to activate any time-consuming function if you are not willing to wait for

it to finish. Drawing the analytic irradiance or error graphs may be slow as the system

must call IrradianceAtPoint() at each point on the graph. Be especially careful if a

tree with many triangles is selected and Dynamic Grid Density is turned off. Also,

if interpolants have not already been built for the selected tree or triangle, turning

on Interpolated Irradiance will take time to first build the interpolants.

B.4.8 Sample Points

When a tree or triangle is selected, turning on Draw Sample Points in the Drawing

Control Panel will show (in yellow) the sample points and values used for interpolant

construction on each triangle.

B.4.9 Irradiance Probe

The right mouse button activates the general purpose irradiance probe. Clicking a

point on some quad will draw (in white) the analytic irradiance at that point. Also,

the coordinates, the analytic irradiance, the interpolant value, and the difference

between analytic and interpolant values at that point will be printed to standard out.



B.4.10 Backprojection Probe

To view the backprojection of a point back onto all its sources, hold the shift key and

click the right mouse button on any point in the scene. On each potential source, the

backprojection graph (Section 6.2) is drawn as violet and green line segments with

faces that are solid white or transparent. Violet segments are backprojected blocker

segments and green segments are other segments inserted to make the constrained

Delauney triangulation. Regions of the source visible to the point are drawn white

and invisible regions are left transparent. It is helpful to turn off Draw Faces, Draw

Triangles, and Draw Discontinuities when viewing a backprojection.
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