

University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

A Thesis Submitted for the Degree of PhD at the University of Warwick

http://go.warwick.ac.uk/wrap/55482

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to
cite it. Our policy information is available from the repository home page.

http://go.warwick.ac.uk/wrap
http://go.warwick.ac.uk/wrap/55482

Interactive Global Illumination on the CPU

Piotr Bart lomiej Dubla
B.Sc. (Hons)

A thesis submitted in partial fulfilment of the requirements for

the degree of

Doctor of Philosophy in Engineering

School of Engineering

University of Warwick

November 2010

Contents

Acknowledgements x

Declaration xi

List of Publications xii

Abstract xiii

1 Introduction 1

1.1 Physically-based Rendering . 1

1.2 Ray tracing . 3

1.3 Interactive Global Illumination 4

1.4 Research Objectives . 8

1.5 Thesis Outline . 9

2 Background 11

2.1 Introduction to Rendering . 11

2.1.1 Radiometry . 11

2.1.2 Surface Interactions of Light 12

2.1.3 Light Transport . 14

2.2 Primary Rendering Techniques . 16

2.2.1 Rasterisation . 16

2.2.2 Ray Tracing . 17

2.2.3 Radiosity . 18

2.3 Accelerating Rendering . 19

ii

2.3.1 Component-based Rendering 19

2.3.2 Selective-Rendering . 21

2.3.2.1 Rasterisation . 22

2.3.2.2 Ray tracing . 22

2.3.2.3 Perception . 23

2.3.3 Interleaved Sampling . 24

2.3.4 Dynamic Acceleration Structures 25

2.3.5 Irradiance Caching . 27

2.4 Synchronisation . 30

2.4.1 Blocking . 30

2.4.2 Busy-waiting . 31

2.4.3 Non-blocking . 31

2.4.4 Atomic Primitives . 32

3 Interactive Global Illumination 33

3.1 Interactive Ray Tracing . 33

3.1.1 CPU Algorithms . 34

3.1.1.1 Systems . 34

3.1.1.2 Algorithmic enhancements 36

3.1.2 GPU Algorithms . 37

3.1.2.1 Systems . 37

3.1.2.2 Acceleration Data Structures 38

3.2 Interactive Global Illumination 40

3.2.1 CPU Algorithms . 41

3.2.1.1 Systems . 41

3.2.1.2 Radiosity . 43

3.2.1.3 Sparse sampling 44

3.2.2 GPU Algorithms . 48

3.2.2.1 Radiosity . 48

3.2.2.2 Instant Radiosity 50

3.2.2.3 Image-based methods 53

3.2.2.4 Photon Mapping 54

iii

3.2.2.5 Precomputed Radiance Transfer 56

3.2.2.6 Rasterisation . 56

3.3 Discussion . 57

3.4 Summary . 61

4 Impact of Selective Rendering on Interactive Ray Tracing 62

4.1 Introduction . 62

4.2 Experimental Framework . 63

4.3 Experiment . 64

4.4 Results . 68

4.5 Discussion . 69

4.6 Summary . 70

5 Adaptive Interleaved Sampling for Interactive Global Illumina-

tion 71

5.1 Introduction . 71

5.2 Framework . 72

5.2.1 Identification . 73

5.2.2 Deconstruction . 74

5.2.3 Pairing . 76

5.2.4 Implementation . 78

5.3 Adaptive Interleaved Sampling (AIS) 80

5.3.1 Algorithm . 84

5.3.2 Indirect Diffuse Lighting 85

5.3.3 Soft Shadows . 86

5.3.4 Single-scattering Participating Media 88

5.4 Results . 90

5.4.1 Validation . 93

5.5 Summary . 97

6 Instant Caching for Interactive Global Illumination 99

6.1 Introduction . 99

6.2 Instant Caching . 100

iv

6.2.1 Static Instant Caching . 101

6.2.2 Temporal Instant Caching (TIC) 103

6.3 Results . 108

6.3.1 Static images . 108

6.3.2 Animations . 111

6.3.3 Validation . 112

6.4 Summary . 114

7 Wait-Free Shared-Memory Irradiance Cache 116

7.1 Introduction . 116

7.2 Algorithms . 118

7.2.1 Lock-Based Irradiance Cache (LCK) 118

7.2.2 Local-Write Irradiance Cache (LW) 119

7.2.3 Wait-Free Irradiance Cache (WF) 120

7.3 Results . 121

7.3.1 Still images . 123

7.3.2 Animations . 126

7.4 Summary . 129

8 Conclusions and Future Work 131

8.1 Conclusions . 131

8.2 Contributions . 133

8.3 Impact . 135

8.4 Limitations and Extensions . 136

8.5 Directions for Future Work . 138

8.6 Final Remarks . 139

References 141

A Adaptive Interleaved Sampling 170

v

List of Figures

1.2.1 The concept of ray tracing. 4

1.2.2 Examples of images rendered using path-tracing. 5

1.3.1 Explanation of interpolation via adaptive sampling. 7

2.1.1 BRDF examples. 13

2.3.1 Component-based Rendering. 21

2.3.2 Aleph map. 24

2.3.3 Interleaved sampling. 25

2.3.4 Samples in an irradiance cache. 28

3.1.1 Manta interactive ray tracer. 36

3.2.1 Razor. 43

3.2.2 Progressive radiosity. 44

3.2.3 Holodeck simulation. 45

3.2.4 Render Cache. 46

3.2.5 Corrective splatting. 47

3.2.6 Antiradiance. 50

3.2.7 Real-time Indirect Illumination with Clustered Visibility. 52

3.2.8 Screen-space directional occlusion. 53

3.2.9 Photon mapping on the GPU. 55

3.2.10Micro-Rendering. 57

4.2.1 Explanation how stride changes. 63

4.2.2 The four scenes used. 65

vi

4.3.1 Primary rays only. 66

4.3.2 Primary and secondary rays. 66

4.3.3 Secondary rays only. 67

4.3.4 Normalised speed-up compared to 4096× 4096. 67

5.2.1 Framework flowchart . 73

5.2.2 Explanation of framework goals. 76

5.2.3 AIS pipeline. 81

5.3.1 The three steps used in adaptive interleaved sampling. 83

5.3.2 ID adaptive guidance. 85

5.3.3 SS adaptive guidance. 87

5.3.4 PM adaptive guidance. 88

5.3.5 The scenes used for obtaining AIS results. 92

5.3.6 AIS participating media scenes. 93

5.4.1 Office scene (including the PM version). 95

6.2.1 Irradiance cache vs. instant cache. 103

6.2.2 The five cases. 104

6.2.3 The scenes used for all experiments. 109

6.3.1 HDR-VDP comparisons for the Office scene. 115

7.2.1 The five scenes utilised in the experiments. 123

7.3.1 Still Images: Results for all scenes. 128

7.3.2 Animation results for Cornell Box. 128

7.3.3 Animation results for Conference Room. 129

A.1 Indirect diffuse (ID). 171

A.2 Guidance ID. 172

A.3 Soft shadows (SS). 173

A.4 Guidance SS. 174

A.5 Participating Media (PM). 175

A.6 Guidance PM. 176

A.7 Instant Global Illumination (IGI). 177

A.8 AIS with maximum samples (A-MAX). 179

vii

A.9 Path-traced reference (PT). 181

A.10 VDP results for AIS vs. PT . 183

A.11 VDP results for A-MAX vs. PT 185

A.12 VDP results for IGI vs. PT . 186

viii

List of Tables

4.1 Scene details . 64

5.1 Eleven scenes rendered with different components. 96

5.2 Speedup for the 11 scenes. 96

5.3 Results for HDR-VDP calculations in %. 97

6.1 Results for rendering the first frame. 110

6.2 Results for the diffuse interreflections only. 110

6.3 Results for rendering the animations. 111

6.4 Rendering times averaged over 100 frames. 112

6.5 Results of the HDR-VDP comparison. 113

7.1 Results for all scenes. 125

ix

Acknowledgements

Firstly I would like to thank my supervisors, Alan and Kurt. Alan, if it wasn’t

for your laptop troubles at Afrigraph all those years ago and our chance meeting

I would not be where I am now, and for that I will be forever grateful. You not

only remembered me after all those years when I was ready to do a PhD but

also went out of your way to ensure that I could join you in Bristol and become

part of your group. Kurt, you’ve been both a great friend and a mentor, your

extensive graphics knowledge and love of research pushed me to try new things

and better my own knowledge as much as I could, this thesis would not be what

it is without your guidance and patience. I am indebted to you both, and your

constant support and motivation are reflected in this thesis and all my research.

To the other members of the research group, our collaborations not only

made for more varied and interesting research but your friendships balanced out

these four years and all our arguments, discussions and outings made the PhD

a fantastic experience I will never forget. Our time together formed friendships

that span most of Europe and beyond so I’d like to say thank you to Tom, Vedad,

Jass, Vibhor, Mike, Alena, Carlo, Elmedin, Alessandro, Francesco, Belma, Ela,

Gabriela, Matt, Remi and Sandro and I wish you all the best in your future

endeavours, whatever they may be.

I would like to thank my father who didn’t even blink an eye when I said I

was leaving a comfortable and successful job to pursue a PhD and who happily

bought me a one-ticket to England and told me to go chase my dreams. I also

dedicate this PhD to both my mother and my grandfather, both of whom regret-

tably passed away during the last four years and never got the chance to see me

complete it.

Finally I would like say thank you to all the people I have missed or not

mentioned, there was so many others who were part of the whole PhD process

and helped me in numerous ways during the past four years. I am also thankful

to the University of Bristol and University of Warwick for all the support as well

as the EPSRC for funding my research via the UK-EPSRC grant EP/D069874/2.

x

Declaration

The work in this thesis is original and no portion of work referred to here has

been submitted in support of an application for another degree or qualification

of this or any other university or institute of learning.

Signed: Date: November 2010

Piotr Dubla

xi

List of Publications

The following have been published as a result of the work contained within this

thesis.

Journal papers

• Dubla P., Debattista K., Chalmers A.: Adaptive Interleaved Sampling for

Interactive High Fidelity Rendering. Computer Graphics Forum (Volume

28, Issue 8, December 2009). Eurographics Association.

• Debattista K., Dubla P., Banterle F., Santos L.P., Chalmers A.: Instant

Caching for Interactive Global Illumination. Computer Graphics Forum

(Volume 28, Issue 8, December 2009). Eurographics Association.

• Debattista K., Dubla P., Santos L.P., Chalmers A.: Wait-Free Shared-

Memory Irradiance Cache. Computer Graphics and Applications (Preprint).

IEEE.

Peer-reviewed Conference Papers

• Dubla P., Debattista K., Santos L.P., Chalmers A.: Wait-Free Shared-

Memory Irradiance Cache. In the 10th Eurographics Symposium on Par-

allel Graphics and Visualization (Munich, Germany, 2009) Eurographics

Association.

• Dubla P., Chalmers A., Debattista K.: An Analysis of Cache Awareness

for Interactive Selective Rendering. In the 16th International Conference

on Computer Graphics, Visualization and Computer Vision (Plzen, Czech

Republic, 2008).

xii

Abstract

Computing realistic physically-based global illumination in real-time remains one
of the major goals in the fields of rendering and visualisation; one that has not
yet been achieved due to its inherent computational complexity. This thesis fo-
cuses on CPU-based interactive global illumination approaches with an aim to
develop generalisable hardware-agnostic algorithms. Interactive ray tracing is re-
liant on spatial and cache coherency to achieve interactive rates which conflicts
with needs of global illumination solutions which require a large number of inco-
herent secondary rays to be computed. Methods that reduce the total number of
rays that need to be processed, such as Selective rendering, were investigated to
determine how best they can be utilised.

The impact that selective rendering has on interactive ray tracing was anal-
ysed and quantified and two novel global illumination algorithms were developed,
with the structured methodology used presented as a framework. Adaptive Inter-
leaved Sampling, is a generalisable approach that combines interleaved sampling
with an adaptive approach, which uses efficient component-specific adaptive guid-
ance methods to drive the computation. Results of up to 11 frames per second
were demonstrated for multiple components including participating media. Tem-
poral Instant Caching, is a caching scheme for accelerating the computation of
diffuse interreflections to interactive rates. This approach achieved frame rates
exceeding 9 frames per second for the majority of scenes. Validation of the re-
sults for both approaches showed little perceptual difference when comparing
against a gold-standard path-traced image. Further research into caching led to
the development of a new wait-free data access control mechanism for sharing the
irradiance cache among multiple rendering threads on a shared memory parallel
system. By not serialising accesses to the shared data structure the irradiance
values were shared among all the threads without any overhead or contention,
when reading and writing simultaneously. This new approach achieved efficiencies
between 77% and 92% for 8 threads when calculating static images and anima-
tions. This work demonstrates that, due to the flexibility of the CPU, CPU-based
algorithms remain a valid and competitive choice for achieving global illumina-
tion interactively, and an alternative to the generally brute-force GPU-centric
algorithms.

xiii

CHAPTER 1

Introduction

Achieving realistic physically-based global illumination in real-time for dynamic

scenes, running at or above 30 updates per second, remains one of the major

goals in the fields of rendering and visualisation. This goal is a challenge due

to its inherent computational complexity. Moving from a non-interactive to an

interactive solution, one that updates at least once per second, is the first funda-

mental step towards achieving real-time results. Interactivity brings with it many

fundamental challenges and constraints that must be addressed, but if achieved

it provides near instantaneous feedback on all the complex light interactions that

can occur. This feedback is essential while a user is designing a complex scene

or changing and adjusting materials and lighting. There are many commercial

fields that would benefit from this level of fidelity and interactivity such as archi-

tecture, light design, computer graphic animation, product design, special effects

and many others. This thesis achieves the goal of interactive global illumination

by developing a number of novel algorithms, demonstrating new CPU-based ap-

proaches, which not only achieve interactivity, but do so on a single multi-core

desktop PC.

1.1 Physically-based Rendering

Predicting the appearance of a virtual environment consists of a number of stages,

detailed in the framework presented by Greenberg [Gre99]. In this framework

three distinct stages, detailed below, are presented: the goniometric model, the

light transport model and the perceptual model. The focus of this thesis is

primarily on the light transport model.

• Goniometric model: This stage deals with model acquisition and defin-

1

1. Introduction 2

ing the geometric or parametric primitives that together define the scene,

along with their behaviour with respect to the reflection, transmission and

emission of light.

• Light transport model: The light model or simulation that defines how

light energy that is emitted by a light source is scattered by various inter-

actions with the scene and ultimately how much of it arrives at a particular

receiver, normally a camera or an eye.

• Perceptual model: Given that the human visual system does not respond

linearly to all wavelengths of light or levels of illumination, the physical val-

ues returned by the light transport model must be translated and displayed

on a particular devices, such a monitor. This model may also be used to

aid in the rendering process, as well as providing validation once processing

is complete.

There are many methods that can be used to acquire a model of a scene, one

being to capture the geometry and reflectance properties by direct measurements,

another is to create the model manually. The first approach is useful when the

goal is to re-create an existing scene while the second allows for the construction

of new geometry and scenarios that, may for instance, be physically impossible

to construct. This complex task is a field unto itself and outside of the scope

of this thesis, for an overview refer to Watt [Wat93]. The behaviour of the

materials in the model such as the reflection, transmissions and emission of light

are formalised in the bi-directional reflectance function (BRDF) which is further

detailed in Section 2.1.2. Once a model has been acquired the goal is then to

visualise it, a process referred to as digital image synthesis or more commonly,

rendering [Gla95].

Rendering makes use of lighting simulations to compute an image. Each sim-

ulation can be termed a lighting, or light transport, model, which is in turn

composed of two components: local illumination which accounts for the emission

and reflectance of light from a given surface and global illumination which ac-

counts for the light transport between different surfaces. The mechanics of this

are formulated as the rendering equation [Kaj86]. The concept of physically-

based rendering refers to a light model where physically accurate measurements

and techniques are used for the computation of the local and global illumination

components. For further information on radiometry and light transport refer to

1. Introduction 3

Sections 2.1.1 and 2.1.3 respectively.

In the perceptual model, tone mapping attempts to solve the problem of map-

ping the unbounded energy values produced by rendering, possibly in physical

units, to the finite and discrete range supported by the display device being used,

such as a monitor. This requires the use of a tone mapping operator, the develop-

ment of which requires a thorough understanding of both the display technology

being used as well as the inner workings of the human visual system, for a com-

plete overview please refer to Reinhard et al. [RWPD05]. Perceptual metrics and

visual attention models have also been developed to aid rendering in a number of

ways. They can identify conditions where rendering can terminate [Mys98] and

exploit low-level [YPG01] as well as high-level [CCW03] processes of the human

visual system to guide the computation. Finally images can be evaluated once

processed to determine how perceptual accurate they are [Mys98,MCTR98].

1.2 Ray tracing

To perform physically-based rendering a simulation of light must be used that al-

lows for realistic light transport between surfaces in a virtual scene. While other

methods have been used, as shall be discussed in Section 2, the most common

method used is ray tracing. Ray tracing is a method in which the light is simu-

lated by a number of rays, each one containing a discrete amount of energy. As

can be seen in Figure 1.2.1 these rays are then cast into the scene and intersected

against the scene geometry, with behaviour such as reflectance and absorption

dictated by physically-based functions, called bi-directional reflectance functions

or BRDFs [Nic65], defined for each surface. These rays are then used to calculate

how much light would reach a given receiver, typically an eye or camera. For a

visual representation of this process refer to Figure 1.2.1.

Ray tracing algorithms find their roots in the ray-casting methods of [App68]

for computing surface visibility. This technique involved shooting rays from a vir-

tual camera into a scene and returning the closest object hit thus accounting for

surface visibility. Whitted [Whi80] presented the first ray-tracer for shading com-

putations, which elegantly recursed the computation at the first surface hit for

computing shading, reflections and refractions by shooting further rays from that

point. This work was extended to account for the full range of global illumination

computations, that could be physically-based, in the work of Cook [CPC84] and

1. Introduction 4

Kajiya [Kaj86]. These extensions included effects such as shading from area light

sources, complex BRDF modelling for correct specular and glossy reflection and

refraction, indirect diffuse computations, caustics, participating media, motion

blur, depth of field etc. all based on the simple recursive ray tracing computation.

As can be seen in Figure 1.2.2 the results can be very realistic.

Image
Camera

Light source

ObjectView ray

Shadow ray

Figure 1.2.1: This figure demonstrates the concept of ray tracing. A ray is cast
from the camera through the image plane, passing through a particular pixel.
This ray can then intersects the scene at a point. A further ray is then cast from
this point towards the light to determine how much energy from the light arrives
via this path, assuming it is unobstructed, otherwise the point is in shadow.

1.3 Interactive Global Illumination

Whitted-style ray tracing solutions [BEL∗07] are now running on consumer desk-

top PCs. The research focus of this thesis is to achieve similar interactive results

for interactive global illumination, a much more computational intensive prob-

lem. This involves computing complex effects such as diffuse interreflections and

1. Introduction 5

(a) A model of a real building, Sponza [Dab10], relit to simulate
a specific time of day.

(b) A scene composed of a number of models: the Stanford bunny
and Buddha, Utah teapot and custom grass and enclosure. The
custom models were created by hand while the others were cap-
tured utilising laser scanning techniques. Light Probe courtesy of
Paul Debevec [Deb10].

(c) A scene containing two mobius strip models

Figure 1.2.2: Examples of images rendered using path-tracing [Kaj86], a global
illumination algorithm. Each image was rendered at a resolution of 1920× 1080
and took between 4 to 8 hours to compute on a cluster of machines.

1. Introduction 6

soft shadows, all on a single multi-core desktop PC. The research concentrates on

CPU-based approaches due to the fact that ray tracing has many desirable prop-

erties and effectively, and until recently, has been mostly a CPU-based method.

A wealth of previous research provides optimised data structures, traversal and

shading all making full use of the hardware with novel approaches presented in

this thesis, refer to Sections 5 - 7, as well as concurrent research efforts detailed in

Chapter 3. A further target of this research is to develop generalisable hardware-

agnostic algorithms and as can be seen in the literature, such as Section 3.2, the

rapidly-evolving high-throughput specialised GPU, while already generalising,

necessitates the development of algorithms that are very tailored to the hard-

ware. This is demonstrated by the fact that current CPU-based methods achieve

interactive rates comparable to GPU-based methods, even though the GPUs pos-

sess a higher computational throughput. Implementations of languages such as

CUDA [GGN∗08] and OpenCL [Mun08] expose the computational power of the

GPU for general purpose development, but due to the evolving nature of the

hardware these development platforms are not as stable as the CPU-based ones.

While a number of improvements have been made in areas such as acceleration

data structure construction and traversal, generalised GPU-based ray tracing is

still hard to achieve. Recent systems, such as Optix [PBD∗10], attempt to pro-

vide this functionality but do so in a relatively closed system due to the inherent

complexities. A very limited number of specific methods and entry points for

ray generation are provided and an internal acceleration data structure is used,

which is not accessible. Even with such highly optimised GPU-based approaches

there exist competitive CPU-based ones, such as those by Wald et al. [WKB∗02]

and our methods presented in Chapters 5 and 6, that offer a higher degree of

flexibility, from a research and software engineering perspective. The viability

of CPU-based algorithms, especially those that exploit parallelism, is further en-

hanced as the number of cores available, currently a maximum of thirty two in

a single machine, continues to increase. This increase in computational power,

combined with the rapid convergence of the two platforms, also demonstrates the

need to exploit all the resources available when attempting to achieve interactive

global illumination, be they CPU-based or GPU-based. CPU-based development

offers the ability to focus on algorithmic research without the need to tailor any

results to very specific hardware and development platforms. With the additions

of new features to GPUs, such as caches, current issues affecting CPUs, such as

cache coherency may also become relevant in the near future.

1. Introduction 7

As we shall describe in detail in 3.1.1 and 3.1.2, interactive ray tracing has

focused on the exploitation of coherency among primary rays, ones cast from

or converging at a point in the scene. In contrast, to attain interactivity global

illumination requires the computation of a large number of secondary rays, those

that have already been reflected one or more times and therefore don’t share a

common origin or similar directions. The inherent complexity of the computation

combined with limited computational resources requires that new approaches be

considered that leverage all the available computational power and make optimal

use of it.

Figure 1.3.1: On the left side is an image that has been adaptively sampled,
starting with tiles that are 4× 4 pixels in size. The values at the four corners of
each tile were computed and if deemed necessary the tile was further recursively
subdivided, as needed, into four parts. This image was then interpolated, via
bilinear interpolation, using the four corner values at each tile with the resulting
image being shown on the right. Images courtesy of Kurt Debattista [Deb06].

One such approach, identified in Chapters 3 and 5, is selective rendering,

which encompasses progressive [CCWG88], adaptive [Deb06], time-constrained

and perceptually-driven techniques [CCW03, SCM04]. This approach focuses

computational power on specific areas in a given image where the work would be

most beneficial. This is done by not computing all the pixels in the image, but

only those that are deemed necessary. In the case of perceptually-driven methods

the pixels in the image that are classified as salient or perceptually important

to an observer, are where computational resources are focused. The rest of the

pixels that are not rendered are generally interpolated in some way, such as those

1. Introduction 8

in Figure 1.3.1 where adaptive sampling was used and the interior pixels of each

tile were filled in via bilinear interpolation [Deb06].

Combining interactive ray tracing methods and existing off-line global illu-

mination techniques with selective rendering, to accelerate the computation suf-

ficiently for interactive rates, seems like a natural choice but there exist some

fundamental issues which this thesis addresses. As mentioned above, interactive

ray tracing methods are dependent on high levels of coherency to achieve their

interactive rates, which is in direct conflict with selective rendering which is nat-

urally incoherent due to the fact that it processes only select pixels in an image

that may be completely spatially incoherent.

This thesis analyses and quantifies the impact that selective rendering has on

interactive ray tracing. These results are then utilised to develop two novel

interactive global illumination solutions along with novel data access control

mechanism. The interactive global illumination solutions don’t rely on any pre-

computation and are therefore suited for dynamic scenes where cameras, lights

and objects can all be moved. Furthermore, a data access control mechanism is

presented that presents a wait-free implementation geared towards highly par-

allel and interactive systems. These solutions are all designed to function in an

interactive context and serve as important steps towards reaching the final goal

of a real-time solution, while being of interest to a number of the commercial

fields mentioned previously.

1.4 Research Objectives

This thesis aims to combine selective rendering techniques and state-of-the-art

interactive global illumination algorithms. The main research objectives of this

thesis are:

• to analyse and quantify the impact of combining selective rendering tech-

niques and interactive global illumination algorithms.

• to utilise this information to develop a number of novel CPU-based in-

teractive global illumination algorithms by combing these two approaches.

Focusing on interactivity and taking into consideration both interactive and

off-line global illumination algorithms.

1. Introduction 9

• to create a rendering system to implement and test these novel algorithms

again against current state-of-the-art approaches.

1.5 Thesis Outline

The layout of this thesis is as follows.

Chapter 2: Background presents an overview of the concepts pertaining to

realistic image synthesis as well as providing background on all the algo-

rithms that will be covered in this thesis.

Chapter 3: Interactive Global Illumination provides a detailed literature

review of interactive ray tracing and global illumination on both the CPU

and GPU, as well as a discussion on the problems that the reliance on

coherency poses to interactive global illumination algorithms that attempt

to adaptively calculate the solution.

Chapter 4: Impact of Selective Rendering on Interactive Ray Tracing

analyses and quantifies the impact of selective rendering on interactive ray

tracing and identifies where selective rendering can be applied to best effect.

Chapter 5: Adaptive Interleaved Sampling for Interactive Global Illu-

mination builds on the work presented in the previous chapter to develop a

novel global illumination algorithm called Adaptive Interleaved Sampling. A

generalisable approach that combines interleaved sampling with an adap-

tive approach which uses efficient component-specific adaptive guidance

methods to drive the computation. The methodology employed while de-

veloping this algorithm is also refined and presented as a framework that

provides a structured approach when combing selective rendering methods

and interactive global illumination techniques.

Chapter 6: Instant Caching for Interactive Global Illumination takes a

previously off-line technique, irradiance caching, and develops an adaptive

update method, using the methodology from the framework, to allow the

solution to calculate diffuse interreflections at interactive rates. The design

of the algorithm enables the extension of the spatial coherence of the irra-

diance cache into the temporal domain, exploiting the temporal coherence

to avoid wasteful computation by using selective techniques.

Chapter 7: Wait-Free Shared-Memory Irradiance Cache develops a new

wait-free data access control mechanism, prompted by the use of the irra-

1. Introduction 10

diance cache in an interactive context in the previous chapter, that allows

the irradiance cache to be shared among many threads on a shared memory

parallel system without contention issues. This approach is evaluated to

show its superiority over two traditional data access algorithms: a lock-

based approach and a local write approach.

Chapter 8: Conclusions and Future Work concludes the thesis and dis-

cusses limitations, extensions, impact and future work.

CHAPTER 2

Background

This chapter introduces the fundamental concepts and knowledge needed to un-

derstand the processes and methods behind the generation of physically accurate

representations of virtual scenes.

2.1 Introduction to Rendering

This section begins with Section 2.1.1 where the physical quantities utilised in

radiometry are introduced. Subsequent sections, Sections 2.1.2 and 2.1.3, discuss

the interaction of light with objects within the virtual scenes and light’s transport

through the scenes in the context of the rendering equation.

2.1.1 Radiometry

The goal of any local or global illumination algorithm is to calculate the distri-

bution of light energy in a scene, be it the whole distribution or part thereof.

To achieve this goal an understanding of the physical quantities that represent

light energy is needed. Radiometry is the field of study that deals with the phys-

ical quantities and measurements of light. This section provides a brief overview

of the radiometric units used in the rest of this thesis, following the terms and

terminology utilised in Dutre et al. [DBB06]. It should be noted that photomet-

ric terms utilised in light perception are simply derived from their radiometric

counterparts.

Radiant power or flux (Φ) is the primary radiometric quantity which is mea-

sured in watts (joules/sec). Flux is not dependant on the size of the source or

receiver or the distance between them. Flux simply expresses the total energy

11

2. Background 12

flow at a surface per unit time.

Irradiance (E) is amount of incoming radiant flux per unit surface area, and is

measured in watts/m2. Radiosity (B) or radiant exitance is the outgoing radiant

power per unit surface area. It is also measured in watts/m2.

Φ =
dQ

dt
E =

dΦ

dA
B =

dΦ

dA

Radiance (L) is the most commonly used quantity in realistic image synthesis

and denotes the flux per unit project area per unit solid angle, measured in

watts/(m2steradin). This is simply the flux coming in from a specific direction

onto a small area.

L =
d2Φ

dwdAcosΘ

Transport theory, dealing with the mathematics governing the transfer of energy

between media, can also be utilised to express the radiometric quantities in terms

of a point x and direction Θ where L(x→ Θ) denotes the radiance leaving a point

x in direction Θ. The relationships between Φ, E(x) and B(x) is examined below,

where A is the total surface area and Ω is the total solid angle at each point on

the surface.

Φ =

∫
A

∫
Ω

L(x→ Θ) cos θdwΘdAx

E(x) =

∫
Ω

L(x← Θ) cos θdwΘ

B(x) =

∫
Ω

L(x→ Θ) cos θdwΘ (2.1.1)

For the remainder of this thesis radiance leaving point x in direction Θ will be

represented as L(x → Θ) and radiance arriving at point x from direction Θ as

L(x← Θ).

2.1.2 Surface Interactions of Light

When light energy is emitted into a scene it interacts with a number of different

objects by getting reflected, transmitted or absorbed at surfaces boundaries. A

light reflectance model attempts to model these interactions, usually through

the use of a function that attempts to reproduce the physical behaviour of the

material.

The simplest and most often used light reflectance model is the Bidirectional

2. Background 13

Pure diffuse Pure specular Glossy

Figure 2.1.1: BRDF examples: The first case demonstrates pure diffuse or Lam-
bertian reflection [Lam60], were light energy is scattered equally in all directions.
The pure specular case reflects all incoming energy in one particular direction
with no scattering. Finally the glossy case exhibits both diffuse and specular
properties, scattering light but having a number of specific directions which are
favoured.

Reflectance Distribution Function (BRDF). The BRDF (fr) is a function that

describes the ratio of reflected differential radiance at a point x from direction

Ψ to the differential irradiance in the outgoing direction Θ. A more generalised

version of the BRDF function is one that has both an entrance and exit point,

and models not only reflectance but also transmittance allowing for effects such

as subsurface scattering [JC98], this function is called the Bidirectional Surface

Scattering Reflectance Distribution Functions (BSSRDF) [Jen01]. Focusing on

the BRDF, utilising the definitions from Dutre et al. [DBB06], which is denoted

as fr(x,Ψ→ Θ):

fr(x,Ψ→ Θ) =
dLr(x→ Θ)

dE(x← Ψ)
=

dLr(x→ Θ)

L(x← Ψ) cos(Nx,Ψ)dwΨ

(2.1.2)

where cos(Nx,Ψ) is the cosine of the angle formed by the normal vector Nx and

incoming direction Ψ at point x. A common property of BRDFs is reciprocity

where the value of the BRDF remains unchanged if the incident and exitant

directions are interchanged so that fr(x,Ψ→ Θ) = fr(x,Θ→ Ψ).

Many BRDFs exist and are utilised in image synthesis, the simplest being

the pure diffuse and pure specular BRDFs which can be seen in Figure 2.1.1.

Real materials are much more complex, such as the glossy example in Figure

2.1.1, and many attempts have been made to capture this complexity. Cook and

Torrance [CT81]; Ward [WH92] provides a comprehensive overview of BRDF

models, including anisotropic and spectral representations.

2. Background 14

2.1.3 Light Transport

Having dealt with surface interactions of light energy this section examines the

light transport in a virtual scene. The goal of the light transport is to compute

the steady-state distribution of light energy within the scene. This computation

accounts for the global aspect of the illumination model and as such is funda-

mental to any global illumination algorithm. This model is represented as a

mathematical equation termed the rendering equation [Kaj86]. For this equation

it is assumed that participating media, such as smoke or fog, is not present and

that light travels instantaneously. For each surface point x and each direction

Θ the rendering equations returns the exitant radiance L(x → Θ). The exitant

radiance is the sum of the emitted radiance from a the point x, described as

Le(x → Θ), and the reflected radiance described as Lr(x → Θ). The derivation

of the rendering equation below follows Dutre et al. [DBB06].

L(x→ Θ) = Le(x→ Θ) + Lr(x→ Θ) (2.1.3)

Utilising the definition from Equation 2.1.2 and integrating through, to take into

light incoming from all directions on the hemisphere, gives:

Lr(x→ Θ) =

∫
Ωx

fr(x,Θ↔ Ψ)L(x← Ψ) cos(Nx,Ψ)dwΨ (2.1.4)

Equation 2.1.3 is substituted in to reach the final form of the rendering equation:

L(x→ Θ) = Le(x→ Θ) +

∫
Ωx

fr(x,Θ↔ Ψ)L(x← Ψ) cos(Nx,Ψ)dwΨ (2.1.5)

Equation 2.1.5 is called the hemispherical formulation of the rendering equation.

Another formulation which is widely used is the formulation that expresses the

rendering equation in terms of the contribution all surfaces make to the reflected

radiance. For this formulation, a visibility function V (x, y) is utilised, where

V (x, y) is 1 if y is directly visible from x and 0 otherwise. Referring back to

Equation 2.1.5, incoming radiance at x from direction Ψ is the same as outgoing

radiance from y in direction −Ψ, L(x← Ψ) = L(y → −Ψ). The solid angle dwΨ

2. Background 15

can reformulated as cos(Ny,−Ψ) dA
r2xy

. This leads to the following formulation:

L(x→ Θ) = Le(x→ Θ)+∫
A

fr(x,Θ↔ Ψ)L(y ← −Ψ)V (x, y)
cos(Nx,Ψ) cos(Ny,−Ψ)

r2
xy

dAy

This is more commonly written as:

L(x→ Θ) = Le(x→ Θ)+∫
A

fr(x,Θ↔ Ψ)L(y ← −Ψ)V (x, y)G(x, y)dAy (2.1.6)

where:

G(x, y) =
cos(Nx,Ψ) cos(Ny,−Ψ)

r2
xy

The rendering equation, or parts of it, are utilised by most rendering approaches

when attempting to get realistic results. From classical ray-tracing [Whi80] which

would only sample along pure specular and transmitted paths to classical radios-

ity that only used a perfectly diffuse BRDF [GTGB84] these approaches solved

a part of the rendering equation.

While the algorithms mentioned above only solve a part of the rendering

equation, there also exist a number of light transport algorithms that attempt

to solve it fully. These global illumination algorithms can be divided into two

broad categories. The first attempt to solve the light transport problem in an

unbiased manner using Monte Carlo ray tracing methods. Foremost among these

are path-tracing [Kaj86] and distributed ray tracing [CPC84] which produce un-

biased results but suffer due to the large computational cost required to reduce

noise in the solutions. Bi-directional techniques [LW93,VG94,Pat93] that traced

rays from both the eye and the light sources reduced noise and enhanced overall

performance. Metropolis light transport [VG97] took the bi-directional concept

further by intelligently sampling the multi-dimensional space of the integral by

locating paths proportional to their contribution to the eye. The second category

relies on biased techniques, both consistent and inconsistent, such as irradiance

caching [WRC88], instant radiosity [Kel97], photon mapping [Jen01] and light-

cuts [WFA∗05] later extended to multi-dimensional lightcuts [WABG06]. These

methods sacrificed some accuracy for a greatly decreased computational time as

well as a much more converged and noise-free result. While biased if an algo-

2. Background 16

rithm is consistent, such as photon mapping, it converges towards the correct

result given enough computational time.

While there are many other aspects of light transport, such as the influence

of participating media, that affect the rendering equation these are simply out

of the scope of this thesis. For a thorough overview of this area please consult

Dutre et al. [DBB06]; Shirley and Morley [SM03].

2.2 Primary Rendering Techniques

Sections 2.2.1 - 2.2.3 introduce the three primary rendering techniques utilised

in digital image synthesis: rasterisation, ray tracing and radiosity.

2.2.1 Rasterisation

Interactive computer graphics has largely been dominated by rasterisation algo-

rithms. Rasterisation supports scenes composed of geometric primitives that are

computed as polygons, directly or through on-demand polygonisation from other

geometric primitives such as Non-Uniform Rational Basis Spline (NURBs). The

rasterisation pipeline begins with a series of computations that transform the

geometry into the view space, followed by a projection onto a 2D image view

plane. Lighting is calculated and visibility is usually computed using z-buffer

algorithms [Cat74]. Integrated within the z-buffer algorithm, to complete the

pipeline is the rasterisation process. This is typically composed of polygon-fill

algorithms, texturing and sometimes aspects of the lighting computation. Raster-

isation has been favoured by the gaming industry and film industry [CCC87] due

to its simplicity and rendering speed. Over the past decade real-time speeds have

been accentuated further by dedicated graphics hardware such as the graphics

processing unit (GPU). The GPU has also been utilised to compute ray tracing

as well as global illumination solutions as discussed in Sections 3.1 and 3.2.

Initially rasterisation-based renderers struggled to compute more complex

lighting effects. With the introduction of shaders, user-defined programs or ker-

nels, that replace a specific stage of the rendering pipeline such as the vertex

or pixel stage, more advanced effects became possible. Still even simple effects,

such as shadowing for point light sources, required another computation pass of

the rasterisation pipeline [Cro77, Wil78]. Other algorithms, and typically extra

pipeline passes, are required for specular [OR98] and glossy reflections [DB97],

2. Background 17

area lights [HLHS03], caustics [Wym08] and other lighting computations, al-

though very often these are not physically-based but physically-inspired. Other

methods can be applied for pre-computing non-specular effects, such as radios-

ity [GTGB84] or PRT [SKS02] and its extensions [ZHL∗05, PWL∗07, IDYN07].

While these methods now support rigid-body dynamic scenes they, as yet, do not

handle deforming objects.

Recently with the increase in computational power of the GPU, as well as the

ability for shaders to generate new geometry, a number of more complex effects,

such as depth of field [BK08], dynamic indirect lighting [SIMP06b, RGKS08,

ML09], soft shadows [DL06, SGNS07], complex reflections [YYM05, EMDT06]

and refractions [Wym05,OB07] have been added to the rasterisation pipeline. A

comprehensive overview on interactive rendering methods using rasterisation is

provided by Akeine-Moller et al. [AMH02].

2.2.2 Ray Tracing

The class of algorithms termed ray-tracing, introduced in Section 1.2 find their

roots in the ray-casting methods of [App68] for computing surface visibility. This

technique was used for hidden surface removal and involved shooting rays from a

virtual camera into a scene and returning the closest object hit thus accounting

for surface visibility.

Whitted [Whi80] presented the first method to compute illumination via ray

tracing. This method is now known as classical or Whitted-style ray tracing.

This view dependant method shot rays from the camera out into the scene iden-

tifying the first object hit. At this point shading was calculated by shooting extra

rays towards all light sources to determine visibility. If the intersection was with

a specular object one or two rays (to account for reflection and refraction) were

recursively shot. While this method solved the rendering equation for specular

surfaces, in the same way that radiosity solved it for diffuse interactions, exten-

sions where needed for ray tracing to solve all aspects of the rendering equations.

These extensions were initially provided by distribution ray tracing [CPC84] and

path tracing [Kaj86] which utilised Monte Carlo techniques to provide a full

global illumination solution. Further extensions to this work would eventually

include effects such as shading from area light sources, complex BRDF modelling

for correct specular and glossy reflection and refraction, indirect diffuse compu-

tations, caustics, participating media, motion blur, depth of field etc. all based

2. Background 18

on the simple recursive ray tracing computation.

Furthermore, ray tracing offers the option to be able to compute intersections

directly with many different geometric types (without tessellation) and is easy

to parallelise. The ability for ray-tracing to produce realistic images meant that

software based around these algorithms was developed for use in realistic lighting

simulations, see for example Ward [WRC88] and more recently has begun to

be used in film production [Her04,Chr06]. For a comprehensive overviews of ray

tracing methods refer to Glassner [Gla95]; Shirley and Morley [SM03].

2.2.3 Radiosity

Classical radiosity was introduced into the computer graphics field from thermal

engineering by Goral et al. [GTGB84]. This view-independent finite-element

method solves the global illumination component of the rendering equation for

perfectly diffuse surfaces and only handles diffuse to diffuse interactions. It does

this by discretising the scene into a series of patches and computing the radiosity

for each patch, which is the total power leaving the surface of the patch. This

computation is a system of N simultaneous linear equations where the fraction

of power arriving at one patch from another is called the form factor. The

computation of the visibility between patches is potentially the most expensive

computation in the radiosity pipeline and a number of approaches have been

proposed to tackle the problem.

The most popular approach to solve the visibility problem is to use projection.

The form factor with any surface, calculated from a particular point, is simply the

projection of that surface onto the hemisphere around the point. The hemi-cube

method [CCWG88] uses rasterisation to project the hemisphere on the faces

of a hemicube using techniques such as hidden surface removal to accelerate

the computation. Other methods to solve the visibility problem use different

projections and ray casting techniques, further details can be found in Sillion

and Puech [SP94]; Ashdown [Ash95].

Solving the radiosity equation, once the form factors have been determined,

is usually done by expressing the system of linear equations as a matrix. Iter-

ative methods, such as the Jacobi or Gauss-Siedel, can then be used but these

solutions have a complexity of O(N3) when dealing with N elements. This can

be reduced by managing patch complexity adaptively [HSA91] or by using faster

converging techniques [CCWG88]. Another approach is to use stochastic meth-

2. Background 19

ods that replace form factor computation with form factor sampling, improving

both the computational speed and reducing memory usage [Bek99,DBB06].

Solving the radiosity equation for other surface interactions, such as glossy or

specular, has been attempted [AH93] but the solution required a more complex

surface subdivision approach and form factor calculation, increasing computa-

tional time substantially. Most other solutions that utilise radiosity to solve the

rendering equation [Kaj86] do so by using a hybrid solution that incorporates ray

tracing to compute the specular components. Some of these methods are covered

in more detail in Sections 3.2.1.2 and 3.2.2.1.

View independent radiosity has a number of advantage over ray tracing.

Lighting only needs to be computed once, and can then be re-used for inter-

active walkthroughs of static scenes, where the geometry and lighting do not

change.

2.3 Accelerating Rendering

In this section a number of techniques are examined that are used to accelerate

some aspect of rendering. Section 2.3.1 examines how the rendering equation can

be broken up into a number of components and how algorithms can target specific

components to reduce the overall computational time. In Section 2.3.2 adaptive

and progressive approaches are investigated which focus computational power,

using some form of guidance, in areas of highest benefit. Section 2.3.4 examines

dynamic acceleration data structures and their application and contribution to

interactive ray tracing. Finally Section 2.3.5 introduces the irradiance cache,

extended in Chapters 6 and 7, and its current extensions and uses.

2.3.1 Component-based Rendering

The subdivision of the rendering process into components has been proposed a

number of times in order to make the computation more efficient. The work

that paved the way for component-based approaches was shade trees [CPC84]

introduced by Cook and used for the REYES renderer [CCC87]. Shade trees,

later extended by Perlin [Per85] to include control structures and flow, allowed

different BRDFs, see Section 2.1.2, to be used on surfaces in the same scenes

requiring the computation of both specular and diffuse components.

2. Background 20

Initial approaches that computed components separately, as a means of solv-

ing the rendering equation [Kaj86], were termed multi-pass algorithms. These

algorithms combined different approaches, mostly classic radiosity and ray trac-

ing. In Wallace et al. [WCG87] a multi-pass algorithm was presented that utilised

the z-buffer algorithm to calculate view dependant planar reflections and a ren-

dering pass to compute the diffuse component. This work was extended by Sillion

and Puech [SP89] where ray tracing was utilised for computing the specular com-

ponent and the form factors of the remaining non-planar objects. Ward [WRC88]

decoupled and cached the expensive indirect diffuse component in his distributed

ray tracer, using standard ray tracing for the direct diffuse and specular com-

ponents. A three-pass method was used by Shirley [Shi90] to calculate various

components: path tracing from the light source was used to calculate caustics,

radiosity was used for indirect illumination and stochastic ray tracing calculated

the remaining components. Another such algorithm was presented by Heck-

bert [Hec90] where an approach similar to adaptive radiosity was used for the

indirect illumination component and the result stored in textures, which were

adaptively subdivided based on their screen size. This approach used ray tracing

to compute the remaining components adaptively sampling both light rays as

well as eyes rays, in the same fashion as Whitted [Whi80]. Chen et al. [CRMT91]

introduced an entirely progressive algorithm which used a number of different

approaches for the components. The indirect diffuse component was computed

using a progressive radiosity pass, using ray tracing for the specular components.

Caustics were computed using light tracing with direct lighting computed using

standard ray tracing. The approach allowed for the progressive radiosity compu-

tation to be halted, a view selected and the high frequency caustics and direct

lighting to be computed. The low frequency lighting could then be further refined

by either continuing the progressive radiosity solution or by using path tracing.

The concept of a lighting networks was introduced by Slusallek [SSH∗98], and

could be viewed as an evolution of shading trees [CPC84]. This framework for-

malised many aspects of the multi-pass methods, allowing different algorithms

to compute distinct parts of the rendering problem and arranging these in a net-

work. This network could have many topologies, including loops and allowed

users to specify their own networks where only parts of the scene were com-

puted with a given algorithm. This approach, due to its complexity, developed

a regular expression system to express these networks, using similar notation to

Heckbert [Hec90], which allowed for the detection of redundant and missing light

2. Background 21

Figure 2.3.1: A Cornell Box scene split into a number of components: (top-
left) direct, (top-middle) indirect diffuse (top-right) pure specular, (bottom-left)
glossy (bottom-middle) transmitted (bottom-right) reflected. Images courtesy of
Kurt Debattista [DSSC05].

paths.

More recently approaches such as Stokes et al. [SFWG04] and Debattista et

al. [DSSC05] have combined component-based approaches with perceptual ren-

dering, covered in Section 2.3.2. Stokes et al. [SFWG04] presented a perceptual

metric, which was combined with path tracing, to predict the importance of the

components for a given scene. The metric used the primary rays of the path

tracing computation to collect information about the scene, this information

combined with the metric was then used to allocate resources based on percep-

tual importance. In Debattista et al. [DSSC05] a component regular expression

(crex) was introduced that allowed for fine grained control with regard to the

components that were computed and the order they were computed in, see Fig-

ure 2.3.1. Combining the crex with a perceptual metric allowed for the reduction

of computational complexity while maintaining perceived visual quality.

2.3.2 Selective-Rendering

Selective rendering is defined by Debattista [Deb06] as “those techniques which

require a number of rendering quality decisions to be taken and acted upon prior

to, or even dynamically during the actual computation of any image or frame

of an animation”. This covers a large number of approaches and algorithms

including those that are adaptive, progressive and time-constrained.

2. Background 22

2.3.2.1 Rasterisation

Techniques applicable to off-line selective rendering go back to early work done on

level of detail by Clark [Cla76]. While most techniques stored a distinct version of

the model for each level of detail and discretely switched between them the work

presented in Luebke and Hallen [LH01] utilised an adaptive perceptual metric

to select an appropriate level of detail. Bergman et al. [BFGS86] presented a

different approach in which the complexity of the shading was adaptively adjusted

on a per polygon basis, from displaying only vertices to using Phong shading

with anti aliasing. The focus of this thesis is on ray tracing and therefore for

further comprehensive overviews of rasterisation-based approaches please refer

to Akenine-Moller and Haines [AMH02]; Luebke et al. [LWC∗02]

2.3.2.2 Ray tracing

Adaptive and progressive methods for ray tracing were presented in the ear-

liest approaches, such as Whitted [Whi80], where the removal of aliasing was

performed by recursively subdividing based on the radiance at the corners of

pixels. Mitchell [Mit87] presented a ray tracer which first coarsely sampled the

image plane, using non-uniform Poisson sampling, and then refined the samples

based on an adaptive heuristic which took into account the relative intensity

of samples as perceived by the non-linear response of the human visual system.

Painter and Sloan [PS89] presented an algorithm that was both adaptive and

progressive, using a kd-tree for both storing samples and identifying where new

samples should be generated based on a number of heuristics that took into ac-

count the area of the kd-tree node as well as if the node was on an edge of an

object. Like Mitchell [Mit87] they suggested exploiting the non-linear response

of the human visual system but the suggestion was implemented by Meyer and

Liu [ML92]. A general rendering approach which has the ability to adaptively

adjust its computation when it identifies areas of high importance, based on their

radiance contribution, is the Metropolis Light Transport [VG94]. Guo presented

a progressive rendering approach based on the use of a directional coherence map

(DCM) [Guo98]. The image plane was regularly and then recursively subdivided

into blocks of four, using a quadtree, and the radiance at the vertices of each

block was calculated. Blocks where then progressively subdivided into a two

groups, smooth and edge blocks. Further subclassification was then performed

on edge blocks to mark them as complex if more than one edge was detected

2. Background 23

within the block. This occurred recursively but at any point the image could

be reconstructed using the DCM. The work was further extended in Farrugia

and Péroche [FP04] where a perceptual metric rather than the DCM was used.

Direct lighting can also be selectively calculated using techniques such as those

presented in Ward [War91b] and Shirley et al. [SSW∗06]. For Ward [War91b]

the contribution of multiple lights was sorted based on contribution potential,

which was based on criteria such as: distance of light from surface, light intensity

and size of light source. The lights with the highest potential had shadow rays

calculated for them until a certain threshold was reached after which a statistical

simulation, based on previous visibility tests, was used to approximate the rest

of the contributions. In Shirley et al. [SSW∗06] the scene was divided into cells

that stored differentiated between lights that considered important and ones that

weren’t, which were then sampled accordingly. Jin et al. [JIC∗09] provided an

adaptive and selective approach to tackle supersampling in an interactive ray

tracing context where both image-space and object-space attributes were used to

calculate a priority which then guided the computation.

2.3.2.3 Perception

Perceptually assisted selective rendering algorithms that apply perceptual con-

siderations when computing progressive or adaptive refinement, such as Mitchell

[Mit87] reviewed above, exploit the human visual system to drive the computa-

tion. Bolin and Meyer [BM98] and Ferwerda et al. [FSPG97] produced frequency-

based ray tracers that used very complete models of the human visual system and

incorporated aspects such as spatial processing and visual masking. Visual dif-

ference predictors have also been used to direct samples in stochastic ray tracing

as well as determine stopping conditions [Mys98, BM98]. These visual differ-

ence predictors were costly to compute though as they had to be re-calculated

many times each frame until Ramasubramanian et al. [RPG99] decoupled their

spatially-dependant saliency component from the luminance dependant compo-

nent. This led to many selective rendering implementations that used saliency

models such as Yee et al. [YPG01] where a saliency model they term the Aleph

Map was used to influence the search radius for samples when performing the

indirect-diffuse lighting calculations from an irradiance cache, refer to Figure

2.3.2 for an example. Haber et al. [HMYS01] utilised saliency maps and task

objects to identify the most salient objects on which the glossy and specular

2. Background 24

components where rendered in higher detail. In Cater et al. [CCW03]; Sundstedt

et al. [SCM04] saliency maps and task maps where used to vary the number of

samples calculated in a global illumination framework based on the Radiance ren-

derer by Ward [War94]. Sparse sampling methods such as Walter et al. [WDP99],

all covered in detail in Section 3.2.1, also used adaptive techniques to focus com-

putation in areas of importance. For an comprehensive overview of recent work

in perceptually adaptive graphics please refer to O’Sullivan et al. [OHM∗04]; De-

battista [Deb06].

Figure 2.3.2: An adaptively rendered scene, showing on the left, utilising an
Aleph map [YPG01], shown on the right, as guidance. Images courtesy of Hector
Yee [YPG01].

2.3.3 Interleaved Sampling

When correlated samples are utilised they are faster to generate and more coher-

ent but this is at the expense of visible sampling patterns and structured noise.

Decorrelation of these samples on the other hand increases variance and therefore

generates random noise. Interleaved sampling [KH01] combats this by creating

an interleaved sampling pattern. This is done by blending smoothly between

both regular and irregular sampling, interleaving the samples of a regular grid,

which are correlated, in an irregular way to maintain coherency but reduce the

aliasing of the sampled image.

Interleaved sampling has been used to accelerate both ray racing and rasteri-

2. Background 25

sation. In the paper by Wald et al. [WKB∗02] it was used to accelerate the global

illumination solution by allowing only a subset of the virtual point lights that

were generated to be sampled per pixel. Segovia et al. [SIMP06b] also proposed a

real-time method for interleaved sampling where they introduced a technique to

maintain coherency between neighbouring pixels by splitting the rendered image

into a number of sub-buffers. These sub-buffers contain only pixels from a spe-

cific part of the interleaved sampling pattern. These are then later recombined

and filtered taking into account discontinuities, see Figure 2.3.3. In Sloan et

al. [SGNS07] and Forest et al. [FBP08] interleaved sampling is used to accelerate

shadow generation on the GPU by reducing the overall number of samples that

need to be calculated.

Figure 2.3.3: An example of the structured noise created by interleaved sampling
is shown on the left, this noise can be greatly reduced, as can be seen on the right.
This is achieved by utilising a correctly-sized filter kernel, same size as that of
the interleaved sampling pattern, along with discontinuity buffering [WKB∗02].

2.3.4 Dynamic Acceleration Structures

Since ray tracing calculations for computing visibility must intersect the geom-

etry within a scene, if each ray were to intersect each geometric primitive the

algorithm would be intractable. Much research has gone into the construction of

efficient data structures for ray traversal to minimise the computational cost of

ray-object intersections. These data structures, commonly known as acceleration

data structures, are usually based on subdividing space uniformly or adaptively.

An overview of all acceleration structures techniques is beyond the scope of this

thesis therefore the focus of this section is on the creation of dynamic acceleration

data structures. For a full and comprehensive overview of acceleration structures

2. Background 26

please refer to Havran [Hav01]; Hunt et al. [HMS06]; Havran et al. [HHS06]; Wald

et al. [WBS07].

When ray tracing developed the ability to ray trace scenes at interactive rates

on single machines [RSH05, Wal04] a significant factor, besides faster hardware,

was more effective acceleration structures and enhanced traversal algorithms. At

the time kd-trees were observed to give the best performance [Hav01] especially

when using the Surface Area Heuristic (SAH) [MB90] during construction.

Three primary strategies were identified at that time that enabled interactive

ray tracing:

1. Avoid rebuilding the kd-tree [LLAm01,WKB∗02,GFW∗06].

2. Utilise and optimise other acceleration structures such as:

• Grids [RSH00,WIK∗06].

• Bounding Volume Hierarchies (BVHs) [LYTM06,WBS07].

• Hybrid structures [WK06].

3. Optimise the construction of SAH based kd-trees, primarily by parallelising

and optimising the evaluation of the expensive SAH cost function [HMS06,

PGSS06,CKL∗10].

Shevtsov et al. presented a fast and highly parallel kd-tree construction algo-

rithm that allowed for a full kd-tree rebuild of an entire scene every frame [SSK07],

Wald et al. published two papers that redirected a large portion of the research

towards BVHs. The first presented an optimised method for firing large ray

packets (several times bigger than the SIMD width) through a BVH [WBS07],

while the second showed how fast kd-tree rebuilding techniques could be applied

to BVHs and how these methods provided almost ten times more speed-up when

utilised in this context [Wal07]. At the same time Yoon et al. presented an algo-

rithm to selectively restructure a BVH based on the output of two new metrics

that measured the restructuring benefit and culling efficiency [YCM07]. Finally

Wald et al. presented three new methods that allowed for fast, parallel and asyn-

chronous construction of BVHs; a full rebuild using a fast binning approach when

evaluating the SAH cost function; a parallel version of the binned build; and, a

asynchronous build that occurs over multiple frames [WIP08].

Up until this point the focus has been in tracing large packets of rays through

the BVH [WKB∗02] and the construction of the structures had reflected this.

2. Background 27

More recently a number of publications have investigated building a BVH so

that SIMD utilisation can be exploited not by tracing multiple rays against one

node, but by tracing one ray against multiple nodes of the structure. Ernst et

al. [EG08], Dammertz et al. [DHK08] and Wald et al. [WBB08] have all recently

presented techniques for the construction of a BVH with more than two branches,

generally four, for each node.

All the work above has focused on construction of acceleration structures on

the CPU. Recently new work has dealt with construction acceleration structures

entirely on the GPU. A technique for construction a full kd-tree entirely on the

GPU was presented by Zhou et al. [ZHWG08]. This method constructs nodes

in a breadth-first order to exploit the significant streaming performance that the

GPU provides. In the same vain Lauterbach et al. presented an algorithm for

BVH construction on the GPU, providing two versions: one general version for

use with methods such as collision detection, and a specialised version tuned

for ray tracing [LGS∗09]. This approach was extended in Pantaleoni and Luebke

[PL10] where two construction approaches were presented, a hierarchical variation

of the construction approach along with an SAH-optimised variation.

2.3.5 Irradiance Caching

The irradiance cache was first presented in Ward [WRC88] and is a data struc-

ture used to accelerate the computation of indirect diffuse interreflections in a

view driven fashion. Traditionally the indirect diffuse component of the lighting

is calculated by sampling the hemisphere around a particular point, via recursive

ray tracing, to calculate the total irradiance. This is a computational expensive

process due to the recursive nature of the algorithm and the sampling density

required. Ward noted and exploited the fact that the indirect diffuse compo-

nent is generally a continuous function that does not suffer the high frequency

changes common to direct lighting and the specular component. When an indi-

rect diffuse computation occurs the irradiance cache is first queried to determine

if any samples exist within a given search radius, if they do they are then ex-

trapolated/interpolated from to produce the required value. If a sample is not

found the full computation occurs, and the result is stored in the cache for future

computations. The range searches, performed to locate valid samples within the

cache, are accelerated by the use of an octree [Gla84] which is incrementally built

every time a new sample is added by storing the new irradiance value as well as

2. Background 28

updating the octree topology. An example of the resulting sample locations can

be seen in Figure 2.3.4. By caching the results of the expensive indirect diffuse

computations an order of magnitude decrease in the overall computation time

was observed. This caching approach has been extended for accelerating the

computation of other components such as subsurface scattering [KLC06] as well

as participating media [JDZJ08].

Figure 2.3.4: The top image show a vi-

sualisation of samples present in an irra-

diance cache, with the resulting rendered

image at the bottom. Images courtesy of

Jaroslav Křivánek [KGW∗07].

The irradiance cache has been ex-

tended in many ways, the first of these

was the use of irradiance gradients

[WH92]. These gradients, both rota-

tional and translational, were stored

along with the cache samples and used

to improve performance and reduce ar-

tifacts by adjusting the shape of the

search radius which was valid during

range searches. A new approach for

calculating the error metric, which dic-

tates when new samples are created

and when they are extrapolated/in-

terpolated, was introduced by Tabel-

lion and Lamorlette [TL04]. They

also demonstrated how the irradiance

cache had been utilised in accelerat-

ing global illumination in a framework

used for rendering imagery for com-

puter generated movies. Krivanek et

al. [KGBP05] presented the radiance

cache, which extended the caching

of diffuse interreflections by allowing

glossy interreflections to be cached as

well. This work was then further ex-

tended by adapting the search radius during computation to improve the perfor-

mance and quality of the caching [KBPv06]. Arikan et al. presented an approach

in which they decoupled the final gathering of distant and local geometry to en-

hance performance. A GPU implementation was also presented, and while faster

than the traditional implementation it was limited to computing single bounce

2. Background 29

indirect lighting [GKBP05].

Another approach used to accelerate the irradiance cache is to run it on a

parallel system. In these systems each thread or process might evaluate new

irradiance values and add them to the cache. To increase efficiency the cache

must be shared among all the processes, to avoid work replication, making it

a shared data structure. This requires some form of access control mechanism,

see Section 2.4, which ensures that the data is accessible, updatable, doesn’t be-

come corrupted and that whose overheads do not compromise performance or

efficiency. In a distributed memory system multiple copies of the structure are

maintained and need to be synchronised. In the Radiance distribution [War94]

this was achieved by using the Network File System (NFS) for concurrent access

to the cache. It was important to use an efficient file locking manager as oth-

erwise contention would lead to poor performance. Another approach presented

by Koholka et al. [KMG99] was to broadcast cache values amongst processors,

each time 50 samples were calculated by a slave node. Robertson et al. [RCLL99]

presented a centralised parallel version of Radiance where the calculated cache

values were sent to a master node whenever a threshold was met. Each slave

node then collected the values from the master node at regular intervals. Finally

Debattista [Deb06] proposed restricting diffuse irradiance evaluations to a sub-

set of the available nodes and synchronising the cache among these at a higher

frequency than with the remaining nodes.

Due to the fact that the cache was view independent the cache could be

re-used on subsequent frames as long as the scene remained static and only the

camera moved. Attempts have been made at temporal caching for use in dynamic

scenes such as the work in Tawara et al. [TMS04] where the irradiance cache

was extended into the temporal domain by updating the cache samples visibility

rays, used when computing the final gathering, over time. The ageing scheme

used identified the oldest samples and updated them, causing invalid samples

to be used while objects where in motion. Smyk et al. [SKDM05] presented

another temporal method based on caching the final gathering rays in photon

mapping along with a new anchor data structure. Anchors were used to group

final gathering rays, used to compute the cached sample, with the photons. The

final gathering rays were linked with the closest anchor and when unavailable a

new anchor was created on demand. Changes in the irradiance value at an anchor

would trigger updating the irradiance cache strata linked with it. This method

required the use of an extra abstract data structure (the anchor kd-tree) to bind

2. Background 30

the photons with the final gathering rays and all the mechanisms related with it

to manage anchor creation, update and deletion, on top of photon mapping and

irradiance caching. Finally Gautron et al. [GBP07] presented a temporal solution

that catered for changes in the temporal domain and included computation of

a temporal gradient. This method predicted the incoming lighting and how it

would affect the cached samples, with the drawback being that paths through the

cache needed to be known before hand to correctly predict illumination. It should

be noted that all the methods presented above, the original irradiance cache, the

extensions as well as the distributed and temporal approaches all worked off-line

and were not utilised in any interactive systems.

2.4 Synchronisation

This section will examine the different approaches to access control mechanisms

for shared data structures, and their relative advantages and disadvantages. Tra-

ditionally, access control to shared memory data structures is maintained via

mutual exclusion, a property that dictates that only one thread or process can

access a particular piece of data at a time. The area of code where mutual ex-

clusivity must be maintained, and therefore concurrent access cannot occur, is

termed a critical section.

2.4.1 Blocking

Blocking occurs when locking mechanisms, such as semaphores, mutexes and

monitors, are used to guard critical sections [Dij68]. When one process attempts

to acquire a lock that is already held it will block until the lock is free.

Blocking in undesirable for many reasons, while a process is blocked it cannot

perform any work which may be unacceptable in a real-time or high priority

system. Certain lock interactions can also lead to conditions such as deadlock,

livelock and priority inversion. Deadlock is a situation where a process blocks

acquiring a lock but never acquires it due to another process never releasing

it. Livelock, a special case of resource starvation [Dij68], involves two processes

changing their states continually but never progressing. Finally priority inversion

is a situation where a lower priority process will run blocking a higher priority

process waiting for a locked resource. Blocking also entails expensive context

switches and increases contention as the number of processes increases.

2. Background 31

2.4.2 Busy-waiting

When frequent access to a shared data structure may be required, the cost of

blocking may be prohibitive. In this case if another process lies within the critical

section a process is made to busy-wait instead of block, by continuously checking

if the lock is available, until access is allowed. An example of a busy-wait or

spinning technique is the spin lock. Such control mechanisms incur overheads,

such as serialisation of accesses to the shared data structure, but avoid expensive

context switching or re-scheduling that occurs for blocking mechanisms. Busy

waiting of frequently-accessed resources leads to contention which can drastically

reduce performance as the number of threads increases [ALL89]

2.4.3 Non-blocking

An alternative is algorithms that utilise non-blocking synchronisation, an ap-

proach which avoids mutual exclusion by carefully ordering instructions. These

algorithms can eliminate code serialisation by removing all critical sections and

also reduce contention [HS08]. Non-blocking algorithms are classified in three

main categories: obstruction-free, lock-free and wait-free.

The weakest form of the non-blocking approaches take the form of obstruction-

free methods. An algorithm is obstruction-free if it can guarantee that a thread

can complete in finite time if it operated in isolation (i.e. with all other threads

suspended). This requires that any partially-completed operation can be aborted

and the changes made rolled back at any time.

Lock-free algorithms guarantee that at least one among a set of concurrent

threads will complete in finite time. This allows individual threads to starve

but guarantees system-wide throughput. This process generally occurs in four

phases: completing one’s work, assisting an obstruction, aborting an obstruction

and waiting. Completion of assigned work is complicated by the possibility of

assistance and abortion, but is generally the fastest path to complete execution.

The decision whether to assist, abort or wait if an obstruction in encountered is

typically the most complex part of a lock-free algorithm. All lock-free algorithms

are obstruction-free.

Lock-free and obstruction free methods rely on retrials and cannot guarantee

an upper bound on the number of executed instructions. When all threads are

guaranteed to complete in finite time the algorithm is said to be wait-free. With

a guaranteed upperbound on the number of instructions wait-free algorithms

2. Background 32

Listing 2.1: “Fetch and Add” (XADD) and “Compare and Swap” (CAS)

1 atomic XADD(address location)

2 {

3 int value = *location;

4 *location = value + 1;

5 return value

6 }

7

8 atomic CAS(address location, value cmpVal, value newVal)

9 {

10 if (*location == cmpVal)

11 {

12 *location = newVal;

13 return true;

14 } else return false;

15 }

avoid starvation, deadlock and livelock and priority inversion and are ideal for

multiprogrammed multiprocessors. All wait-free algorithms are also lock free. It

has been shown that that all algorithms can be implemented in a wait-free manner

[Her88]. While many approaches that transform serial code, called universal

constructions, have been presented these approaches generally result in reduced

performance, even when compared to a standard blocking approach.

2.4.4 Atomic Primitives

Atomic primitives are also key in the development of non-blocking algorithms.

These single instruction functions can be executed without any interruptions on

modern hardware. They can be seen as reducing the critical section of an algo-

rithm into individual indivisible machine instructions. Herlihy [Her91] provides

a hierarchy of the effectiveness of such primitives, the most effective being those

that can be used to implement any wait-free data structure which he described

as being compare and swap (CAS) or the load-link store-conditional (LL/SC) in-

struction pair, an alternative to compare and swap found on some architectures.

While effective, it has been shown that CAS or LL/SC primitives cannot pro-

vide starvation-free implementations of many common data structures without

memory costs growing linearly in the number of processes [FHS04]. This makes

implementation of wait-free algorithms challenging. Pseudo code (Listings 2.1)

is shown for the two atomic instructions, fetch and add (XADD) and compare

and swap (CAS), which are used later in Chapter 7.

CHAPTER 3

Interactive Global Illumination

This chapter provides a thorough review of both interactive ray tracing and

global illumination on both the CPU and GPU. This work builds on the render-

ing concepts introduced in Chapter 2 and details the primary area of research

that pertains to this thesis, interactive global illumination. The information pre-

sented here pertaining to the developments in this field is then utilised during the

development and presentation of a number of novel interactive global illumination

algorithms further detailed in Chapters 5 - 7.

This chapter begins by introducing interactive ray tracing (IRT) and examines

how the CPU (Section 3.1.1 and GPU 3.1.2) are utilised in computing interactive

ray tracing solutions. In Section 3.2 interactive global illumination algorithms

are examined in detail investigating both CPU (Section 3.2.1) and GPU (Section

3.2.2) methods. Section 3.3 examines the role coherence plays in interactive ray

tracing and how this coherence is exploited to increase computational throughput

and how this can be combined with sparse sampling methods. Finally Section

3.4 provides a summary of the chapter.

3.1 Interactive Ray Tracing

This section examines interactive ray tracing which encompasses systems and

algorithms that produce Whitted-style [Whi80] results at interactive rates, see

Section 2.2.2 for an overview of Whitted-style ray tracing. Interactive in this

context refers to the ability of the system to complete the computation of the

solution and update it at least once per second. These systems focus on coherent

primary rays, those that leave the camera and strike the scene, as well as a

very limited number of coherent secondary rays for effects such as hard shadows,

33

3. Interactive Global Illumination 34

reflections and refractions.

These systems, generally, form the basis or structure for interactive global

illumination systems. These global illumination systems require even a larger

number of rays, additional secondary rays, to be traced. These allow for effects

such as diffuse interreflections, soft shadows, motion blur and many others to

be calculated. The ability to generate the primary rays at interactive rays is

therefore critical for allowing interactive global illumination systems to function.

3.1.1 CPU Algorithms

This section focuses on the detailed examination of CPU-based interactive ray

tracing systems and algorithms. These systems are an important part, and form

the basis, of interactive global illumination systems. This is due to the fact

that primary rays must be generated at interactive rates if the system it to be

interactive as a whole.

3.1.1.1 Systems

Initial work on interactive ray tracing occurred as early as 1995 when distributed

multiprocessor machines, referred to as supercomputers, where utilised in an

attempt to achieve interactive rates for ray tracing systems. To evaluate the

suitability of a custom-built 64 processor machine as an interactive ray tracing

system Keates and Hubbold utilised a custom ray tracer employing a regular grid

as an acceleration structure [KH95]. Interactive rates of one to five frames per

second (fps) where achieved on as few as 32 processors but only by reverting to

simple ray casting by disabling secondary rays (such as shadow, reflection and

refraction rays) and using progressive rendering. Unlike Keates and Hubbold,

Muuss [Muu95] utilised a system that contained 96 processors, along with a

commercial ray tracing package that used a nonuniform binary space partitioning

(BSP) tree [FKN80]. Interactive and near-interactive, between a half and two

frames per second, rates were achieved for a resolution of 720×486 when rendering

three distinct spectral bands.

Parker et al. presented work that allowed for interactive isosurface render-

ing using a 128 processor distributed shared-memory machine [PSL∗98,PPL∗99]

and a custom ray tracer. Using brute-force ray tracing along with simple opti-

misations such as volume bricking, where the dataset is broken up into smaller

volumes or bricks for easier transport between nodes, combined with a shallow hi-

3. Interactive Global Illumination 35

erarchy they demonstrated interactive rates, between one and twenty frames per

second. The results presented showed a highly scalable system that could render

a one gigabyte volume dataset, including shadows, at ten frames per second. This

work was then extended into *-Ray by Parker et al. where the ability to render

objects other than isosurfaces (such as spheres, polygons and spline models) was

added [PMS∗99]. Frameless rendering [BFMZ94], an approach where the display

is no longer presented as a time series of frames but rather as a single frame

where different regions are updated over time, was also employed to speed-up the

computation and allow for interactive rendering on as few as eight processors.

While the previous approaches utilised custom or high-end shared-memory

supercomputers, with costs in the millions of dollars, Wald et al. presented a

system running on a cluster of four commodity desktop machines [WSBW01]. By

carefully exploiting spatial coherence at an object and image level along with the

use of SIMD instructions [Int03] and optimised traversal and intersection routines

this work presented interactive rates for scenes of up to 8 million triangles. In

Wald et al. [WSB01] this work was further extended to handle much larger scenes,

up to 12.5 million triangles. This was achieved via simple pre-process step in

which a scene database is generated and distributed to all the clients, which

then fetch and cache BSP voxels as required. This combined with latency hiding

and load balancing allowed for interactive rates on a cluster of nine dual-core

machines. Another system that presented the visualisation of large datasets was

from Demarle [DPH∗03]. This system was derived from the earlier mentioned

*-Ray architecture [PMS∗99] and combined this with techniques from [WSB01]

while building a better system for storage of the distributed data. This allowed

interactive rendering of a 7.5GB dataset.

With the increase of computational power and the advancement of algorithms

new frameworks and implementations were developed that moved away from

Whitted-style ray tracing [Whi80] and focused on more complex global effects.

Boulos et al. focused on the implementation of distributed ray tracing [CPC84]

for effects such as soft shadows, depth-of-field, glossy reflections, participating

media and motion blur [BEL∗06, BEL∗07]. The Razor ray tracing rendering

architecture [DHW∗07] used three basic methods to achieve speedup: multires-

olution geometry, dynamic acceleration data structures and decoupling shading

from visibility. This was done in order to provide a framework that could com-

pete with high-end rasterisation renderers. Due to the focus on more complex

effects the implementations covered above, such as those by Boulos et al. and

3. Interactive Global Illumination 36

Djeu et al. are covered in greater details in Section 3.2.1 when interactive global

illumination is examined.

Figure 3.1.1: The Manta interactive ray

tracer rendering 2.8 million particles as

individual spheres along with the tem-

perature field as a volume, all at 15 to

20fps on a single multi-core desktop PC.

Image courtesy of James Bigler [BSP06].

Bigler et al. [BSP06] presented the

software architecture of their interac-

tive ray tracer, Manta, and described

its application in engineering and sci-

entific visualisation, for an example

refer to Figure 3.1.1. Their empha-

sis was on design considerations and

differences between an interactive and

batch rendering system with a focus

on a high degree of parallelism and

flexibility along with specific optimi-

sations such as instruction-level par-

allelism via SIMD [Int03] and packet-

based acceleration structures. This

work was also the basis of OptiX a

real-time GPU-based ray-tracer which

is covered in greater detail in Section

3.2.2. RTfact developed by Georgiev

at al. focused on a template-based li-

brary consisting of packet-centric com-

ponents combined into an efficient ray

tracing framework. Generic design ap-

proach with loosely coupled algorithms

and data structures allows for easy integration of new algorithms with maximum

runtime performance [GS08]. Here, unlike Manta which relied on very low-level

optimisations throughout the code-base, RTfact hid this complexity with the use

of templates and higher level primitives.

3.1.1.2 Algorithmic enhancements

While work was being presented on the implementation of entire systems, al-

gorithmic improvements were also underway. In Dmitriev et al. rays where

scheduled to be fired as pyramidal shafts [DHS04]. This combined with certain

conditions allowed for an entire shaft’s visibility to be determined by simply

3. Interactive Global Illumination 37

evaluating the corner rays, using SIMD instructions to further accelerate this.

Other systems such as the one presented by Reshetov et al. [Res06] used sim-

ilar concept of combining rays into beams or shafts. Intersecting these beams

allowed for individual rays to start traversing the accelerating structure at some

node deep inside the tree, saving computation and traversal time. While the

previous approaches only worked for coherent groups of rays with shared origins

Reshetov presented a new traversal algorithm for incoherent groups of rays. This

approach, unlike splitting the rays into coherent subgroups, allowed for rays with

completely different directions to be traced together reducing intersections by

up to 50%. Other methods for culling entire ray packets using geometric and

interval arithmetic were presented by Boulos et al. [BWS06]. Approaches for

culling ray packets against triangles, axis-aligned bounding boxes (AABB) and

spheres using interval arithmetic, corner rays and bounding planes where shown.

Reshetov et al. presented further work on packet culling by proposing a system

where special transient frusta where generated every time a leaf of an acceleration

structure was traversed by a packet of rays [Res07]. These frusta contained the

intersection of active rays with the leaf node allowing for the elimination of 90%

of all potential intersection tests along with a tenfold reduction in the size of the

acceleration structure while achieving better overall performance.

3.1.2 GPU Algorithms

GPU-based algorithms share a number of similarities to their CPU-based coun-

terparts but due to the rapidly evolving GPU architecture are much more reliant

on specific hardware optimisations and features to achieve interactive results.

While borrowing heavily from the CPU-based systems they need to be examined

in conjunction with the CPU-based approaches to have a full overview of the field

of interactive ray tracing.

3.1.2.1 Systems

One of the first GPU-based ray tracer was called the ”Ray Engine” and was

presented by Carr et al. [CHH02]. This implementation utilised the GPU to

perform ray-triangle intersections, by using a fragment program, while setup was

performed on the CPU and shading utilised the standard rasterisation pipeline.

A ”ray cache” was also implemented to make full use of the parallelism of the

GPU by batching similar rays so that they would intersect collections of spa-

3. Interactive Global Illumination 38

tially coherent triangles, due to this scenes with highly incoherent ray-trees were

problematic. Also the communication between CPU and GPU proved to be a

bottleneck as triangle and ray data needed to be converted and sent to the GPU

and results read back over the AGP bus, which is limited to 250 MB/sec.

At the same time Purcell et al. [PBMH02] had also developed a GPU-based

ray tracer, the primary difference being this implementation performed more work

on the GPU, specifically eye-ray generation and acceleration structure traversal.

The acceleration structure chosen was a grid, which was stored in a 3D tex-

ture and traversal was performed using the 3D-DDA [FTI86] with a multi-pass

approach. The shading did not use the rasterisation pipeline directly but im-

plemented more complex secondary effects such as shadow casting and 2-bounce

path tracing. While this approach presented a more complete GPU-based ray

tracing pipeline the approach assumed that the acceleration structure for the

geometry was already generated before rendering began, making the method un-

suitable for dynamic scenes. Also due to the fact that four different pixel shaders:

for ray spawning, ray traversal, ray-triangle intersection and shading were used

and that the rays are were different phases, peak GPU performance was limited

to 10% [CHCH06]. Further research has extended this work [Chr04, TSr05] but

all the attempts suffered from the same drawback and did not exploit the full

computational capabilities of the GPU.

Due to the recent developments involving complex data structures, adaptive

techniques and complex shading work has once again focused on the creation of

systems. OptiX is such a system, based on the Manta ray tracer [BSP06], it

is a general purpose ray tracing framework designed to run on state-of-the-art

GPUs [PBD∗10]. Using a domain-specific just-in-time compiler it generates cus-

tom ray tracing kernels by combining user-supplied programs for functions such

as ray generation, material shading and scene traversal. These kernels are highly

optimised at compile time allowing for interactive rates even when complex shad-

ing models are used. The drawbacks of this framework are that the functionality

is limited to NVIDIA GPUs, has a relatively fixed-stage pipeline and in-built

acceleration structure and the code must be written in CUDA [GGN∗08].

3.1.2.2 Acceleration Data Structures

Up until early 2004 all GPU-based ray tracers had relied on a uniform grid

as an acceleration structure. While easy to generate recent work had shown

3. Interactive Global Illumination 39

that other structures, such as kd-trees and BVHs, had numerous advantages in

a number of different scenarios [Hav01, WKB∗02]. Ernst et al. [EVG04] were

the first to implement a kd-tree traversal on the GPU, their implementations

main limitation was that it required a fixed maximum stack depth. Foley and

Sugerman [FS05] extended this work and demonstrated two new approaches for

stack-less traversal of kd-trees on the GPU. Their results showed that for scenes

with objects at different scales the kd-tree approach was up to 8 times faster

than a uniform grid but still an order of magnitude slower than the best CPU

approaches. They identified load balancing and data recirculation as the core

issues that were behind this disparity in performance. Horn et al. [HSHH07]

further extended this approach to use a single pass by using GPU branching and

looping. Further work on stack-less kd-tree traversal was demonstrated by Popov

et al. in which they eliminated stack usage entirely and reduced the number

of traversal steps required [PGSS07]. This work, while only benefiting CPUs

moderately, improved GPU performance greatly allowing for over 16 million rays

per second with moderately complex scenes involving secondary rays and complex

shading.

Early work on BVH traversal and construction was performed by Thrane and

Simonsen [TSr05] and Carr et al. [CHCH06]. In Thrane et al. [TSr05] the algo-

rithms suffered from the same drawbacks experienced in Purcell et al. [PBMH02],

as they used the same approaches as they did for the kd-tree traversal with the

hierarchy still being constructed on the CPU. Carr et al. [CHCH06] constructed

and traversed their hierarchy on GPU but it required a large amount of off-line

pre-processing of the meshes. To optimise the traversal for large scenes [GPSS07]

demonstrated a parallel packet-based algorithm using a shared stack that allowed

for the ray tracing of a 12.7 million triangle scene on the GPU at interactive rates,

including the generation of shadows and shading. The traversal was CPU-based

but accurately approximated the surface area heuristic using streamed binning

while still being one order of magnitude faster than previously published results.

At the same time Roger et al. [RAH07] presented an acceleration structure that

fully supported dynamic animated scenes. It combined concepts from beam trac-

ing [HH84] and the hierarchical approaches such as the ones used in Arvo and

Kirk [AK87] and Ghazanfarpour and Hasenfratz [GH98] using a ray-space hier-

archy combined with breadth-first ray tracing [NO97].

More modern approaches have tackled the efficiency of construction as well

as traversal of data structures on the GPU. In Lauterbach et al. [LGS∗09] two

3. Interactive Global Illumination 40

novel parallel algorithms were presented for the construction of a BVH and then

combined into a hybrid approach to remove the already identified bottlenecks

experienced by other approaches. This fast construction allowed for re-building

of the BVH every frame and therefore supported fully dynamic scenes at interac-

tive rates. Similarly in Zhou et al. [ZHWG08] a kd-tree construction algorithm

was presented that built in entire tree in breadth-first order with a scheme to

evaluate node split costs. To further exploit the fine-grained parallelism of the

GPU at the upper tree levels, where the nodes were large, the algorithm par-

allelised the computation over all geometric primitives instead of nodes at that

level. This approach was competitive with multi-core CPU algorithms and was

fast enough to rebuild a full kd-tree each frame. For traversal an in-depth analysis

was performed by Aila et al. [AL09] analysing structure traversal and primitive

intersections methods on the GPUs. Comparing current methods to their theo-

retical upper-bounds, using a simulator to attain these, they showed that most

current methods were 1.5 − 2.5× slower and that these inefficiencies were due

to previously unidentified work distribution problems. Their proposed solution

fixed these issues and provided results for both coherent primary and incoherent

secondary rays. In Laine [Lai10] the concept of a restart trail was introduced,

a simple algorithmic method that made restarts, traversals from the root of the

tree so that the already processed part of the tree is not entered again, possible

regardless of the type of hierarchy. This was achieved by storing only one bit of

data per level thus enabling stackless and short stack traversal for BVHs.

3.2 Interactive Global Illumination

As has been shown, a lot of progress has been made in interactive ray tracing.

Yet, most of these efforts have focused on simple ray tracing generally comput-

ing only visibility, limited specular reflections, basic shading and shadow rays

from point light sources. The majority of these algorithms and systems managed

to obtain real time performance by exploiting the natural coherence of primary

rays. While these rays are naturally coherent, the same cannot be said for sec-

ondary rays. The efficient computation of secondary rays is required if interactive

global illumination is to be achieved. Global illumination includes effects such

as diffuse interreflections, motion blur, depth-of-field, soft shadows, participating

media and glossy reflections. All these effects are dependant heavily on secondary

3. Interactive Global Illumination 41

rays, which are highly incoherent. This lack of coherency means that, unlike the

algorithms in Sections 3.1.1 and 3.1.2, different methods must be developed to

accelerate the computation of these rays.

3.2.1 CPU Algorithms

This section reviews the systems and methods used in accelerating the com-

putation of global illumination to interactive rates. The systems, presented in

chronological order, are examined to determine the combinations of approaches

and methods they utilise to achieve interactivity. The individual algorithms and

methods are examined in detail and grouped by the higher-level approaches they

share.

3.2.1.1 Systems

Arguably, the first CPU-based interactive system to attempt to exploit coherence

in secondary rays was the Instant Global Illumination (IGI) system [WKB∗02]

based on instant radiosity [Kel97]. For each frame a pre-processing phase gener-

ated a number of virtual point light sources (VPLs) across the scene using random

walks. At the rendering stage, shadow rays would be shot to the light sources for

computing direct lighting and to the VPLs for computing irradiance. In order to

achieve interactive frame rates, instead of using the same set of VPLs for each

pixel, nine sets were computed individually using quasi-Monte Carlo methods

and every pixel in a 3×3 grid computed the irradiance from a different set. This

method improved performance at the cost of structured noise in the image which

was mostly removed by a filtering stage using a discontinuity buffer [Kel98]. Ray

tracing was used for the computation of specular effects and a photon map was

used for computing caustics. In Benthin et al. [BWS03] they improved the system

by tracing the shadow rays to the VPLs using SIMD calculations, computing the

shading with SIMD and anti-aliasing by supersampling the number of rays per

pixel for the visibility and shading, while just using a single subset of VPLs for

that pixel.

The anti-aliasing was performed by subdividing the subset of VPLs, N , for

that specific pixels into a number of small subsets N/M where M was the num-

ber of primary rays used to supersample that pixel. Each primary ray then used

the smaller subset of VPLs ensuring that overall the number of VPLs utilised

remained constant. In Wald et al. [WBS03] the system was further extended to

3. Interactive Global Illumination 42

account for complex scenes with large numbers of light sources. For such scenes,

if interactive rates were to be achieved, care had to be taken when choosing

the light sources to shoot the VPLs from. Their system used an initial sparsely

sampled path tracing pass with direct lighting to all light sources to identify the

importance of the light sources for the given frame. The importance was trans-

formed into a PDF and combined with PDFs from previous frames, to improve

temporal coherence, and was used to select which light to emit VPLs from. Their

system showed interactive results for scenes with large number of light sources,

in the order of thousands, while only utilising a small fraction of the light sources

at any given time. The drawback of the approach was that when complex scenes

were used pixels, within the interleaved pattern, can potentially receive no con-

tribution from their particular subset of VPLs. This resulted in temporal noise

while moving where previously completely unlit pixels were suddenly lit.

Boulos et al. [BEL∗07] presented an overview of rendering using packets for

Whitted-style ray tracing [Whi80] and distribution ray tracing [CPC84] paying

particular attention to secondary rays. Whitted-style ray tracing (WRT) allows

for reflections and refractions to be computed. Distribution ray tracing allows

for the computation of complex non-singular effects such as depth of field, glossy

reflections, motion blur and soft shadows. For primary rays they used a BVH sys-

tem [WBS07]. They demonstrated how Whitted-style ray tracing was currently

achievable by grouping secondary rays by type of ray (e.g. shadow, reflected and

refracted) and coherency. For distribution ray tracing the amount of rays that

needed to be shot was prohibitive to achieve real-time rates for current hard-

ware. Using interleaved quasi-Monte Carlo sampling methods similar to those in

Kollig and Keller [KK02] they demonstrated how they could achieve reasonable

performance even for distribution ray tracing [BEL∗06]. While focusing on impor-

tant secondary effects they ignored diffuse interreflections, the most incoherent

of these effects, due to the fact that their system still relied on the exploitation

of coherence to maintain interactive rates.

For the Razor ray tracing rendering architecture [DHW∗07], the authors sug-

gested a number of contributions to ray tracing which would enable it to compete

with high-end rasterisation renderers. Their system used three basic methods to

achieve speedup: multiresolution geometry, dynamic acceleration data structures

and decoupling shading from visibility. Using a method similar to that proposed

by Christensen [CLF∗03], used for caching in off-line rendering, the authors rec-

ommended using multiresolution geometry for computations whereby secondary

3. Interactive Global Illumination 43

Figure 3.2.1: A number of scenes rendered by the Razor system [DHW∗07] at
near interactive rates. Images courtesy of Peter Djeu [DHW∗07].

non-coherent rays intersect coarser versions of the geometry. This suggestion

was based on the observation that most of the secondary rays have large ray

differentials [Ige99] and therefore would probably intersect geometry which is

non-coherent. Computing divergent rays on coarser geometry would therefore

increase the memory access for visibility and shading. When rendering with

LOD, a phenomena called tunnelling may occur when a ray is about to intersect

an object but the level of detail of that object changes such that the ray has

already passed (or tunnelled through it), effectively missing the object which was

meant to be hit. In order to avoid the problem of tunnelling the authors proposed

intersecting the ray with geometry interpolated from two discrete levels. The mul-

tiresolution geometry was supported by a multi-scale kd-tree which maintained

the geometry at multiple levels. Due to the complexities of building kd-trees for

multiple geometric levels the kd-tree was evaluated lazily. The authors further

suggested decoupling visibility from shading. The shading was evaluated lazily,

the first stage only evaluated the view independent calculations and did so at

the vertices, caching the results. The rest of the shading computation was per-

formed in traditional ray tracing fashion. Results, as can be seen in Figure 3.2.1,

demonstrated performance close to that of the coherent grid [WIK∗06] for rays

traced per second. While these systems integrated a number of methods it is also

important to examine different classes of algorithms more closely.

3.2.1.2 Radiosity

Radiosity is a classical global illumination solution, see Section 2.2.3. It was one

of the first global illumination techniques to be made interactive, due to the devel-

opment of a progressive refinement solution [CCWG88]. Two similar approaches,

Chen [Che90] and Drettakis and Sillion [DS97] made use of the progressive re-

3. Interactive Global Illumination 44

finement to allow for interactive updates of the radiosity solution, but this was

limited to simple scenes without much geometric complexity. In Chen [Che90] a

view-independent and incremental update was proposed where a change to the

scene such as moving a light, changing a surface property or moving an object

would result in a minimal update, exploiting the coherency that remained within

the system. Drettakis and Sillion [DS97] utilised a similar approach but gener-

ated a line-space hierarchy, a visualisation of which can be seen in Figure 3.2.2.

Traversing this data structure then allowed for easy identification of the links that

were affected by a dynamic change to the scene, and thus allowed the radiosity

solution to be quickly updated. Both approaches suffered from tessellation ar-

tifacts, a common radiosity issue and did not scale well to complex scenes with

large amounts of geometry. Further development of interactive radiosity solution

moved over to using graphics hardware which is detailed in Section 3.2.2.

Figure 3.2.2: On the left is an example of a progressive radiosity solution from
Drettakis et al. [DS97]. In the middle image a chair has been moved, with the
green lines indicating links that have been affected, while the image on the right
highlights the parts of the hierarchy that require updating. Images courtesy of
George Drettakis [DS97].

3.2.1.3 Sparse sampling

Since the computational complexity of ray tracing is a function of the number of

primary rays traced, as can be seen above, it is not surprising that there have

been a number of rendering systems that have attempted to minimise the number

of rays shot by sparsely sampling the image plane and then either interpolating

or using caching mechanism to retrieve previously computed information, an ex-

ample can be seen in Figure 3.2.3. The first such system was proposed by Ward

and Simmons [WS99] and was called ”The Holodeck”. For this system the entire

scene was subdivided into a three-dimensional regular grid. In each cell a number

of rays that had been previously generated, along with their radiance contribu-

tions, were cached and later re-used. This light-field like approach enabled the

ray tracing computation to be interactive and progressive while remaining view

3. Interactive Global Illumination 45

independent. Decoupling the sampling from the display method also allowed the

system to make effective use of graphics hardware when using the cache samples

for re-rendering. Unlike progressive radiosity solutions the system was not lim-

ited to simple diffuse-only shading models and while light-field like, it did not

need to compute the entire holodeck before visualisation could begin.

Figure 3.2.3: The image on the left is an example of a precalculated holodeck
simulation, while the image on the right is the same simulation after 30 seconds
of computation on 21 processors. Images courtesy of Greg Ward [WS99].

Like the Holodeck, the render cache [WDP99, WDG02] was one of the first

sparse sampling rendering systems. This rendering calculated the illumination

for a number of samples which it then stored in the render cache. The sampling

calculation and illumination ran asynchronously to a viewing process, which re-

projected cached samples onto the display. An example of the process can be seen

in Figure 3.2.4. This enabled the system to maintain interactive frame rates. Un-

fortunately, the sample re-projection resulted in artifacts such as tearing. Bala

et al. [BWG03] extended the render cache with an edge and point image (EPI)

which ensured that interpolation did not occur over silhouette and shadow dis-

continuities. The EPI was generated via projection of shadows and geometry

onto an image. GPU versions of the render cache and the EPI were presented

in Velazques et al. [VALBW06]. These improvements do not eliminate all the

geometric artifacts. In particular, geometric edges had to be reconstructed using

a very large number of point samples and still suffered from distortions when the

camera moved.

Stamminger et al.’s rendering system [SHSS00] was clearly inspired by the

render cache. Similarly to the render cache, the viewing process was decoupled

from the ray tracing computation. Rather than re-projecting all the individ-

3. Interactive Global Illumination 46

Figure 3.2.4: On the left is an example of an image produced using the render
cache. In the middle is the corresponding priority image used while the dithered
binary image on the right specifies which sample locations will be requested next
from the renderer. Images courtesy of Bruce Walter [WDP99].

ual pixels in the render cache, rendering was performed using rasterisation and

certain objects maintained data structures called corrective textures from which

point samples were traced asynchronously using ray tracing and updated when-

ever possible. This system partially removed the artifacts associated with the

render cache. Haber et al. [HMYS01] extended this method further using a tech-

nique called corrective splatting, whereby non-diffuse objects were ray traced

based on the computation of a saliency map [IKN98] which predicted which of

the non-diffuse objects is being attended to, see Figure 3.2.5. While not suf-

fering from geometric distortions like Walter et al. [WDP99] the use of camera-

local projective textures introduced reprojection artifacts in the shading. Also,

object-local textures must have been of an extremely high resolution in order

to reconstruct sharp shading features such as hard shadow boundaries. While

both Walter et al. [WDP99] and Stamminger et al. [SHSS00] were designed to

facilitate global illumination walkthroughs, extending these systems to handle

dynamic scenes would be non-trivial.

The shading cache [TPWG02] extended the concept of the render cache but

rather than compute reconstruction in image space, they used an object space

data structure based on the vertices of meshes on the rendered geometry for

computing samples from and eventually storing samples to. They used a method

similar to hierarchical radiosity [HSA91] for adaptively computing the mesh for

improving the quality of the sampling based on a priority map. They used an

asynchronous frameworks similar to that in the render cache. Their structures

were composed of geometrical primitives and they used rasterisation for the view-

3. Interactive Global Illumination 47

Figure 3.2.5: Example of a solution produced by Perceptually Guided Cor-
rective Splatting [HMYS01]. On the left is an input image, consisting of a
pre-processed view-independent global illumination solution. The middle im-
age shows a saliency map which is used in the image on the right to produce fully
converged solution after corrective splatting has been applied. Images courtesy
of Joerg Haber [HMYS01].

ing thus leveraging the computational power of graphics hardware.

Wolleey et al. [WLWD03] presented a rendering concept for ray tracing and

rasterisation using level-of-detail they termed interruptible rendering. The in-

terest is in their ray tracing method. Their system used two error metrics a

spatial and a temporal error. The rays sampled areas of the image plane using a

quadtree for progressive rendering similar in concept to the ray tracing in Painter

and Sloan [PS89]. The spatial error was defined by the size of the quadtree node

that was being sampled. The temporal error was described by the amount the

object moves. Rendering was computed and the results were written to the back

framebuffer. Results were swapped to the front framebuffer when a specific con-

dition was satisfied. The condition was that the combined spatial and temporal

error for the back framebuffer had to be less than that of the front framebuffer

and that the spatial error in the back framebuffer was exceeded by the temporal

error. The advantages of such a system are that when rendering interactively

with large dynamic movements coarse images were produced at high frame rates

but when there was little motion rendering produced lower frame rates with more

spatial detail in each frame.

Dayal et al. [DWWL05] presented an adaptive frameless rendering framework

based on the concept of frameless rendering, previously introduced in Bishop

et al. [BFMZ94], which rendered without the concept of double buffering by

constantly updating the framebuffer. Their rendering method cached samples

both spatially and temporally in a kd-tree representing the image plane and used

3. Interactive Global Illumination 48

a spatiotemporal Gaussian for filtering and reconstructed images on the GPU

through a splatting technique. Similar to the work of interruptible rendering, a

fine balance was drawn between high temporal detail and low resolution and low

temporal detail and high spatial detail. They showed interactive results with few

artifacts for non-complex ray traced scenes with few artifacts when compared to

high spatial detail only and high temporal detail only.

3.2.2 GPU Algorithms

This section, like Section 3.1.2, examines GPU-based approaches to provide a

comprehensive overview of the field of interactive global illumination. The in-

dividual algorithms are examined in detail and are grouped by the higher-level

methods they have in common.

3.2.2.1 Radiosity

Much research has occurred in the last few years to fully exploit the parallelism

offered by high-end GPUs to accelerate global illumination. The initial focus

was on radiosity [GTGB84] and finite element methods. Initial attempts to inte-

grate graphics hardware into the computational pipeline where hybrid approaches

where the GPU was utilised to accelerate very specific aspects of the pipeline.

The hemi-cube approach [CG85] proposed an adaptive approach that allowed

for the visualisation of the solution as it was converging. The graphics hardware

was utilised for image composition to allow for interactive an walk-through. The

solution from Sillion and Puech [SP89] also used the hemi-cube approach but

utilised the graphics hardware to also assist in approximating planar mirrors, to

add some specular effects to the solution.

Unlike the previous hybrid methods both Carr et al. [CHH03] and Coombe

et al. [CHL04] proposed GPU-based radiosity solutions that utilised the GPU to

accelerate the computation of the radiosity solution itself. In Carr et al. [CHH03]

the GPU is used to find a solution to the radiosity matrix, initially calculated on

the CPU, using its massively parallel pipeline as a general processing unit. In

Coombe et al. [CHL04] the GPU is used to accelerate visibility by rendering the

scene for each polygon, using stereograph projection instead of hemi-cube pro-

jection. A quad-tree hierarchy is also used for the textures to allow for adaptive

subdivision. This method is restricted to scenes with low complexity, 10 000 or

fewer elements, and the use of textures to store the radiosity data also has a high

3. Interactive Global Illumination 49

memory cost. In Nijasure et al. [NPG03,NPG04] the incoming radiance function

at a number of fixed locations, based on a regular grid, is sampled and projected

into the spherical harmonics basis. Then the incoming radiance at any surface

point is estimated by interpolating the incoming radiance at nearby sample loca-

tions. The main drawback of this method is the choice of sample points as they

are placed on regular grid inside the volume of the scene, therefore not adapting

to the lighting complexity.

If visibility is neglected when computing indirect illumination then real-time

global illumination is achievable as can be seen in Dachsbacher et al. [DS05,DS06].

Dachsbacher et al. [DS05] presented the concept of ”reflective shadow maps”

(RSMs) where rendering of a shadow map also involved storing not just the

depth but the normals, world position and flux. This approach was a combination

of methods Dachsbacher and Stamminger [DS03] and Tabellion and Lamorlette

[TL04] which enabled each element in the shadow map to be considered as an

indirect light source to allow for one-bounce indirect illumination in the scene.

This work was further extended in Dachsbacher et al. [DS06] where these indirect

elements are converted to point light sources which are then importance sampled,

their shape adjusted based on the glossiness of the surface and then splatted

directly to the screen when using a deferred shading approach. Multiple bounces

using this approach are inefficient as many new shadow maps must be generated

for each bounce.

In cases where visibility was considered the scene complexity was usually

limited to a few thousand polygons in order to maintain interactivity [Bun05,

DKTS07, DSDD07, RGKS08]. Bunnell [Bun05] introduced a hierarchical link

structure where visibility was approximated by ambient occlusion. Similarly

[DKTS07] also proposed an implicit visibility solution by constructing a hierar-

chical link structure between surface elements. This method relied on a certain

amount of pre-computation on the CPU, only showing result for single-bounce

indirect illumination and like other radiosity solutions was limited to very sim-

ple scenes to minimise the number of surface elements. For Dachsbacher et

al. [DSDD07] the need for explicit visibility computation was removed by re-

formulation of the rendering equation, for results see Figure 3.2.6. With implicit

visibility both radiance and anti-radiance were propagated for each element to

compensate for light transmitted erroneously. While this method allowed for dy-

namic objects and lights it still suffered from general radiosity problems, such as

discretization which necessitated filtering. The algorithm was also not entirely

3. Interactive Global Illumination 50

Figure 3.2.6: On the left an example of a solution produced by the radiosity algo-
rithm introduced by Dachsbacher et al. [DSDD07], with a path-tracing reference
solution on the right. The scene is an entirely indirectly lit, with a directional
light entering via a window at the top of the scene and all shadows being indirect.
Images courtesy of Carsten Dachsbacher [DSDD07].

GPU-based, requiring CPU setup and the use of dynamic objects was restricted

due to the need for highly tesselated surfaces near indirect shadows. Finally in

Ritschel et al. [RGKS08] a large number coherent surface shadow maps (CC-

SMs) were computed and compressed, via a novel scheme, as a means to pre-

compute visibility. This visibility approach was then used with a combination

of the lightcuts algorithms [WFA∗05] and hierarchical radiosity for an n-bounce

global illumination solution. The approach also allowed for a final glossy bounce,

high frequency effects and general BRDFs but required rigid geometry, therefore

no deformations, and due to the pre-computation of visibility was very memory

heavy.

3.2.2.2 Instant Radiosity

Unlike finite element methods a number of methods exist that are not directly

dependent on scene complexity. A group of these use the concept of virtual point

lights (VPLs) first introduced in ”Instant Radiosity” [Kel97]. In this approach a

small set of virtual point lights (VPLs) is computed using a quasi random walk

from the light sources in the scene. During the walk, originating at the light

source, if a diffuse surface is hit a VPL is deposited until some termination criteria

is met. These VPLs are then used to illuminate the scene in combination with a

3. Interactive Global Illumination 51

shadowing algorithm. For each VPL the scene is re-rendered lit by that specific

light and all images are averaged together using the accumulation buffer. This

allows most of the computation, other than the VPL generation, to be performed

on the GPU. It also avoids many of the typical tessellation artifacts seen in

radiosity-based methods, instead of discretizing the geometry, instant radiosity

performs discretization by using only a small number of discrete virtual point

light positions. Specular effects are achievable, by using spotlights to simulate

glossy reflections, but this increases the computational and memory cost as more

information about the light needs to be stored. Also dynamic objects are not

considered at all. The reliance on graphics hardware to re-draw the scene many

times also limits the scene complexity somewhat. This limitation is addressed

in “Instant Global Illumination” [WKB∗02] by using deferred shading [DWS∗88]

combined with interleaved sampling [KH01], this is covered in greater detail in

Section 3.2.1. The approach is also optimised in Segovia et al. [SIMP06b] where

the GPU version intelligently divides the image in such as way as to increase

coherency and maximise bandwidth usage when using interleaved sampling but

unlike the original version [Kel97] no occlusion checking is performed for the

VPLs.

In Laine et al. [LSK∗07] real-time rendering of static scenes, with one-bounce

illumination is achieved, by using a variant of instant radiosity where VPLs and

their respective shadow maps are re-used over multiple frames to lower compu-

tation costs, primarily those incurred when rendering the shadow maps. VPLs

are also more carefully generated to ensure a good distribution and like Segovia

et al. [SIMP06b] deferred rendering is used to speed-up light accumulation.

A slightly different approach is proposed in Ki and Oh [KO08] where similar

VPLs are clustered together in a view independent manner to generate a hier-

archical light representation, termed an ”image pyramid” which is then used to

light the scene. All tree generation and traversal occurs on the GPU and like

Laine et al. [LSK∗07] visibility is not calculated for the VPLs.

For Ritschel et al. [RGK∗08] a crude hierarchical point representation of the

scene is used to generate ”imperfect shadow maps” (ISMs) for each of the VPL,

any holes present are filled via a pull-push pass. These ISMs are much faster

to compute due to their approximate nature and lower resolution. These maps

are extended into ”imperfect reflective shadow maps” (IRSMs) that then allow

multiple bounces of light to be computed. While not entirely limited by scene

complexity the point representation does increase in density as the scene gets

3. Interactive Global Illumination 52

more complex which is a limiting factor. The limited resolution also means

that small objects do not appear in the shadow maps. Finally a number of

parameters need to be set that are scene dependant, meaning the method is not

fully automatic.

Figure 3.2.7: The images on the left show individual soft shadows from selected
VALs. The complete clustering, for 30 VALs, is shown in the centre image while
the full global illumination solution is shown on the right. Images courtesy of
Zhao Dong [DGR∗09].

Dong et al. [DGR∗09] presents an approach where VPLs, generated using

RSMs, are grouped into virtual area lights (VALs) via k-means clustering. During

the computation of indirect diffuse contribution interleaved sampling is utilised,

following a similar approach to Laine et al. [LSK∗07]. Temporal coherence is

maintained by restarting the k-means clustering each frame from an identical,

initial cluster assignment as the VPL positions are coherent frame to frame.

Each VAL contains N/M VPLs, where M is the number of VALs and N is the

total VPLs generated. For the k-means clustering utilised, similar to Wang et

al. [WZPB09] in Section 3.2.2.4, both euclidean distance and normals are taken

into account to generate planar clusters of VPLs. Visibility is then calculated

not for each VPL but for each VAL, providing a fractional visibility result, using

convolution soft shadow maps (CSSMs) [ADM∗08] with a parabolic projection.

When shading is performed visibility is calculated based on the M clusters but

all N contributions from the VPLs are utilised. For a visualisation of individual

VAL contributions, the VAL distribution and a final combined rendering refer to

Figure 3.2.7. The parabolic CSSMs inherit problems from CSSMs such as issues

with contact shadows and MIP discretisation. For very large senders ringing

artifacts can appear and penumbra regions are curved when viewed from a grazing

angle. Due to the number of VALs needed the CSSMs are low-resolution which

3. Interactive Global Illumination 53

means that very thin shadows cannot be resolved correctly. Due to the parabolic

projection being non-linear, the squared filter region used to approximate the

projection of the light source is no longer correct, resulting in artifacts. These

artifacts mentioned for parabolic CSSMs are masked to a certain extent due to

the overlap of the indirect shadows in the final image. Finally the approach

is limited to single-bounce global illumination and is also dependent on scene

complexity as each VAL must render all the scene geometry.

Figure 3.2.8: Screens-space directional occlusion (SSDO) along with one addi-
tional diffuse indirect bounce of light. The scene contains 537k polygons and
runs at 20.4 fps at a resolution of 1600×1200 pixels with fully dynamic geometry
and lighting. Images courtesy of Tobias Ritschel [RGS09].

3.2.2.3 Image-based methods

Sloan et al. [SGNS07] proposed a solution that demonstrated real-time indirect

illumination and soft shadowing but only for low frequency distant lighting. The

proposed solution calculated the lighting by replacing the scene geometry with

spherical proxies which were then splatted into low resolution buffers (typically

a half or quarter screen resolution) which stored both proxy information and

low-order spherical harmonics. Once all proxies were added the results were

combined with the lighting information and upsampled using joint bilateral up-

sampling [KCLU07] to attain the final result. For Nichols and Wyman [NW09]

a reflective shadow map was generated [DS05] and each element in the map was

then splatted to the screen. The splatting used a multiresolution approach where

discontinuities were detected, using min-max mipmaps generated for the depth

and normals. Starting at the lowest resolution mip data is written into the rele-

vant level of the hierarchy when no discontinuities are found or the highest level

is reached. This multiresolution buffer is then upsampled in a such as way as to

avoid haloing and ringing in the final result. This method is highly dependent on

3. Interactive Global Illumination 54

the number of VPLs as each one needs to be splatted into the buffer and visual

complexity, as an increase in discontinuities in the scene will require a high level

of refinement. Finally in Ritschel et al. [RGS09] the global illumination is cal-

culated entirely in image-space, utilising the concepts introduced in screen-space

ambient occlusion (SSAO) [Mit07] and extending them to include directional

shadows and one bounce diffuse interreflections, see Figure 3.2.8. The method is

limited by information present in the depth buffer and overlayed objects are not

treated correctly unless a method such a depth-peeling is utilised [Eve01].

3.2.2.4 Photon Mapping

A further group of methods that have been optimised for an interactive context

are based on photon mapping [Jen01]. Both Ma et al. [MM02] and Purcell et

al. [PDC∗03] utilised graphics hardware to accelerate the photon mapping pro-

cess. This was achieved by breadth-first photon tracing to create the photon

distributions and then storing them in an acceleration structure entirely gen-

erated on the GPU. For Ma et al. [MM02] a hash table was used and while

effective, its generation and lookup were very costly. In Purcell et al. [PDC∗03]

a regular grid was utilised and two algorithms for creation of this grid were pre-

sented, a multi-pass and a single pass approach. Both approaches suffered from

the same drawback: the GPU architecture was not designed, at the time, to

handle complex data structures such as trees therefore necessitating the use of

simpler structures. This in turns results in the nearest neighbour queries being

simplified to meet these constraints resulting in both quality and performance

impacts. A different approach was proposed by Larsen and Christensen [LC04]

where the photon map was generated on the CPU and ”approximate illumination

maps” were constructed for each surface. The GPU was then used to perform

final gathering and caustics filtering. More recent methods have utilised a newer

generation of GPUs to create complex structures and make use of adaptive sam-

pling [FD09,ML09,WZPB09,YWC∗10].

In Fabianowski and Dingliana [FD09] photon differentials were created for

every hit allowing for density estimation without nearest neighbour searching.

The method supported a dynamic camera and lights and was updated every frame

but suffered from temporal issues and was limited to two bounces to maintain

interactivity. McGuire and Luebke [ML09] made use of an image-space method

for the initial and final photon bounces, which was mapped to the GPU, while the

3. Interactive Global Illumination 55

remainder of the photon tracing was performed traditionally on the CPU. This

method was used for both caustics and diffuse interreflections and while fast was

limited to point-light emitters and a pinhole camera. A further implementation

was presented in [PBD∗10] using the OptiX framework.

Figure 3.2.9: The left image shows the global illumination result of a kitchen
scene with the four sub-images on the right showing: direct lighting and caustics,
indirect lighting, clusters of the shading points, and the distribution of cluster
centers. Images courtesy of Rui Wang [WZPB09].

Wang et al. [WZPB09] presented an approach that allowed for multi-bounce

indirect lighting, glossy reflections, caustics and arbitrary specular paths. Their

approach generated the photon map on the GPU and then simplified it based

on seeding and k-means clustering to create a photon tree, stored as a kd-tree.

This tree was then treated as a compact illumination cut, similar to the lightcuts

approach [WFA∗05], when determining illumination. Caching and interpolation,

similar to that of the irradiance cache [WRC88], and adaptive sampling were

utilised to enable interactivity while exploiting spatial coherence. See Figure

3.2.9 for a visualisation of the k-means clustering and sample distribution along

with a final combined image and the individual components. Due to the use of

a limited number of irradiance samples small geometric details were lost when

computing indirect lighting. The use of low-order spherical harmonics also limited

the final gather step to low-frequency glossy materials as highly glossy materials

would have required a much longer illumination cut, impacting negatively on the

search speed in the kd-tree. Furthermore, even with the attempts at maintaining

temporal coherence within clusters the approach suffered from temporal artifacts

as the irradiance samples are all recalculated each frame.

Finally in Yao et al. [YWC∗10] an approach was presented that addressed

current issues with image-based photon mapping techniques, primarily the lack

of information for occluded geometry and light leaking due to the use of a single

3. Interactive Global Illumination 56

image. This approach generated multiple environment attempting to maximise

coverage of the scene. Once the photon distribution was computed the photons

were then splatted to the screen with a variable splat sizes allowing for glossy

BRDFs. Caustics were computed in a similar fashion to Wyman [Wym08] using

a separate texture and specular reflections were not supported. The solution

suffered from bias, caused by the photon mapping and upsampling, resulting in

light blurring, boundary bias, light leakage and overly dark areas for some of the

scenes. Finally, the solution was also limited by the size of the scene and scene

complexity, to an extent, as a larger and more complex scenes required a larger

number of environments maps which increased overall memory usage.

3.2.2.5 Precomputed Radiance Transfer

A completely different approach that involved a large amount of pre-computation

but allowed for real-time global illumination was introduced by Sloan et al.

[SKS02] as Precomputed Radiance Transfer (PRT), a global illumination so-

lution specifically tailored to the GPU. It used off-line precomputation to cal-

culate the radiance transfer between the surfaces of an object, this informa-

tion was represented either via spherical harmonics [SKS02,SHHS03] or wavelets

[LSSS04, WTL06] and then stored. While this approach only supported static

non-deforming meshes and low-frequency distant lighting it allowed for real-time

changes in the lighting and generated effects such as soft shadows, diffuse in-

terreflections and caustics. Recent extensions to PRT [PWL∗07, IDYN07] based

on initial work by Zhou et al. [ZHL∗05], which precomputed the radiance field

for individual objects, allowed for dynamic moving object as long as the objects

remaind rigid and did not deform. Support was also extended to allow for high

frequency local lights, at a cost, where low frequency lighting was computed in

real-time and high-frequency lighting at interactive rates.

3.2.2.6 Rasterisation

While most of the approaches discussed above attempted to fit methods, that rely

on ray tracing and were initially designed for the CPU, onto the GPU there exist

methods such as Ritschel et al. [REG∗09] which make full use of the GPU and

its rasterisation capabilities. This approach utilised previous work done by the

author [RGK∗08] by using a point-based hierarchy for the scene representation.

In the method a number of final gathering locations were chosen and ”micro-

3. Interactive Global Illumination 57

rendering” was performed by traversing and rasterising the point-hierarchy into

a micro-buffer, which is also appropriately importance-warped based on BRDF

importance sampling, see Figure 3.2.10. The final radiance values for each point

were then calculated and stored in image space and upsampled using bilateral up-

sampling [KCLU07]. While arbitrary BRDF types were supported glossy BRDFs

did require a higher density of final gathering points, which the regular sample

distribution was not suited for. Noise was also introduced to eliminate banding

and was visible. More than two specular bounces was not supported, nor were

transparent or refractive objects.

Figure 3.2.10: The image on the left shows two interior levels of the point
hierarchy, with over one million points, used in rendering the image on the right.
The middle images visualise the micro-buffers, for both glossy and diffuse BRDFs,
generated as a result of the rendering process. Images courtesy of Tobias Ritschel
[REG∗09].

3.3 Discussion

As was discussed in Section 3.2.1, to achieve interactive rates it has been impor-

tant for ray tracing systems to exploit coherency on all levels in the computational

pipeline, making use of both instruction level and memory level coherency. How

this coherency is exploited needs to be examined in further detail to understand

its effects.

This first such mechanism to exploit coherency is packetisation and it does

this by using SIMD computation along with coherent memory access for groups

of rays. Packet tracing is a technique that was initially proposed in Wald et al.

[WSBW01] where intersection, traversal and shading are all executed in parallel

3. Interactive Global Illumination 58

on “ray packets” which are groups of coherent rays. Wald et al. initially proposed

this technique for triangular scenes and kd-trees but it has been extended to a host

of different acceleration structures and primitive types as well as being mapped

to a variety of hardware architectures. Initial packetisation of rays was limited

to packet sizes that were equal to the SIMD width of the host processors. SIMD

instructions are available on most modern processors and facilitate the speed-

up of computation when performing the same basic operation on multiple data

elements. Ray tracing makes use of SIMD operations for all of its fundamental

operations.

A key step to increased throughput was utilising packets greater than just

the SIMD width and using frustum or interval arithmetic (IA) techniques to

produce speed-up over the simple SIMD processing by amortising the cost of the

computation by utilising much larger ray packets of up to 64 rays. This was

used for group rays into pyramidal shafts to rapidly cull triangles [DHS04] and

for enhanced traversal [RSH05] of kd-trees. The use of large packets was later

extended to grids [WIK∗06] and BVHs [WBS07]. See Boulos et al. [BWS06] for

a comprehensive overview. All these approaches relied on high ray coherence to

deliver benefits over SIMD packet tracing.

As rays become incoherent, SIMD has less utilisation and it is possible for

large packets do more computation per ray than optimised single-ray code paths.

Coherent packets can be generated for primary rays, hard shadows and perfectly

specular reflections [Sch06]. By carefully considering the order in which rays are

cast Whitted and Distribution ray-tracing [BEL∗06] and indirect diffuse illumina-

tion [WKB∗02], to some extent, can be efficiently computed using packet-tracing.

Usage is limited however as Reshtov has shown that after several perfectly spec-

ular bounces most packets have only a single active ray in them [Res06]. Perfor-

mance for diffuse bounces and ambient occlusion rays is even worse, sustaining

the same performance loss after only one or two bounces [WGBK07].

Further work has been done by Overbeck et al. [ORM08] in examining algo-

rithms for large packet traversal and culling in the context of Whitted-style ray

tracing. The work demonstrated a new traversal algorithm that responds well to

degradation in coherency but only when dealing with perfectly specular reflection

and refractions. It was also limited to supporting point light sources so that light

rays generated were coherent.

In order to regain coherence for a given ray distribution re-ordering of the rays

in a packet has been investigated. Work performed in Pharr et al. [PKGH97] re-

3. Interactive Global Illumination 59

ordered the rays using a coarse scheduling grid and while it greatly reduced disk

I/O in an out-of-core ray tracer, the benefits for SIMD parallelism were unclear.

Similar to this approach was one by Navratil et al. [NFLM07] where re-ordering

was proposed based on the acceleration structure. The focus of this investigation

was on geometric and ray bandwidth, however, no absolute performance numbers

were provided. Coherence could also be gained by increasing SIMD utilisation,

as was shown in Wald et al. [WGBK07], where large packets where traced in

a breadth-first manner. In Mansson et al. [MMAM07], rays were grouped into

batches larger than their packet size and then shot in packet-sized subsets se-

quentially. Rays were put into specific groups based on a number of different

heuristics but none of the approaches performed better than SIMD packet trac-

ing. The limitation of all these techniques was that they required a large number

of rays to be available from which coherence could be extracted.

An alternative to tracing packets is to utilise a single ray and intersect it

with N objects, be they nodes in an acceleration structure or primitives such as

triangles in a leaf node. This was argued against in Wald et al. [WSBW01] due

to the fact that this approach would not provide any benefit for shading and

kd-trees, the primary acceleration data structure at the time. Kd-trees favour

small leaf nodes and are binary in nature, not allowing for more than two chil-

dren, which prevented the idea from being extended to traversal. While the

argument was valid at the time, the subsequent resurgence of BVHs has meant

that node-parallel ray tracing has became a viable option. BVHs naturally sup-

port higher branching and the initial ray tracers that used them [RW80, GS87]

made use of this fact. Current research is moving away from packetisation due to

importance of secondary rays, and their naturally incoherent nature. A number

of researchers have proposed BVH solutions that use a branch factor equal to

that of the SIMD width of the host processor to allow for the efficient traver-

sal of single rays [WBB08, DHK08, EG08, Tsa09]. In Wald et al. [WBB08], two

construction methods were examined for building BVHs with a branching factor

greater than two, an SAH-based collapsing method and a top-down recursive

splitting method. Both methods showed a reduction in memory usage (due to a

decrease in the overall number of nodes) and a higher SIMD usage during traver-

sal. One disadvantage is that the intersection test gathered and swizzled data for

sixteen triangles from different memory locations which affected cache coherence.

Dammertz et al. [DHK08], Ernst and Greiner [EG08] and Tsakok [Tsa09] utilised

a very similar approach to Wald et al. [WBB08], focusing on a collapsing method

3. Interactive Global Illumination 60

to build their hierarchies. All dealt with the gather/swizzle problem by caching

the results of these operations in a SIMD friendly manner (storing the data for

four triangles in SoA fashion) thereby reducing the impact of multiple fetches.

These new methods, which favour single rays, take a step towards removing

the reliance that interactive ray tracing has on packetisation to maintain co-

herence and achieve interactive rates. Even with the reliance on packetisation

diminished the large number of secondary rays, even if traced efficiently, still pose

significant challenges in achieving global illumination an interactive rates. Meth-

ods that reduce the total number of rays that need to be computed must therefore

be examined to determine how best they can be utilised. Selective rendering, de-

tailed in Section 2.3.2, although until now limited to off-line rendering, contains

characteristics similar to sparse sampling (Section 3.2.1.3), another method that

has already been used to accelerate global illumination. As can be seen in Sec-

tion 3.2.1.3, sparse sampling’s and selective rendering’s main advantage lies in

ray tracing a significantly lower number of pixels than the displayed resolution,

which is the major problem with ray traced images. Unfortunately, both these

approaches by definition do not exploit the spatial coherence which has made

interactive ray tracing methods possible. The results of sparse sampling systems

seem to be more effective when performed on only parts of the computation such

as in Stamminger et al. [SHSS00]; Tole et al. [TPWG02], this is partially due to

fact that these systems decouple the primary visibility from the shading, a prop-

erty also mentioned by the authors of the Razor system [DHW∗07] (described in

Section 3.2.1).

This thesis will first proceed to examine the impact of combining selective ren-

dering and current interactive ray tracing approaches, further detailed in Chapter

4, to quantify the effects on coherence when packetisation is used. These results

will allow for further insight into what components the calculation can be divided

into and how these two approaches can be combined in the development of novel

interactive global illumination solutions. These solutions will need to make full

use of the computational resources available, via these selective methods, while

at the same time attempting to maintain a level of coherence so that interactive

rates can be achieved.

3. Interactive Global Illumination 61

3.4 Summary

This chapter has presented work related to interactive ray tracing, interactive

global illumination and the exploitation of coherence in interactive ray tracing.

It provides a thorough background of interactive ray-tracing, for both the CPU

and GPU, covering both past approaches and current state-of-the art methods.

A comprehensive look at field of interactive global illumination follows, using a

similar approach as the interactive ray tracing section, first focusing on CPU-

based and then GPU-based techniques. Each section is focused on the different

groups of algorithms that have been employed as well as the overall systems that

have attained interactivity and the methods these systems used. Finally the role

of coherence in interactive ray tracing is further examined as well as its effects

on shaping certain approaches such as packetisation and stream processing. This

examination showed how the focus has shifted from tracing bundles or packets

of coherent rays to providing methods that enable single incoherent rays to be

ray traced quickly, an important step towards acceleration global illumination

solutions where the rays are mostly incoherent, for example when computing

diffuse interreflections.

CHAPTER 4

Impact of Selective Rendering on

Interactive Ray Tracing

4.1 Introduction

As mentioned before the main focus of this thesis is on accelerating the com-

putation of high-fidelity graphics, and specifically global illumination effects,

to interactive rates by utilising current state-of-the-art algorithms, that exploit

cache coherency, and combining them with selective rendering techniques. Both

selective rendering methods [OHM∗04] and techniques that exploit cache co-

herency [BWS06] have been independently shown to greatly reduce the overall

computational time of a global illumination solution but very little research has

been performed on how these two methods interact, especially in an interactive

setting, and if computing less pixels translates into less overall computational

time.

This chapter identifies and quantifies the impact of this interaction by con-

ducting a series of experiments in which different levels of selective rendering are

simulated in a state-of-the-art interactive ray tracing framework. The goal is

to determine if the speed-up offered by selective rendering is not offset by the

decrease in cache and spatial coherency that naturally occurs when only specific

pixels in the image are being rendered. This is of great importance as current

packet-based ray tracing techniques are heavily reliant on very coherent packets

of rays to achieve the levels of performance that offer interactivity on consumer

desktop PCs, the primary goal.

62

4. Impact of Selective Rendering on Interactive Ray Tracing 63

4.2 Experimental Framework

To test the interactions of selective rendering with current interactive ray tracing

techniques, a modified a state-of-the-art interactive ray tracer is used. Manta

[SBB∗06] from the University of Utah was chosen for this task due to its, at

the time, up to date algorithms, optimised acceleration structures [Wal07], the

packetised nature of its rendering pipeline as well its extensibility due to the fact

it is an open source project. Manta also served as the basis for Optix [PBD∗10],

NVIDIA’s real-time ray tracer for the GPU.

A detailed breakdown of the Manta pipeline is beyond the scope of this paper

but a detailed overview is given in Stephens et al. [SBB∗06]. The performed

experiment modified the pipeline at the stage where it would have minimal impact

on the performance of the rest of the pipeline. At this stage the pixels that need

to be traced are specified and then converted into ray packets. A stride parameter

is then provided which enabled us to simulate selective rendering by sub-sampling

the image in a pre-defined way.

Figure 4.2.1: Explanation how stride changes.

Stride in the context of this experiment is a parameter that defines how the

selective rendering is performed. While simply rendering a lower resolution image

would produce the same amount of pixels as utilising a stride this would not

truly simulate selective rendering. This is because while selective rendering only

renders a subset of the pixels in the image, the image is still created at full

resolution. This has implications at many stages of the rendering pipeline and in

order to produce a superior simulation it was decided to render the image at full

resolution with a stride instead of just rendering the image at progressively lower

resolutions. The stride itself simply defines how many steps one must take away

4. Impact of Selective Rendering on Interactive Ray Tracing 64

from the current pixel before a new one is marked for processing. A stride of one

simply means move over to the next pixel and mark it for processing, while a

stride of two is move over twice, skipping one pixel and marking every second one

for processing. Therefore a stride of X would render a 1/X2 of the total pixels

in the image simulating the incoherent nature of selective rendering but allowing

precise control over the amount of sub-sampling that took place. A ray is then

generated per pixel and grouped into packets that are then traced through the

scene. Figure 4.2.1 provides a graphical example.

Once the selective pixel sampler was added to Manta four test scenes were

selected (these are detailed in Section 4.4) and the experiment was setup in such

a way to minimise unintentional cache coherence. This could occur through the

re-use of the same scene while testing multiple strides where it was possible that

some data may have remained in cache from the previous run and therefore would

skew results. All four test scenes were run after each other for each of the strides

to ensure that the cache contained data from a previous scene and not data from

the same scene that could be reused.

Objects Materials Lights

Default 2 2 3

Sphere Grid 65 2 1

Complex 1 698,274 5 3

Complex 2 586,466 5 2

Table 4.1: Scene details

4.3 Experiment

For the experiments a resolution of 4096× 4096 was selected to simulate a scene

of 1024×1024 with 16 rays per pixel, this was done as using 16 rays per pixel may

have led to results being skewed by certain code optimisations, such as shading

being performed on multiple rays at once, within the framework utilised. Each

scene was run with thirteen different strides, from 1 to 4096, doubling the stride

each time. This produced a range of images where, in the first image, every pixel

4. Impact of Selective Rendering on Interactive Ray Tracing 65

(a) Default (b) Sphere Grid

(c) Complex 1 (d) Complex 2

Figure 4.2.2: The four scenes used.

in the image was being rendered to the last image where only one pixel was being

rendered.

For the experiment the standard Manta default of 64 rays per packet was

used. Therefore for any results where less than 64 rays were processed the ray

packet in Manta was not completely filled. This led to an increased cost per ray

as the shading and other functions performed on the ray packet were no longer

amortised over all 64 rays, but still amortised for every 4 rays when processing

via SIMD [Int03].

4. Impact of Selective Rendering on Interactive Ray Tracing 66

1.0E‐08

1.0E‐07

1.0E‐06

1.0E‐05

1.0E‐04

1.0E‐03

1.0E‐02

16,777,216 4,194,304 1,048,576 262,144 65,536 16,384 4,096 1,024 256 64 16 4 1

A
vg
. t
im
e
 t
o
 r
e
n
d
e
r
p
ix
e
l (
Lo
g)

Total num. pixels rendered

Default

Sphere Grid

Complex 1

Complex 2

(a) Single-threaded

1.0E‐08

1.0E‐07

1.0E‐06

1.0E‐05

1.0E‐04

1.0E‐03

1.0E‐02

16,777,216 4,194,304 1,048,576 262,144 65,536 16,384 4,096 1,024 256 64 16 4 1

A
vg
. t
im

e
to
 r
e
nd

e
r
p
ix
e
l (
Lo
g)

Total num. pixels rendered

Default

Sphere Grid

Complex 1

Complex 2

(b) Multi-threaded (8 threads)

Figure 4.3.1: Primary rays only.

1.0E‐08

1.0E‐07

1.0E‐06

1.0E‐05

1.0E‐04

1.0E‐03

1.0E‐02

16,777,216 4,194,304 1,048,576 262,144 65,536 16,384 4,096 1,024 256 64 16 4 1

A
vg
. t
im
e
 t
o
 r
e
n
d
e
r
p
ix
e
l (
Lo
g
)

Total num. pixels rendered

Default

Sphere Grid

Complex 1

Complex 2

(a) Single-threaded

1.0E‐08

1.0E‐07

1.0E‐06

1.0E‐05

1.0E‐04

1.0E‐03

1.0E‐02

16,777,216 4,194,304 1,048,576 262,144 65,536 16,384 4,096 1,024 256 64 16 4 1

A
vg
. t
im

e
to
 r
en

d
er
 p
ix
el
 (
Lo
g)

Total num. pixels rendered

Default

Sphere Grid

Complex 1

Complex 2

(b) Multi-threaded (8 threads)

Figure 4.3.2: Primary and secondary rays.

4. Impact of Selective Rendering on Interactive Ray Tracing 67

‐5.0E‐05

0.0E+00

5.0E‐05

1.0E‐04

1.5E‐04

2.0E‐04

16,777,216 4,194,304 1,048,576 262,144 65,536 16,384 4,096 1,024 256 64 16 4 1

A
vg
. t
im

e
to
 r
en

d
er
 p
ix
el

Total num. pixels rendered

Default

Sphere Grid

Complex 1

Complex 2

(a) Single-threaded

‐2.0E‐04

‐1.5E‐04

‐1.0E‐04

‐5.0E‐05

0.0E+00

5.0E‐05

16,777,216 4,194,304 1,048,576 262,144 65,536 16,384 4,096 1,024 256 64 16 4 1A
vg
. t
im

e
 t
ak
en

 t
o
 r
e
nd

e
r
a
p
ix
el

Total num. pixels rendered

Default

Sphere Grid

Complex 1

Complex 2

(b) Multi-threaded (8 threads)

Figure 4.3.3: Secondary rays only.

0.0E+00

2.0E‐01

4.0E‐01

6.0E‐01

8.0E‐01

1.0E+00

1.2E+00

16,777,216 4,194,304 1,048,576 262,144 65,536 16,384 4,096 1,024 256 64 16 4 1

A
vg
. t
im
e
 t
o
 r
e
n
d
e
r
p
ix
e
l

Total num. pixels rendered

Default

Sphere Grid

Complex 1

Complex 2

(a) Single-threaded

0.0E+00

2.0E‐01

4.0E‐01

6.0E‐01

8.0E‐01

1.0E+00

1.2E+00

16,777,216 4,194,304 1,048,576 262,144 65,536 16,384 4,096 1,024 256 64 16 4 1

A
vg
. t
im

e
to
 r
en

d
er
 p
ix
el

Total num. pixels rendered

Default

Sphere Grid

Complex 1

Complex 2

(b) Multi-threaded (8 threads)

Figure 4.3.4: Normalised speed-up compared to 4096× 4096.

4. Impact of Selective Rendering on Interactive Ray Tracing 68

4.4 Results

Figure 4.3.1 and 4.3.2 show results for primary rays only and primary and sec-

ondary rays respectively. The data displayed on the Y axis is the average time

taken to render a pixel using a logarithmic scale versus the total number of pixels

rendered on the X axis using an exponential scale. Figure 4.3.3 contains data

for secondary rays only, where the Y axis is the average time taken to render

a pixel using a linear scale versus the total number of pixels rendered on the X

axis using an exponential scale. Figure 4.3.4 shows the normalised speed-up for

different strides when rendering both primary and secondary rays where the Y

axis is the normalised speed-up using a linear scale versus the total number of

pixels rendered on the X axis using an exponential scale.

One can see in Figures 4.3.1a and 4.3.2a that for the single-threaded results

there is an overall increase in the average time taken to render a pixel as the

total number of pixels rendered decreases, although it is not strictly a logarith-

mic increase and for certain scenes such as SPHERE GRID and DEFAULT is

linear in certain areas. Examining the multi-threaded results one can see much

less disparity between the different scenes and an almost perfectly logarithmic

increase in average time taken to render a pixel as total number of pixels rendered

decreases. This can most likely be attributed to the increased amount of cache,

16MB of L2 cache on the dual Quad-core vs. 2MB on the single-core Prescott,

and as cache coherency decreases a higher overall cost per pixel is observed, than

was noted with the single-threaded results, for each ray.

The results in Figure 4.3.4 indicate, for a given stride, how close the results

are to an ideal speed-up with the results being normalised to make comparison

easier. An ideal speed-up being where the amount of time taken to render the

given pixels is T1/(S
2
n) where T1 is the time taken to render the image at a stride

of 1 and Sn is the stride. For all scenes one can observe a decrease in speed-

up as the stride is increased, and for all scenes other than SPHERE GRID the

speed-up is only 20% of the ideal when the stride reaches thirty two. SPHERE

GRID shows a much slower decrease in speed-up mostly due to its regular nature

and higher coherence when calling shading and intersection routines. For both

DEFAULT and SPHERE GRID it can be seen that the decrease in speed-up

is much faster in the multi-threaded results (Figure 4.3.4b) and while not as

pronounced both COMPLEX 1 and COMPLEX 2 also show a decrease in speed-

up when comparing the single-threaded and multi-threaded results. This, like the

4. Impact of Selective Rendering on Interactive Ray Tracing 69

other results, shows that an increase in the amount of cache available adversely

effects the performance of selective rendering.

4.5 Discussion

The implications of the results as pertaining to the interaction of selective ren-

dering and interactive ray tracing are very interesting. As can be seen from

Figure 4.3.1, 4.3.2 and 4.3.3 for the majority of scenes as the total number of

pixels computed decreases the average time taken to compute a pixel increases

logarithmically. One can see an order of magnitude increase in the average time

taken to compute a pixel as one goes from a stride of one to a stride of thirty two,

the majority of this increase can be attributed to a decrease in cache coherency

as the width of the packet increases with the growing stride.

Further evidence that this occurs as a result of cache misses and poor spatial

coherency can be seen in the results of Figures 4.3.1 and 4.3.3. In Figure 4.3.1

the highly coherent primary rays are timed separately and show a constant and

logarithmic increase in the average time taken to compute a pixel as the total

number of pixels rendered decreases due to the stride increase. Only specular

secondary rays are timed in Figure 4.3.3 and show that as the total number of

pixels rendered decreases due to increased stride. There is very little measurable

change in the average time taken to compute a pixel until only 256 samples are

being calculated out of a possible 16,777,216. At this level any variance can be

attributed to coincidental coherence or just not traversing complex parts of the

scene. This shows that secondary rays are playing a very insignificant part in the

overall deterioration of speed and that it is the very spatially coherent primary

rays that are responsible for this speed loss. The loss in spatial coherence between

the primary rays as stride increases is being directly translated into a loss of

cache coherency and therefore an overall increase in average time taken to render

a pixel. This is most apparent in multi-threaded results (Figure 4.3.1b) as the

amount of L2 cache available to the CPUs increase.

As all the current interactive ray tracing techniques [SBB∗06, RSH05] and

optimised accelerating structures [SSK07, Wal07] rely on spatially coherent rays

to amortise the cost of tracing large packets and when this spatial coherency is

no longer present, as is the case with selective ray tracing, many of the speedups

gained from these techniques are lost. On the other hand, secondary rays are

4. Impact of Selective Rendering on Interactive Ray Tracing 70

naturally incoherent and due to this fact selective rendering has very little neg-

ative impact on the component of the ray tracing calculation as can be seen in

Figure 4.3.3.

The discussion above along with results from Figure 4.3.4, which contain less

than ideal speed-up that drops off sharply as stride increases for even the simplest

scene, shows that selective rendering is useful but not as useful as it should be

given the overall increase in average time taken to render a pixel. From this one

can potentially draw two conclusions. One can either selectively render primary

rays coherently using some form of adaptive or progressive approach or just not

utilise selective rendering for primary rays and apply it just to secondary rays.

4.6 Summary

This chapter has quantified and provided an analysis of the effects that selective

rendering has on interactive ray tracing. An existing state of the art interactive

ray tracer (Manta from the University of Utah [SBB∗06]) was modified to allow

us to simulate different levels of selective rendering. The results show that the

average time taken to render a pixel increases as the stride that was used is

increased at and that this is mainly due to poor spatial coherence and its effects

on primary rays. Primary rays rely on packets of spatially coherent rays for the

traversal of acceleration structures and intersection of objects without this spatial

performance deteriorates. This is problematic as cache coherence is heavily relied

on by a large number of modern algorithms to provide the speed-up necessary

for interactivity. It it shown that secondary rays, when rendered with a stride,

contribute almost nothing to the increase in average rendering time for a pixel, as

opposed to primary rays. This is because secondary rays are naturally incoherent

and aren’t effected by poor spatial coherence and a lack of cache coherence.

From the results it can be concluded that while selective rendering can be

utilised in an interactive context the penalties incurred must be carefully man-

aged or new algorithms devised to handle them. Adaptive or progress methods

that maintain spatial coherency and perform selective calculations solely on the

secondary rays should be further examined. Chapter 5 makes use of this informa-

tion when constructing a framework that allows us create novel interactive global

illumination solutions, by pairing existing algorithms with selective rendering

techniques, so that they exhibit the features identified in this chapter.

CHAPTER 5

Adaptive Interleaved Sampling for

Interactive Global Illumination

While interactive ray tracing methods handle primary rays extremely efficiently,

mainly via optimised data structures and algorithms that exploit coherency, these

methods do not apply to incoherent secondary rays. These are mainly used to

compute effects such as diffuse interreflections, soft shadows and participating

media, all important components of a global illumination solution. This inability

for current techniques to deal with secondary rays and the use of selective ren-

dering, via sparse sampling, to accelerate the computation of global illumination

solutions was identified and discussed in detail in Section 3.3. This chapter ex-

amines potential solutions to this problem and how combining selective rendering

techniques and interactive ray tracing and global illumination methods can lead

to novel interactive global illumination solutions.

5.1 Introduction

Interleaved sampling methods (See Section 2.3.3) can provide relatively efficient

ways of sampling for global illumination effects. Traditionally the sampling meth-

ods chosen are consistent, and not adaptive, thus do not take into account possi-

ble variations in the scene being rendered. Certain areas in an image will require

more computation than others to achieve a good result, therefore to obtain a sat-

isfactory image many samples would be wasted using this traditional approach.

By adapting the interleaved sampling to only shoot more samples when required,

reasonable computational gains are achieved without a perceived loss in quality.

Furthermore, due to the linearity of the rendering equation, global illumination

71

5. Adaptive Interleaved Sampling for Interactive Global Illumination 72

effects can be computed and sampled independently. These individual effects are

referred to as components [SFWG04]. The guidance for the adaptive interleaved

sampling is tailored for each individual component further improving the render-

ing times of the method. The technique is demonstrated using three components:

soft shadows, indirect diffuse lighting and participating media. The computation

of other high-fidelity rendering features such as glossy effects and depth of field

could follow a similar strategy.

This chapter first presents a framework, encompassing the methodology used

along with its implementation details (Section 5.2). This section introduces the

framework developed to identify, deconstruct and pair an existing interactive ray

tracing and interactive global illumination methods with selective rendering tech-

niques to produce novel interactive global illumination solutions. Three major

stages are identified in the process and provide detailed information on what

these stages entail. The framework described here is utilised in this chapter, as

well as the subsequent (Chapter 6) chapters, to develop and implement two new

interactive global illumination solutions. Sections 5.2.1 - 5.2.3 provide more detail

on the three main stages of the framework while Section 5.2.4 provides imple-

mentation details. The focus is then shifted to the algorithm itself which extends

interleaved sampling to be adaptive, computing further samples only when nec-

essary (Section 5.3) into adaptive interleaved sampling (AIS). This algorithm is

then used in the computation of a number of components, using custom adaptive

heuristics for each one, such as soft shadows (Section 5.3.3), indirect diffuse illu-

mination (Section 5.3.2) and participating media (Section 5.3.4). Results (Section

5.4) along with validation data comparing the approach to the original Instant

Global Illumination (IGI) algorithm, based on Wald et al. [WKB∗02], as well as

reference path traced images are then presented.

5.2 Framework

Following on from the results in Chapter 4 this section presents the methodol-

ogy and processes utilised during the selection of selective rendering techniques

and interactive ray tracing / global illumination methods. It then examines the

structured approach used to determine which selective techniques are applied

to specific components of the computation. The methodology is refined into a

framework which is used in this, and subsequent chapters (Chapters 6 and 7),

5. Adaptive Interleaved Sampling for Interactive Global Illumination 73

to guide the selection of algorithms that are considered when developing these

novel approaches as well as the approaches utilised to make them interactive. Be-

low in Figure 5.2.1 the process flow of the framework is visualised with Sections

5.2.1 - 5.2.3 providing further details on each of the primary steps: Identification,

Deconstruction and Pairing.

Pool of potential SR and
GI algorithms

Identification
Identify candidate GI and

SR algorithmSR algorithm

GI Algorithm SR Algorithm

Pairing
Combine computation of Interactive GI

Deconstruction
Break up computation

into components

Combine computation of
component with SR
algorithm to increase

performance

Interactive GI
algorithm

For each
component

Figure 5.2.1: This figure visualises the process flow of the framework.

5.2.1 Identification

Due to the large number of suitable algorithms, encompassing both interactive

ray tracing algorithms and interactive and off-line global illumination algorithms,

that could be combined with selective rendering techniques, a more structured

approach was developed to improve selection criteria. For the rendering algorithm

the criteria utilised to identify which algorithm to utilise focus on algorithms

that had already achieved interactive or near interactive rates while computing

diffuse interreflections or a sufficiently large number of rays which would make

this computation possible. For the selective technique the focus was placed on

making the selected rendering algorithm adaptive or progressive to reduce the

total computational cost.

5. Adaptive Interleaved Sampling for Interactive Global Illumination 74

For this specific implementation utilising the literature reviewed in Chapter

3 interleaved sampling [KH01] was chosen as the base algorithm to extend. As

mentioned previously in Section 3.2.1 it had already been utilised in an inter-

active global illumination solution [WKB∗02], by being combined with Instant

Radiosity [Kel97], as well as a number of other areas [SGNS07, FBP08] to re-

duce overall computational costs. Due to its nature as a sampling algorithm

it could potentially be extended to a number of different components, not just

diffuse interreflections, and therefore held further potential to reduce the overall

computational costs.

5.2.2 Deconstruction

The deconstruction of the rendering equation into components occurs as follows.

The radiance at a pixel (x, y) in the direction Θ which intersects an object in

the scene at point xb (Lt) is the sum of all emitted (Le) and reflected (Lr) light.

This is shown in the equation below

L(x, y) = Lt(xb → Θ) = Le(xb → Θ) + Lr(xb → Θ)

where

Lr(xb → Θ) =

∫
Ωxb

fr(xb,Θ↔ Ψ)L(xb ← Ψ) cos(Nxb ,Ψ)dwΨ

The standard rendering equation [KH84] is extended by also calculating the con-

tribution of single-scatter homogenous participating media which extends the

equation to:

L(xb → Θ) = e−τ(xa,xb)Lt(xb → Θ)+∫ xb

xa

e−τ(xa,x)κa(x)Le(x→ Θ)dx+∫ xb

xa

e−τ(xa,x)κs(x)

∫
Ω

P (x, x→ Θ, x← Φ)Li(x→ Θ))dΦdx

where xa is the point in space where the sensor is located, κa is the absorption

coefficient, κs is the scattering coefficient, the extinction coeffcient is κt = κa +

κs, τ(xa, xb) =
∫ xb
xa
κt(x)dx is the optical thickness, P is the phase function,

Le the emitted radiance and Li the in-scattered radiance. For full details and

5. Adaptive Interleaved Sampling for Interactive Global Illumination 75

expansion of all terms please refer to Nishita et al. [NMN87]. The equation is

then further deconstructed into direct lighting, indirect lighting and participating

media components as follows

L(xb → Θ) = Att(xa, xb)(Ld(xb → Θ) + Li(xb → Θ))+∫ xb

xa

Att(xa, xb)Lp(xa, xb)

where Ld is the direct lighting component, Li the indirect lighting component,

Lp is the participating media component and Att(xa, xb) = e−τ(xa,xb) is the at-

tenuation factor due to the participating media. The direct lighting is evaluated

using the standard area formulation (Equation 2.1.6):

Ld(xb → Θ) =

∫
A

fr(xb,Θ↔ Ψ)L(xl ← −Ψ)V (x, xl)G(x, xl)dAxl

Both the direct lighting and participating media components are evaluated us-

ing standard Monte Carlo integration while the indirect component is evaluated

utilising Instant Radiosity [Kel97]. The indirect lighting evaluation is performed

in two steps: shooting photons from light sources and creating VPLs and a sub-

sequent gathering pass. The gathering pass evaluates indirect diffuse irradiance

incoming from all VPLs to provide a final contribution:

Lindirect(xb → Θ) =
N∑
k=1

fr(xb,Θ↔ Γ)Le,kV (x, xk)G
′(x, xk)

where N is the number of VPLs in the scene, V (·, ·) is the visibility function

between two points, Θ↔ Γ is the light vector for the k-th VPL, Le,k is the emitted

radiance of the k-th VPL, yk is the position of the k-th VPL, fr(x,Θ↔ Γ) = ρ/π

in the case of diffuse component (ρ is the reflectance), and G′ is the bounded

geometry term [PH04].

While the deconstruction leaves us with three main components it should

be noted that the deconstruction can be generalised to an arbitrary number of

components where the granularity of deconstruction is dictated by the imple-

mentation requirement. Any of the components presented here can be further

deconstructed according to any criteria, for example, the type of the bi-directional

reflectance function or light source.

5. Adaptive Interleaved Sampling for Interactive Global Illumination 76

Adaptability

Coherence Interactivity

Figure 5.2.2: This figure visually demonstrates the goals of this framework. The
blue plot indicates current algorithms, highly coherent but only slightly adaptable
and interactive. The green plot visualises the type of algorithm this framework is
aiming to create, a more balanced approach in which adaptability and therefore
interactivity are increased while allowing for coherence to be exploited.

5.2.3 Pairing

Once deconstruction is complete each component is evaluated, in the context of

the base algorithm used, to determine what potential selective rendering tech-

nique it can be paired with to increase performance. Due to the nature of the

framework each pairing is tailored to each component and it is possible to use a

number of different selective rendering techniques based on the result required.

The three key criteria that drive selection of not just the selective rendering

techniques but the base algorithm(s) are based on the need to maintain spatial

and temporal coherency (coherency) while decreasing the computational cost of

the solution by focusing the computation on areas of the image which will grant

best visual fidelity (adaptability) all while interactive rates (interactivity). These

criteria need to be balanced, on a per component basis, to produce an interac-

5. Adaptive Interleaved Sampling for Interactive Global Illumination 77

tive global illumination solution, with the added complexity of the interactions

between the three criteria.

Interactivity is the fundamental goal of this framework, in this context it refers

to both the timing of the update of the global illumination solution, imposing

an upper limit on the amount of computational time that can be allocated for

any given frame, as well the ability for the scene to be entirely dynamic without

the need for pre-computation. Due to the interactive nature any algorithm cho-

sen must also provide a stable approximation of the lighting solution that has

temporal continuity from frame to frame as well as within a frame. As has been

shown in Section 4.4 to increase interactivity both coherence and adaptability

have to increase in order to to decrease overall computational time. Due to the

varying computational requirements and implementations for each component of

the final computation, as can be seen in Sections 5.3.2-5.3.3, an optimal use of

resources can be only achieved by applying optimisations on a per-component

basis.

Coherence refers to the level of temporal and spatial coherence maintained

while computing the interactive global illumination solution. As was demon-

strated in the literature, Section 3.1.1, as well as the results in the previous

chapter the majority of interactive ray tracing techniques require a high level of

spatial coherence for the primary rays to be calculated effectively. The exploita-

tion of temporal coherence is also an important aspect of the solution given its

interactive nature. To exploit coherence a number of hardware specific mecha-

nisms can be employed such as SIMD/SSE instructions [Int03], CPU caches and

coherent memory access. By ensuring that data structures are correctly aligned

and placed in memory in such a way that related data is grouped together correct

utilising of caches will also occur, further exploiting coherence, especially if data

structures are small enough that large parts can reside in the processor cache.

Algorithmic mechanisms such as packetisation also play an important role, this

was discussed in detail in Section 3.3. Locality of reference also affects coherence,

by ensuring that pixels to be processed are grouped together, in tiles for example,

coherence is maintained. While an increase in coherence will indicate an increase

in interactivity this, unless carefully managed, will generally indicate a reduction

in adaptability.

Finally adaptability refers to the measure of how all available computational

resources are optimally assigned to areas of the computation that require them

most. This is not only linked to the selective rendering techniques utilised be they

5. Adaptive Interleaved Sampling for Interactive Global Illumination 78

adaptive, progressive or even time constrained but also how parallel an algorithm

is. A high level of adaptability in the algorithm indicates the ability to make use of

all the resources available, this means the ability for the algorithm to parallelise

and scale well with an increase in available computational resources, such as

making use of all the cores in a multi-core system, and doing so with high levels

of efficiency. This not only affects the choice of algorithms but more importantly

the data structures used due to the challenges parallelisation introduces, as was

seen in Section 2.3.5.

These three criteria need to be balanced on a framework level to produce an

efficient interactive global illumination solution, as can be seen in Figure 5.2.2 and

they need to be balanced per component to achieve maximum results. A balance

of all three criteria indicates an algorithm that makes full use of computational

resources, focusing the resources to area of the computation that require it most

while at the same time extracting maximum temporal and spatial coherence from

the computation while maintaining interactivity at all times.

In this particular implementation, as can be seen in Sections 5.3.2 - 5.3.3

each component used in the framework was made adaptive by designing a cus-

tom independent local heuristic that only requires information from the current

tile. By using tiling coherence was maintained during the computation, this was

further enforced by ensuring all heuristics were local to the tile to exploit spatial

coherence when accessing the tile data which itself was coherently computed us-

ing a deferred shading [DWS∗88] approach. Temporal coherence was maintained

by using quasi-monte sampling techniques which ensured that results computed

for a given frame were consistent when everything was static. By eliminating

dependencies between tiles and having all adaptive computations occur on a per

component basis for each tile parallelism and adaptability were maintained, with

multiple tiles being calculated simultaneously.

5.2.4 Implementation

The framework implementation was written using portable C++. The current

version of the framework compiles and runs under MS Windows, Linux and Mac

OSX.

The implementation was designed to be extensible and portable. The kernel

is currently optimised for single ray traversal, with no packetisation having been

implemented at this stage, to allow for a wider array of algorithms to be utilised.

5. Adaptive Interleaved Sampling for Interactive Global Illumination 79

The core of the ray tracing kernel consists of an implementation of dynamic

bounding volume hierarchy (BVH) as described in Wald et al. [WBS07]. SIMD

computation has been limited to a single aspect of the BVH traversal, the ray

bounding volume intersection. The BVH currently only supports the updating

of the bounding volumes of each node at each frame.

A deferred shading approach [DWS∗88] is utilised by calculating primary-

hit information and storing it in a number of buffers. The buffers hold the

normals, depth, albedo colour and material type. This has the advantage that

each component has access to all the relevant information stored in a spatially

coherent manner to optimise memory access. Interleaved sampling is naturally

tile-based, and a 3× 3 pixel tile is utilised to produce a work packet (see below)

that exploits this coherent memory access. For each tile all components are

calculated by the same thread ensuring optimal use of processor cache when

accessing needed information.

The renderer is designed to be multithreaded, with one thread per processor.

At the start of every frame, each thread collects a work packet detailing the pixels

to be rendered, from a centralised job queue. For each tile the thread computes

the primary rays and all other components. After computing a work packet the

job queue is accessed for further work packets. When no further work packets

exist on the job queue, the rendering stage is considered complete. At this stage

the threads wait on a barrier. After barrier synchronisation, each thread collects

further work packets from the job queue. These work packets now represent

pixels to be filtered. When filtering is completed, the threads wait on a barrier

again before commencing the next frame. A central thread is responsible for

work packet creation and allocation onto the job queue. It is also responsible for

displaying the image.

Due to the continuous nature of the indirect diffuse lighting, which changes

smoothly and does not contain sharp discontinuities, this is computed at lower

resolution. The sub-sampled solution is updated using a guided bilinear fil-

ter [TM98] based on joint bilateral upsampling [KCLU07], similar to the up-

sampling solution used in Sloan et al. [SGNS07]. The implementation uses the

full resolution solution computed at the deferred shading stage as guidance. It

utilises the depth at the individual pixels as well as normals to keep within object

boundaries and to avoid up-sampling over discontinuities. For the guided bilinear

filter a modified version of the joint bilateral filter is used and replaces the expen-

sive gaussian filters with simple bilinear ones. Assuming V VPLs are generated

5. Adaptive Interleaved Sampling for Interactive Global Illumination 80

and an IS pattern of N ×M pixels is used IGI will sample a single subset of

V/NM VPLs per pixel. Between V/NM and V VPLs are sampled, IGIs maxi-

mum sampling rate being this implementations minimum one. Therefore while

the indirect lighting computation occurs at a lower resolution, the per-pixel cost

can be substantially higher than in IGI for pixels that require refinement due to

more VPLs being sampled.

This helps to highlight one particular aspect of adaptive sampling. It can

complement sub-sampling well since the number of samples used for the com-

ponent computation, in this case indirect diffuse lighting, can adapt based on

complementary heuristics. When upsampling the indirect diffuse component, see

Section 5.3.2, using only one subset of the VPLs, as in IGI [WKB∗02], there are

occasions when none or very few of the VPLs in that subset are visible. These

conditions often lead to flickering when upsampling, particularly in areas that are

predominantly indirectly lit and highly occluded. AIS takes care of this problem

naturally via the heuristic that detects these undersampled pixels and, if neces-

sary, further samples more VPLs. While there are computational costs associated

with the upsampling and extra VPL sampling the approach is still faster than

IGI as can be seen in Section 5.4.

All the random sampling within the renderer relies on low discrepancy sam-

pling [KK02] to produce well distributed sample points and maintain spatial

coherence across the multiple threads as well as temporal coherence.

5.3 Adaptive Interleaved Sampling (AIS)

Similarly to the work presented by Debattista [Deb06] adaptive interleaved sam-

pling decomposes the standard rendering equation as presented by Kajiya [Kaj86],

with the participating media extensions as initially described by [KH84], into

individual components that have distinct adaptive guidance mechanisms. These

components (Figure 5.4.1) are direct illumination utilising not just point but area

light sources that produce soft shadows (SS), indirect illumination or specifically

indirect diffuse illumination (ID) and single scattering homogenous participating

media (PM). It would be straightforward to add other components to this frame-

work following a similar model. Furthermore, visibility and shading calculations

are performed separately by utilising deferred shading [DWS∗88]. This is done

to maintain coherency when executing shading operations as the method is de-

5. Adaptive Interleaved Sampling for Interactive Global Illumination 81

Initial
Pass

Adaptive
Guidance

Adaptive
Rendering

Soft Shadow

Indirect Diffuse

...

...
Indirect Diffuse

Adaptive Interleaved Rendering

Primary Hit Calculation

Filter & Composite

Soft Shadow

Figure 5.2.3: The pipeline for AIS. The primary hit calculation determines the
object hit, depth and normal calculation. The tiles shown are for illustrative pur-
poses. They are much larger than they would be in practice (a typical value is
3×3). Adaptive interleaved sampling is computed for each tile and for every com-
ponent. Adaptive interleaved sampling of a soft shadow component for a given
tile is shown. Once adaptive interleaved rendering occurs, all the components are
filtered and composited.

5. Adaptive Interleaved Sampling for Interactive Global Illumination 82

signed predominantly with interactive environments in mind, where maintaining

coherency is crucial.

The approach takes IS as presented in Keller et. al [KH01], and later utilised

by Wald et. al [WKB∗02] for indirect diffuse and soft shadow computation. The

technique developed in Wald et al. [WKB∗02] was chosen for a number of reasons.

Firstly, it allows the reduction of the number of samples needed per pixel for each

individual component, and given an interactive approach is being attempted this

is crucial. The use of tiles in the technique increases spatial coherence when

computing the solution and the final step of filtering removes the structural noise

and produces a smooth and, more importantly, noise-free result unlike other

monte carlo techniques. The lack of noise means the technique is more stable

temporally producing results that don’t flicker frame to frame. The IS when

combined with adaptive sampling techniques results in Adaptive IS (AIS). This

approach allows us to target components and create specific guidance metrics

and heuristics that exploit the strengths of each algorithm.

For AIS the method links each pixel in the N×M tile to a particular subset of

samples in a component specific sampler. This is done to allow for a reliable and

repeatable sampling of the component space with the aim of multiple iterations

utilising a disjoint subset of samples for each pixel. Each sampler has a number

of disjoint sets of samples with each set used for a specific sampling iteration,

and each pixel being linked to a set of samples, one from each disjoint set, which

is always used for that specific pixel as the tile pattern is repeated. This means

for the first sampling iteration the first pixel in the tile will always use the same

sample even as the tiling IS pattern is repeated over the entire image. The

results of each of the component calculations are then filtered, as per Wald et

al. [WKB∗02] as they contain structured noise due to the regular re-use of samples

as the pattern is tiled, and later composited into a single resulting image.

Once the initial pass has been performed, an adaptive guidance metric analy-

ses the N ×M tile and determines if further refinement is necessary. This step is

performed for each individual component utilising a component-specific heuristic.

If the guidance identifies that the number of samples used is insufficient, a num-

ber of further iterations for each pixel in the tile are performed with each new

iteration accessing the sample assigned to that pixel in the tile for that specific

iteration. Figure 5.3.1 demonstrates the results produced by the three distinct

stages for the SS component.

Once the initial and refinement pass have been completed for all tiles the

5. Adaptive Interleaved Sampling for Interactive Global Illumination 83

(a) Initial Pass (b) Adaptive Guidance

(c) Adaptive Rendering

Figure 5.3.1: The three steps used in adaptive interleaved sampling.

resulting image is then filtered to remove the structured noise that arises from the

IS sampling. This is done using an N×M discontinuity buffer [WKB∗02]. Unlike

Wald et al. [WKB∗02] the approach filters each individual component separately.

This is done as each components’ contribution has a different structured noise

pattern, due to their individual samplers, that when filtered individually produces

a smoother result than if the filtering were to happen after composition step. The

filtering kernel utilised for these operations is a simple box kernel, the same one

utilised in Wald et al. [WKB∗02]. It should be noted that the filtering occurs

on the original luminance values of each component before any tonemapping or

gamma correction has occurred.

In the end, for an N ×M tile, each tile computes between NM and PNM

samples. P being dependant on the guidance as well as the upper-bound allowed

for each component. Finally, the individual components are composited together

5. Adaptive Interleaved Sampling for Interactive Global Illumination 84

with the albedo colour. The albedo colour of the objects is decoupled from

the lighting calculations to ensure that high frequency detail, from textures for

example, does not interfere when filtering the individual components.

The distinct adaptive guidance utilised for each component means that, unlike

standard IS, more samples are taken in areas that contribute the most to the

overall image. Figures 5.3.2, 5.3.3 and 5.3.4 show which parts of the image

are adaptively sampled for the SS, ID and PM components respectively. Blue

regions indicate areas that have not been adaptively sampled at all while red

regions indicate the amount of iterations performed (the brighter red the region

is, the more adaptive refinement has occurred).

Listing 5.1: Generalised AIS workflow

1 // Initial pass

2 for (each pixel in tile) {

3 pixel.col = Black

4 for 1 to initialIterations {

5 sample = getSample*(pixel)

6 pixel.col += contrib*(sample)

7 getRefinmentInformation*()

8 }

9 }

10

11 // Adaptive guidance

12 refine = getAdaptiveGuidance*()

13

14 // Adaptive pass

15 if (refinementConditions*(refine) == true) {

16 numIterations = getIterations*(refine)

17

18 for (each pixel in tile)

19 for 1 to numIterations

20 sample = getSample*(pixel)

21 pixel.col += contrib*(sample)

22 }

5.3.1 Algorithm

Listing 5.1, shows the generalised approach that is undertaken when using AIS.

This algorithm is an expansion of the second stage in the pipeline shown in

Figure 5.2.3. Each function that ends with an asterisk denotes a component

specific function which is further expanded upon in the upcoming sections. In

5. Adaptive Interleaved Sampling for Interactive Global Illumination 85

terms of the pseudo-code itself, the function getSample() returns a sample for the

specific pixel. This sample depends on the component being calculated and the

number of iterations that have already occurred. On lines 6 and 21 the function

contrib() calculates the contribution for a specific component.

5.3.2 Indirect Diffuse Lighting

Figure 5.3.2: ID adaptive guidance.

The indirect diffuse lighting approach is based on the same model that is used

in Wald et al. [WKB∗02]. A set of VPLs is generated and then used to perform

the ID calculation. Once the VPLs have been generated they are divided into

subsets based on the tile size. Therefore for a N ×M tile the number of subsets

is NM . The sampler provides a sample to each pixel in the tile indicating which

of the subsets it must utilise, ensuring that each pixel gets a unique subset. On

subsequent iterations the pixels will receive a new subset of VPLs to sample,

ensuring that each pixel does not utilise the same VPL subset more than once

when refining. This careful break-up of VPLs into subsets ensures that the noise

generated across the tile is structured in nature and can be eliminated in the

filtering stage. If a larger number of VPLs and VPL subsets were generated,

resulting in more sets than there are pixels in the tile, further refinement would

be possible but would result in random noise. This would result in temporal

noise across multiple frames.

As can be seen in Listing 5.2, the adaptive guidance runs an initial pass

on the tile while keeping track of how many VPLs are occluded when they are

sampled (Line 1). The average ratio of the occluded VPLs to the total number of

5. Adaptive Interleaved Sampling for Interactive Global Illumination 86

VPLs sampled is then utilised to determine how much refinement is needed. The

amount of refinement is based on if any VPLs were actually occluded and how

many sets of VPLs have been created (Lines 11 and 15). If no VPLs are deemed

visible refinement is continued due to the fact that a light source is active and by

its nature there should be some indirect lighting present. Figure 5.3.2 shows the

amount of adaptive ID refinement for a selection of scenes, the original scenes

can be seen in Figure 5.3.5b and Figure 5.3.5a.

Due to the fact that VPLs are utilised this heuristic is very dependant on the

VPL distribution as well as the scene geometry. Because the heuristic increases

the sampling rate based on VPL occlusion if a bad VPL distribution is generated

or there is complex geometry present then a large number of VPLs, potentially

all NM of them, will be sampled for each pixel. This can be rectified by making

sure that the generation places a sufficient number of VPLs in such a way as to

provide a good VPL distribution which takes into account the current viewpoint,

such as in Segovia et al. [SIP07].

Listing 5.2: ID pseudo code

1 getRefinmentInformationID() {

2 if (missedVPLs > 0)

3 totalMissedVPLs +=

4 missedVPLs / totalSampledVPLs

5 }

6

7 getAdaptiveGuidanceID() {

8 return(totalMissedVPLs / tile.size())

9 }

10

11 refinementConditionsID(refine) {

12 return(refine > 0.0)

13 }

14

15 getIterationsID(refine) {

16 return(refine * IDmaxSamples)

17 }

5.3.3 Soft Shadows

For the soft shadow computation, the sampler stores a distinct set of sample

points on the light source for each pixel in the tile ensuring a good overall distri-

bution without duplicating samples between pixels in the tile. As can be seen in

5. Adaptive Interleaved Sampling for Interactive Global Illumination 87

Figure 5.3.3: SS adaptive guidance.

Listing 5.3, the SS adaptive guidance, similar to the ID adaptive guidance, runs

an initial pass over the tile calculating the contribution from the light for every

pixel while storing how many of the samples on the light are occluded (Line 1).

This information, the ratio of occluded samples to total samples taken, is then

used to determine how much refinement is needed (Line 9). For any tile where

all the pixels are not entirely lit or fully in shadow refinement is applied. The

sampling employed allows for early termination of refinement if no samples are

lit, unlike Section 5.3.2, as the tile is then considered to be completely in shadow

and does not require further computation.

Through empirical observation and VDP comparisons (See Apendix A) it was

determined that most errors occurred inside the penumbra of the shadow and this

is where the refinement is focused. Figure 5.3.3 shows the level of adaptive SS

refinement on two scenes (Figure 5.3.5c and Figure 5.3.5c).

For scenes with large area light sources, multiple area light sources and very

distant light sources the penumbra of the shadows may make up a large part of

the rendered image. This in turn would mean a degradation in performance as

large parts of image would require refinement. While this is a limitation of the

heuristic it should be noted that a non-adaptive approach, using a fixed number

of samples, would simply provide very deteriorated shadows unless a very high

sampling rate was utilised. But in the case of a high sampling rate a large number

of samples would be wasted in any areas that were fully lit or fully in shadow.

5. Adaptive Interleaved Sampling for Interactive Global Illumination 88

Listing 5.3: SS pseudo code

1 getRefinmentInformationSS() {

2 for (each light)

3 if occluded(lightSample)

4 missed++

5

6 missed /= numberLights

7 }

8

9 getAdaptiveGuidanceSS() {

10 return(missed / tile.size())

11 }

12

13 refinementConditionsSS(refine)

14 {

15 return(refine > 0.0 and refine < 1.0)

16 }

17

18 getIterationsSS(refine) {

19 return(refine * SSmaxSamples)

20 }

5.3.4 Single-scattering Participating Media

Figure 5.3.4: PM adaptive guidance.

PM is a single-scatter implementation that uses homogenous media. The PM

utilises a sampler that returns a starting offset along the ray for that pixel. For a

tile of N×M pixels each one is assigned a segment of space along the ray equal to

the step-size of the ray marching divided it into NM equal parts. Each segment is

then further equally subdivided according to the maximum amount of refinement

5. Adaptive Interleaved Sampling for Interactive Global Illumination 89

that will take place. Each pixel then utilises the starting point of these segments

as offsets along the ray. This ensures that that each pixel in the tile will get a

unique starting offset for all iterations, and these will be equally spaced apart,

causing each ray to interleave its ray marching guaranteeing superior coverage of

the sampling space.

As can be seen in Listing 5.4 the adaptive guidance runs an initial pass on the

tile while keeping track of two values. The first pertains to how many sampling

points along the ray were occluded from the light source while the ray marching

was performed (Line 6) as this detects transitions between lit regions and regions

in shadow. The second value records how many of the sampling points along the

ray are within a certain distance of the light source. This distance is adjusted

by the attenuation co-efficient of the medium (Line 9). This focuses on another

prominent effect in PM which is the halo that develops around a light source

when it is within a medium.

As each new pixel in the tile is calculated, these two values are combined

into a single metric. This value is then compared to the value calculated for

the previous pixel. If these two values differ this indicates a need for refinement

(Line 14). The comparison with the previous value is arbitrary. The heuristic

is trying to identify differences with the participating media contribution for the

entire tile. This particular heuristic focuses computation in tiles that are on

shadow volume boundaries and around objects within the volumes where the

effects of participating media are most apparent. It also focuses on areas that are

in the halo produced by any light sources. Figure 5.3.4 shows the PM adaptive

guidance as applied to two of the scenes (Figure 5.3.5b and Figure 5.3.5d)

Due to the approach of this heuristic, a degradation of performance will occur

if the scene contains geometry that creates a large number of irregular shadow

volumes that overlap in a specific view. In this case, a large amount of refine-

ment would occur affecting performance. This is a similar limitation to the one

exhibited in the SS heuristic in Section 5.3.3.

Listing 5.4: PM pseudo code

1 getRefinmentInformationPM() {

2 // N = number of steps when ray

3 // marching

4 for I = 1 to N

5 for (each light)

6 if occluded(lightSample)

7 missed++

8

5. Adaptive Interleaved Sampling for Interactive Global Illumination 90

9 if (distLight < threshold - volume.attenCoef)

10 inHalo++

11

12 missed /= numberLights

13

14 // Combine values

15 value = 0, parts = 0

16

17 if (missed > 0 and missed < N)

18 value += (missed / N)

19 parts++

20

21 if (inHalo > 0 and inHalo < N)

22 value += (inHalo / N)

23 parts++

24

25 if (parts > 1)

26 value /= parts

27

28 // Check against previous

29 if (prevValue != value)

30 different++

31 }

32

33 getAdaptiveGuidancePM() {

34 return(different / tile.size())

35 }

36

37 refinementConditionsPM(refine) {

38 return(refine > 0)

39 }

40

41 getIterationsPM(refine) {

42 return(refine * PMmaxSamples)

43 }

5.4 Results

The following results were generated on an 8-core Mac Pro running at 3.2GHz,

with a 2GB of memory. Results for eleven scenes are presented. For each scene

the average frame rate for each component on its own, as well as an average frame

rate for when all the components were being calculated simultaneously, is shown.

A total of eight unique scenes are used for the results, see Figure 5.3.5. The

labels in Figure 5.3.5 correspond to how the scenes will be refered to in the text.

Subdivided, Office and Shirely6 are also used for the participating media results

by adding a participating media volume to those scenes, see Figure 5.3.6.

Each scene was rendered with the novel AIS algorithm and AIS where the

5. Adaptive Interleaved Sampling for Interactive Global Illumination 91

(a) Cornell (b) Subdivided

(c) Deskar (d) Office

Figure 5.3.5: The scenes used for obtaining AIS results.

maximum amount of refinement possible was performed. These will be referred

to as A and A-MAX respectively. A direction comparison with an IGI imple-

mentation based on Wald et al. [WKB∗02] (referred to as IGI) is also provided,

for the combined indirect lighting and soft shadow components. For all renderers

the tile size was set to 3 × 3. Each scene was rendered interactively and 100

frames where utilised in computing the average frame-rate which is presented in

the results. For the ID scenes 256 VPLs were used. The base value for the initial

pass was set to one for each component. AIS and A-MAX use sub-sampling

at a quarter of the resolution, IGI is the standard version and does not use

sub-sampling.

The specific thresholds and values utilised in the implementation, as pertain-

ing to the heuristics, were as follows (these provided the best visual quality and

computational performance). For ID the IDmaxSamples was set to the number

5. Adaptive Interleaved Sampling for Interactive Global Illumination 92

(a) Sibenik (b) Desk

(c) Conference (d) Shirley6

Figure 5.3.5: The scenes used for obtaining AIS results.

of VPL subsets which is 9. For SS the SSmaxSamples was also 9. In PM the

distance threshold was set to 1.0 as when the distance to the light drops below

one so does the divisor of the geometric term and this is where the majority of

the PM halo appears. Finally the PMmaxSamples for PM was also set to 9.

Table 5.1 shows the timing for each of the renderers for the scenes and com-

ponents in frames per seconds. Table 5.2 shows the same results tabulated as

speedups for AIS against both A-MAX and IGI. The average speedup of AIS

over A-MAX is 2.82 and over IGI is 3.53. As mentioned in Section 5.3 and

Section 5.2.4 while the approach does share some common strategies with IGI

significant changes have been made. A higher sampling rate is utilised for light

sources as well as the different approach for calculating the indirect lighting solu-

tion. A comparison against IGI is included as it is the state-of-the-art interactive

CPU-based GI solution.

5. Adaptive Interleaved Sampling for Interactive Global Illumination 93

(a) SubdividedPM (b) OfficePM

(c) Shirley6PM

Figure 5.3.6: The scenes used for obtaining AIS participating media results.

5.4.1 Validation

In order to validate the results, a single image (those shown in Figure 5.3.5 and

Figure 5.3.6) was selected and rendered for each scene and validated against a

reference path traced (PT) image. These images were compared using the High

Dynamic Range (HDR) Visual Difference Predictor (VDP) [MDMS05], an HDR

version of the VDP psychophysical metric, developed by Daly [Dal93]. HDR-VDP

compares two images and identifies the perceptual differences between those two

images by taking into account limitations in the human visual system. HDR-VDP

results can be summarised by the percentage of different pixels detected with a

certain probability. The results for two probabilities are presented: P (X) ≥ 75%

and P (X) ≥ 95%.

Results for AIS, A-MAX and IGI, for combined components, are shown

as computed in the previous section against path traced images computed with

5. Adaptive Interleaved Sampling for Interactive Global Illumination 94

(a) ID (b) SS

(c) PM (d) Final

(e) Final PM (f) Final A-MAX

(g) Final A-MAX PM (h) Final IGI

Figure 5.4.1: Office scene (including the PM version).

5. Adaptive Interleaved Sampling for Interactive Global Illumination 95

(a) VDP (AIS vs. PT) (b) VDP (A-MAX vs. PT)

(c) VDP (IGI vs. PT) (d) VDP (A-MAX PM vs. PT)

(e) VDP (AIS PM vs. PT)

(f) Offce PT (g) OfficePM PT

Figure 5.4.1: Office scene (including the PM version).

5. Adaptive Interleaved Sampling for Interactive Global Illumination 96

ID SS PM FULL

A A-MAX A A-MAX A A-MAX A A-MAX IGI

Cornell 10.17 3.57 9.56 5.24 - - 6.25 2.35 1.75

Deskar 5.29 1.78 5.12 3.46 - - 3.21 1.27 0.95

Subdivided 15.19 5.05 17.74 8.16 - - 11.03 3.55 2.89

Desk 9.99 3.11 12.02 4.92 - - 6.94 2.15 1.71

Sibenik 3.14 1.45 5.03 1.20 - - 2.45 1.01 0.66

Office 6.95 3.08 8.11 4.10 - - 5.06 2.03 1.70

Conference 4.04 1.74 8.41 4.12 - - 3.20 1.35 0.92

Shirley6 14.61 5.11 16.77 7.00 - - 9.40 3.38 2.85

SubdividedPM 15.19 5.05 17.74 8.16 3.98 1.43 3.12 1.05 -

OfficePM 6.95 3.08 8.11 4.10 6.97 2.40 3.37 1.13 -

Shirley6PM 14.61 5.11 16.77 7.00 5.52 1.76 4.04 1.15 -

Average 9.65 3.46 11.40 5.22 5.49 1.86 5.28 1.86 1.68

Table 5.1: Frames per seconds for the eleven scenes rendered with different com-
ponents.

ID SS PM FULL

A vs. A-MAX A vs. A-MAX A vs. A-MAX A vs. A-MAX A vs. IGI

Cornell 2.85 1.82 - 2.66 3.57

Deskar 2.98 1.48 - 2.53 3.39

Subdivided 3.01 2.17 - 3.11 3.81

Desk 3.21 2.44 - 3.23 4.07

Sibenik 2.17 4.19 - 2.42 3.68

Office 2.26 1.98 - 2.49 2.98

Conference 2.32 2.04 - 2.38 3.47

Shirley6 2.86 2.40 - 2.78 3.29

SubdividedPM 3.01 2.17 2.78 2.97 -

OfficePM 2.26 1.98 2.90 2.98 -

Shirley6PM 2.86 2.40 3.14 3.53 -

Average 2.71 2.28 2.94 2.82 3.53

Table 5.2: Speedup for the 11 scenes rendered with different components com-
paring adaptive (A) with max adaptive (A-MAX) and IGI (IGI).

2, 500 samples per pixel. Table 5.3 show the results of the HDR-VDP calculations

while an example of the comparison images can be found in Figure 5.4.1. As can

be seen there is very little perceptual difference for the images obtained for AIS,

A-MAX and IGI compared with the path traced images and the perceptual

differences are comparable across the three renderers. These results indicate the

5. Adaptive Interleaved Sampling for Interactive Global Illumination 97

AIS A-MAX IGI

P(X) ¿ 75% 95% 75% 95% 75% 95%

Cornell 0.86 0.41 0.55 0.25 0.80 0.36

Deskar 1.09 0.57 0.80 0.42 1.26 0.59

Subdivided 1.15 0.62 0.83 0.36 0.81 0.56

Desk 1.86 0.97 1.21 0.74 2.14 1.01

Sibenik 3.52 1.68 2.91 1.38 2.54 1.25

Office 0.41 0.17 0.12 0.03 0.41 0.14

Conference 1.48 0.97 1.46 1.02 1.66 1.11

Shirley6 0.08 0.03 0.02 0.00 0.18 0.06

SubdividedPM 1.90 1.07 1.12 0.69 - -

OfficePM 0.26 0.11 0.25 0.09 - -

Shirley6PM 2.10 0.96 1.35 0.57 - -

Average 1.29 0.71 0.95 0.54 1.17 0.67

Table 5.3: Results for HDR-VDP calculations in %.

speedup demonstrated previously comes at little loss of perceptual quality, on

average only 1.29% of the pixels were perceptually different when comparing

AIS and the ground truth images. After analysis of the differences that were

identified when comparing with ground truth it was found that they can largely

be attributed to aliasing in the images (Refer to Appendix A to examine the

VDP results for AIS vs. PT) which have been identified as an area for future

work, see Section 8.5.

5.5 Summary

This chapter introduced a framework for combing existing interactive ray tracing

and interactive global illumination algorithms with selective rendering techniques

to form new interactive global illumination solutions. Three core stages in the

methodology (identification, deconstruction and pairing) are identified and pro-

vide insight into how this process provides a structured approach when attempt-

ing to develop a novel interactive global illumination solution. While describing

the framework three key criteria namely interactivity, coherence and adaptability

are identified. It is shown how each of these three criteria interact and why each

one must be considered on a per component basis to ensure maximal use of avail-

able computational resources when computing the global illumination solution.

This framework is utilised to introduce a novel global illumination solution

5. Adaptive Interleaved Sampling for Interactive Global Illumination 98

termed Adaptive Interleaved Sampling. By combining interleaved sampling with

an adaptive approach, together with efficient component-specific adaptive guid-

ance methods, it is shown how this leads to a significant reduction in computa-

tional costs while maintaining the same high perceptual quality of the resultant

images. Detailed information is provided on each of the three custom heuristics

developed for each of the components that are visualised. The components cal-

culated are soft shadows, indirect diffuse lighting and participating media. It is

also shown how this approach is generalisable and can be applied to any compo-

nent as long as a custom heuristic can be written to guide the computation. A

comparison between AIS, standard IGI [WBS02] and gold-standard path-traced

images is performed. These results are validated using HDR-VDP [MDMS05], to

show that the results are achieved while minimising the different in perceptual

quality.

A framework and an actual implementation, that results in a novel global

illumination solution, has been presented. This framework is further used in

Chapter 6 to explore other other potential algorithms. This extension shows the

framework’s flexibility and the application of stages from Section 5.2 and the

criteria specified in Section 5.2.3 to an entirely different algorithm.

CHAPTER 6

Instant Caching for Interactive Global

Illumination

Traditionally caching of diffuse interreflections has been utilised primarily in off-

line approaches due to its inherent complexity and costly operations such as

radiance gathering. Continuing the work from Chapter 5 this chapter further

explores the most computationally expensive component, diffuse interreflections,

and an alternative novel approach to its computation. The concepts and frame-

work developed in Chapter 5 are used to combine irradiance caching [WRC88],

instant radiosity [Kel97] and the ability to identify and update all invalid in-

direct diffuse light paths resulting from geometric transformations into a novel

algorithm. By exploiting both temporal and spatial cache coherence, along with

a selective update to reduce computational complexity, interactive frame rates

are achieved.

6.1 Introduction

Dynamic scenes, with changing geometry, lighting and materials, represent a

challenge for interactive global illumination. Precomputed and caching methods

are seldom used in this context because changes in the scene invalidate existing

information; correctly updating the cached data is both complex and prone to

temporal flickering artifacts. Consequently, certain methods, such as Instant

Global Illumination (IGI) [WKB∗02], recompute all light paths for every frame,

thus ignoring any potential temporal coherence.

This chapter proposes a new interactive caching scheme for indirect diffuse

interreflections within dynamic scenes based on exploiting spatial and tempo-

99

6. Instant Caching for Interactive Global Illumination 100

ral coherence enabling interactive global illumination on a single multicore PC.

The method, referred to as Instant Caching, is based on computing illumina-

tion from virtual point light sources (VPLs), shot in a similar way to instant

radiosity [Kel97], and caching the VPLs’ contributions for spatial reuse across

the same frame, thus exploiting spatial coherence similarly to the irradiance

cache [WRC88]. The combination of instant radiosity and irradiance caching

improves rendering time upon the former by interpolating over object space and

achieves significant speedup upon the latter by having multiple light bounces

handled by the VPL shooting stage.

Instant caching naturally adapts to dynamic geometry within an interactive

application by exploiting temporal coherence among frames. VPLs are shot using

a quasi-random distribution to ensure maximum temporal coherence; cached in-

direct diffuse light paths invalidated by geometric transformations are identified

at each frame and only these need be recomputed. This approach is referred to

as Temporal Instant Caching.

This algorithm reduces temporal noise and computational workload (as com-

pared to brute force approaches) by exploiting temporal coherence, thus resulting

in an improved frame rate; these results are achieved without the need for any

additional data structures or any knowledge of the animation paths. Lighting

and material changes are also accommodated within the same approach.

The chapter is organised as follows. Initially, Section 6.2 presents Instant

Caching along with its Static (Section 6.2.1) and Temporal (Section 6.2.2) vari-

ants. Section 6.3 presents the comparative results of IC and IGI [WKB∗02] for

both static and dynamic scenarios along with a validation (Section 6.3.3) against

a high-quality path-traced solution.

6.2 Instant Caching

Instant caching samples VPLs and caches the irradiance as opposed to using

hemispherical sampling, as is the case with irradiance caching. This caching

scheme serves a dual purpose accounting for increased performance in the spatial

and temporal domains. Firstly, in the spatial domain, it is used to accelerate

the computation of each frame by interpolating over object space, following an

approach similar to the irradiance cache. Instant caching, however, requires

shooting a single ray, referred to as a visibility ray, to evaluate each VPL con-

6. Instant Caching for Interactive Global Illumination 101

tribution. Multiple light bounces are handled by the VPL shooting stage. The

irradiance cache requires either initiating a tree of rays or originating a random

walk to evaluate each stratum contribution; either way, the computation is more

than that of an instant cache visibility ray. Some methods have used irradiance

caching in conjunction with photon mapping, thus not incurring the multiple

bounces described above. However, the cost of extra visibility tests is replaced

by photon shooting and density estimation. Additionally, the visibility test in

instant caching may be more memory coherent since visibility rays are traced

towards the same VPLs.

Secondly, in the temporal domain, updating each VPL contribution to a given

cache sample due to scene transformations requires a single reevaluation of the re-

spective visibility ray. Often, given the proposed optimisations (see Section 6.2.2),

the visibility ray is intersected with only a subset of the geometry, improving in-

teractive performance due to reuse of information from previous frames.

6.2.1 Static Instant Caching

The static algorithm, applied to the first frame of an animation, entails two steps:

shooting photons from light sources and creating VPLs, in a manner similar to

instant radiosity and IGI [Kel97, WKB∗02], and a subsequent gathering pass.

The gathering pass evaluates indirect diffuse irradiance incoming from VPLs at a

sparse set of points and interpolates among them for the remaining ones, similarly

to the irradiance cache.

The evaluation of the indirect diffuse component using instant radiosity at a

point x requires the calculation of the contribution of each VPL, which equates

to:

Lindirect(x,ωo) =
N∑
k=1

fr(x,ωo,ωk)Le,kV (x,yk)G
′(x,yk), (6.2.1)

where N is the number of VPLs in the scene, V (·, ·) is the visibility function

between two points, ωk is the light vector for the k-th VPL, Le,k is the emitted

radiance of the k-th VPL, yk is the position of the k-th VPL, fr(x,ωo,ωk) = ρ/π

in the case of diffuse component (ρ is the reflectance), and G′ is the bounded

geometry term [PH04]. The bounded geometry term is defined as:

G′(x,y) =
cos+ θx cos+ θy
‖x− y‖2

2

f(0.8mind, 1.2mind, ‖x− y‖2), (6.2.2)

6. Instant Caching for Interactive Global Illumination 102

where cos+ is max(0, cos θ), cos+ θx is the cosine of the angle between the light

vector ωk and normal at x, cos+ θy is the cosine of the angle between ωk and the

normal at yk, mind is the bounding distance, and f is the smoothing function:

f(a, b, x) =


1 if x > b

3

(
x−a
b−a

)2

− 2

(
x−a
b−a

)3

if a ≤ x ≤ b

0 otherwise.

(6.2.3)

Equation 6.2.1 is quite expensive to evaluate. To speed-up this calculation,

caching, similar to Ward [WRC88], can be employed, where a set of cached

samples, Ω, are used for interpolation:

Lindirect(x,ωo) ≈
ρ

π

∑
k∈S(x)

Ekwk(x)∑
k∈S(x) wk(x)

, (6.2.4)

where S(x) = {k|k ∈ Ω∧wk(x) > 1/a}, a is the caching radius, Ek is the cached

irradiance for the k-th sample in the cache, and wk is the weight for the k-th

cached sample used which is calculated as:

wk(x) =
(
‖x− xk‖+

√
1− (n · nk)

)−1
, (6.2.5)

where n is the normal at x, xk and nk are respectively the position and normal of

the k-th sample. This metric differs from the original irradiance cache [WRC88],

because the harmonic mean distance has been removed from the calculation of

wk(x). The harmonic mean distance, when used with hemisphere sampling, is a

value that gives a measure of the density of the geometry surrounding a given

point. When using VPLs the visibility rays will seldom be well distributed over

the hemisphere, thus the harmonic mean of the rays’ length does not necessarily

give an indication of the surrounding geometry density. This can be illustrated

in the case of a point close to a corner, the computation of the harmonic mean

distance with the well-distributed VPLs would not necessarily indicate the prox-

imity to a corner. This rationale is illustrated in Figure 6.2.1. The assumption

were further confirmed by the lack of any perceivable differences in quality be-

tween images computed with and without a harmonic mean. HDR-VDP com-

parisons [MDMS05] (HDR-VDP is a perceptual metric; see Section 6.3.3 for a

detailed explanation) have been run using images generated with and without the

harmonic mean for all the scenes shown in Figure 6.3. The greatest perceptual

6. Instant Caching for Interactive Global Illumination 103

difference recorded was 0.1% and for most images the result was 0.0%.

A B

(a) Traditional Irradiance Cache

A B

(b) Instant Cache

Figure 6.2.1: A comparison between the irradiance cache and the instant cache.
In the irradiance cache, the harmonic mean distance for the cached sample A will
be different from that in B, possibly resulting in further samples near the corner.
In the instant cache, the harmonic mean distance would be independent from
the geometry context but dependent on the VPLs distribution; in this particular
example the harmonic mean of A and B is similar.

6.2.2 Temporal Instant Caching (TIC)

To maintain the correctness of the instant cache samples one needs to account

for when objects move and invalidate the instant caching samples accordingly.

The issues that affect the fidelity of the cache samples occur when an object

occludes the path of a visibility ray or VPL, or when an object moves away from

the visibility ray or VPL, commonly called deocclusion. Finally, when cached

samples lie on dynamic objects the computation may be invalid. These possible

situations are summarised into five cases as shown in Figure 6.2.2. Case 1 and

Case 2 demonstrate the case when VPLs are occluded or deoccluded by moving

objects. Case 3 and Case 4 demonstrate the cases when the visibility rays are

occluded or deoccluded by dynamic objects. Case 5 demonstrates the case when

the cache sample lies on a dynamic object.

6. Instant Caching for Interactive Global Illumination 104

(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

(e) Case 5

Dynamic object

Previous position of

dynamic object

VPL

Invalidated VPL

Invalidated IC

sample

IC Sample

Visibility ray

Invalidated

visibility ray

Light source VPL path

(f) Legend

Figure 6.2.2: The five cases that trigger invalidation or updating of samples in
the instant cache.

The instant cache maintains all the cached samples within an octree repre-

sentation. These samples are placed only on diffuse surfaces and store a position,

orientation, irradiance and an array for each VPL representing the contribution to

each of the visibility rays. Orti et al. utilised a similar approach for accelerating

6. Instant Caching for Interactive Global Illumination 105

the computations of a radiosity solution in a dynamic environment [ORDP96].

This approach was more complex as it involved storing visibility information

between patches and not simply points.

While this may seem like a large amount of memory, typically 256 VPLs are

sufficient. Furthermore, a format similar to RGBE [War91a] can be employed for

storage, resulting in four bytes per visibility ray.

In order to maintain the strong coupling between the visibility rays and VPLs,

the VPLs are traced at the beginning of every frame using Quasi-Monte Carlo

sampling. This ensures that the samples are always valid when nothing moves

and coherence is maintained. It also makes it easy to identify which VPLs have

been affected by moving objects. A simple comparison between new and old

VPLs is enough to invalidate the visibility ray corresponding to those VPLs for

each of the cached samples. This applies also for multiple VPL bounces. This

handles both Case 1 and Case 2. The VPLs shot from light sources that have

moved are naturally invalidated in this way.

Case 3 can be identified by a visibility test of the moved objects with the

cached samples. While projection onto each cached sample could be used to

identify objects that have moved, for simplicity and to avoid GPU access, vis-

ibility rays from the cached samples towards the corresponding VPLs are shot

using ray tracing. Tests are performed only against the dynamic objects. This

process could be computed against each of the objects individually or an accel-

eration data structure could be built just for the dynamic objects. If the VPL is

occluded then its contribution is set to zero.

For Case 4, deocclusion, a more sophisticated approach is required. Since the

method allows any object in the scene to be moved, deocclusion would potentially

test against all objects in the scene. However, a number of optimisations are used

to minimise the number of times tests need to occur for this case. Deocclusion

only affects visibility rays which were previously occluded (in shadow). The first

test selects those visibility rays for which the contribution on the previous frame

was zero. For these, a further test with the previous position of the dynamic

objects identifies those visibility rays that may need updating: if a ray does not

hit any of the dynamic objects at their previous positions, then it must have

struck a static object and no updating is required. The remaining visibility

rays may potentially hit a VPL or may be occluded by other geometry. The

visibility ray is then tested against the entire scene to ensure it is not occluded

by a static object. If no occlusion occurs the new value for this visibility ray is

6. Instant Caching for Interactive Global Illumination 106

computed. The use of these multiple tests has a further advantage. They make

it possible to test the first deocclusion against the old position of the dynamic

object’s bounding box. While this test is more conservative, it is ideal for when

the object’s vertices are changing, such as with deformable objects. A further

optimisation that reduces the number of objects to be tested occurs if Case 3 is

run immediately before Case 4. If a visibility ray is occluded then Case 4 need

not be tested for that visibility ray. Finally, Case 5 is dealt with by identifying

and removing cached samples within the bounds of the dynamic objects in the

previous frame.

When identified, invalidated visibility rays can either be reevaluated imme-

diately or flagged. Reevaluation requires removing the previous visibility ray’s

contribution to the cached sample and adding the new one. On the other hand,

flagged cached samples can be updated on demand the moment an interpolation

is required from them. Object space areas that are without cached samples in a

new frame, because of such areas becoming visible or deletion of cache samples

(due to Case 5) are naturally recomputed on demand by the algorithm in the

traditional way.

The method does not need to know beforehand which objects are dynamic

and which are not. The dynamic objects need only be identified in the frame in

which they are moved. The only aspect that needs to be stored is their position

in the previous frame. This feature makes the method well suited for interaction

since any object could be moved at any time. As the number of dynamic objects

increases, VPLs end up being created at different locations every frame, requiring

tracing the corresponding visibility rays from each cache sample against the whole

geometry. Additionally, even for those VPLs whose location does not change, the

corresponding visibility rays have to be tested against an increasing number of

dynamic geometric primitives, eventually approaching the totality of the scene.

The performance of the algorithm degrades to that of the static instant cache.

Algorithm 1 demonstrates how all the tests are integrated in a single algo-

rithm, in the case of immediate reevaluation, run at the beginning of each frame.

Tracing rays against the entire scene is required when a given VPL is invalidated

and for special cases as part of the Case 4 test. Case 1 and Case 2 are detected

on Line 1 and updated for each VPL from Line 8. Case 5 is handled on Line

3. For Case 3 and Case 4, the tests can be combined into a block test, see Line

11 to Line 21. In this case the optimisation mentioned above for Case 4 can be

applied when Case 3 is tested before Case 4. The order of the operations in the

6. Instant Caching for Interactive Global Illumination 107

Input: Instant Cache: IC, The VPLs: VPLs; The entire scene: Scene, The
dynamics objects that have moved: dObjs

/* Function to trace ray across objs returning colour and a hit point

hit */

Function: hit = Trace(ray, objs, colour);
/* Function to recalculate the index visibility ray for ICsample

based on colour */

Function: ReEvaluate(ICsample, index, colour);
1 InvalidateVPLs(); // Case 1 and Case 2

2 foreach ICsample in IC do
3 if ICsample.pos within bounds of previous position of dObjs then
4 Invalidate ICsample and remove from IC;

// Case 5

5 else
6 foreach visibility ray in ICsample do
7 if VPLs[VPLindex] invalidated then // Case 1 and Case 2

8 Trace(visibility ray, Scene, Col);
9 ReEvaluate(ICsample, VPLindex, Col);

10 else// Case 3 and Case 4

11 hit = Trace(visibility ray, dObjs, Col);
12 if hit then // Case 3

13 ReEvaluate(ICsample, VPLindex, 0.0);
14 else// Case 4

15 if old visibility ray was in shadow then
16 hitOld = Trace(visibility ray, previous position of dObjs,

Col);
17 if hitOld then
18 if !Trace(visibility ray, Scene, Col) then

ReEvaluate(ICsample, VPLindex, Col);
19 end

20 end

21 end

22 end

23 end

24 end

25 end

Algorithm 1: Integrating the invalidation (and possible update) into a single
algorithm.

algorithm attempts to reduce the cost of the deocclusion operations which are

more expensive. In particular the costly testing of the visibility ray against the

entire scene in Line 18, is left as the final test, only executed when a number of

conditions are not met, improving the overall performance.

Changes on the materials’ BRDFs are naturally handled by the algorithm.

6. Instant Caching for Interactive Global Illumination 108

During the VPLs shooting stage a different BRDF will result in a different spatial

distribution or in a different radiant flux for some of the VPLs. VPLs might thus

be placed on different locations in the scene and/or their radiant flux might

change. Both cases imply invalidation of the respective VPLs from the previous

frame and are thus handled in the same manner as Case 1 or Case 2. Material

changes on objects where cached samples lie do not require any updating since

irradiance, not reflected or transmitted radiance, is cached. However, changes

of non-Lambertian properties on objects directly visible from the eye are not

handled by the algorithm, since this is currently used to shade diffuse surfaces

only.

6.3 Results

In order to demonstrate the effectiveness of instant caching some comparative

results are presented. Besides implementing the instant caching algorithm, IGI

[WKB∗02] was also implemented. The acceleration structure used by the ray trac-

ing kernel is a BVH implementation based on the method in Wald et al. [WBS07].

None of the implementations makes use of packetisation or SIMD operations ex-

cept for the ray-bounding volume intersection within the BVH traversal [WBS07].

Included are the results achieved when using Whitted-style ray tracing to give an

indication of the ray tracing performance. For Whitted-style ray tracing diffuse

interreflections are not computed but specular interreflections are along with di-

rect lighting . All images are rendered at a resolution of 600 × 400 with no

super/sub-sampling. Direct lighting is computed for hard shadows only (one

shadow ray per light source). IGI and instant caching shoot 256 VPLs. No form

of precomputation was used in any of the timings. All results were generated

using the scenes shown in Figure 6.2.3 on an eight core (dual socket quad-core

at 3GHz) with 2GB memory running Mac OS X.

6.3.1 Static images

Table 6.1 presents results for the computation of a single image, in order to

demonstrate the performance of the static instant cache. Results include ren-

dering times for Whitted ray tracing (RT), instant global illumination (IGI)

[WKB∗02] and instant caching (IC). Instant caching is the fastest of the tested

implementations, achieving a speedup between 1.49 to 3.62 relative to IGI, even

6. Instant Caching for Interactive Global Illumination 109

(a) Cornell Box (b) Wobble

(c) Office (d) Bunnies

(e) Cornell Indirect (f) Conference

(g) Sibenik (h) Desk

Figure 6.2.3: The scenes used for all experiments.

6. Instant Caching for Interactive Global Illumination 110

Scenes RT IGI IC Speedup

Cornell Box 0.05 0.59 0.21 2.81

Wobble 0.06 0.62 0.19 3.26

Desk 0.07 0.76 0.21 3.62

Bunnies 0.08 0.72 0.33 2.18

Cornell Indirect 0.06 0.77 0.24 3.21

Conference 0.14 1.58 0.45 3.51

Sibenik 0.19 1.27 0.85 1.49

Office 0.09 0.78 0.23 3.39

Table 6.1: Results, in seconds, for rendering the first frame. Each image was
rendered from scratch without relying on any temporal coherence. Speedup com-
pares IC vs. IGI.

Scenes IGI IC Speedup

Cornell Box 0.43 0.08 5.38

Wobble 0.37 0.05 7.40

Desk 0.56 0.06 9.33

Bunnies 0.57 0.11 5.18

Cornell Indirect 0.55 0.08 6.87

Conference 1.23 0.15 8.27

Sibenik 0.97 0.38 2.55

Office 0.51 0.05 10.02

Table 6.2: Results, in seconds, for the diffuse interreflections only when rendering
the first frame. Each image was rendered from scratch without relying on any
temporal coherence. Speedup compares IC vs. IGI.

though the latter exploits image space coherence by using only a subset of the

VPLs per pixel. The improvement in performance is more obvious when view-

ing the results of diffuse interreflections only; Table 6.2, shows the timings for

these computations and for the same images. In this case for most scenes the

speedup is greater than 5. This improvement is due to the exploitation of ob-

ject space coherence via the interpolation and is expectable in approaches based

6. Instant Caching for Interactive Global Illumination 111

Animation RT IGI IC TIC Speedup

Cornell Box 17.07 2.11 6.01 10.45 4.95

Wobble 15.84 1.63 2.79 8.95 5.49

Desk 12.33 1.31 4.92 8.94 6.82

Bunnies 1 13.02 1.49 3.42 9.13 6.13

Bunnies 2 12.96 1.45 3.55 8.04 5.54

Bunnies 4 12.81 1.46 3.51 5.81 3.98

Bunnies 9 12.69 1.47 3.54 3.56 2.42

Conference 6.96 1.54 3.37 7.78 5.05

Sibenik 8.23 0.70 1.25 2.63 3.76

Table 6.3: Results, in frames per seconds, for rendering the animations. Speedup
compares TIC vs. IGI.

on caching and interpolation. The exploitation of coherence will further benefit

instant caching when used in the temporal domain (see next section).

6.3.2 Animations

Results are presented for temporal instant caching with a number of animations.

The animations are comprised of different objects moving around the scenes. For

the Cornell Box, the bunny is rotated around the Venus statue. The deforming

cylinder (Wobble) demonstrates that the proposed method can handle deforming

objects; a sine wave is used for the deformation. For the Desk scene a chair

moves along the floor. For the Bunnies scene results are presented for 1, 2, 4

and 9 bouncing bunnies, illustrating how the algorithm scales as the number of

dynamic objects increases. For the Conference scene a green bunny moves across

the table. Finally, for Sibenik a yellow rectangular object moves within the scene.

Table 6.3 shows the results, in frames per second, for rendering animations

with Whitted ray tracing (RT), instant global illumination (IGI), static instant

caching (IC - without temporal coherence, the cache is cleared after each frame),

and temporal instant caching (TIC). These results show that temporal instant

caching is between 2.42 and 6.82 times faster than IGI. Furthermore, the results

show how temporal instant caching is faster than static instant caching. The per-

formance of temporal instant caching decreases when there is not much temporal

6. Instant Caching for Interactive Global Illumination 112

Animations IGI IC TIC SIGI SIC

Cornell Box 0.43 0.09 0.03 14.33 3.00

Wobble 0.37 0.09 0.03 12.33 3.00

Desk 0.56 0.09 0.03 18.67 3.00

Bunnies 1 0.56 0.12 0.03 18.67 4.00

Bunnies 2 0.55 0.13 0.04 13.75 3.25

Bunnies 4 0.55 0.13 0.05 11.00 2.60

Bunnies 9 0.57 0.12 0.09 6.33 1.33

Conference 1.23 0.17 0.05 24.60 3.40

Sibenik 0.97 0.42 0.05 19.40 8.40

Table 6.4: Rendering times, in seconds, averaged over 100 frames, for rendering
the diffuse interreflections only. Speedup is shown for TIC vs. IGI (SIGI) and
TIC vs. IC (SIC).

coherence to maintain, such as in the case of the multiple bouncing bunnies. The

IGI and static instant cache remain constant as the number of dynamic objects

increases. As expected, the performance of the temporal instant caching reduces

to that of the static instant cache as this number increases (compare Bunnies 1

with Bunnies 9).

Since the proposed caching technique aims at speeding-up diffuse interreflec-

tions, Table 6.4 demonstrates the timings, in seconds, for this lighting compo-

nent only, for IGI, IC and TIC. The comparison between static and temporal in-

stant caching clearly shows the efficiency of temporal coherence exploitation, with

speedups of 1.33 to 8.4 times faster than instant caching. The worst speedup is

obtained with Bunnies 9, where given the large number of dynamic objects there

is not much temporal coherence to be exploited. The differences in speedup rel-

atively to the values presented in Table 6.3 are due to constant costs, such as

primary rays, direct illumination and image display.

6.3.3 Validation

In order to validate the results temporal instant caching is compared with IGI

and a path traced image (shot with 2,500 samples per pixel) using the perceptual

metric HDR-VDP [MDMS05]. The 100th frame was selected for the comparisons

6. Instant Caching for Interactive Global Illumination 113

VDP Results

P (X) > 75% P (X) > 95%

PT IGI PT IGI

Cornell Box 0.57 0.00 0.31 0.00

Wobble 0.13 0.00 0.05 0.00

Desk 2.11 0.02 1.01 0.01

Bunnies 9 0.21 0.00 0.06 0.00

Cornell specular 0.91 0.00 0.43 0.00

Cornell Indirect 1.86 0.33 0.88 0.19

Conference 1.61 0.16 0.91 0.06

Sibenik 0.18 0.06 0.03 0.00

Office 0.45 0.23 0.00 0.00

Table 6.5: Results of the HDR-VDP comparison between temporal instant
caching and path tracing (PT), and temporal instant caching and IGI. Num-
bers indicate the percentage of pixels that might be perceived as different by a
human observer with a probability larger than 75% or 95%, respectively.

of the animated scenes. HDR-VDP identifies the perceptual differences between

two HDR images by taking into account limitations of the human visual system.

HDR-VDP generates a certainty map detailing for each pixel the probability

that a human observer will detect a difference. This may be visualised as an

image that highlights the differences between the two images in false colour, with

the areas most likely to be considered perceptually different in red, those less

noticeable in green and those not considered perceptually different at all in grey.

Figure 6.3.1 visualises the HDR-VDP results in false colour for the Office scene.

Furthermore, the results can be summarised in a single numeric value that gives

the percentage of pixels out of the entire image that are likely to be perceived

as different within a given probability. Results are presented for P (X) ≥ 0.75

and P (X) ≥ 0.95, which indicate the percentage of pixels that are likely to be

detected with a probability greater than or equal to 0.75 and 0.95 respectively.

Table 6.5 shows results when comparing temporal instant caching with a path

traced image and with IGI. When comparing with IGI the results showed no more

than a 0.33% difference. This shows that although instant caching results in an

improvement in performance there is no perceived loss in quality when compared

6. Instant Caching for Interactive Global Illumination 114

to IGI. Furthermore, as can be seen in the results, there is very little perceptual

difference when compared to path traced images, that require several minutes of

computation for each frame on modern multicore machines, with no more than

2.11% difference. It also must be noted that the temporal instant caching and

IGI shoot only one ray per pixel while the path tracing’s 2,500 samples per pixel

reduce aliasing considerably and will account, in part, for the perceptual error

detected, see Figure 6.3.1.

6.4 Summary

This chapter has demonstrated a caching scheme for accelerating ray tracing with

indirect diffuse interreflections to interactive rates. This is achieved for dynamic

scenes with no pre-computation where the materials, geometry and camera can

change. The algorithmic design has made it straightforward to extend spatial

coherence into the temporal domain. The temporal coherence used for temporal

instant caching makes it possible to avoid computation that is wasteful by util-

ising selective techniques to update and compute only what is needed. The use

of spatial and temporal coherence allows us to maintain high frame rates; how-

ever, when little temporal coherence remains, the spatial coherence is typically

enough to maintain reasonable frame rates which are competitive with some of

the best CPU methods such as IGI. Furthermore, in experiments, it was shown

that the new method can be up to 24.6× faster than IGI and has no perceivable

loss in visual quality. At most 0.33% of pixels could be detected as perceptually

different, with a 95% certainty, when comparing IGI and IC.

6. Instant Caching for Interactive Global Illumination 115

(a) Path traced (b) VDP TIC vs. PT

(c) TIC (d) IGI

(e) VDP TIC vs. IGI

Figure 6.3.1: HDR-VDP comparisons for the Office scene. Areas most likely
to be considered perceptually different in red, those less noticeable in green and
those considered perceptually equivalent in grey. Note that many errors appear
around blinds, which are primarily caused due to the IGI and TIC using only
one sample per pixel. The path traced image has many more samples per pixel
(2, 500 spp) which removes aliasing artifacts.

CHAPTER 7

Wait-Free Shared-Memory Irradiance

Cache

This chapter further examines irradiance caching due to its viability as an inter-

active global illumination algorithm, as demonstrated in the previous chapter. In

the previous chapter access into the irradiance cache was facilitated via a locking

mechanism, as shown in this chapter this does not to scale when dealing with a

large number of threads due to an increase in serialisation and contention, and is

therefore not optimal. As was discussed in the Framework, in Chapter 5, paral-

lelism is a key component in ensuring the ability of an algorithm to successfully

reach and improve interactive frame rates. Based on this view, a wait-free algo-

rithm which allows concurrent access by all threads to a shared irradiance cache

without any locks or critical sections is presented.

7.1 Introduction

Efficient access to shared data structures becomes an important issue with the

ever increasing number of processors available in local multi-core systems, with

the potential to strongly impact renderering performance. Effective sharing of

the irradiance cache in multithreaded systems is mandatory in order to achieve

high efficiency levels, since computed irradiance values become readily available

to all threads, thus avoiding work replication. This is especially relevant as

the utilisation of the irradiance cache has increased significantly over the last

few years, e.g., as a stand-alone algorithm for computing indirect (ir)radiance

[SKDM05, TL04, KGPB05], as an acceleration data structure for rendering par-

ticipating media phenomena [JDZJ08] or used with photon mapping [Jen01].

116

7. Wait-Free Shared-Memory Irradiance Cache 117

Listing 7.1: Traditional sequential IC

1 IrradianceCache IC;

2

3 ComputeIndirectDiffuse() {

4 //get irradiance from IC if there are valid records

5 inIC = IC.getIrradiance ();

6 if (!inIC) { // no valid records found

7 // compute it by sampling the hemisphere

8 ICsample = ComputeIrradianceRT ();

9 // insert new IC sample into the octree

10 IC.insert (ICsample);

11 }

12 }

13

14 IrradianceCache::getIrradiance() {

15 <Traverse the octree searching for valid records>

16 if (found) return true;

17 else return false;

18 }

19

20 IrradianceCache::insert (ICsample) {

21 // recursively traverse the octree

22 // starting at root

23 IC.root.insert (ICsample);

24 }

25

26 ICNode::insert (ICSample) {

27 if (correct insertion node) {

28 IClist.Add (ICsample);

29 } else {

30 // go deeper in the octree

31 xyz = EvaluateOctant();

32 if (children[xyz] == NULL)

33 children[xyz] = new ICNode ();

34 children[xyz].insert (ICsample);

35 }

36 }

37

38 ICList::Add (ICsample) {

39 // insert new record in head of list

40 IClist.records[head++] = ICsample;

41 }

This chapter proposes an efficient wait-free algorithm which allows concurrent

access to a shared IC by all threads without using any locks or critical sections.

This approach is then compared with two other mechanisms which share the

irradiance cache among threads on a shared memory system. The first is based

on traditional locking techniques and locks the shared IC every time a thread

7. Wait-Free Shared-Memory Irradiance Cache 118

accesses it, both for reading and writing. The second is a local copy method

which avoids concurrent access control by maintaining a local IC, per thread,

and merging at the end of each frame.

This chapter is structured as follows. Section 7.2 presents the algorithms for

the three data access control mechanisms: Lock-Based, Local-Write and Wait-

Free (Sections 7.2.1 - 7.2.3). Section 7.3 details a number of experiments utilising

both static images and animations comparing all three approaches running on a

varying number of threads.

7.2 Algorithms

In this section the algorithms for the three evaluated data access control mecha-

nisms are presented. To begin with traditional single-threaded irradiance cache

with no access control is shown in Listing 7.1. Subsequent sections demonstrate

how the traditional approach can be modified to enable the different access con-

trol algorithms.

Listing 7.2: Lock-based IC

1 ComputeIndirectDiffuse()

2 {

3 //get irradiance from IC if there are valid records

4 IC.lock();

5 inIC = IC.getIrradiance ();

6 IC.unlock();

7

8 if (!inIC) { // no valid records found

9 // compute it by sampling the hemisphere

10 ICsample = ComputeIrradianceRT ();

11 // insert new IC sample into the octree

12 IC.lock();

13 IC.insert (ICsample);

14 IC.unlock();

15 }

16 }

7.2.1 Lock-Based Irradiance Cache (LCK)

The lock-based access control algorithm locks the IC whenever a read or write is

made to it. However, the code responsible for hemisphere sampling, ComputeIr-

radianceRT(), is not a critical region (Listing 7.2 lines 4 - 6, 12 - 14), thus allowing

7. Wait-Free Shared-Memory Irradiance Cache 119

concurrent evaluation of irradiance. The primary disadvantage of the LCK ap-

proach is that it serialises all accesses, both reads and writes, to the shared IC.

As the number of threads increases so does contention preventing performance

from scaling appropriately with the degree of parallelism. Table 7.1 shows that

the overhead associated with locks (time spent waiting to enter critical regions

summed over all threads) increases substantially when going from two to eight

threads.

Listing 7.3: Local-Write IC

1 IrradianceCache IClocal[number threads], ICglobal;

2

3 ComputeIndirectDiffuse()

4 {

5 //get irradiance from IC if there are valid records

6 inIC = ICglobal.getIrradiance ();

7

8 if (!inIC)

9 inIC = IClocal[current thread].getIrradiance ();

10

11 if (!inIC) { // no valid records found

12 // compute it by sampling the hemisphere

13 ICsample = ComputeIrradianceRT ();

14 // insert new sample into the local cache

15 IClocal[current thread].insert (ICsample);

16 }

17 }

7.2.2 Local-Write Irradiance Cache (LW)

An alternative approach, not dependant on locking the data structure each time

it is modified, is to have a global IC readable by all threads and an additional local

IC per thread; each thread writes only on its local IC but reads from both. At

certain predefined execution points, such as the end of a frame, the local ICs are

sequentially merged onto the global IC. This form of synchronisation uses an end

of frame as a barrier, effectively this is a blocking approach to synchronisation.

The major drawback of this approach is that it does not allow for any sharing

of IC samples within a single frame, thus resulting in work replication; this is

reflected in Table 7.1, where the LW algorithm has a much higher IC sample

count than the other two approaches. The time taken to sequentially merge the

caches is not significant, as can be seen in the overheads section of Table 7.1 (at

7. Wait-Free Shared-Memory Irradiance Cache 120

least up to eight threads). Additionally, memory consumption is dictated by the

number of threads being used and the complexity of the octree itself.

Listing 7.4: Wait-Free IC

1 ICNode::insert (ICSample) {

2 if (correct insertion node)

3 IClist.Add (ICsample);

4 else { // go deeper in the octree

5

6 xyz = EvaluateOctant();

7 if (children[xyz]==NULL) {

8 temp = new ICNode()

9 temp.insert (ICsample);

10 // Update new branch into the octree

11 // This only occurs on the first level of

12 // recursion subsequent levels just insert

13 // normally.

14 if (!CAS (children[xyz], NULL, temp))

15 free temp;

16 }

17 else

18 children[xyz].insert (ICsample);

19 }

20 }

21

22 ICList::Add (ICsample) {

23 // get index of new sample in node list

24 int index = XADD (&head);

25 IClist.records[index] = ICsample;

26 }

7.2.3 Wait-Free Irradiance Cache (WF)

The wait-free algorithm does not rely on any critical sections to both read and

write to the shared IC. When adding samples to an IC node the atomic XADD

operator (Listing 7.4 line 24) is used, returning a unique index into the list of

records, which ensures that samples are never over-written; simultaneously, the

private index to the next free position is incremented. While it may seem the

data structure remains at an inconsistent state this does not happen since Irradi-

anceCache::getIrradiance() does not use head as a stopping condition; rather all

elements of IClist are initialised to NULL and searching stops when a NULL

pointer is found. Thus elements which have not been properly inserted into the

data structure will never be used.

7. Wait-Free Shared-Memory Irradiance Cache 121

When adding a new child node to the octree, the new subtree is built using a

temporary pointer. When fully built, the subtree is attached to the octree using

the CAS operator (Listing 7.4 line 14). If the relevant child still does not exist,

indicated by the pointer still being NULL, then CAS completes successfully. If,

however, another thread wrote to the same child, then CAS will fail and this

thread will discard both the created subtree and the associated sample after

utilising it for the current computation. As can be seen in Table 1 the number

of discarded samples is minimal, amounting to no more than 0.3% of the total

samples.

The atomic primitives used in most wait-free algorithms still need a memory

barrier in order to ensure out-of-order execution does not corrupt the shared data

structure. Typically a memory barrier precedes the use of atomic primitives such

as CAS and XADD. This can often be expensive since out-of-order execution

typically accounts for an increase in performance. In the wait-free algorithm

memory barriers are kept to a minimum by only calling them when inserting

IC samples into the octree and not when accessing the cache for interpolation.

This is how the much more frequent IC interpolation requests do not entail any

overheads over the serial methods.

The wait-free approach ensures that the single shared IC can be accessed con-

currently by all threads, and, as can be seen in Listing 7.4, requires little changes

in the code from a traditional sequential irradiance cache. As shall be seen in the

next section, this results in faster execution times both when interpolating and

creating IC samples and also it does not suffer the larger memory requirements

of the LW approach.

7.3 Results

All presented results have been generated on an 8-core (dual quad-core) Intel

Xeon machine running at 2.5GHz with 8 gigabytes of RAM, using a custom writ-

ten interactive ray tracer. Experiments were run under CentOS 4 with the code

being compiled with ICC 9.0. The renderer utilised does not make use of pack-

etisation or SIMD operations except for the ray-bounding volume intersection

test used when traversing the acceleration data-structure, which is a BVH im-

plementation based on Wald et al. [WBS07]. Five different scenes (Figure 7.2.1)

were utilised in the experiments. These scenes were picked to provide a range

7. Wait-Free Shared-Memory Irradiance Cache 122

(a) Cornell (48k)

(b) Conference (190k)

(c) Desk (12k)

Figure 7.2.1: The five scenes utilised in the experiments. The polygon count for
each scene is shown in brackets.

7. Wait-Free Shared-Memory Irradiance Cache 123

(a) Office (20k)

(b) Sponza (66k)

Figure 7.2.1: The five scenes utilised in the experiments. The polygon count for
each scene is shown in brackets.

of geometric complexity, physical dimensions and lighting conditions. All scenes

were rendered at a resolution of 600× 400.

7.3.1 Still images

Table 7.1 provides results for one, two, four and eight threads with the time taken

to calculate the frame, the number of IC samples generated, overheads associated

with each algorithm and speed-up. Results for one thread were obtained using

the traditional sequential approach (TRA) and speed-up is computed with re-

spect to these results. For the lock-based approach (LCK) the reported overhead

is the aggregate time spent to enter critical regions summed over all threads. For

7. Wait-Free Shared-Memory Irradiance Cache 124

1 2 4 8

TRA LCK LW WF LCK LW WF LCK LW WF

Time (s) 3.152 1.633 2.096 1.614 0.863 1.178 0.814 0.656 0.700 0.473

IC samples 3463 2742 4339 2707 2483 4404 2473 2441 4440 2410

Overheads† 0 0.053 0.024 4 0.189 0.018 1 1.370 0.019 7

Speed-up 1.000 1.988 1.548 2.011 3.759 2.756 3.986 4.950 4.640 6.862

(a) Cornell

1 2 4 8

TRA LCK LW WF LCK LW WF LCK LW WF

Time (s) 3.749 1.971 2.444 1.965 1.104 1.385 1.049 0.753 0.798 0.607

IC samples 3477 3038 4282 2998 2748 4394 2775 2700 4378 2709

Overheads† 0 0.035 0.018 4 0.189 0.021 0 1.259 0.023 8

Speed-up 1.000 1.902 1.534 1.907 3.396 2.707 3.572 4.976 4.696 6.178

(b) Desk

1 2 4 8

TRA LCK LW WF LCK LW WF LCK LW WF

Time (s) 4.854 2.460 3.180 2.445 1.283 1.768 1.269 0.786 0.929 0.658

IC samples 3065 2517 3663 2524 2272 3817 2256 2130 3842 2170

Overheads† 0 0.064 0.028 1 0.192 0.021 3 1.127 0.026 3

Speed-up 1.000 1.973 1.526 1.985 3.783 2.745 3.826 6.176 5.223 7.381

(c) Conference Room

Table 7.0: Results for all scenes† - Overheads are all in seconds except for WF
which is number of irradiance samples discarded

7. Wait-Free Shared-Memory Irradiance Cache 125

1 2 4 8

TRA LCK LW WF LCK LW WF LCK LW WF

Time (s) 2.947 1.474 1.976 1.654 0.895 1.207 0.864 0.650 0.689 0.469

IC samples 2089 1881 2650 1976 1803 3199 1802 1766 3290 1785

Overheads† 0 0.042 0.019 1 0.337 0.018 3 1.397 0.022 1

Speed-up 1.000 1.999 1.491 1.782 3.291 2.442 3.412 4.531 4.276 6.287

(a) Office

1 2 4 8

TRA LCK LW WF LCK LW WF LCK LW WF

Time (s) 7.330 3.802 4.672 3.676 2.100 2.563 1.935 1.143 1.505 1.083

IC samples 3357 3113 4166 3113 3032 4286 2958 2929 4379 2942

Overheads† 1 0.046 0.026 1 0.186 0.026 5 1.018 0.028 4

Speed-up 1.000 1.928 1.569 1.994 3.779 2.860 3.707 6.413 4.872 6.766

(b) Sponza

Table 7.1: Results for all scenes† - Overheads are all in seconds except for WF
which is number of irradiance samples discarded

local-write (LW) the reported overhead is the time taken to sequentially merge

all local caches into the global one at the end of the frame, for wait-free (WF) it is

the number of samples discarded. Each image was calculated with an empty irra-

diance cache to show a worst-case scenario with maximal irradiance calculations

occurring. Graphs of all this data are presented in Figure 7.3.1; the left Y-axis

and the accompanying line graph shows the instanteous framerate (reciprocal of

time taken to render the frame) while the right Y-axis and the bar graph shows

the speed-up compared to the traditional single-threaded irradiance cache with

no access control.

LW performs and scales worse than the two other algorithms. This is because

no sharing is actually occurring since only one frame is rendered and merging

of the local caches only happens at the end of the frame. Each thread must

7. Wait-Free Shared-Memory Irradiance Cache 126

evaluate all irradiance samples that project into its assigned tiles of the image

plane, leading to much work replication as can be seen by the number of evaluated

irradiance samples.

The performance difference between LCK and WF becomes evident as the

number of threads increases. The aggregated time waiting for locks increases

with the number of threads, resulting on a major performance loss. The wait-

free algorithm scales much better because it does not serialise neither writes

nor reads to the shared data structure. For a reduced number of threads LCK

performs similar to WF since most of the time is spent evaluating new irradiance

samples, which is not a critical region of the code. As the number of threads

increases, more range searches are performed; since these are serialised in LCK,

a performance penalty arises.

For eight threads an average speed-up of 6.66 for the WF algorithm, 4.71 for

LW and 5.38 for LCK was recorded. The WF algorithm is clearly the fastest with

LCK showing comparable results with less than 8 threads but showing inferior

scaling as more threads are utilised.

7.3.2 Animations

Two scenes, Cornell and Conference Room, were selected and each was rendered,

using 8 threads, for 100 frames while the camera did a 360 degrees rotation

around the scene. Each frame in the sequence re-utilised previously created cache

samples while simultaneously calculating new ones. This provides an overview

of performance when a more balanced mix of evaluation and interpolation is

occurring, unlike the case for the still images. The results for these particular

experiments are displayed in Figures 7.3.2 and 7.3.3, showing the time taken

to render each of the 100 frames for the Cornell and Conference Room scenes

respectively for each of the three algorithms. For each of the scenes the first

frame is the equivalent of the still images above, where the cache is totally empty

and all the samples needed to be generated.

Clearly, LCK performs worse than LW and WF, except for the first frame.

Since for the remaining frames the IC will not be empty, many irradiance samples

can be reused; but LCK serialises all range searches performed to locate these

samples, thus severely impacting on performance. WF outperforms LW because

the former shares irradiance samples immediately without any extra overhead

associated with reading, while the latter does not share samples within a frame,

7. Wait-Free Shared-Memory Irradiance Cache 127

7.00

8.00

3.000

3.500
Cornell

3.00

4.00

5.00

6.00

7.00

8.00

1 000

1.500

2.000

2.500

3.000

3.500

Sp
ee
d
U
p

Ti
m
e
 (
s)

Cornell

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

0.000

0.500

1.000

1.500

2.000

2.500

3.000

3.500

1 2 4 8

Sp
ee
d
U
p

Ti
m
e
 (
s)

Threads

Cornell

LCK SpdUP LW SpdUp WF SpdUp LCK LW WF

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

0.000

0.500

1.000

1.500

2.000

2.500

3.000

3.500

1 2 4 8

Sp
ee
d
U
p

Ti
m
e
 (
s)

Threads

Cornell

LCK_SpdUP LW_SpdUp WF_SpdUp LCK LW WF

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

0.000

0.500

1.000

1.500

2.000

2.500

3.000

3.500

1 2 4 8

Sp
ee
d
U
p

Ti
m
e
 (
s)

Threads

Cornell

LCK_SpdUP LW_SpdUp WF_SpdUp LCK LW WF

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

0.000

0.500

1.000

1.500

2.000

2.500

3.000

3.500

1 2 4 8

Sp
ee
d
U
p

Ti
m
e
 (
s)

Threads

Cornell

LCK_SpdUP LW_SpdUp WF_SpdUp LCK LW WF

(a) Cornell

3.00

4.00

5.00

6.00

7.00

8.00

2.000

3.000

4.000

5.000

6.000

Sp
ee
d
U
p

Ti
m
e
(s
)

Conference Room

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

0.000

1.000

2.000

3.000

4.000

5.000

6.000

1 2 4 8

Sp
ee
d
U
p

Ti
m
e
(s
)

Threads

Conference Room

LCK_SpdUP LW_SpdUp WF_SpdUp LCK LW WF

(b) Conference Room

3.00

4.00

5.00

6.00

7.00

8.00

1 000

1.500

2.000

2.500

3.000

3.500

Sp
ee
d
U
p

Ti
m
e
(s
)

Desk

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

0.000

0.500

1.000

1.500

2.000

2.500

3.000

3.500

1 2 4 8

Sp
ee
d
U
p

Ti
m
e
(s
)

Threads

Desk

LCK_SpdUP LW_SpdUp WF_SpdUp LCK LW WF

(c) Desk

Figure 7.3.1: Still Images: Results for all scenes

7. Wait-Free Shared-Memory Irradiance Cache 128

3.00

4.00

5.00

6.00

7.00

8.00

1.500

2.000

2.500

3.000

3.500

4.000

Sp
ee
d
U
p

Ti
m
e
(s
)

Office

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

0.000

0.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

1 2 4 8

Sp
ee
d
U
p

Ti
m
e
(s
)

Threads

Office

LCK_SpdUP LW_SpdUp WF_SpdUp LCK LW WF

(a) Office

2 00

3.00

4.00

5.00

6.00

7.00

8.00

2 000

3.000

4.000

5.000

6.000

7.000

8.000

Sp
ee
d
U
p

Ti
m
e
(s
)

Sponza

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

0.000

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

1 2 4 8

Sp
ee
d
U
p

Ti
m
e
(s
)

Threads

Sponza

LCK_SpdUP LW_SpdUp WF_SpdUp LCK LW WF

(b) Sponza

Figure 7.3.1: Still Images: Results for all scenes.

0

1

2

3

4

5

6

7

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

2
7

2
9

3
1

3
3

3
5

3
7

3
9

4
1

4
3

4
5

4
7

4
9

5
1

5
3

5
5

5
7

5
9

6
1

6
3

6
5

6
7

6
9

7
1

7
3

7
5

7
7

7
9

8
1

8
3

8
5

8
7

8
9

9
1

9
3

9
5

9
7

9
9

F
P
S

Frame

Cornell

LCK

LW

WF

Figure 7.3.2: Animation results for Cornell Box.

7. Wait-Free Shared-Memory Irradiance Cache 129

0

0.5

1

1.5

2

2.5

3

3.5

4

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

2
7

2
9

3
1

3
3

3
5

3
7

3
9

4
1

4
3

4
5

4
7

4
9

5
1

5
3

5
5

5
7

5
9

6
1

6
3

6
5

6
7

6
9

7
1

7
3

7
5

7
7

7
9

8
1

8
3

8
5

8
7

8
9

9
1

9
3

9
5

9
7

9
9

F
P

S

Frame

Conference Room

LCK

LW

WF

Figure 7.3.3: Animation results for Conference Room.

thus resulting on costly extensive evaluations of more indirect diffuse irradiance

values. Summarising, LCK is mostly penalised by reading serialisation, whereas

LW is penalised by work replication.

Excluding the first frame in the Cornell scene an average of 5.52 FPS for the

WF algorithm, 5.03 FPS for LW and 1.3 FPS for LCK was attained. Even though

LCK performed better than LW for the first frame, the cost of locking is high

even when doing a mixture of reads and writes and this is reflected in its poor

performance for the animation. These results are also reflected in the Conference

Room scene where 3.2 FPS for WF, 2.96 FPS for LW and 1.03 FPS for LCK

was achieved. WF performs the best out of the three approaches displaying, on

average, a 9% speed-up over the LW approach and a 368% speed-up over the

LCK approach.

7.4 Summary

This chapter proposes a new wait-free data access control mechanism for shar-

ing the irradiance cache among multiple rendering threads on a shared memory

parallel system and evaluate it against two traditional data access algorithms: a

lock-based approach and a local write one. It is demonstrated that the proposed

approach outperforms the others and scales better with the number of threads.

The lock-based algorithm serialises all access to the shared data structure,

reads included. Range searches performed in the octree to locate valid irradiance

samples are serialised, resulting in performance losses; this problem is aggravated

with the number of threads and the resulting contention. The local write algo-

rithm does not share any irradiance values evaluated within each frame, thus

7. Wait-Free Shared-Memory Irradiance Cache 130

suffering a performance penalty as a result of work replication. Neither of these

two algorithms scales well as the number of threads increases.

The wait-free algorithm does not serialise accesses to the shared data structure

and irradiance values are immediately shared among all threads without any over-

head associated with reading. It exhibits the best frame rates for walkthroughs

within static scenes and scales well with the number of threads, achieving an

efficiency between 77% and 92% for 8 threads.

The proposed wait-free data access control mechanism is both efficient and

simple to implement, requiring only minor modifications to a traditional sequen-

tial irradiance cache implementation. The relevance of efficient, scalable and

reliable mechanisms to control access to shared data structures within shared

memory systems is ever increasing with the advent of multi-core systems., which

in the near future will have a degree of concurrency which that is expected to be

larger than that on current machines.

CHAPTER 8

Conclusions and Future Work

Global illumination remains one of the major fields of research in computer graph-

ics, with efforts to increase interactivity as well as overall fidelity ongoing. This

thesis has introduced novel global illumination algorithms that allow for effects

such as diffuse interreflections, soft shadows and participating media at inter-

active rates for fully dynamic scenes. The needs of numerous fields such as ar-

chitecture, lighting design, special effects and game development have increased

the demand for such algorithms that provide a high fidelity solution for complex

scenes, and do so at interactive rates. While exploiting coherency, to achieve in-

teractivity, had been successful for interactive ray tracing the need for full global

illumination has required the development of new algorithms to focus limited

computational power currently available where it is most needed. Selective ren-

dering algorithms do just this by steering the computation, utilising a number

of different selective criteria, while performing adaptive or progressive rendering.

Our novel algorithms have met the challenges outlined above, exploiting both

coherency on all levels in the rendering pipeline along with selectively focusing

computation where it is most needed.

8.1 Conclusions

The aim of this thesis was to develop new algorithms for achieving interactive

global illumination. This was achieved by combining selective techniques and

interactive ray tracing and global illumination methods into two novel interac-

tive global illumination algorithms. The methodology and structured approach

utilised when researching, developing and testing these algorithms was also pre-

sented as a framework. The algorithms developed support dynamic scenes where

131

8. Conclusions and Future Work 132

the camera, materials and objects could change and move freely without any

pre-computation being required.

During the analysis of the impact that selective rendering has on interac-

tive ray tracing it was shown that selective rendering, due to its poor spatial

coherence, had an adverse effect mainly on primary rays. This lack of coher-

ence can severely limit selective rendering within interactive ray tracing systems,

which rely on cache coherence to achieve their high performance. A logarithmic

increase in computational cost per pixel was observed as spatial coherence dete-

riorated. By identifying three core stages in the methodology employed (identifi-

cation, deconstruction and pairing) a framework was created to combine existing

interactive ray tracing and interactive global illumination algorithms with selec-

tive rendering techniques to form new interactive global illumination solutions.

Such solutions needed to consider three key criteria: interactivity, coherence and

adaptability and had to do so on a per component basis to ensure maximal use

of available computational resources.

By combining interleaved sampling [Kel97] with an adaptive approach, that

used efficient component-specific adaptive guidance methods (Section 5.3.3 -

5.3.4), a novel interactive global illumination algorithm was developed. Adap-

tive Interleaved Sampling achieved interactive frame rates of between three and

eleven frames per second for a variety of scenes on a single eight-core machine. An

average speed-up of 3.53 times over competing methods was demonstrated, with

certain cases showing an order of magnitude improvement. This was achieved

while maintaining high visual fidelity, perceptually equivalent to IGI [WBS02].

Results showed that on average only 1.37% of pixels were deemed perceptually

different from high-quality path traced solution. This approach was shown to be

generalisable and that it was applicable to any component as long as it utilised

ray tracing and a custom heuristic could be written to guide the computation.

Irradiance caching was then examined and was modified and extended to

support an interactive update as well as a more coherent indirect diffuse inter-

reflection computation. An interactive caching scheme for indirect diffuse in-

terreflections, Temporal Instant Caching, was developed to work with dynamic

scenes. The algorithmic design allowed for the extension of the already exist-

ing spatial coherence into the temporal domain. The temporal coherence was

then exploited to avoid wasteful computation by using selective techniques to

only update relevant cache samples. This approach achieved frame rates ex-

ceeding nine frames per second for the majority of scenes on a single eight-core

8. Conclusions and Future Work 133

machine. When only a small amount of temporal coherence existed the algo-

rithm still maintained reasonable frame rates which were competitive with other

algorithms, such as IGI [WBS02]. These results were achieved with no perceiv-

able loss in visual quality when compared to IGI, with 0.23% of pixels being

shown to be perceptually different, and minimal differences when compared to

a gold-standard path-traced image where only 0.45% of pixels where detected

as being perceptually different. Further research resulted in the development of

a novel wait-free data access control mechanism allowed for the sharing of the

irradiance cache among multiple rendering threads on a shared memory parallel

system. It exhibited the best frame rates, out of the three approaches tested, for

walkthroughs within static scenes, and scaled well with the number of threads,

achieving an efficiency between 77% and 92% for 8 threads. For the static scenes

an average speed-up of 6.66, over the traditional approach, was achieved. For

dynamic scenes, examined over multiple frames as the camera was moved, the

wait-free algorithm displayed, on average, 9% speed-up over the local-write algo-

rithm and a 368% speed-up over the lock-based algorithm. While the wait-free

algorithm was only 9% faster this was achieved without the extra memory us-

age or the increased sample count that local-write algorithm exhibited. This

approach extended the irradiance cache for use in interactive contexts by entirely

avoiding all the pitfalls of multi-threaded access to its underlying data structure.

This proof-of-concept of a novel wait-free technique for a popular algorithm, such

as irradiance caching, could also inspire other techniques to utilise this approach.

These algorithm demonstrated the potential of interactive global illumination

on the CPU, with effects such as soft shadows, participating media and diffuse

interreflections running on a single standard desktop PC for a number of different

scenarios.

8.2 Contributions

This thesis explored the impact and application of selective rendering techniques

on global illumination algorithms. Having built upon the existing knowledge in

both these areas new algorithms were developed to exploit both area’s unique

strengths. The major novel contributions of this thesis are as follows:

• A comprehensive literature review of interactive ray tracing techniques and

global illumination techniques for both the CPU and the GPU.

8. Conclusions and Future Work 134

• An analysis and assessment of the effects that selective rendering has on

interactive ray tracing by using a then state-of-the-art ray tracer from the

University of Utah [BSP06]. These results and observations are used for

the development of a framework detailed below. This work was published

at the 16th International Conference on Computer Graphics, Visualization

and Computer Vision [DCD08].

• A framework that encompasses the methodology and processes used during

the development of two novel interactive global illumination algorithms. It

provides a structured approach to combining selective rendering techniques

and global illumination methods into new interactive global illumination

solutions.

• A novel global illumination solution that combines interleaved sampling

[Kel97] and instant global illumination [WKB∗02] while making the final

solution adaptive. The approach supports soft shadows, diffuse interreflec-

tions and participating media in fully dynamic scenes where the camera,

lights and objects could be moved and materials modified. This work was

published in the Computer Graphics Forum [DDC09].

• A further novel global illumination solution that combines irradiance caching

[WRC88] with an adaptive temporal update. This method uses instant

radiosity [Kel97] when computing the diffuse interreflections. The update

only modifies samples that have changed since the previous frame and there-

fore allows for the computation of diffuse interreflections at interactive rates

for dynamic scenes. This work was published in the Computer Graphics

Forum [DDB∗09].

• A new wait-free data access control mechanism for sharing the irradiance

cache among multiple rendering threads on a shared memory parallel sys-

tem. This proposed mechanism is both efficient and simple to implement,

requiring only minor modifications to a traditional sequential irradiance

cache implementation. This makes the irradiance cache suitable for highly

parallel architectures. This work was published at the 10th Eurographics

Symposium on Parallel Graphics and Visualisation [DDSC09].

8. Conclusions and Future Work 135

8.3 Impact

The novel interactive global illumination algorithms developed in this thesis can

possibly be used for various applications, both academic and commercial. The

component-based nature of Adaptive Interleaved Sampling enables specific com-

ponents to be picked out and used elsewhere, for other interactive applications

that require global illumination, ranging from data visualisation to lighting de-

sign. The approach also allows for the addition of other components to further

extend the approach as required to meet specific demands.

The extensions presented to irradiance caching, primarily used in off-line ren-

dering till now, for use in an interactive context also have many potential appli-

cations. As has already been seen in Section 2.3.5, the irradiance cache is used in

a number of industries and software applications to accelerate the computation

of diffuse interreflections. Both PDI/Dreamworks [TL04] and Pixar [Chr08], two

movie studios that produce computer animations, have shown that they make ex-

tensive use of the irradiance cache in a primarily CPU-based environment. The

novel algorithms presented in this thesis, both the temporal update (Chapter 6)

and the wait-free access control mechanism (Chapter 7), could further extend

the usage of the irradiance cache in the production pipeline allowing for interac-

tive previews within modelling software. This could be achieved using the same

software architecture and rendering pipelines that are already in place. Further-

more, the wait-free approach could be utilised in off-line production rendering to

improve the utilisation of computation resources and overall performance.

With an interactive global illumination solution in place animators, designers

and artists would have the ability to test different lighting scenarios with imme-

diate feedback. Without the long waits, which are currently required, this would

increase productivity and allow for more iterations in a shorter space of time.

This level of feedback would not only reduce the total number of hours required

to produce production-ready assets, and hence reduce the cost, but would also

minimise mistakes in the final production renders, which take many days or even

weeks to compute. This increased accuracy and interactivity would allow poten-

tial problems to be spotted much sooner and costly mistakes could be avoided.

8. Conclusions and Future Work 136

8.4 Limitations and Extensions

This section examines the work presented in this thesis and discuss the limitations

of the current approaches as well as a number of possible extensions and directions

for further research.

During the examination of the impact of selective rendering on state-of-the-art

ray tracing algorithms the selective guidance consisted of sub-sampling the image

with a regular stride, this was done to provide an easy and controlled mechanism

with which to degrade the overall spatial coherence. Of further interest would

be the examination of more complex selective guidance methods, such as one

of those outlined in Section 2.3.2 such as the saliency map [YPG01] and task

map [CCW03] to drive the computation. In certain cases, these methods would

offer increased spatial coherence over the approach used in Chapter 4, this is

due to the samples being unevenly distributed and forming groups of spatially

coherent samples, potentially leading to to improved performance. The addition

of such a metric, which is not trivial to compute, would introduce a serial critical

section into a highly parallel system. Utilising other computational resources,

such as the GPU, to calculate these guidance metrics, as in Lee et al. [LKC09],

and the the trade off between the computation of an expensive selective guidance

metric and more spatially coherent ray distribution would need to be examined.

For the implementation of adaptive interleaved sampling (Chapter 5) the ray

tracing kernel could be enhanced with features such as packetisation [WSBW01].

Unlike most other adaptive approaches, the method should adapt well to a faster

ray tracing kernel since the guidance and sampling for each tile are computed at

the same time making it naturally coherent and suited for packetisation. Trac-

ing the rays for the SS and ID components (Sections 5.3.3 and 5.3.2) could be

packetised as multiple rays would share an origin on a light source or at a VPL

due to the way the methods reuse samples for the same pixel in the IS pattern

as it tiled. Another potential avenue of investigation would be more complex

global heuristics. While only local heuristics that utilise information for a single

tile and one component were implemented, global heuristics that use information

from surrounding tiles as well as multiple components would be of interest. Fi-

nally the applicability of the framework for other algorithms such as GPU-based

global illumination techniques, and how the criteria would need to be adjusted,

would be worth examining.

The temporal instant cache has a number of possible extensions and avenues

8. Conclusions and Future Work 137

of further research. One aspect common to most caching mechanisms is that

the search for cached samples to interpolate from can impact the performance as

the cache count increases. This problem is further accentuated since the cache

count affects the update computation. Since samples computed in earlier frames

might not be re-used (if they do not contribute to the current view point), ageing

methods similar to those presented by Tawara et al. [TMS04], whereby cached

samples that are infrequently used are discarded, would directly improve the

performance. The test for ageing would not impact on the current temporal

instant cache method and could be integrated as part of the update function

when cycling through each cached sample (Line 2, Algorithm 1).

Temporal instance caching supports on-demand re-evaluation of the visibility

rays, which although partially improving performance, still requires major parts

of the computation for each sample to be executed every frame. An alternative

approach would be to only update cached samples when requested for interpola-

tion, which would entail that the update is performed on demand. This would

require maintaining a structure consisting of those VPLs which are invalidated

and those objects that would have moved at each frame. The on-demand cached

sample update would need to query this structure to identify which visibility rays

to update. Ageing would benefit this method by placing an upper-bound on the

number of frames that the structure would need to store. Computing gradients

for the instant cache, and possibly the temporal method also, which, as with

similar gradient methods [WH92], could reduce the number of cached samples

and help mitigate this issue.

Both adaptive interleaved sampling and temporal instant caching rely on

VPLs in a similar manner to that of instant radiosity. One of the limitations

of methods based on instant radiosity is that their rendering time is, for the most

part, linearly dependent on the number of VPLs that are shot. For the case of

the temporal instant cache, the situation is further aggravated since the temporal

update is also dependent on the number of VPLs. Several approaches have been

proposed to improve instant radiosity-based algorithms and alleviate this prob-

lem. Importance has been used in the past to direct VPL placement for complex

environments [WBS03], thus reducing the number of VPLs that are required to

be shot. Temporal-awareness was used to ensure that coherence between VPL

placement was maintained. This importance would allow the algorithms to op-

erate without large numbers of VPLs for complex highly occluded scenes. This

could be integrated into the both algorithms as a pre-process before shooting the

8. Conclusions and Future Work 138

VPLs, requiring little changes to the methods as presented, and few modifica-

tions to the algorithm presented by Wald et al. [WBS03]. Methods such as those

presented in Segovia et al. [SIMP06a,SIP07]; Wald et al. [WBS03] could also be

investigated to help improve VPL distribution, especially for complex scenes and

those with high levels of occlusion. Lightcuts [WFA∗05,WABG06] have been used

to cluster point light sources (or VPLs) and reduce the VPL processing count.

Their utilisation in conjunction with the temporal instant cache and adaptive

interleaved sampling can be mutually beneficial. This may require adding some

form of temporal criteria to lightcuts to ensure that the VPL clustering does not

change drastically over frames, due to the interactivity of the systems. Lightcuts

require building the clusters binary tree and selecting, for each shading point,

the most appropriate cut. These operations incur non-negligible overheads that

might compromise interactivity; careful optimisation and eventual relaxation of

the clustering and cut selection criteria might be required.

Although the wait-free algorithm described in Chapter 7 has shown good

scalability with up to eight threads, further investigation would be interesting

to identify the limits of this trend by running the algorithm on machines with a

larger number of processors sharing the same address space. Also the memory or-

ganisation might impact on the performance of the proposed algorithm, especially

with an increased number of threads. Utilisation of the irradiance cache within

dynamic environments, i.e., those where geometry might change between frames,

would require the ability to remove from the shared data structure records which

became invalid as well as those that are no longer being used. Assessment of a

wait-free synchronisation algorithms supporting this removal operation would be

of great interest.

8.5 Directions for Future Work

The current generation of GPUs are generalising rapidly, with the addition of

caches and a choice of development languages such as CUDA [GGN∗08] and

OpenCL [Mun08]. They also offer an order of magnitude, or more, increase in

computation power over CPUs. This generalisation will further encourage the

trend, as was discussed in Sections 3.1.2 and 3.2.2, of interactive ray tracing and

global illumination research moving towards GPU-based solutions. While initial

research focused on GPU-specific algorithms, due to the highly specialised archi-

8. Conclusions and Future Work 139

tecture and the inability to use complex data structures, recent work is making

use of algorithms developed on the CPU, such as photon mapping [Jen01] and

path tracing [Kaj86]. These approaches, just like the framework in Section 5.2,

will need to tackle the issues of balancing coherency and focusing computation

due to the massively parallel nature of the GPUs where thousands, if not tens of

thousands, of processes or threads are executing at at any given time.

This presents a new set of challenges where rendering algorithms must take

into consideration the highly parallel nature of the GPU when designing their

data structures and access patterns to these structures. Algorithms such as the

wait-free approach presented in this thesis, now viable on the GPU due to atomic

operations such as CAS and XADD being available, will play a more important

role as critical sections in code will have a much larger impact on the highly par-

allel GPUs. The problems identified with the lock-based, Section 7.2.1, and local-

write, Section 7.2.2, algorithms would become substantially worse on the GPU.

Even limited fine-grained locking would introduce a large amount of overhead

due to contention while replication of the data structure would introduce large

memory overheads. Potential solutions could be found in the fields of distributed

rendering and parallel processing, as they have dealt with similar problems.

8.6 Final Remarks

Real-time accurate global illumination for fully interactive scenes remains the

target for many in the rendering field. While it would seem that the ever increas-

ing processing power provided by new generations of CPUs and GPUs would

allow one to reach this goal by simply waiting for an sufficient amount of com-

putational power, this is not the case. The increase in computational power

also brings with it new demands for higher resolution images and more complex

scenes, realistic materials and advanced effects. It is for this reason that algo-

rithms must focus computation in areas of greatest gain while being aware of

the hardware they are running on to make full use of the parallelism and co-

herency available. The algorithms and framework in this thesis make progress

in the state-of-the-art by providing novel global illumination solutions that can

run at interactive rates for fully dynamic scenes with no pre-computation re-

quired. Adaptive interleaved sampling, temporal instant caching and wait-free

shared-memory irradiance caching show how design decisions are influenced, but

8. Conclusions and Future Work 140

not dictated, by hardware and following a number of simple criteria can lead to

novel solutions. The framework used to develop these algorithms focuses on the

algorithmic not implementation details when combining selective rendering and

global illumination techniques on a per component basis. In this way while the

process is aware of higher level constraints, like the need for the algorithms to

remain highly parallel, the improvements are not dependant on hardware trends

or specific hardware platforms. The work in this thesis has highlighted the poten-

tial of combining selective rendering techniques and global illumination methods,

on a per component basis, to form novel interactive global illumination solutions

that fully exploit the ever increasing computational power available.

References

[ADM∗08] Annen T., Dong Z., Mertens T., Bekaert P., Seidel H.-

P., Kautz J.: Real-time, all-frequency shadows in dynamic scenes.

ACM Trans. Graph. 27, 3 (2008), 1–8.

[AH93] Aupperle L., Hanrahan P.: A hierarchical illumination algo-

rithm for surfaces with glossy reflection. In SIGGRAPH ’93: Pro-

ceedings of the 20th annual conference on Computer graphics and

interactive techniques (New York, NY, USA, 1993), ACM Press,

pp. 155–162.

[AK87] Arvo J., Kirk D.: Fast ray tracing by ray classification. In SIG-

GRAPH ’87: Proceedings of the 14th annual conference on Com-

puter graphics and interactive techniques (New York, NY, USA,

1987), ACM, pp. 55–64.

[AL09] Aila T., Laine S.: Understanding the efficiency of ray traver-

sal on gpus. In HPG ’09: Proceedings of the Conference on High

Performance Graphics 2009 (New York, NY, USA, 2009), ACM,

pp. 145–149.

[ALL89] Anderson T. E., Lazowska E. D., Levy H. M.: The perfor-

mance implications of thread management alternatives for shared-

memory multiprocessors. IEEE Trans. Computers 38, 12 (1989),

1631–1644.

[AMH02] Akenine-Moller T., Haines E.: Real-Time Rendering. A. K.

Peters, Ltd., Natick, MA, USA, 2002.

[App68] Appel A.: Some techniques for shading machine renderings of

141

References 142

solids. In Proceedings of the Spring Joint Computer Conference

(1968), pp. 37–45.

[Ash95] Ashdown I.: Radiosity: a programmer’s perspective. John Wiley

& Sons, Inc., New York, NY, USA, 1995.

[Bek99] Bekaert P.: Hierarchical and Stochastic Algorithms for Radiosity.

PhD thesis, Department of Computer Science, Katholieke Univer-

sitiet Leuven, Leuven, Belgium, 1999.

[BEL∗06] Boulos S., Edwards D., Lacewell J. D., Kniss J., Kautz

J., Shirley P., Wald I.: Interactive Distribution Ray Tracing.

Technical Report, SCI Institute, University of Utah, No UUSCI-

2006-022 (2006).

[BEL∗07] Boulos S., Edwards D., Lacewell J. D., Kniss J., Kautz

J., Shirley P., Wald I.: Packet-based Whitted and Distribu-

tion Ray Tracing. In Proc. Graphics Interface (May 2007).

[BFGS86] Bergman L., Fuchs H., Grant E., Spach S.: Image rendering

by adaptive refinement. In SIGGRAPH ’86 (1986), ACM Press,

pp. 29–37.

[BFMZ94] Bishop G., Fuchs H., McMillan L., Zagier E. J. S.: Frame-

less rendering: double buffering considered harmful. In SIGGRAPH

’94: Proceedings of the 21st annual conference on Computer graph-

ics and interactive techniques (New York, NY, USA, 1994), ACM

Press, pp. 175–176.

[BK08] Barsky B. A., Kosloff T. J.: Algorithms for rendering depth

of field effects in computer graphics. In ICCOMP’08: Proceedings of

the 12th WSEAS international conference on Computers (Stevens

Point, Wisconsin, USA, 2008), World Scientific and Engineering

Academy and Society (WSEAS), pp. 999–1010.

[BM98] Bolin M. R., Meyer G. W.: A perceptually based adaptive sam-

pling algorithm. In SIGGRAPH ’98 (1998), ACM Press, pp. 299–

309.

References 143

[BSP06] Bigler J., Stephens A., Parker S. G.: Design for parallel

interactive ray tracing systems. In in: Proceedings of IEEE Sympo-

sium on Interactive Ray Tracing (2006), pp. 187–196.

[Bun05] Bunnell M.: Dynamic ambient occlusion and indirect lighting.

GPU Gems 2 (2005), 223–233.

[BWG03] Bala K., Walter B., Greenberg D. P.: Combining edges and

points for interactive high-quality rendering. ACM Trans. Graph.

22, 3 (2003), 631–640.

[BWS03] Benthin C., Wald I., Slusallek P.: A Scalable Approach to

Interactive Global Illumination. Computer Graphics Forum 22, 3

(2003), 621–630. (Proceedings of Eurographics).

[BWS06] Boulos S., Wald I., Shirley P.: Geometric and Arithmetic

Culling Methods for Entire Ray Packets. Tech. rep., SCI Institute,

University of Utah, 2006.

[Cat74] Catmull E. E.: A subdivision algorithm for computer display of

curved surfaces. PhD thesis, The University of Utah, 1974.

[CCC87] Cook R. L., Carpenter L., Catmull E.: The reyes image

rendering architecture. In SIGGRAPH ’87: Proceedings of the 14th

annual conference on Computer graphics and interactive techniques

(New York, NY, USA, 1987), ACM Press, pp. 95–102.

[CCW03] Cater K., Chalmers A., Ward G.: Detail to Attention: Ex-

ploiting Visual Tasks for Selective Rendering. In Proceedings of the

Eurographics Symposium on Rendering (2003), pp. 270–280.

[CCWG88] Cohen M. F., Chen S. E., Wallace J. R., Greenberg D. P.:

A progressive refinement approach to fast radiosity image genera-

tion. In SIGGRAPH ’88 (1988), ACM Press, pp. 75–84.

[CG85] Cohen M. F., Greenberg D. P.: The hemi-cube: a radiosity

solution for complex environments. In SIGGRAPH ’85: Proceedings

of the 12th annual conference on Computer graphics and interactive

techniques (New York, NY, USA, 1985), ACM Press, pp. 31–40.

References 144

[CHCH06] Carr N. A., Hoberock J., Crane K., Hart J. C.: Fast gpu

ray tracing of dynamic meshes using geometry images. In GI ’06:

Proceedings of Graphics Interface 2006 (Toronto, Ont., Canada,

Canada, 2006), Canadian Information Processing Society, pp. 203–

209.

[Che90] Chen S. E.: Incremental radiosity: an extension of progressive

radiosity to an interactive image synthesis system. In SIGGRAPH

’90: Proceedings of the 17th annual conference on Computer graph-

ics and interactive techniques (New York, NY, USA, 1990), ACM,

pp. 135–144.

[CHH02] Carr N. A., Hall J. D., Hart J. C.: The ray engine. In

Graphics Hardware 2002 (Sept. 2002), pp. 37–46.

[CHH03] Carr N. A., Hall J. D., Hart J. C.: Gpu algorithms for

radiosity and subsurface scattering. In HWWS ’03: Proceedings

of the ACM SIGGRAPH/EUROGRAPHICS conference on Graph-

ics hardware (Aire-la-Ville, Switzerland, Switzerland, 2003), Euro-

graphics Association, pp. 51–59.

[CHL04] Coombe G., Harris M. J., Lastra A.: Radiosity on graph-

ics hardware. In GI ’04: Proceedings of Graphics Interface 2004

(School of Computer Science, University of Waterloo, Waterloo,

Ontario, Canada, 2004), Canadian Human-Computer Communica-

tions Society, pp. 161–168.

[Chr04] Christen M.: Implementing Ray Tracing on GPU. Master’s the-

sis, 2004.

[Chr06] Christensen P. H.: Ray tracing for the movie cars. In Pro-

ceedings of the 2006 IEEE Symposium on Interactive Ray Tracing

(September 2006), pp. 1–6.

[Chr08] Christensen P.: Irradiance caching in pixar’s renderman. In

SIGGRAPH ’08: ACM SIGGRAPH 2008 classes (New York, NY,

USA, 2008), ACM, pp. 1–26.

References 145

[CKL∗10] Choi B., Komuravelli R., Lu V., Sung H., Bocchino R. L.,

Adve S. V., Hart J. C.: Parallel sah k-d tree construction. In

Proceedings of High-Performance Graphics 2010 (2010).

[Cla76] Clark J. H.: Hierarchical geometric models for visible surface

algorithms. Commun. ACM 19, 10 (1976), 547–554.

[CLF∗03] Christensen P. H., Laur D. M., Fong J., Wooten W. L.,

Batali D.: Ray differentials and multiresolution geometry caching

for distribution ray tracing in complex scenes. Comput. Graph.

Forum 22, 3 (2003), 543–552.

[CPC84] Cook R. L., Porter T., Carpenter L.: Distributed ray trac-

ing. In SIGGRAPH ’84: Proceedings of the 11th annual conference

on Computer graphics and interactive techniques (New York, NY,

USA, 1984), ACM Press, pp. 137–145.

[CRMT91] Chen S. E., Rushmeier H. E., Miller G., Turner D.: A pro-

gressive multi-pass method for global illumination. In SIGGRAPH

’91 (1991), ACM Press, pp. 165–174.

[Cro77] Crow F. C.: Shadow algorithms for computer graphics. In SIG-

GRAPH ’77: Proceedings of the 4th annual conference on Computer

graphics and interactive techniques (New York, NY, USA, 1977),

ACM Press, pp. 242–248.

[CT81] Cook R. L., Torrance K. E.: A Reflectance Model for Com-

puter Graphics. In SIGGRAPH’81 (1981), ACM Press, pp. 307–

316.

[Dab10] Dabrovic M.: Sponza atrium, November 2010.

[Dal93] Daly S.: The Visible Differences Predictor: An Algorithm for the

Assessment of Image Fidelity. In Digital Images and Human Vision

(1993), A.B. Watson, MIT Press, Cambridge, MA, pp. 179–206.

[DB97] Diefenbach P. J., Badler N. I.: Multi-pass pipeline rendering:

realism for dynamic environments. In SI3D ’97: Proceedings of the

1997 symposium on Interactive 3D graphics (New York, NY, USA,

1997), ACM Press, pp. 59–ff.

References 146

[DBB06] Dutre P., Bala K., Bekaert P.: Advanced Global Illumina-

tion, 2nd Edition. A K Peters, Natick, MA, 2006.

[DCD08] Dubla P., Chalmers A., Debattista K.: An analysis of cache

awareness for interactive selective rendering. In Communications

Papers proceedings (2008), Skala V., (Ed.), WSCG.

[DDB∗09] Debattista K., Dubla P., Banterle F., Santos L. P.,

Chalmers A.: Instant caching for interactive global illumination.

Computer Graphics Forum 28, 8 (2009), 2216–2228.

[DDC09] Dubla P., Debattista K., Chalmers A.: Adaptive interleaved

sampling for interactive high-fidelity rendering. Computer Graphics

Forum (February 2009).

[DDSC09] Dubla P., Debattista K., Santos L. P., Chalmers A.:

Wait-Free Shared-Memory Irradiance Cache. pp. 57–64.

[Deb06] Debattista K.: Selective Rendering for High Fidelity Graphics.

PhD in Computer science, University of Bristol, 2006.

[Deb10] Debevec P.: High-resolution light probes, November 2010.

[DGR∗09] Dong Z., Grosch T., Ritschel T., Kautz J., Seidel H.-

P.: Real-time indirect illumination with clustered visibility. In

Proceedings of the Vision, Modeling, and Visualization Workshop

2009 (VMV 2009) (Braunschweig, Germany, 2009), Magnor M.,

Rosenhahn B., Theisel H., (Eds.), Otto-Von-Guericke-Universitt,

pp. 187–196.

[DHK08] Dammertz H., Hanika J., Keller A.: Shallow bounding vol-

ume hierarchies for fast SIMD ray tracing of incoherent rays. In

Computer Graphics Forum (Proc. 19th Eurographics Symposium on

Rendering) (2008), pp. 1225–1234.

[DHS04] Dmitriev K., Havran V., Seidel H.-P.: Faster Ray Trac-

ing with SIMD Shaft Culling. Research Report MPI-I-2004-4-006,

Max-Planck-Institut fr Informatik, Saarbrücken, Germany, Decem-

ber 2004.

References 147

[DHW∗07] Djeu P., Hunt W., Wang R., Elhassan I., Stoll G., Mark

W. R.: Razor: An architecture for dynamic multiresolution ray

tracing. ACM Trans. Graph. (2007).

[Dij68] Dijkstra E. W.: The structure of the “the”-multiprogramming

system. Commun. ACM 11, 5 (1968), 341–346.

[DKTS07] Dong Z., Kautz J., Theobalt C., Seidel H.-P.: Interactive

global illumination using implicit visibility. In Pacific Conference

on Computer Graphics and Applications (Washington, DC, USA,

2007), IEEE Computer Society.

[DL06] Donnelly W., Lauritzen A.: Variance shadow maps. In I3D

’06: Proceedings of the 2006 symposium on Interactive 3D graphics

and games (New York, NY, USA, 2006), ACM, pp. 161–165.

[DPH∗03] DeMarle D. E., Parker S., Hartner M., Gribble C.,

Hansen C.: Distributed interactive ray tracing for large volume vi-

sualization. In PVG ’03: Proceedings of the 2003 IEEE Symposium

on Parallel and Large-Data Visualization and Graphics (Washing-

ton, DC, USA, 2003), IEEE Computer Society, p. 12.

[DS97] Drettakis G., Sillion F. X.: Interactive update of global illu-

mination using a line-space hierarchy. In Proceedings of SIGGRAPH

97 (Aug. 1997), Computer Graphics Proceedings, Annual Confer-

ence Series, pp. 57–64.

[DS03] Dachsbacher C., Stamminger M.: Translucent shadow maps.

In EGRW ’03: Proceedings of the 14th Eurographics workshop on

Rendering (Aire-la-Ville, Switzerland, Switzerland, 2003), Euro-

graphics Association, pp. 197–201.

[DS05] Dachsbacher C., Stamminger M.: Reflective shadow maps.

In I3D ’05: Proceedings of the 2005 symposium on Interactive 3D

graphics and games (New York, NY, USA, 2005), ACM, pp. 203–

231.

[DS06] Dachsbacher C., Stamminger M.: Splatting indirect illumina-

tion. In I3D ’06: Proceedings of the 2006 symposium on Interactive

References 148

3D graphics and games (New York, NY, USA, 2006), ACM, pp. 93–

100.

[DSDD07] Dachsbacher C., Stamminger M., Drettakis G., Durand

F.: Implicit visibility and antiradiance for interactive global illumi-

nation. In SIGGRAPH ’07: ACM SIGGRAPH 2007 papers (New

York, NY, USA, 2007), ACM, p. 61.

[DSSC05] Debattista K., Sundstedt V., Santos L. P., Chalmers A.:

Selective component-based rendering. In GRAPHITE, 3rd Inter-

national Conference on Computer Graphics and Interactive Tech-

niques in Australasia and South East Asia (November 2005), ACM

Press, pp. 13–22.

[DWS∗88] Deering M., Winner S., Schediwy B., Duffy C., Hunt

N.: The triangle processor and normal vector shader: a vlsi system

for high performance graphics. In SIGGRAPH ’88: Proceedings of

the 15th annual conference on Computer graphics and interactive

techniques (New York, NY, USA, 1988), ACM, pp. 21–30.

[DWWL05] Dayal A., Woolley C., Watson B., Luebke D. P.: Adaptive

frameless rendering. In Rendering Techniques (2005), pp. 265–275.

[EG08] Ernst M., Greiner G.: Multi bounding volume hierarchies.

In Interactive Ray Tracing, 2008. RT 2008. IEEE Symposium on

(Aug. 2008), pp. 35–40.

[EMDT06] Estalella P., Martin I., Drettakis G., Tost D.: A gpu-

driven algorithm for accurate interactive reflections on curved ob-

jects. In Rendering Techniques (Proceedings of the Eurographics

Symposium on Rendering) (June 2006), Akenine-M” oller T., Hei-

drich W., (Eds.), Eurographics/ACM SIGGRAPH.

[Eve01] Everitt C.: Interactive order-independent transparency, 2001.

[EVG04] Ernst M., Vogelgsang C., Greiner G.: Stack implementa-

tion on programmable graphics hardware. In VMV (2004), pp. 255–

262.

References 149

[FBP08] Forest V., Barthe L., Paulin M.: Accurate Shadows by Depth

Complexity Sampling. Computer Graphics Forum, Eurographics

2008 Proceedings (2008).

[FD09] Fabianowski B., Dingliana J.: Interactive global photon map-

ping. Computer Graphics Forum 28, 4 (2009), 1151–1159.

[FHS04] Fich F., Hendler D., Shavit N.: On the inherent weakness of

conditional synchronization primitives. In In Proceedings of the 23rd

Annual ACM Symposium on Principles of Distributed Computing

(2004), ACM Press, pp. 80–87.

[FKN80] Fuchs H., Kedem Z. M., Naylor B. F.: On visible surface gen-

eration by a priori tree structures. In SIGGRAPH ’80: Proceedings

of the 7th annual conference on Computer graphics and interactive

techniques (New York, NY, USA, 1980), ACM, pp. 124–133.

[FP04] Farrugia J.-P., Péroche B.: A progressive rendering algorithm

using an adaptive perceptually based image metric. Comput. Graph.

Forum 23, 3 (2004), 605–614.

[FS05] Foley T., Sugerman J.: Kd-tree acceleration structures

for a gpu raytracer. In HWWS ’05: Proceedings of the ACM

SIGGRAPH/EUROGRAPHICS conference on Graphics hardware

(New York, NY, USA, 2005), ACM, pp. 15–22.

[FSPG97] Ferwerda J. A., Shirley P., Pattanaik S. N., Greenberg

D. P.: A model of visual masking for computer graphics. In SIG-

GRAPH ’97 (New York, NY, USA, 1997), ACM Press/Addison-

Wesley Publishing Co., pp. 143–152.

[FTI86] Fujimoto A., Tanaka T., Iwata K.: Arts: Accelerated

ray-tracing system. IEEE Computer Graphics and Applications 6

(1986), 16–26.

[GBP07] Gautron P., Bouatouch K., Pattanaik S.: Temporal radi-

ance caching. IEEE Transactions on Visualization and Computer

Graphics 13, 5 (2007), 891–901.

References 150

[GFW∗06] Günther J., Friedrich H., Wald I., Seidel H.-P.,

Slusallek P.: Ray tracing animated scenes using motion decom-

position. Computer Graphics Forum 25, 3 (Sept. 2006), 517–525.

(Proceedings of Eurographics).

[GGN∗08] Garland M., Grand S. L., Nickolls J., Anderson J.,

Hardwick J., Morton S., Phillips E., Zhang Y., Volkov

V.: Parallel computing experiences with cuda. IEEE Micro 28

(2008), 13–27.

[GH98] Ghazanfarpour D., Hasenfratz J.-M.: A beam tracing with

precise antialiasing for polyhedral scenes. Computer Graphics 22, 1

(1998), 103–115.

[GKBP05] Gautron P., Křivánek J., Bouatouch K., Pattanaik S.:

Radiance cache splatting: A GPU-friendly global illumination al-

gorithm. In Proceedings of Eurographics Symposium on Rendering

(June 2005).

[Gla84] Glassner A. S.: Space subdivision for fast ray tracing. IEEE

Computer Graphics Applications 4, 10 (Oct. 1984), 15–22.

[Gla95] Glassner A.: Principles of Digital Image Synthesis. Morgan

Kaufmann, 1995.

[GPSS07] Günther J., Popov S., Seidel H.-P., Slusallek P.: Re-

altime ray tracing on GPU with BVH-based packet traversal. In

Proceedings of the IEEE/Eurographics Symposium on Interactive

Ray Tracing 2007 (Sept. 2007), pp. 113–118.

[Gre99] Greenberg D. P.: A framework for realistic image synthesis.

Commun. ACM 42, 8 (1999), 44–53.

[GS87] Goldsmith J., Salmon J.: Automatic creation of object hierar-

chies for ray tracing. Computer Graphics and Applications, IEEE

7, 5 (May 1987), 14–20.

[GS08] Georgiev I., Slusallek P.: RTfact: Generic Concepts for

Flexible and High Performance Ray Tracing. In To appear in the

References 151

IEEE/Eurographics Symposium on Interactive Ray Tracing 2008

(Aug. 2008).

[GTGB84] Goral C. M., Torrance K. E., Greenberg D. P., Battaile

B.: Modeling the interaction of light between diffuse surfaces. SIG-

GRAPH Comput. Graph. 18, 3 (1984), 213–222.

[Guo98] Guo B.: Progressive radiance evaluation using directional coher-

ence maps. In SIGGRAPH ’98: Proceedings of the 25th annual

conference on Computer graphics and interactive techniques (New

York, NY, USA, 1998), ACM Press, pp. 255–266.

[Hav01] Havran V.: Heuristic Ray Shooting Algorithms. Ph.d. thesis,

Department of Computer Science and Engineering, Faculty of Elec-

trical Engineering, Czech Technical University in Prague, November

2001.

[Hec90] Heckbert P. S.: Adaptive radiosity textures for bidirectional ray

tracing. In SIGGRAPH ’90 (1990), ACM Press, pp. 145–154.

[Her88] Herlihy M. P.: Impossibility and universality results for wait-free

synchronization. In PODC ’88: Proceedings of the seventh annual

ACM Symposium on Principles of distributed computing (New York,

NY, USA, 1988), ACM, pp. 276–290.

[Her91] Herlihy M.: Wait-free synchronization. ACM Trans. Program.

Lang. Syst. 13, 1 (1991), 124–149.

[Her04] Hery C.: Rendering evolution at industrial light & magic. In

Rendering Techniques (2004), pp. 19–22.

[HH84] Heckbert P. S., Hanrahan P.: Beam tracing polygonal ob-

jects. In SIGGRAPH ’84: Proceedings of the 11th annual confer-

ence on Computer graphics and interactive techniques (New York,

NY, USA, 1984), ACM Press, pp. 119–127.

[HHS06] Havran V., Herzog R., Seidel H.-P.: On the fast construc-

tion of spatial data structures for ray tracing. Proceedings of IEEE

Symposium on Interactive Ray Tracing 2006 (Sept. 2006), 71–80.

References 152

[HLHS03] Hasenfratz J.-M., Lapierre M., Holzschuch N., Sillion

F.: A survey of real-time soft shadows algorithms. In Eurographics

(2003), Eurographics, Eurographics. State-of-the-Art Report.

[HMS06] Hunt W., Mark W. R., Stoll G.: Fast kd-tree construction

with an adaptive error-bounded heuristic. In 2006 IEEE Symposium

on Interactive Ray Tracing (Sept 2006), IEEE.

[HMYS01] Haber J., Myszkowski K., Yamauchi H., Seidel H.-P.: Per-

ceptually guided corrective splatting. In EG 2001 Proceedings,

Chalmers A., Rhyne T.-M., (Eds.), vol. 20(3). Blackwell Publishing,

2001, pp. 142–152.

[HS08] Herlihy M., Shavit N.: The Art of Multiprocessor Programming.

Morgan Kaufmann, March 2008.

[HSA91] Hanrahan P., Salzman D., Aupperle L.: A rapid hierarchical

radiosity algorithm. In SIGGRAPH ’91: Proceedings of the 18th

annual conference on Computer graphics and interactive techniques

(New York, NY, USA, 1991), ACM Press, pp. 197–206.

[HSHH07] Horn D. R., Sugerman J., Houston M., Hanrahan P.: In-

teractive k-d tree gpu raytracing. In I3D ’07: Proceedings of the

2007 symposium on Interactive 3D graphics and games (New York,

NY, USA, 2007), ACM, pp. 167–174.

[IDYN07] Iwasaki K., Dobashi Y., Yoshimoto F., Nishita T.: Pre-

computed radiance transfer for dynamics scene taking into account

light interreflection. In Eurographics Symposium on Rendering 2007

(2007), Eurographics.

[Ige99] Igehy H.: Tracing ray differentials. In SIGGRAPH ’99: Pro-

ceedings of the 26th annual conference on Computer graphics

and interactive techniques (New York, NY, USA, 1999), ACM

Press/Addison-Wesley Publishing Co., pp. 179–186.

[IKN98] Itti L., Koch C., Niebur E.: A model of Saliency-Based Vi-

sual Attention for Rapid Scene Analysis. In Pattern Analysis and

Machine Intelligence (1998), vol. 20, pp. 1254–1259.

References 153

[Int03] Intel: Software Developer’s Manual Volume 1: Basic Architecture.

Tech. rep., Intel Corporation, 2003.

[JC98] Jensen H. W., Christensen P. H.: Efficient simulation of

light transport in scences with participating media using photon

maps. In SIGGRAPH ’98: Proceedings of the 25th annual confer-

ence on Computer graphics and interactive techniques (New York,

NY, USA, 1998), ACM, pp. 311–320.

[JDZJ08] Jarosz W., Donner C., Zwicker M., Jensen H. W.: Ra-

diance caching for participating media. ACM Trans. Graph. 27, 1

(2008), 1–11.

[Jen01] Jensen H. W.: Realistic Image Synthesis Using Photon Mapping.

AK Peters, 2001.

[JIC∗09] Jin B., Ihm I., Chang B., Park C., Lee W., Jung S.: Selective

and adaptive supersampling for real-time ray tracing. In HPG ’09:

Proceedings of the Conference on High Performance Graphics 2009

(New York, NY, USA, 2009), ACM, pp. 117–125.

[Kaj86] Kajiya J. T.: The rendering equation. In SIGGRAPH ’86: Pro-

ceedings of the 13th annual conference on Computer graphics and

interactive techniques (New York, NY, USA, 1986), ACM Press,

pp. 143–150.

[KBPv06] Křivánek J., Bouatouch K., Pattanaik S. N., Žára J.:

Making radiance and irradiance caching practical: Adaptive caching

and neighbor clamping. In Rendering Techniques 2006, Euro-

graphics Symposium on Rendering (Nicosia, Cyprus, June 2006),

Akenine-Mller T., Heidrich W., (Eds.), Eurographics Association,

Eurographics Association.

[KCLU07] Kopf J., Cohen M., Lischinski D., Uyttendaele M.: Joint

bilateral upsampling. ACM Transactions on Graphics (Proceedings

of SIGGRAPH 2007) 26, 3 (2007), to appear.

[Kel97] Keller A.: Instant radiosity. In SIGGRAPH ’97: Proceedings

of the 24th annual conference on Computer graphics and interac-

References 154

tive techniques (New York, NY, USA, 1997), ACM Press/Addison-

Wesley Publishing Co., pp. 49–56.

[Kel98] Keller A.: Quasi-Monte Carlo Methods for Photorealisitic Image

Synthesis. PhD thesis, Shaker Verlag Aachen, 1998.

[KGBP05] Křivánek J., Gautron P., Bouatouch K., Pattanaik S.:

Improved radiance gradient computation. In SCCG ’05: Proceed-

ings of the 21st spring conference on Computer graphics (New York,

NY, USA, 2005), ACM Press, pp. 155–159.

[KGPB05] Křivánek J., Gautron P., Pattanaik S., Bouatouch K.:

Radiance caching for efficient global illumination computation.

IEEE Transactions on Visualization and Computer Graphics 11,

5 (2005), 550–561.

[KGW∗07] Křivánek J., Gautron P., Ward G., Arikan O., Jensen

H. W.: Practical global illumination with irradiance caching. In

ACM SIGGRAPH 2007 courses (New York, NY, USA, 2007), SIG-

GRAPH ’07, ACM.

[KH84] Kajiya J. T., Herzen B. P. V.: Ray tracing volume densities.

SIGGRAPH Comput. Graph. 18, 3 (1984), 165–174.

[KH95] Keates M. J., Hubbold R. J.: Interactive ray tracing on a

virtual shared-memory parallel computer. Comput. Graph. Forum

14, 4 (1995), 189–202.

[KH01] Keller A., Heidrich W.: Interleaved sampling. In Proceed-

ings of the 12th Eurographics Workshop on Rendering Techniques

(London, UK, 2001), Springer-Verlag, pp. 269–276.

[KK02] Kollig T., Keller A.: Efficient multidimensional sampling.

Computer Graphics Forum 21, 3 (Sept. 2002), 557–563.

[KLC06] Keng S.-L., Lee W.-Y., Chuang J.-H.: An efficient caching-

based rendering of translucent materials. Vis. Comput. 23, 1 (2006),

59–69.

References 155

[KMG99] Koholka R., Mayer H., Goller A.: Mpi-parallelized radi-

ance on sgi cow and smp. In ParNum ’99: Proceedings of the 4th

International ACPC Conference Including Special Tracks on Par-

allel Numerics and Parallel Computing in Image Processing, Video

Processing, and Multimedia (1999), Springer-Verlag, pp. 549–558.

[KO08] Ki H., Oh K.: A gpu-based light hierarchy for real-time approxi-

mate illumination. The Visual Computer 24, 7-9 (July 2008), 649–

658.

[Lai10] Laine S.: Restart trail for stackless BVH traversal. In Proceedings

of High-Performance Graphics 2010 (2010).

[Lam60] Lambert J. H.: I.H. Lambert Photometria, sive, De mensura

et gradibus luminis, colorum et umbrae [microform]. V.E. Klett,

Augustae Vindelicorum :, 1760.

[LC04] Larsen B. D., Christensen N.: Simulating photon mapping for

real-time applications. In Eurographics Symposium on Rendering

(jun 2004), Henrik Wann Jensen A. K., (Ed.).

[LGS∗09] Lauterbach C., Garland M., Sengupta S., Luebke D.,

Manocha D.: Fast bvh construction on gpus. Comput. Graph.

Forum 28, 2 (2009), 375–384.

[LH01] Luebke D. P., Hallen B.: Perceptually-driven simplification

for interactive rendering. In Proceedings of the 12th Eurographics

Workshop on Rendering Techniques (London, UK, 2001), Springer-

Verlag, pp. 223–234.

[LKC09] Lee S., Kim G. J., Choi S.: Real-time tracking of visually at-

tended objects in virtual environments and its application to lod.

IEEE Transactions on Visualization and Computer Graphics 15

(2009), 6–19.

[LLAm01] Lext J., , Lext J., Akenine-mller T.: Eurographics 2001 /

jonathan c. roberts short presentations towards rapid reconstruction

for animated ray tracing, 2001.

References 156

[LSK∗07] Laine S., Saransaari H., Kontkanen J., Lehtinen J., Aila

T.: Incremental instant radiosity for real-time indirect illumina-

tion. In Proceedings of Eurographics Symposium on Rendering 2007

(2007), Eurographics Association, pp. xx–yy.

[LSSS04] Liu X., Sloan P.-P. J., Shum H.-Y., Snyder J.: All-frequency

precomputed radiance transfer for glossy objects. In Rendering

Techniques (2004), pp. 337–344.

[LW93] Lafortune E. P., Willems Y. D.: Bidirectional Path Tracing.

In 3rd International Conference on Computational Graphics and

Visualization Techniques (Alvor, Portugal, 1993), pp. 145–153.

[LWC∗02] Luebke D., Watson B., Cohen J. D., Reddy M., Varshney

A.: Level of Detail for 3D Graphics. Elsevier Science Inc., New

York, NY, USA, 2002.

[LYTM06] Lauterbach C., Yoon S.-E., Tuft D., Manocha D.: RT-

DEFORM: Interactive Ray Tracing of Dynamic Scenes using BVHs.

In 2006 IEEE Symposium on Interactive Ray Tracing (2006),

pp. 39–45.

[MB90] MacDonald D. J., Booth K. S.: Heuristics for ray tracing

using space subdivision. Vis. Comput. 6, 3 (1990), 153–166.

[MCTR98] McNamara A., Chalmers A., Troscianko T., Reinhard

E.: Fidelity of graphics reconstructions: A psychophysical investi-

gation. In Proceedings of the 9th Eurographics Rendering Workshop

(June 1998), Springer Verlag, pp. 237–246.

[MDMS05] Mantiuk R., Daly S., Myszkowski K., Seidel H.-P.:

Predicting Visible Differences in High Dynamic Range Images -

Model and its Calibration. Human Vision and Electronic Imaging

X, IS&T/SPIE’s 17th Annual Symposium on Electronic Imaging

(2005), 204–214.

[Mit87] Mitchell D. P.: Generating antialiased images at low sampling

densities. In SIGGRAPH ’87 (1987), ACM Press, pp. 65–72.

References 157

[Mit07] Mittring M.: Finding next gen: Cryengine 2. In SIGGRAPH

’07: ACM SIGGRAPH 2007 courses (New York, NY, USA, 2007),

ACM, pp. 97–121.

[ML92] Meyer G., Liu A.: Color spatial acuity control of a screen sub-

division image synthesis algorithm. In In Human Vision, Visual

Processing, and Digital Display III (1992).

[ML09] McGuire M., Luebke D.: Hardware-accelerated global illumi-

nation by image space photon mapping. In Proceedings of the 2009

ACM SIGGRAPH/EuroGraphics conference on High Performance

Graphics (New York, NY, USA, August 2009), ACM.

[MM02] Ma V. C. H., McCool M. D.: Low latency photon map-

ping using block hashing. In HWWS ’02: Proceedings of the ACM

SIGGRAPH/EUROGRAPHICS conference on Graphics hardware

(Aire-la-Ville, Switzerland, Switzerland, 2002), Eurographics Asso-

ciation, pp. 89–99.

[MMAM07] Mansson E., Munkberg J., Akenine-Moller T.: Deep co-

herent ray tracing. In Interactive Ray Tracing, 2007. RT ’07. IEEE

Symposium on (Sept. 2007), pp. 79–85.

[Mun08] Munshi A.: OpenCL. Parallel Computing on the GPU and CPU,

SIGGRAPH (2008).

[Muu95] Muuss M. J.: Towards real-time ray-tracing of combinatorial

solid geometric models. In Proceedings of BRL-CAD Symposium

’95 (June 1995).

[Mys98] Myszkowski K.: The visible differences predictor: Applications

to global illumination problems. In Rendering Techniques (1998),

pp. 223–236.

[NFLM07] Navratil P., Fussell D., Lin C., Mark W.: Dynamic ray

scheduling to improve ray coherence and bandwidth utilization. In

Interactive Ray Tracing, 2007. RT ’07. IEEE Symposium on (Sept.

2007), pp. 95–104.

References 158

[Nic65] Nicodemus F. E.: Directional reflectance and emissivity of an

opaque surface. Appl. Opt. 4, 7 (1965), 767–773.

[NMN87] Nishita T., Miyawaki Y., Nakamae E.: A shading model for

atmospheric scattering considering luminous intensity distribution

of light sources. SIGGRAPH Comput. Graph. 21, 4 (1987), 303–310.

[NO97] Nakamaru K., Ohno Y.: Breadth-first ray tracing utilizing uni-

form spatial subdivision. IEEE Transactions on Visualization and

Computer Graphics 3, 4 (1997), 316–328.

[NPG03] Nijasure M., Pattanaik S., Goel V.: Interactive global illu-

mination in dynamic environments using commodity graphics hard-

ware. Computer Graphics and Applications, Pacific Conference on

0 (2003), 450.

[NPG04] Nijasure M., Pattanaik S., Goel V.: Real-time global illumi-

nation on the gpu. JOURNAL OF GRAPHICS TOOLS 10 (2004),

55–71.

[NW09] Nichols G., Wyman C.: Multiresolution splatting for indirect

illumination. In I3D ’09: Proceedings of the 2009 symposium on

Interactive 3D graphics and games (New York, NY, USA, 2009),

ACM, pp. 83–90.

[OB07] Oliveira M. M., Brauwers M.: Real-time refraction through

deformable objects. In I3D ’07: Proceedings of the 2007 symposium

on Interactive 3D graphics and games (New York, NY, USA, 2007),

ACM, pp. 89–96.

[OHM∗04] O’Sullivan C., Howlett S., McDonnell R., Morvan Y.,

O’Conor K.: Perceptually adaptive graphics. In Eurographics

State of the Art Reports (2004).

[OR98] Ofek E., Rappoport A.: Interactive reflections on curved ob-

jects. In SIGGRAPH ’98: Proceedings of the 25th annual conference

on Computer graphics and interactive techniques (New York, NY,

USA, 1998), ACM Press, pp. 333–342.

References 159

[ORDP96] Orti R., Rivière S., Durand F., Puech C.: Radiosity for

dynamic scenes in flatland with the visibility complex. In Computer

Graphics Forum (Proc. of Eurographics ’96) (Poitiers, France, Sep

1996), Rossignac J., Sillion F., (Eds.), vol. 16, pp. 237–249.

[ORM08] Overbeck R., Ramamoorthi R., Mark W. R.: Large Ray

Packets for Real-time Whitted Ray Tracing. In IEEE/EG Sympo-

sium on Interactive Ray Tracing (IRT) (Aug 2008), pp. 41—-48.

[Pat93] Pattanaik S. N.: Computational Methods for Global Illumination

and Visualisation of Complex 3D Environments. PhD thesis, Na-

tional Institute for Software Technology, Bombay, February 1993.

[PBD∗10] Parker S. G., Bigler J., Dietrich A., Friedrich H., Hobe-

rock J., Luebke D., McAllister D., McGuire M., Morley

K., Robison A., Stich M.: Optix: A general purpose ray tracing

engine. ACM Transactions on Graphics (August 2010).

[PBMH02] Purcell T. J., Buck I., Mark W. R., Hanrahan P.: Ray

tracing on programmable graphics hardware. ACM Transactions on

Graphics 21, 3 (July 2002), 703–712. ISSN 0730-0301 (Proceedings

of ACM SIGGRAPH 2002).

[PDC∗03] Purcell T. J., Donner C., Cammarano M., Jensen H. W.,

Hanrahan P.: Photon mapping on programmable graphics hard-

ware. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS

Conference on Graphics Hardware (2003), Eurographics Associa-

tion, pp. 41–50.

[Per85] Perlin K.: An image synthesizer. In SIGGRAPH ’85: Proceedings

of the 12th annual conference on Computer graphics and interactive

techniques (New York, NY, USA, 1985), ACM Press, pp. 287–296.

[PGSS06] Popov S., Günther J., Seidel H.-P., Slusallek P.: Experi-

ences with streaming construction of SAH KD-trees. In Proceedings

of the 2006 IEEE Symposium on Interactive Ray Tracing (Sept.

2006), pp. 89–94.

References 160

[PGSS07] Popov S., Günther J., Seidel H.-P., Slusallek P.: Stack-

less kd-tree traversal for high performance GPU ray tracing. Com-

puter Graphics Forum 26, 3 (Sept. 2007), 415–424. (Proceedings of

Eurographics).

[PH04] Pharr M., Humphreys G.: Physically Based Rendering: From

Theory to Implementation. Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, 2004.

[PKGH97] Pharr M., Kolb C., Gershbein R., Hanrahan P.: Rendering

complex scenes with memory-coherent ray tracing. In SIGGRAPH

’97: Proceedings of the 24th annual conference on Computer graph-

ics and interactive techniques (New York, NY, USA, 1997), ACM

Press/Addison-Wesley Publishing Co., pp. 101–108.

[PL10] Pantaleoni J., Luebke D.: Hlbvh: Hierarchical lbvh construc-

tion for real-time ray tracing of dynamic geometry. In Proceedings

of High-Performance Graphics 2010 (2010).

[PMS∗99] Parker S., Martin W., Sloan P.-P. J., Shirley P., Smits

B., Hansen C.: Interactive Ray Tracing. In 1999 Symposium

Interactive 3D Computer Graphics (1999), pp. 119–126.

[PPL∗99] Parker S., Parker M., Livnat Y., Sloan P.-P., Hansen C.,

Shirley P. S.: Interactive ray tracing for volume visualization.

IEEE Transactions on Visualization and Computer Graphics 5, 3

(July/Sept. 1999), 238–250.

[PS89] Painter J., Sloan K.: Antialiased ray tracing by adaptive pro-

gressive refinement. In SIGGRAPH ’89 (New York, NY, USA,

1989), ACM Press, pp. 281–288.

[PSL∗98] Parker S., Shirley P. S., Livnat Y., Hansen C., Sloan

P.-P.: Interactive ray tracing for isosurface rendering. In IEEE

Visualization ’98 (Oct. 1998), pp. 233–238.

[PWL∗07] Pan M., Wang R., Liu X., Peng Q., Bao H.: Precomputed ra-

diance transfer field for rendering interreflections in dynamic scenes.

Computer Graphics Forum 26, 3 (2007).

References 161

[RAH07] Roger D., Assarsson U., Holzschuch N.: Whitted ray-

tracing for dynamic scenes using a ray-space hierarchy on the

gpu. In Rendering Techniques 2007 (Proceedings of the Eurograph-

ics Symposium on Rendering) (jun 2007), Kautz J., Pattanaik S.,

(Eds.), Eurographics and ACM/SIGGRAPH, the Eurographics As-

sociation, pp. 99–110.

[RCLL99] Robertson D., Campbell K., Lau S., Ligocki T.: Par-

allelization of radiance for real time interactive lighting visual-

ization walkthroughs. In Supercomputing ’99: Proceedings of the

1999 ACM/IEEE conference on Supercomputing (CDROM) (1999),

ACM Press, p. 61.

[REG∗09] Ritschel T., Engelhardt T., Grosch T., Seidel H.-P.,

Kautz J., Dachsbacher C.: Micro-rendering for scalable, par-

allel final gathering. ACM Trans. Graph. (Proc. SIGGRAPH Asia

2009) 28, 5 (2009).

[Res06] Reshetov A.: Omnidirectional ray tracing traversal algorithm

for kd-trees. In Interactive Ray Tracing 2006, IEEE Symposium on

(Sept. 2006), pp. 57–60.

[Res07] Reshetov A.: Faster ray packets - triangle intersection through

vertex culling. In Interactive Ray Tracing, 2007. RT ’07. IEEE

Symposium on (Sept. 2007), pp. 105–112.

[RGK∗08] Ritschel T., Grosch T., Kim M. H., Seidel H.-P., Dachs-

bacher C., Kautz J.: Imperfect shadow maps for efficient com-

putation of indirect illumination. ACM Trans. Graph. 27, 5 (2008),

1–8.

[RGKS08] Ritschel T., Grosch T., Kautz J., Seidel H.-P.: Interactive

global illumination based on coherent surface shadow maps. In GI

’08: Proceedings of graphics interface 2008 (Toronto, Ont., Canada,

Canada, 2008), Canadian Information Processing Society, pp. 185–

192.

[RGS09] Ritschel T., Grosch T., Seidel H.-P.: Approximating dy-

namic global illumination in image space. In I3D ’09: Proceedings

References 162

of the 2009 symposium on Interactive 3D graphics and games (New

York, NY, USA, 2009), ACM, pp. 75–82.

[RPG99] Ramasubramanian M., Pattanaik S. N., Greenberg D. P.:

A perceptually based physical error metric for realistic image syn-

thesis. In SIGGRAPH ’99 (1999), ACM Press/Addison-Wesley

Publishing Co., pp. 73–82.

[RSH00] Reinhard E., Smits B. E., Hansen C.: Dynamic acceleration

structures for interactive ray tracing. In Proceedings of the Euro-

graphics Workshop on Rendering Techniques 2000 (London, UK,

2000), Springer-Verlag, pp. 299–306.

[RSH05] Reshetov A., Soupikov A., Hurley J.: Multi-level ray tracing

algorithm. ACM Trans. Graph. 24, 3 (2005), 1176–1185.

[RW80] Rubin S. M., Whitted T.: A 3-dimensional representation for

fast rendering of complex scenes. In SIGGRAPH ’80: Proceedings

of the 7th annual conference on Computer graphics and interactive

techniques (New York, NY, USA, 1980), ACM, pp. 110–116.

[RWPD05] Reinhard E., Ward G., Pattanaik S., Debevec P.:. Morgan

Kaufmann Publishers, December 2005.

[SBB∗06] Stephens A., Boulos S., Bigler J., Wald I., Parker S. G.:

An Application of Scalable Massive Model Interaction using Shared

Memory Systems. In Proceedings of the 2006 Eurographics Sympo-

sium on Parallel Graphics and Visualization (2006), pp. 19–26.

[Sch06] Schmittler J.: SaarCOR - A Hardware-Architecture for Realtime

Ray Tracing. PhD thesis, Saarland University, 2006.

[SCM04] Sundstedt V., Chalmers A., Martinez P.: High fidelity re-

construction of the ancient egyptian temple of kalabsha. In AFRI-

GRAPH 2004 (November 2004), ACM SIGGRAPH.

[SFWG04] Stokes W. A., Ferwerda J. A., Walter B., Greenberg

D. P.: Perceptual illumination components: a new approach to

efficient, high quality global illumination rendering. ACM Trans.

Graph. 23, 3 (2004), 742–749.

References 163

[SGNS07] Sloan P.-P., Govindaraju N. K., Nowrouzezahrai D.,

Snyder J.: Image-based proxy accumulation for real-time soft

global illumination. In PG ’07: Proceedings of the 15th Pacific

Conference on Computer Graphics and Applications (Washington,

DC, USA, 2007), IEEE Computer Society, pp. 97–105.

[SHHS03] Sloan P.-P., Hall J., Hart J., Snyder J.: Clustered principal

components for precomputed radiance transfer. ACM Trans. Graph.

22, 3 (2003), 382–391.

[Shi90] Shirley P.: A ray tracing method for illumination calculation

in diffuse-specular scenes. In Proceedings of Graphics Interface ’90

(Toronto, Ontario, 1990), Canadian Information Processing Society,

pp. 205–12.

[SHSS00] Stamminger M., Haber J., Schirmacher H., Seidel H.-P.:

Walkthroughs with corrective texturing. In Rendering Techniques

2000 (Proceedings of the Eleventh Eurographics Workshop on Ren-

dering) (New York, NY, 2000), Peroche B., Rushmeier H., (Eds.),

Springer Wien, pp. 377–388.

[SIMP06a] Segovia B., Iehl J.-C., Mitanchey R., Péroche B.: Bidi-

rectional instant radiosity. In Proceedings of the 17th Eurographics

Workshop on Rendering, to appear (2006).

[SIMP06b] Segovia B., Iehl J.-C., Mitanchey R., Péroche B.: Non-

interleaved deferred shading of interleaved sample patterns. In Pro-

ceedings of SIGGRAPH/Eurographics Workshop on Graphics Hard-

ware 2006, to appear (2006).

[SIP07] Segovia B., Iehl J.-C., Péroche B.: Metropolis instant ra-

diosity. In Proceedings of Eurographics 2007, to appear (2007).

[SKDM05] Smyk M., Kinuwaki S., Durikovic R., Myskowski K.: Tem-

porally coherent irradiance caching for high quality animation ren-

dering. Computer Graphics Forum 24, 3 (2005), 401–412.

[SKS02] Sloan P.-P., Kautz J., Snyder J.: Precomputed radiance

transfer for real-time rendering in dynamic, low-frequency lighting

References 164

environments. In SIGGRAPH ’02: Proceedings of the 29th annual

conference on Computer graphics and interactive techniques (New

York, NY, USA, 2002), ACM Press, pp. 527–536.

[SM03] Shirley P., Morley R. K.: Realistic Ray Tracing. A. K. Peters,

Ltd., Natick, MA, USA, 2003.

[SP89] Sillion F. X., Puech C.: A general two-pass method integrating

specular and diffuse reflection. In SIGGRAPH ’89 (1989), ACM

Press, pp. 335–344.

[SP94] Sillion F. X., Puech C.: Radiosity and Global Illumination.

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1994.

[SSH∗98] Slusallek P., Stamminger M., Heidrich W., Popp J.-C.,

Seidel H.-P.: Composite lighting simulations with lighting net-

work. IEEE Computer Graphics and Applications 18, 2 (/1998),

22–31.

[SSK07] Shevtsov M., Soupikov A., Kapustin A.: Highly parallel fast

kd-tree construction for interactive ray tracing of dynamic scenes.

ACM Trans. Graph. 26, 3 (2007).

[SSW∗06] Shirley P., Slussallek P., Wald I., Mark W., Stoll G.,

Minocha D., Stephens A.: Interactive ray tracing. In SIG-

GRAPH ’06: Proceedings of the conference on SIGGRAPH 2006

course notes (New York, NY, USA, 2006), ACM Press.

[TL04] Tabellion E., Lamorlette A.: An approximate global illu-

mination system for computer generated films. In SIGGRAPH ’04:

ACM SIGGRAPH 2004 Papers (New York, NY, USA, 2004), ACM,

pp. 469–476.

[TM98] Tomasi C., Manduchi R.: Bilateral filtering for gray and color

images. iccv 00 (1998), 839.

[TMS04] Tawara T., Myszkowski K., Seidel H.-P.: Exploiting tempo-

ral coherence in final gathering for dynamic scenes. cgi 00 (2004),

110–119.

References 165

[TPWG02] Tole P., Pellacini F., Walter B., Greenberg D.: Inter-

active Global Illumination in Dynamic Scenes. In SIGGRAPH’02

(2002), ACM Press.

[Tsa09] Tsakok J. A.: Faster incoherent rays: Multi-bvh ray stream trac-

ing. In HPG ’09: Proceedings of the Conference on High Perfor-

mance Graphics 2009 (New York, NY, USA, 2009), ACM, pp. 151–

158.

[TSr05] Thrane N., Simonsen L. O., rbk A. P.: A comparison of

acceleration structures for GPU assisted ray tracing. Master’s thesis,

2005.

[VALBW06] Velázquez-Armendáriz E., Lee E., Bala K.,

Walter B.: Implementing the render cache and the edge-and-

point image on graphics hardware. In GI ’06: Proceedings of the

2006 conference on Graphics interface (Toronto, Ont., Canada,

Canada, 2006), Canadian Information Processing Society, pp. 211–

217.

[VG94] Veach E., Guibas L. J.: Bidirectional Estimators for Light

Transport. In Fifthe Eurographics Workshop on Rendering (1994).

[VG97] Veach E., Guibas L. J.: Metropolis light transport. In SIG-

GRAPH ’97: Proceedings of the 24th annual conference on Com-

puter graphics and interactive techniques (New York, NY, USA,

1997), ACM Press/Addison-Wesley Publishing Co., pp. 65–76.

[WABG06] Walter B., Arbree A., Bala K., Greenberg D. P.: Multi-

dimensional lightcuts. ACM Trans. Graph. 25, 3 (2006), 1081–1088.

[Wal04] Wald I.: Realtime Ray Tracing and Interactive Global Illumina-

tion. PhD thesis, Saarland University (2004).

[Wal07] Wald I.: On fast Construction of SAH based Bounding Volume

Hierarchies. In SIGGRAPH ’07 (2007).

[War91a] Ward G.: Real pixels. Graphics Gems 2 (1991), 15–31.

[War91b] Ward G. J.: Adaptive shadow testing for ray tracing. In 2nd

Annual Eurographics Workshop on Rendering (1991), pp. 11–20.

References 166

[War94] Ward G. J.: The radiance lighting simulation and rendering sys-

tem. In SIGGRAPH ’94: Proceedings of the 21st annual conference

on Computer graphics and interactive techniques (New York, NY,

USA, 1994), ACM Press, pp. 459–472.

[Wat93] Watt A.: 3d Computer Graphics. Addison-Wesley Longman Pub-

lishing Co., Inc., Boston, MA, USA, 1993.

[WBB08] Wald I., Benthin C., Boulos S.: Getting rid of packets - effi-

cient simd single-ray traversal using multi-branching bvhs -. In In-

teractive Ray Tracing, 2008. RT 2008. IEEE Symposium on (Aug.

2008), pp. 49–57.

[WBS02] Wald I., Benthin C., Slusallek P.: A Simple and Practical

Method for Interactive Ray Tracing of Dynamic Scenes. Tech. rep.,

Saarland University, Germany, 2002.

[WBS03] Wald I., Benthin C., Slusallek P.: Interactive global illu-

mination in complex and highly occluded environments. In EGRW

’03: Proceedings of the 14th Eurographics workshop on Rendering

(Aire-la-Ville, Switzerland, Switzerland, 2003), Eurographics Asso-

ciation, pp. 74–81.

[WBS07] Wald I., Boulos S., Shirley P.: Ray tracing deformable scenes

using dynamic bounding volume hierarchies. ACM Trans. Graph.

26, 1 (2007), 6.

[WCG87] Wallace J. R., Cohen M. F., Greenberg D. P.: A two-

pass solution to the rendering equation: A synthesis of ray tracing

and radiosity methods. In SIGGRAPH ’87 (1987), ACM Press,

pp. 311–320.

[WDG02] Walter B., Dettrakis G., Greenberg D. P.: Enhancing and

Optimizing the Render Cache. In Thirtennth Eurographics Work-

shop on Rendering (2002).

[WDP99] Walter B., Drettakis G., Parker S.: Interactive rendering

using the render cache. In Rendering techniques ’99 (June 1999),

Lischinski D., Larson G., (Eds.), vol. 10, pp. 235–246.

References 167

[WFA∗05] Walter B., Fernandez S., Arbree A., Bala K., Donikian

M., Greenberg D. P.: Lightcuts: a scalable approach to illumi-

nation. In SIGGRAPH ’05: ACM SIGGRAPH 2005 Papers (2005),

ACM Press, pp. 1098–1107.

[WGBK07] Wald I., Gribble C. P., Boulos S., Kensler A.: SIMD

Ray Stream Tracing - SIMD Ray Traversal with Generalized Ray

Packets and On-the-fly Re-Ordering. Tech. Rep. UUSCI-2007-012,

SCI Institute, University of Utah, 2007.

[WH92] Ward G., Heckbert P.: Irradiance Gradients. In 3rd Annual

Eurographics Workshop on Rendering (Bristol, UK, 1992).

[Whi80] Whitted T.: An improved illumination model for shaded display.

In SIGGRAPH ’80 (1980), ACM Press, p. 14.

[WIK∗06] Wald I., Ize T., Kensler A., Knoll A., Parker S. G.: Ray

Tracing Animated Scenes using Coherent Grid Traversal. ACM

Transactions on Graphics (2006), 485–493. (Proceedings of ACM

SIGGRAPH 2006).

[Wil78] Williams L.: Casting curved shadows on curved surfaces. In SIG-

GRAPH ’78: Proceedings of the 5th annual conference on Computer

graphics and interactive techniques (New York, NY, USA, 1978),

ACM Press, pp. 270–274.

[WIP08] Wald I., Ize T., Parker S. G.: Fast, parallel, and asynchronous

construction of bvhs for ray tracing animated scenes. Computers &

Graphics 32, 1 (Feb. 2008), 3–13.

[WK06] Wächter C., Keller A.: Instant Ray Tracing: The Bounding

Interval Hierarchy. In Rendering Techniques 2006 (Proc. of 17th

Eurographics Symposium on Rendering) (2006), Akenine-Möller T.,

Heidrich W., (Eds.), pp. 139–149.

[WKB∗02] Wald I., Kollig T., Benthin C., Keller A., Slusallek P.:

Interactive global illumination using fast ray tracing. In EGRW ’02:

Proceedings of the 13th Eurographics workshop on Rendering (Aire-

la-Ville, Switzerland, Switzerland, 2002), Eurographics Association,

pp. 15–24.

References 168

[WLWD03] Woolley C., Luebke D., Watson B., Dayal A.: Interruptible

rendering. In SI3D ’03: Proceedings of the 2003 symposium on

Interactive 3D graphics (New York, NY, USA, 2003), ACM Press,

pp. 143–151.

[WRC88] Ward G. J., Rubinstein F. M., Clear R. D.: A ray tracing

solution for diffuse interreflection. In SIGGRAPH ’88 (1988), ACM

Press, pp. 85–92.

[WS99] Ward G., Simmons M.: The holodeck ray cache: an interactive

rendering system for global illumination in nondiffuse environments.

ACM Trans. Graph. 18, 4 (1999), 361–368.

[WSB01] Wald I., Slusallek P., Benthin C.: Interactive Distributed

Ray Tracing of Highly Complex Models. In 12th EUROGRAPHICS

Workshop on Rendering (London, United Kingdom, June 2001),

pp. 274–285.

[WSBW01] Wald I., Slusallek P., Benthin C., Wagner M.: Interactive

Rendering With Coherent Raytracing. In EUROGRAPHICS 2001

(Manchester, United Kingdom, September 2001), pp. 153–164.

[WTL06] Wang R., Tran J., Luebke D.: All-frequency relighting of

glossy objects. ACM Trans. Graph. 25, 2 (2006), 293–318.

[Wym05] Wyman C.: An approximate image-space approach for interactive

refraction. ACM Trans. Graph. 24, 3 (2005), 1050–1053.

[Wym08] Wyman C.: Hierarchical caustic maps. In I3D ’08: Proceedings

of the 2008 symposium on Interactive 3D graphics and games (New

York, NY, USA, 2008), ACM, pp. 163–171.

[WZPB09] Wang R., Zhou K., Pan M., Bao H.: An efficient gpu-based

approach for interactive global illumination. In SIGGRAPH ’09

(2009).

[YCM07] Yoon S.-E., Curtis S., Manocha D.: Ray tracing dynamic

scenes using selective restructuring. In SIGGRAPH ’07: ACM SIG-

GRAPH 2007 sketches (New York, NY, USA, 2007), ACM, p. 55.

References 169

[YPG01] Yee H., Pattanaik S., Greenberg D. P.: Spatiotemporal

sensitivity and visual attention for efficient rendering of dynamic

environments. ACM Trans. Graph. 20, 1 (2001), 39–65.

[YWC∗10] Yao C., Wang B., Chan B., Yong J., Paul J.-C.: Multi-

image based photon tracing for interactive global illumination of

dynamic scenes. Computer Graphics Forum 29 (June 2010), 1315–

1324(10).

[YYM05] Yu J., Yang J., McMillan L.: Real-time reflection mapping

with parallax. In I3D ’05: Proceedings of the 2005 symposium on

Interactive 3D graphics and games (New York, NY, USA, 2005),

ACM, pp. 133–138.

[ZHL∗05] Zhou K., Hu Y., Lin S., Guo B., Shum H.-Y.: Precomputed

shadow fields for dynamic scenes. ACM Trans. Graph. 24, 3 (2005),

1196–1201.

[ZHWG08] Zhou K., Hou Q., Wang R., Guo B.: Real-time kd-tree con-

struction on graphics hardware. ACM Trans. Graph. 27, 5 (2008),

1–11.

APPENDIX A

Adaptive Interleaved Sampling

This appendix contains the full result set for Chapter 5 and consists of the fol-

lowing figures:

• A.1 - Indirect diffuse (ID).

• A.2 - Guidance ID.

• A.3 - Soft shadows (SS).

• A.4 - Guidance SS.

• A.5 - Participating Media (PM).

• A.6 - Guidance PM.

• A.7 - Instant Global Illumination (IGI).

• A.8 - AIS with maximum samples (A-MAX).

• A.9 - Path-traced reference (PT).

• A.10 - VDP results for AIS vs. PT.

• A.11 - VDP results for A-MAX vs. PT.

• A.12 - VDP results for IGI vs. PT.

170

A. Adaptive Interleaved Sampling 171

(a) Cornell (b) Subdivided

(c) Deskar (d) Office

(e) Shirley6 (f) Desk

(g) Conference (h) Sibenik

Figure A.1: Indirect diffuse (ID).

A. Adaptive Interleaved Sampling 172

(a) Cornell (b) Subdivided

(c) Deskar (d) Office

(e) Shirley6 (f) Desk

(g) Conference (h) Sibenik

Figure A.2: Guidance ID.

A. Adaptive Interleaved Sampling 173

(a) Cornell (b) Subdivided

(c) Deskar (d) Office

(e) Shirley6 (f) Desk

(g) Conference (h) Sibenik

Figure A.3: Soft shadows (SS).

A. Adaptive Interleaved Sampling 174

(a) Cornell (b) Subdivided

(c) Deskar (d) Office

(e) Shirley6 (f) Desk

(g) Conference (h) Sibenik

Figure A.4: Guidance SS.

A. Adaptive Interleaved Sampling 175

(a) SubdividedPM (b) OfficePM

(c) Shirley6PM

Figure A.5: Participating Media (PM).

A. Adaptive Interleaved Sampling 176

(a) SubdividedPM (b) OfficePM

(c) Shirley6PM

Figure A.6: Guidance PM.

A. Adaptive Interleaved Sampling 177

(a) Cornell (b) Subdivided

(c) Deskar (d) Office

(e) Shirley6 (f) Desk

(g) Conference (h) Sibenik

Figure A.7: Instant Global Illumination (IGI).

A. Adaptive Interleaved Sampling 178

(a) Cornell (b) Subdivided

(c) Deskar (d) Office

(e) Shirley6 (f) Desk

(g) Conference (h) Sibenik

Figure A.8: AIS with maximum samples (A-MAX).

A. Adaptive Interleaved Sampling 179

(a) SubdividedPM (b) OfficePM

(c) Shirley6PM

Figure A.8: AIS with maximum samples (A-MAX).

A. Adaptive Interleaved Sampling 180

(a) Cornell (b) Subdivided

(c) Deskar (d) Office

(e) Shirley6 (f) Desk

(g) Conference (h) Sibenik

Figure A.9: Path-traced reference (PT).

A. Adaptive Interleaved Sampling 181

(a) SubdividedPM (b) OfficePM

(c) Shirley6PM

Figure A.9: Path-traced reference (PT).

A. Adaptive Interleaved Sampling 182

(a) Cornell (b) Subdivided

(c) Deskar (d) Office

(e) Shirley6 (f) Desk

(g) Conference (h) Sibenik

Figure A.10: VDP results for AIS vs. PT

A. Adaptive Interleaved Sampling 183

(a) SubdividedPM (b) OfficePM

(c) Shirley6PM

Figure A.10: VDP results for AIS vs. PT

A. Adaptive Interleaved Sampling 184

(a) Cornell (b) Subdivided

(c) Deskar (d) Office

(e) Shirley6 (f) Desk

(g) Conference (h) Sibenik

Figure A.11: VDP results for A-MAX vs. PT

A. Adaptive Interleaved Sampling 185

(a) SubdividedPM (b) OfficePM

(c) Shirley6PM

Figure A.11: VDP results for A-MAX vs. PT

A. Adaptive Interleaved Sampling 186

(a) Cornell (b) Subdivided

(c) Deskar (d) Office

(e) Shirley6 (f) Desk

(g) Conference (h) Sibenik

Figure A.12: VDP results for IGI vs. PT

	coverpiotr.pdf
	University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

	Thesis-PiotrDubla.pdf
	Acknowledgements
	Declaration
	List of Publications
	Abstract
	Introduction
	Physically-based Rendering
	Ray tracing
	Interactive Global Illumination
	Research Objectives
	Thesis Outline

	Background
	Introduction to Rendering
	Radiometry
	Surface Interactions of Light
	Light Transport

	Primary Rendering Techniques
	Rasterisation
	Ray Tracing
	Radiosity

	Accelerating Rendering
	Component-based Rendering
	Selective-Rendering
	Rasterisation
	Ray tracing
	Perception

	Interleaved Sampling
	Dynamic Acceleration Structures
	Irradiance Caching

	Synchronisation
	Blocking
	Busy-waiting
	Non-blocking
	Atomic Primitives

	Interactive Global Illumination
	Interactive Ray Tracing
	CPU Algorithms
	Systems
	Algorithmic enhancements

	GPU Algorithms
	Systems
	Acceleration Data Structures

	Interactive Global Illumination
	CPU Algorithms
	Systems
	Radiosity
	Sparse sampling

	GPU Algorithms
	Radiosity
	Instant Radiosity
	Image-based methods
	Photon Mapping
	Precomputed Radiance Transfer
	Rasterisation

	Discussion
	Summary

	Impact of Selective Rendering on Interactive Ray Tracing
	Introduction
	Experimental Framework
	Experiment
	Results
	Discussion
	Summary

	Adaptive Interleaved Sampling for Interactive Global Illumination
	Introduction
	Framework
	Identification
	Deconstruction
	Pairing
	Implementation

	Adaptive Interleaved Sampling (AIS)
	Algorithm
	Indirect Diffuse Lighting
	Soft Shadows
	Single-scattering Participating Media

	Results
	Validation

	Summary

	Instant Caching for Interactive Global Illumination
	Introduction
	Instant Caching
	Static Instant Caching
	Temporal Instant Caching (TIC)

	Results
	Static images
	Animations
	Validation

	Summary

	Wait-Free Shared-Memory Irradiance Cache
	Introduction
	Algorithms
	Lock-Based Irradiance Cache (LCK)
	Local-Write Irradiance Cache (LW)
	Wait-Free Irradiance Cache (WF)

	Results
	Still images
	Animations

	Summary

	Conclusions and Future Work
	Conclusions
	Contributions
	Impact
	Limitations and Extensions
	Directions for Future Work
	Final Remarks

	References
	Adaptive Interleaved Sampling

